JP2005013870A - Silica-carrying photocatalyst and its production method - Google Patents

Silica-carrying photocatalyst and its production method Download PDF

Info

Publication number
JP2005013870A
JP2005013870A JP2003182062A JP2003182062A JP2005013870A JP 2005013870 A JP2005013870 A JP 2005013870A JP 2003182062 A JP2003182062 A JP 2003182062A JP 2003182062 A JP2003182062 A JP 2003182062A JP 2005013870 A JP2005013870 A JP 2005013870A
Authority
JP
Japan
Prior art keywords
photocatalyst
silica
organosilicon compound
titanium dioxide
supported
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003182062A
Other languages
Japanese (ja)
Inventor
Keiichi Tanaka
啓一 田中
Momoyo Segawa
百代 瀬川
Kazuaki Yoshida
和昭 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2003182062A priority Critical patent/JP2005013870A/en
Publication of JP2005013870A publication Critical patent/JP2005013870A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Catalysts (AREA)
  • Physical Water Treatments (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem that when silica is deposited on a photocatalyst with large activity by a sol gel process in order to improve resolving efficiency of a harmful substance, silica not being deposited is produced at the same time, thereby making it difficult to control the amount of the silica deposited on the photocatalyst. <P>SOLUTION: In a production method of a silica-carrying photocatalyst, the photocatalyst is suspended or is immersed in an organosilicon compound and an organic solvent. The organic solvent is evaporated by agitating obtained suspension to adsorb the organosilicon compound on a photocatalyst surface. Then the adsorbed organosilicon compound is changed to silicon oxide by adding distilled water thereto and applying photoirradiation and then silicon oxide adsorbed photocatalyst is calcined. The silocon oxide-carrying photocatalyst carries silica particulates obtained by photodeposition and calcination of the organosilicon compound on the photocatalyst particle surface. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、シリカ担持光触媒とその製造方法に関するものである。
【0002】
【従来の技術】
空気や水中の有害物質を分解浄化する技術として近年、二酸化チタン等を光触媒とする方法が注目されている。この方法は、太陽光などの低エネルギ−の光を用い、化学物質などの添加を必要としないので、省エネルギ−かつ省資源の効果がある。しかしこのような利点にもかかわらず、その実用化が進まないのは、有害物質を分解する効率がいまだ不十分であることによる。その原因は、光触媒反応が、光照射された光触媒の表面のみで起こるため、反応できる面積は限られているが、有害物質がこの表面と接触する確率は大きくないことにある。
このため光触媒を吸着剤により複合化して、吸着剤に集めた有害物質を近接の二酸化チタン表面に供給することにより分解効率を向上させることが考えられる。このような目的で用いる吸着剤としてはシリカが有望である。
【0003】
【発明が解決しようとする課題】
そこで光触媒としての二酸化チタンとシリカとを複合化する方法としては、ゾルゲル法によりチタンとシリカの化合物より複合酸化物にする方法と、シリカ粒子に二酸化チタンをゾルゲル法により担持する方法が化学文献等で報告されている。しかしこれら方法で得られる複合体中の二酸化チタン自身の活性は、単体粒子状の二酸化チタンに比し極めて低い。
このため逆の発想として活性の大きい光触媒にシリカを担持する複合化法の開発が望まれる。このような方法として光触媒にゾルゲル法によりシリカを担持することが考えられる。しかしゾルゲル法ではシリカが完全に担持されずに多くの未担持のシリカが同時にできる欠点がある。またこのためにシリカの光触媒への担持量を制御することが困難である。
【0004】
【課題を解決するための手段】
本発明者らは鋭意努力して、これらの問題を克服し、高い活性のシリカ担持光触媒とその製造方法を開発するに至った。
即ち本発明の特徴とするところは、次の2点である。
(1).有機ケイ素化合物と有機溶剤の溶液に、光触媒を懸濁あるいは浸漬し、これを攪拌して有機溶剤を蒸発させることにより、光触媒表面に有機ケイ素化合物を吸着させ、これに蒸留水を加え光照射して該吸着有機ケイ素化合物を酸化ケイ素にし、この酸化ケイ素吸着光触媒を焼成することを特徴とするシリカ担持光触媒の製造方法。
(2).光触媒とその表面に吸着の有機ケイ素化合物を、光沈積後焼成して、光触媒に酸化ケイ素微粒子を担持してなることを特徴とするシリカ担持光触媒。
【0005】
【発明の実施の形態】
本発明において、光触媒として用いることのできるのは、二酸化チタン、酸化亜鉛、酸化ジルコニュウム、硫化亜鉛、酸化タングステン等であるが、望ましくは二酸化チタンである。
光触媒の表面に吸着させる有機ケイ素化合物としては、テトラエトキシシラン(TEOS)、テトラメトキシテトラシラン、トリメトキシメチルシラン、ジエトキシジメチルシラン等を用いることが出来る。
有機ケイ素化合物は、蒸留水中に分散させて用いることもできるが、担持を効率よく行なわせるためには、あらかじめ光触媒の表面に吸着させておくことが望ましい。
光触媒の表面に該有機ケイ素化合物を吸着させるには、光触媒と該有機ケイ素化合物を有機溶剤に溶解して攪拌し、有機溶剤の全量が蒸発するまで攪拌を続けることにより大部分のケイ素化合物を光触媒表面に吸着させることができる。
有機ケイ素化合物の量は、例えばテトラエトキシシランでは二酸化チタン1g当たり0.2〜0.8mlが適当である。望ましくは0.5mlである。
図1に示す吸着TEOS量がシリカ担持二酸化チタンにおよぼす影響(活性はBTMA(ベンジルトリメチルアンモニュウム)分解の一次反応速度(/min−1)で表す)のグラフように、テトラメトキシテトラシラン(TEMS)では二酸化チタン1g当たり0.2〜0.8mlが適当である。望ましくは0.5mlである。
この有機ケイ素化合物の量は、後述の光沈積の所要時間との関係がある。有機ケイ素化合物を吸着した光触媒の適当量を水中に懸濁させて、光触媒が吸収できる波長の光(例えば、二酸化チタンでは410nmより短波長、酸化亜鉛では380nmより短波長)で照射する。
この光照射ための光源としては、超高圧、中圧、低圧の水銀灯、キセノンランプ、ブラックライト等を用いることができる。
これにより有機ケイ素化合物は、酸化ケイ素(シリカ)となり、光触媒表面に沈積する(光沈積)。
該光照射の所要時間は短時間では沈積量が不十分であり、また長時間では沈積量が多くなり光触媒の表面が覆われ過ぎて活性が小さくなる。
例えば図2に示すシリカ担持ニ酸化チタンの活性の焼成温度による変化(活性を一次反応速度(/min−1)で表す)のグラフのように、BTMA(ベンジルトリメチルアンモニュウム)分解の二酸化チタン0.5gを25mlの水に懸濁して500Wの水銀灯で照射する場合には1〜5時間が適当であるが、望ましくは1〜3時間である。この酸化ケイ素を担持した二酸化チタンを200〜500℃で焼成する。最も望ましい焼成温度は400℃である。また、焼成時間は1〜3時間が適当である。これは焼成により酸化ケイ素の表面積が変化するためと思われる。
【0006】
【発明の実施例】
本発明を実施例により詳細に説明する。
実施例1
テトラエトキシシラン(TEOS)0.5mlに、メタノ−ル溶液20mlを加え、これに二酸化チタン0.5gを懸濁させた。この懸濁液中の全てのメタノ−ルが蒸発するまで攪拌を続けた。次に蒸留水を加えて攪拌した後に、デカンテ−ションにより二酸化チタンを取り出し、更に蒸留水を加え、500Wの超高圧水銀灯により3時間照射した(光沈積)。二酸化チタンを取り出し、400℃で1時間焼成し、シリカ担持二酸化チタンを得た。
次に前記シリカ担持二酸化チタン75mgを、ベンゼントリメチルアンモニウム(BTMA)の2×10−5Mの溶液25mlに懸濁し、これに前記の水銀灯で2%のニュ−トラルフィルタ−を通して20分間照射した結果、該ベンゼントリメチルアンモニウムの約80%が分解した。
【0007】
比較例1
因みにテトラエトキシシラン未担持の二酸化チタン粒子単体では、その他の条件を実施例1同一条件下で行った結果、ベンゼントリメチルアンモニウム量の約10%が分解した。
【0008】
実施例2
テトラエトキシシラン(TEOS)0.7mlに、メタノ−ル溶液20mlを加え、これに二酸化チタン0.5gを懸濁させた。この懸濁液中の全てのメタノ−ルが蒸発するまで攪拌を続け二酸化チタン表面にテトラエトキシシランを吸着させた。次に蒸留水を加えて攪拌水洗した後に、デカンテ−ションによりテトラエトキシシラン吸着の二酸化チタンを取り出し、更に蒸留水を加え、500Wの超高圧水銀灯により3時間照射しテトラエトキシシランをシリカにして二酸化チタン表面に光沈積させ、これを取り出し、300℃で1時間焼成し、シリカ担持二酸化チタンを得た。
次に前記シリカ担持二酸化チタン75mgを、ベンゼントリメチルアンモニウム(BTMA)の2×10−5Mの溶液25mlに懸濁し、これに前記の水銀灯で2%のニュ−トラルフィルタ−を通して30分間照射した結果、ベンゼントリメチルアンモニウムの約60%が分解した。
比較例2
因みにテトラエトキシシラン未担持の二酸化チタン粒子単体では、他の条件を実施例2と同一条件下で行った結果、ベンゼントリメチルアンモニウム量の約15%が分解した。
【0009】
実施例3
テトラエトキシシラン(TEOS)0.5mlに、メタノ−ル溶液20mlを加え、これに二酸化チタン0.5gを懸濁させた。この懸濁液中の全てのメタノ−ルが蒸発するまで攪拌を続けた。次に蒸留水を加えて攪拌水洗した後に、デカンテ−ションによりテトラエトキシシラン吸着の二酸化チタンを取り出し、更に蒸留水を加え、500Wの超高圧水銀灯により5時間照射しテトラエトキシシランをシリカにして二酸化チタン表面に光沈積させ、これを取り出し、400℃で1時間焼成し、シリカ担持二酸化チタンを得た。
次に前記シリカ担持二酸化チタン75mgを、ベンゼントリメチルアンモニウム(BTMA)の2×10−5Mの溶液25mlに懸濁し、これに前記の水銀灯で2%のニュ−トラルフィルタ−を通して20分間照射した結果、ベンゼントリメチルアンモニウムの約45%が分解した。
【0010】
【発明の効果】
以上の説明で明らかなように、本発明のシリカ担持光触媒とその製造方法は、光触媒をシリカ等の有害物質吸着剤により効率よく複合化して、吸着剤のシリカで有害物質を集めてこれを直下に光触媒表面に供給することにより有害物質の分解効率を格段に向上させたものである。
【図面の簡単な説明】
【図1】図1は、吸着TEOS量がシリカ担持二酸化チタンにおよぼす影響活性はBTMA(ベンジルトリメチルアンモニュウム)分解の一次反応速度(/min−1)で表したグラフ。
【図2】図2は、シリカ担持ニ酸化チタンの活性の焼成温度による変化活性はBTMA(ベンジルトリメチルアンモニュウム)分解の一次反応速度(/min−1)で表したグラフ。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a silica-supported photocatalyst and a method for producing the same.
[0002]
[Prior art]
In recent years, a method using titanium dioxide or the like as a photocatalyst has attracted attention as a technique for decomposing and purifying harmful substances in air and water. This method uses light of low energy such as sunlight and does not require addition of a chemical substance, so that it has an effect of energy saving and resource saving. However, in spite of such advantages, the practical use has not progressed because the efficiency of decomposing harmful substances is still insufficient. The cause is that the photocatalytic reaction occurs only on the surface of the photocatalyst that has been irradiated with light, so that the area that can be reacted is limited, but the probability that harmful substances come into contact with this surface is not high.
For this reason, it is conceivable to improve the decomposition efficiency by combining the photocatalyst with an adsorbent and supplying the harmful substances collected in the adsorbent to the adjacent titanium dioxide surface. Silica is a promising adsorbent used for such purposes.
[0003]
[Problems to be solved by the invention]
Therefore, as a method of compounding titanium dioxide and silica as a photocatalyst, there are a method of making a composite oxide from a compound of titanium and silica by a sol-gel method, and a method of supporting titanium dioxide on silica particles by a sol-gel method. It is reported in. However, the activity of titanium dioxide itself in the composite obtained by these methods is extremely low as compared with single-particulate titanium dioxide.
For this reason, it is desirable to develop a composite method in which silica is supported on a highly active photocatalyst. As such a method, it is considered that silica is supported on the photocatalyst by a sol-gel method. However, the sol-gel method has a drawback in that a large amount of unsupported silica can be formed simultaneously without silica being completely supported. For this reason, it is difficult to control the amount of silica supported on the photocatalyst.
[0004]
[Means for Solving the Problems]
The inventors of the present invention have made diligent efforts to overcome these problems and develop a highly active silica-supported photocatalyst and a method for producing the same.
That is, the features of the present invention are the following two points.
(1). A photocatalyst is suspended or immersed in a solution of an organosilicon compound and an organic solvent, and this is stirred to evaporate the organic solvent, thereby adsorbing the organosilicon compound on the surface of the photocatalyst. A method for producing a silica-supported photocatalyst, wherein the adsorbed organosilicon compound is converted into silicon oxide and the silicon oxide adsorbing photocatalyst is calcined.
(2). A silica-supported photocatalyst comprising a photocatalyst and an organosilicon compound adsorbed on the surface of the photocatalyst, fired after photodeposition, and silicon oxide fine particles supported on the photocatalyst.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, titanium dioxide, zinc oxide, zirconium oxide, zinc sulfide, tungsten oxide and the like can be used as a photocatalyst, and titanium dioxide is preferable.
As the organosilicon compound adsorbed on the surface of the photocatalyst, tetraethoxysilane (TEOS), tetramethoxytetrasilane, trimethoxymethylsilane, diethoxydimethylsilane, or the like can be used.
The organosilicon compound can be used by being dispersed in distilled water, but it is desirable that the organosilicon compound is previously adsorbed on the surface of the photocatalyst for efficient loading.
In order to adsorb the organosilicon compound on the surface of the photocatalyst, the photocatalyst and the organosilicon compound are dissolved in an organic solvent and stirred, and stirring is continued until the entire amount of the organic solvent evaporates, whereby most of the silicon compound is photocatalyzed. It can be adsorbed on the surface.
The amount of the organosilicon compound is, for example, 0.2 to 0.8 ml per gram of titanium dioxide for tetraethoxysilane. Desirably 0.5 ml.
As shown in the graph of the effect of the amount of adsorbed TEOS on silica-supported titanium dioxide shown in FIG. 1 (activity is expressed as the first-order reaction rate (/ min-1) of BTMA (benzyltrimethylammonium) decomposition), tetramethoxytetrasilane (TEMS). Then, 0.2 to 0.8 ml per 1 g of titanium dioxide is appropriate. Desirably 0.5 ml.
The amount of the organosilicon compound is related to the time required for photodeposition described later. An appropriate amount of the photocatalyst adsorbing the organosilicon compound is suspended in water and irradiated with light having a wavelength that can be absorbed by the photocatalyst (for example, a wavelength shorter than 410 nm for titanium dioxide and a wavelength shorter than 380 nm for zinc oxide).
As a light source for this light irradiation, an ultrahigh pressure, medium pressure, low pressure mercury lamp, xenon lamp, black light, or the like can be used.
As a result, the organosilicon compound becomes silicon oxide (silica) and is deposited on the surface of the photocatalyst (photodeposition).
As for the time required for the light irradiation, the deposition amount is insufficient for a short time, and the deposition amount increases for a long time, so that the surface of the photocatalyst is covered too much and the activity becomes small.
For example, as shown in the graph of the change of the activity of the silica-supported titanium dioxide with the calcination temperature shown in FIG. 2 (the activity is expressed by the first-order reaction rate (/ min-1)), the titanium dioxide of the BTMA (benzyltrimethylammonium) decomposition is 0.1%. When 5 g is suspended in 25 ml of water and irradiated with a 500 W mercury lamp, 1 to 5 hours is appropriate, but preferably 1 to 3 hours. This titanium dioxide carrying silicon oxide is fired at 200 to 500 ° C. The most desirable firing temperature is 400 ° C. The firing time is suitably 1 to 3 hours. This seems to be because the surface area of silicon oxide changes by firing.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
The present invention will be described in detail with reference to examples.
Example 1
20 ml of a methanol solution was added to 0.5 ml of tetraethoxysilane (TEOS), and 0.5 g of titanium dioxide was suspended therein. Stirring was continued until all the methanol in the suspension had evaporated. Next, after adding distilled water and stirring, titanium dioxide was taken out by decantation, further distilled water was added, and irradiation was performed for 3 hours with a 500 W ultrahigh pressure mercury lamp (photodeposition). Titanium dioxide was taken out and baked at 400 ° C. for 1 hour to obtain silica-supported titanium dioxide.
Next, 75 mg of the silica-supported titanium dioxide was suspended in 25 ml of a 2 × 10 −5 M solution of benzenetrimethylammonium (BTMA), and this was irradiated with the mercury lamp through a 2% neutral filter for 20 minutes. About 80% of the benzenetrimethylammonium was decomposed.
[0007]
Comparative Example 1
Incidentally, in the case of titanium dioxide particles alone not carrying tetraethoxysilane, other conditions were carried out under the same conditions as in Example 1. As a result, about 10% of the amount of benzenetrimethylammonium was decomposed.
[0008]
Example 2
20 ml of methanol solution was added to 0.7 ml of tetraethoxysilane (TEOS), and 0.5 g of titanium dioxide was suspended therein. Stirring was continued until all the methanol in the suspension had evaporated, and tetraethoxysilane was adsorbed on the titanium dioxide surface. Next, after adding distilled water and washing with stirring water, the titanium dioxide adsorbed by tetraethoxysilane is taken out by decantation. Distilled water is further added and irradiated with a 500 W ultrahigh pressure mercury lamp for 3 hours to convert tetraethoxysilane to silica to produce dioxide. Photodeposited on the titanium surface, this was taken out and baked at 300 ° C. for 1 hour to obtain silica-supported titanium dioxide.
Next, 75 mg of the silica-supported titanium dioxide was suspended in 25 ml of a 2 × 10 −5 M solution of benzenetrimethylammonium (BTMA), and this was irradiated with the mercury lamp through a 2% neutral filter for 30 minutes. About 60% of benzenetrimethylammonium was decomposed.
Comparative Example 2
Incidentally, in the case of titanium dioxide particles alone not carrying tetraethoxysilane, other conditions were carried out under the same conditions as in Example 2. As a result, about 15% of the amount of benzenetrimethylammonium was decomposed.
[0009]
Example 3
20 ml of a methanol solution was added to 0.5 ml of tetraethoxysilane (TEOS), and 0.5 g of titanium dioxide was suspended therein. Stirring was continued until all the methanol in the suspension had evaporated. Next, after adding distilled water and washing with stirring water, the titanium dioxide adsorbed by tetraethoxysilane is taken out by decantation, further distilled water is added, and irradiation is performed for 5 hours with a 500 W ultra-high pressure mercury lamp to convert tetraethoxysilane to silica to produce dioxide. Photodeposited on the titanium surface, this was taken out and baked at 400 ° C. for 1 hour to obtain silica-supported titanium dioxide.
Next, 75 mg of the silica-supported titanium dioxide was suspended in 25 ml of a 2 × 10 −5 M solution of benzenetrimethylammonium (BTMA), and this was irradiated with the mercury lamp through a 2% neutral filter for 20 minutes. About 45% of the benzenetrimethylammonium was decomposed.
[0010]
【The invention's effect】
As is apparent from the above description, the silica-supported photocatalyst of the present invention and the method for producing the same are obtained by efficiently combining the photocatalyst with a harmful substance adsorbent such as silica and collecting the harmful substance with the adsorbent silica. The decomposition efficiency of harmful substances is greatly improved by supplying to the surface of the photocatalyst.
[Brief description of the drawings]
FIG. 1 is a graph in which the influential activity of the amount of adsorbed TEOS on silica-supported titanium dioxide is expressed by the primary reaction rate (/ min-1) of BTMA (benzyltrimethylammonium) decomposition.
FIG. 2 is a graph in which the activity of the silica-supported titanium dioxide with the calcination temperature is represented by the first-order reaction rate (/ min-1) of BTMA (benzyltrimethylammonium) decomposition.

Claims (2)

有機ケイ素化合物と有機溶剤に光触媒を懸濁させ、この懸濁液を攪拌して有機溶剤を蒸発させて光触媒の表面に有機ケイ素化合物を吸着させ、これに蒸留水を加え光照射して該吸着有機ケイ素化合物を酸化ケイ素にし、この酸化ケイ素吸着光触媒を焼成することを特徴とするシリカ担持光触媒の製造方法。A photocatalyst is suspended in an organosilicon compound and an organic solvent, and the suspension is stirred to evaporate the organic solvent to adsorb the organosilicon compound on the surface of the photocatalyst. A method for producing a silica-supported photocatalyst, characterized in that an organosilicon compound is converted into silicon oxide and the silicon oxide adsorption photocatalyst is fired. 光触媒とその表面に吸着の有機ケイ素化合物を、光沈積後焼成して、光触媒に酸化ケイ素微粒子を担持してなることを特徴とするシリカ担持光触媒。A silica-supported photocatalyst comprising a photocatalyst and an organosilicon compound adsorbed on the surface of the photocatalyst, fired after photodeposition, and silicon oxide fine particles supported on the photocatalyst.
JP2003182062A 2003-06-26 2003-06-26 Silica-carrying photocatalyst and its production method Pending JP2005013870A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003182062A JP2005013870A (en) 2003-06-26 2003-06-26 Silica-carrying photocatalyst and its production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003182062A JP2005013870A (en) 2003-06-26 2003-06-26 Silica-carrying photocatalyst and its production method

Publications (1)

Publication Number Publication Date
JP2005013870A true JP2005013870A (en) 2005-01-20

Family

ID=34182549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003182062A Pending JP2005013870A (en) 2003-06-26 2003-06-26 Silica-carrying photocatalyst and its production method

Country Status (1)

Country Link
JP (1) JP2005013870A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010095497A (en) * 2008-10-20 2010-04-30 Shoichi Nakamura Bath preparation
CN107876104A (en) * 2017-11-09 2018-04-06 济南大学 Preparation method and products obtained therefrom and application of a kind of landscape water with light catalytic control material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010095497A (en) * 2008-10-20 2010-04-30 Shoichi Nakamura Bath preparation
CN107876104A (en) * 2017-11-09 2018-04-06 济南大学 Preparation method and products obtained therefrom and application of a kind of landscape water with light catalytic control material
CN107876104B (en) * 2017-11-09 2020-07-28 济南大学 Preparation method of photocatalyst purification material for landscape water, obtained product and application

Similar Documents

Publication Publication Date Title
CN102198405B (en) Composite catalyst for purifying indoor formaldehyde and preparation method of composite catalyst
Yang et al. La2Ti2O7: An efficient and stable photocatalyst for the photoreduction of Cr (VI) ions in water
CN107321341B (en) diatomite/(GR + TiO)2) Preparation method of composite photocatalyst
US10717120B2 (en) Sand/water remediation method with a photocatalytic fuel cell
KR20130092592A (en) Titanium oxide photocatalyst having copper compounds supported thereon, and method for producing same
CN103785371B (en) A kind of porous carbon microspheres TiO 2composite and its preparation method and application
KR20120085079A (en) Complex metal oxide catalyst, filter module and air cleaner comprising this catalyst
CN103100398A (en) Preparation method of natural zeolite loaded one-dimensional TiO2 nanowire with high catalytic activity
JP7141095B2 (en) photocatalyst
JP2004059507A (en) Method for reducing carbon dioxide by using photocatalyst
KR20150109191A (en) Inorganic hollow beads coated photocatalyst for a water treatment and method for manufacturing the same
JP5129894B2 (en) Tungsten oxide photocatalyst modified with copper ion and method for producing the same
JP3944094B2 (en) Photocatalyst production method, photocatalyst and gas purification device
CN107117683B (en) Method for catalytically degrading low-concentration antibiotics In water body by using MOFs containing In-Co under visible light
WO2023272413A1 (en) Application of tin disulfide nanocatalyst in production of hydrogen by piezoelectric catalytic decomposition of water
CN102698734B (en) Amorphous tantalic acid photocatalyst for decomposing benzene pollutants and preparation method for amorphous tantalic acid photocatalyst
CN109107495B (en) Method for directly loading and filling photocatalyst in layered mode and component thereof
JP2005013870A (en) Silica-carrying photocatalyst and its production method
WO2006106784A1 (en) Method for processing hydrogen sulfide, method for producing hydrogen and photocatalyst reactor
JP2003299965A (en) Photocatalyst material and production method of the same
Zawawi et al. Synergistic effect of adsorption-photodegradation of composite TiO2/AC for degradation of 1-butyl-3-methylimidazolium chloride
Fu et al. Photodegradation of methylene blue in a batch fixed bed photoreactor using activated carbon fibers supported TiO2 photocatalyst
CN108745415B (en) Poly-o-phenylenediamine modified AgCl/g-C3N4Composite photocatalyst and preparation and application thereof
CN108654673B (en) Novel photocatalytic material and preparation method and application thereof
KR20160014750A (en) Inorganic hollow beads coated photocatalyst for a water treatment and method for manufacturing the same