JP2005013687A - Gas or liquid sterilizing method using self-heating inorganic porous film and air conditioner equipped with sterilizing filter using the same - Google Patents

Gas or liquid sterilizing method using self-heating inorganic porous film and air conditioner equipped with sterilizing filter using the same Download PDF

Info

Publication number
JP2005013687A
JP2005013687A JP2003204136A JP2003204136A JP2005013687A JP 2005013687 A JP2005013687 A JP 2005013687A JP 2003204136 A JP2003204136 A JP 2003204136A JP 2003204136 A JP2003204136 A JP 2003204136A JP 2005013687 A JP2005013687 A JP 2005013687A
Authority
JP
Japan
Prior art keywords
inorganic porous
self
sterilizing
filter
porous film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003204136A
Other languages
Japanese (ja)
Inventor
Noboru Nakajima
昇 中島
Mitsuteru Fujiwara
光輝 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
S P G TECHNO KK
Original Assignee
S P G TECHNO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by S P G TECHNO KK filed Critical S P G TECHNO KK
Priority to JP2003204136A priority Critical patent/JP2005013687A/en
Publication of JP2005013687A publication Critical patent/JP2005013687A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Filtering Materials (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)
  • Apparatus For Disinfection Or Sterilisation (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a gas or liquid sterilizing method using a self-heating inorganic porous film having highly advanced sterilizing effect and manufactured into a small size at a low cost and to provide an air conditioner equipped with a sterilizing filter using the same. <P>SOLUTION: As the inorganic porous film, a cylindrical Shirasu Porous Glass (SPG) having a uniform pore size and allowing the selection of the pore size within the range from 0.05 μm to 20 μm is plated with nickel alloy 1 to be formed into the sterilizing filer 9. The sterilizing filter (self-heating inorganic porous film) 9 is energized to be self-heated from 150°C to 250°C and atmospheric air is made to pass therethrough to sterilize bacteria and virus. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、気体又は液体の殺菌方法、例えば大気中に浮遊する細菌やウィルス等を殺菌するための方法に関し、とくに導電性のある無機質の多孔質膜に直接導電するか、又は導電性の無い無機質の多孔質膜にその細孔を閉塞しないように発熱抵抗体となる金属めっき等の表面処理を施して導電することにより発熱する自己発熱型無機多孔質膜を用いた気体又は液体の殺菌方法に関するものである。
【0002】
【従来の技術】
最近、アジア各国、さらには世界中を震撼させているSARS感染ウィルスが由々しき社会問題となっている。従来から除塵や脱臭等を目的としたフィルターが搭載された空調機器等はあるが、フィルター内に捕捉された細菌やウィルスがフィルター内で生息し続けている可能性があることは避けられない。このような除塵効果が低減して交換が必須である従来のフィルターでは、その交換時に、フィルターに捕捉され濃縮された細菌やウィルスが再び大気中に浮遊してしまうという危険性がある。特に新種の細菌やウィルスに対する抗生物質などの薬剤の開発がなされていない場合、感染の拡大を最小限に止めるには、高機能を有し簡便で安価な空気清浄手段が必要なことは明らかである。
【0003】
空気清浄手段の機能として最も重要な部分がフィルターであり、感染確率の高い宿泊施設や病院等の環境保全の見地から、細菌やウィルスの殺菌が可能で且つ長寿命のフィルターが求められている。そこで、例えば、大気中の塵埃、細菌、煙、悪臭等を除去するために、エアコン、除湿器、換気扇、ファンヒーター、除塵機及び冷却ファンなどの大気を吸排気して循環させる装置に用いられる殺菌フィルターとして、抗菌作用を有する物質、例えば酸化亜鉛膜付きの網体を用いたもの(特許文献1参照。)や、銅又は銀の極細繊維で織り込まれた金属メッシュに電圧を印加して殺菌するようにしたもの(特許文献2参照。)等がある。このように、現在、上記のような大気の給排気を行なう各種機器に高度な空気清浄機能を付加する例が増加している。
【0004】
【特許文献1】
特開平8−243322号公報(2頁−3頁)
【特許文献2】
特開平9−309327号公報(2頁−3頁、第1図)
【0005】
【発明が解決しようとする課題】
しかしながら、上記文献所載のフィルターは、通気孔となる網目や織目が細菌やウィルスの大きさに比して極度に大きく、細菌やウィルスを確実に捕捉し殺菌し得るものとは言い難い。また、捕捉性を上げるためにはフィルターを幾重にも積層させたりする必要がありフィルターの大型化は免れない。
本発明は、上記課題に鑑み、高度の殺菌効果を有するばかりでなく、小型で且つ安価に製造することができる自己発熱型無機多孔質膜を用いた気体又は液体の殺菌方法及びこれを用いた殺菌フィルターを搭載した空調機器を提供することにある。
【0006】
【課題を解決するための手段】
このため本発明は、導電することにより発熱する自己発熱型無機多孔質膜の細孔に気体又は液体を通過させて当該気体又は液体を殺菌することを第1の特徴とする。また、細孔に詰まった汚物を焼却除去することを第2の特徴とする。
【0007】
このように本発明では、細菌やウィルスが浮遊する気体が高温に発熱しているフィルターを通過する際に、細菌やウィルスを死滅させることが可能な自己発熱型無機多孔質膜を用いる。導電性発熱抵抗体となり得る無機多孔質膜に通電することにより、無機多孔質膜自体がヒーターの役割を果たす。導電性のない無機多孔質膜であれば、金属めっきを施すことにより導電発熱抵抗体とすることかできる。めっき厚については無機多孔質膜の発熱抵抗の値に合わせて調整が可能である。無機多孔質膜の形状自体は特に限定されないが、平板形、円柱形など使用目的に応じた形状に成形できる。また、めっきの方法としては、無機多孔質膜の細孔表面全てにめっきすることや、無機多孔質膜の細孔表面でのめっき積層時間を制御したり、めっき液の細孔内への圧入力をコントロールすることにより、細孔内へのめっきの深度をコントロールして、無機多孔質膜の膜厚方向に、細孔の一定の深さまでめっきすることが可能である。このように本発明は、導電性のない無機多孔質膜においては、細孔を塞がない程度に細孔表面にめっきを、全面若しくは部分的にめっきを施し、めっき層に通電させることにより無機多孔質膜自体を500℃程度まで昇温することができる。
【0008】
【発明の実施の形態】
以下に、本発明の実施の形態を図面に示す実施例に基づいて説明する。本発明における無機多孔質膜としては、例えば、金属性多孔質膜、ガラス性多孔質膜、木性多孔質膜などが挙げられる。とくに、100℃乃至500℃に昇温したフィルターで、細菌やウィルスを捕捉あるいは通過させる間に死滅させるということを考慮すれば、無機多孔質膜で、均一な細孔径を有し、気孔率の高い無機多孔質膜が適当である。また、導電発熱抵抗体とならない無機多孔質膜を用いて自己発熱無機多孔質膜とする場合のめっきについては、ニッケル合金めっきが好適である。本発明の実施例としては、図1に示すように、無機多孔質膜として円筒状の多孔質ガラス膜2を用いた。この多孔質ガラス膜2の外表層及び内表層部分にニッケル合金めっきを施した。図9は、本発明の殺菌効果を判定する試験装置を示している。
【0009】
【実施例】
本実施例の殺菌フィルター9では、無機多孔質膜として、細孔径が均一で、0.05μm乃至20μmの範囲で細孔径が選定できるシラス多孔質ガラス(以下、SPGと言う)2を用いた。殺菌フィルター9の形状は、外径10mm、内径8.5mm、肉厚0.75mm、長さ250mmの円筒状である。SPGは約500℃までの耐熱性を有しており、本発明で使用する無機多孔質膜として適当な一つである。このSPGにニッケル合金めっき1を施し、めっき部分に通電することにより殺菌フィルター9としての自己発熱型SPGを得ることができた。ニッケル合金めっきについては、ニッケル−リン合金めっき、ニッケル−ボロン合金めっきなどがあるが、特にこれらに限定されるものではない。
【0010】
図9に示すように、この殺菌フィルター(自己発熱型無機多孔質膜)9に通電し150℃乃至250℃で発熱させながら、大気を透過させ、透過させた大気を、寒天培地10の入った密閉された清浄な室(デシケーター)11に送り込んだ場合と、室外に曝して大気中の落下菌を採取した寒天培地のものを数日培養して殺菌性能試験を行った。
【0011】
殺菌フィルター9の下端の内腔を密閉し、上端の内腔には導気チューブ14の一端を接続し、導気チューブ14の他端をデシケーター11に接続した。デシケーター11には吸引ポンプ12からの吸引チューブ13を接続する。ここで、殺菌フィルター9の両端部分には通電させるのため電極(図示せず)が取付けられ、電線15が接続されており、スライダック抵抗器(5A、0V〜130V)8を介して商用電源7に接続されている。このときの殺菌フィルター9のサイズとめっき条件を表1に示す。
【0012】
【表1】

Figure 2005013687
【0013】
表1から分かるように、SPG2の外表層及び内表層に厚さ約0.7μmのニッケル合金めっきを施して殺菌フィルター9を作成した。この殺菌フィルター9の断面は、図2に示すように無機多孔質膜層2を内外のニッケル合金めっき層1で挟んだ3層構造になっていることを電子顕微鏡下で確認することができる。また、図8に示すように、膜厚750μmに対して、ニッケル合金めっき層1が多孔質ガラス表面6より約125μm程度の深さまで入り込んでおり、細孔5の表面に約0.7μmのめっき厚でめっきされていることが確認できた。このようにSPG2の細孔5は層内部で複雑に屈曲しているので、層厚に比して道程が長大で、また屈曲面が障壁となり透過する細菌やウィルスの高い捕捉性を有するものとなっていることが判った。これらの条件のもとに行なった落下菌試験結果を表2乃至表4に示し、このときの寒天培地10の写真を各々図10から図13に示す。
【0014】
【表2】
Figure 2005013687
【0015】
【表3】
Figure 2005013687
【0016】
【表4】
Figure 2005013687
【0017】
表2、表3及び表4並びに図10乃至図13から明らかなように、本発明に係る殺菌フィルター9の透過空気中の細菌やウィルスは死滅していることが判った。また、本発明は、透過空気量から計算すると、0.3秒乃至1秒の極めて短い時間で細菌やウィルスを死滅させてしまうことができる画期的な殺菌方法であると言える。
【0018】
また、殺菌フィルター9の細孔5に大気中の塵埃や細菌の死骸等による目詰まりが発生し汚れた場合、これを500℃程度まで昇温することにより焼却して灰化することで、フィルターを簡単に再生させることができる。すなわち、殺菌フィルター9の温度を、細菌などが十分死滅する程度の温度で稼動させて、通風の圧力損失が見られたら、500℃程度まで昇温すればよく、同一フィルターの長期間の使用が可能で、頻繁なフィルター交換が不要になる。
【0019】
尚、本発明は上記実施例に限定されず、種々の応用変形が可能である。例えば、上記実施例では無機多孔質膜形状を円筒状に形成したものを使用し、めっき層を円筒の内外の細孔表面に施したが、基材となる無機多孔質膜を円筒状に形成したものの場合、図3に示すように外面のみにめっき層を施したり、図4に示すように円筒の内面のみにめっき層を施したものも使用できる。また、図5に示すように、内部が詰った柱状の無機多孔質膜の外面にめっき層を施すものでもよく、図6及び図7に示すように、無機多孔質膜形状を平板状や他の形状に形成したものも使用できる。
【0020】
本発明に係る殺菌フィルターは、例えば、エアコン、除湿器、換気扇、ファンヒーター、除塵機及び冷却ファンなどの大気を吸排気して循環させる装置(以下、空調機器という)に搭載することができる。
【0021】
【発明の効果】
以上のように、本発明の自己発熱型無機多孔質膜を用いた殺菌方法を用いることにより、細菌やウィルスの浮遊する大気(気体)あるいは液体中の細菌やウィルスを殺菌することができ、小型で高性能な殺菌フィルターを安価に提供することができるというすぐれた効果がある。また、フィルターが塵埃や細菌の死骸等により目詰りを起こし汚れた場合、500℃程度まで昇温することが可能なので、簡単に再生させることができる。また、膜内の細菌やウィルスは死滅してしまっているので、フィルター交換に際しても再び細菌やウィルスが浮遊したり人体などに感染するというおそれは全くない。その結果、高機能で長寿命の殺菌フィルターを有する空調機器等を安価に提供することができる。
【図面の簡単な説明】
【図1】本発明に係る殺菌フィルターを示す斜視図である。
【図2】めっき層を多孔質ガラスの内外面に施した場合を示す図1のA矢視断面図である。
【図3】めっき層を多孔質ガラスの外面のみに施した場合を示す図1のA矢視断面図である。
【図4】めっき層を多孔質ガラスの内面のみに施した場合を示す図1のA矢視断面図である。
【図5】殺菌フィルターの他の実施例を示し、多孔質ガラス形状を円柱状に形成してめっき層を外表面に施した場合を示す断面図である。
【図6】殺菌フィルターの他の実施例を示し、多孔質ガラス形状を板状に形成してめっき層を外表全面にわたって施した場合を示す断面図である。
【図7】殺菌フィルターの他の実施例を示し、多孔質ガラス形状を板状に形成してめっき層を外表面の一部に施した場合を示す断面図である。
【図8】図7のB部分の一部拡大断面図である。
【図9】本発明フィルターの殺菌効果を判定する試験装置の一例を示す構成図である。
【図10】自己発熱型SPG60分間空気透過落下菌試験結果(SPG150℃加温、透過空気量約10L/min)を示す寒天培地の写真である。
【図11】自己発熱型SPG60分間空気透過落下菌試験結果(SPG200℃加温、透過空気量約10L/min)を示す寒天培地の写真である。
【図12】自己発熱型SPG60分間空気透過落下菌試験結果(SPG250℃加温、透過空気量約10L/min)を示す寒天培地の写真である。
【図13】自己発熱型SPG15分間空気透過落下菌試験結果(SPG250℃加温、透過空気量約10L/min)を示す寒天培地の写真である。
【符号の説明】
1 ニッケル合金めっき層(発熱抵抗体)
2 多孔質ガラス層(無機質多孔膜)
3 ニッケル合金めっき被膜
4 多孔質ガラス(SPG)
5 細孔
6 多孔質ガラス表面
7 電源
8 スライダック抵抗器
9 殺菌フィルター(自己発熱型無機多孔質膜)
10 寒天培地
11 密閉された清浄な室(デシケーター)
12 吸引ポンプ
13 吸引チューブ
14 導気チューブ
15 電線[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for sterilizing a gas or liquid, for example, a method for sterilizing bacteria or viruses floating in the atmosphere, and in particular, it is directly conductive to a conductive inorganic porous film or not conductive. Gas or liquid sterilization method using a self-heating type inorganic porous membrane that generates heat by conducting a surface treatment such as metal plating as a heating resistor so as not to block the pores of the inorganic porous membrane It is about.
[0002]
[Prior art]
Recently, SARS-infected viruses that have shaken Asian countries and the world have become serious social problems. Conventionally, there are air conditioners equipped with filters for the purpose of dust removal and deodorization, but it is inevitable that bacteria and viruses trapped in the filter may continue to live in the filter. In such a conventional filter in which the dust removal effect is reduced and replacement is essential, there is a risk that bacteria and viruses captured and concentrated by the filter will float again in the atmosphere at the time of replacement. It is clear that a highly functional, simple and inexpensive air cleaning means is necessary to minimize the spread of infection, especially when drugs such as antibiotics against new species of bacteria and viruses have not been developed. is there.
[0003]
The most important part as a function of the air cleaning means is a filter. From the viewpoint of environmental conservation such as accommodation facilities and hospitals with a high probability of infection, there is a demand for a filter that can sterilize bacteria and viruses and has a long life. Therefore, for example, in order to remove dust, bacteria, smoke, bad odor, etc. in the atmosphere, it is used in a device that sucks and circulates air such as an air conditioner, a dehumidifier, a ventilation fan, a fan heater, a dust remover, and a cooling fan. As a sterilizing filter, a substance having an antibacterial action, for example, one using a net with a zinc oxide film (see Patent Document 1) or a metal mesh woven with ultrafine fibers of copper or silver is sterilized by applying voltage. There are those (see Patent Document 2). As described above, there are an increasing number of examples in which an advanced air cleaning function is added to various devices that supply and exhaust air as described above.
[0004]
[Patent Document 1]
JP-A-8-243322 (pages 2 to 3)
[Patent Document 2]
Japanese Patent Laid-Open No. 9-309327 (pages 2 to 3, page 1)
[0005]
[Problems to be solved by the invention]
However, it is difficult to say that the filter described in the above-mentioned document is capable of reliably capturing and sterilizing bacteria and viruses because the meshes and textures serving as air holes are extremely large compared to the size of bacteria and viruses. In addition, in order to improve the trapping property, it is necessary to stack the filters in layers, and it is inevitable to increase the size of the filter.
In view of the above problems, the present invention has a gas or liquid sterilization method using a self-heating inorganic porous membrane that not only has a high sterilization effect but also can be manufactured in a small size and at low cost, and the same. The object is to provide an air conditioner equipped with a sterilizing filter.
[0006]
[Means for Solving the Problems]
Therefore, the first feature of the present invention is that the gas or liquid is sterilized by passing the gas or liquid through the pores of the self-heating inorganic porous membrane that generates heat when conducting. In addition, the second feature is that the dirt clogged in the pores is removed by incineration.
[0007]
Thus, the present invention uses a self-heating inorganic porous membrane that can kill bacteria and viruses when a gas in which bacteria and viruses are floating passes through a filter that generates heat at a high temperature. By energizing the inorganic porous film that can be a conductive heating resistor, the inorganic porous film itself serves as a heater. Any inorganic porous film that is not conductive can be made into a conductive heating resistor by metal plating. The plating thickness can be adjusted according to the value of the heating resistance of the inorganic porous film. The shape of the inorganic porous membrane itself is not particularly limited, but it can be formed into a shape according to the purpose of use, such as a flat plate shape or a cylindrical shape. The plating method includes plating on the entire pore surface of the inorganic porous membrane, controlling the plating lamination time on the pore surface of the inorganic porous membrane, and the pressure of the plating solution into the pores. By controlling the input, it is possible to control the depth of plating into the pores and perform plating to a certain depth of the pores in the film thickness direction of the inorganic porous membrane. As described above, the present invention provides an inorganic porous film that is not electrically conductive by applying plating to the surface of the pores to the extent that the pores are not blocked, partially or partially, and energizing the plating layer. The porous membrane itself can be heated to about 500 ° C.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described based on examples shown in the drawings. Examples of the inorganic porous film in the present invention include a metallic porous film, a glassy porous film, and a woody porous film. In particular, an inorganic porous membrane that has a uniform pore size and a porosity of 100% to 500 ° C is considered to be killed while trapping or passing bacteria and viruses with a filter heated to 100 ° C to 500 ° C. A high inorganic porous membrane is suitable. In addition, nickel alloy plating is suitable for plating when an inorganic porous film that does not become a conductive heating resistor is used to form a self-heating inorganic porous film. As an example of the present invention, as shown in FIG. 1, a cylindrical porous glass film 2 was used as the inorganic porous film. Nickel alloy plating was applied to the outer surface layer and the inner surface layer portion of the porous glass film 2. FIG. 9 shows a test apparatus for determining the bactericidal effect of the present invention.
[0009]
【Example】
In the sterilizing filter 9 of this example, Shirasu porous glass (hereinafter referred to as SPG) 2 having a uniform pore diameter and a pore diameter in the range of 0.05 μm to 20 μm was used as the inorganic porous membrane. The shape of the sterilizing filter 9 is a cylindrical shape having an outer diameter of 10 mm, an inner diameter of 8.5 mm, a wall thickness of 0.75 mm, and a length of 250 mm. SPG has a heat resistance of up to about 500 ° C. and is a suitable inorganic porous film used in the present invention. By applying nickel alloy plating 1 to the SPG and energizing the plated portion, a self-heating type SPG as the sterilizing filter 9 could be obtained. Examples of the nickel alloy plating include nickel-phosphorus alloy plating and nickel-boron alloy plating, but are not particularly limited thereto.
[0010]
As shown in FIG. 9, the sterilizing filter (self-heating inorganic porous membrane) 9 was energized to generate heat at 150 ° C. to 250 ° C. while allowing the air to permeate and pass the permeated air into the agar medium 10. A case where it was sent to a sealed clean room (desiccator) 11 and an agar medium in which the falling bacteria in the atmosphere were collected by exposure to the outside were cultured for several days and tested for sterilization performance.
[0011]
The inner cavity of the lower end of the sterilizing filter 9 was sealed, one end of the air guide tube 14 was connected to the inner cavity of the upper end, and the other end of the air guide tube 14 was connected to the desiccator 11. A suction tube 13 from a suction pump 12 is connected to the desiccator 11. Here, electrodes (not shown) are attached to both end portions of the sterilizing filter 9 to be energized, and an electric wire 15 is connected to the commercial power supply 7 via a slidac resistor (5A, 0V to 130V) 8. It is connected to the. Table 1 shows the size and plating conditions of the sterilizing filter 9 at this time.
[0012]
[Table 1]
Figure 2005013687
[0013]
As can be seen from Table 1, the outer surface layer and the inner surface layer of SPG 2 were plated with a nickel alloy having a thickness of about 0.7 μm to prepare a sterilizing filter 9. The cross section of the sterilizing filter 9 can be confirmed under an electron microscope to have a three-layer structure in which the inorganic porous membrane layer 2 is sandwiched between the inner and outer nickel alloy plating layers 1 as shown in FIG. Further, as shown in FIG. 8, the nickel alloy plating layer 1 penetrates from the porous glass surface 6 to a depth of about 125 μm with respect to the film thickness of 750 μm, and the surface of the pores 5 has a plating thickness of about 0.7 μm. It was confirmed that it was plated with a thickness. As described above, since the pores 5 of the SPG 2 are bent in a complicated manner inside the layer, the path is longer than the layer thickness, and the bent surface is a barrier and has a high capturing ability of bacteria and viruses that permeate. I found out that The falling bacteria test results performed under these conditions are shown in Tables 2 to 4, and photographs of the agar medium 10 at this time are shown in FIGS. 10 to 13, respectively.
[0014]
[Table 2]
Figure 2005013687
[0015]
[Table 3]
Figure 2005013687
[0016]
[Table 4]
Figure 2005013687
[0017]
As is apparent from Tables 2, 3 and 4 and FIGS. 10 to 13, it was found that bacteria and viruses in the permeated air of the sterilizing filter 9 according to the present invention were killed. Further, the present invention can be said to be an epoch-making sterilization method capable of killing bacteria and viruses in an extremely short time of 0.3 seconds to 1 second when calculated from the amount of permeated air.
[0018]
In addition, when the pores 5 of the sterilizing filter 9 are clogged with dirt or bacteria dead in the atmosphere and become dirty, the filter is heated to about 500 ° C. to incinerate and ash. Can be played easily. That is, if the temperature of the sterilization filter 9 is operated at a temperature at which bacteria and the like are sufficiently killed and a pressure loss of ventilation is observed, the temperature may be raised to about 500 ° C., and the same filter can be used for a long time. Yes, frequent filter replacement is not necessary.
[0019]
In addition, this invention is not limited to the said Example, A various application deformation | transformation is possible. For example, in the above embodiment, a cylindrical porous inorganic membrane was used, and the plating layer was applied to the inner and outer pore surfaces of the cylinder, but the inorganic porous membrane serving as the substrate was formed into a cylindrical shape. In such a case, it is also possible to use a plating layer only on the outer surface as shown in FIG. 3, or a plating layer only on the inner surface of the cylinder as shown in FIG. In addition, as shown in FIG. 5, a plating layer may be applied to the outer surface of a columnar inorganic porous film with a clogged inside. As shown in FIGS. 6 and 7, the shape of the inorganic porous film may be flat or other. What was formed in the shape of can also be used.
[0020]
The sterilization filter according to the present invention can be mounted on an apparatus (hereinafter referred to as an air conditioner) that sucks and circulates air such as an air conditioner, a dehumidifier, a ventilation fan, a fan heater, a dust remover, and a cooling fan.
[0021]
【The invention's effect】
As described above, by using the sterilization method using the self-heating inorganic porous membrane of the present invention, bacteria or viruses floating in the atmosphere (gas) or liquid can be sterilized. It has an excellent effect that a high-performance sterilization filter can be provided at low cost. Further, when the filter is clogged with dust or dead bacteria, etc., the filter can be heated up to about 500 ° C. and can be easily regenerated. In addition, since the bacteria and viruses in the membrane have been killed, there is no possibility that the bacteria or viruses will float again or infect the human body when the filter is replaced. As a result, it is possible to provide an air conditioner or the like having a high-functional and long-life sterilization filter at low cost.
[Brief description of the drawings]
FIG. 1 is a perspective view showing a sterilizing filter according to the present invention.
FIG. 2 is a cross-sectional view taken along arrow A in FIG. 1 showing a case where a plating layer is applied to the inner and outer surfaces of porous glass.
FIG. 3 is a cross-sectional view taken along arrow A in FIG. 1 showing a case where a plating layer is applied only to the outer surface of the porous glass.
4 is a cross-sectional view taken along arrow A in FIG. 1 showing a case where a plating layer is applied only to the inner surface of the porous glass.
FIG. 5 is a cross-sectional view showing another embodiment of the sterilizing filter, in which a porous glass shape is formed in a cylindrical shape and a plating layer is applied to the outer surface.
FIG. 6 is a cross-sectional view showing another embodiment of the sterilizing filter, in which a porous glass is formed into a plate shape and a plating layer is applied over the entire outer surface.
FIG. 7 is a cross-sectional view showing another embodiment of the sterilizing filter, in which a porous glass shape is formed in a plate shape and a plating layer is applied to a part of the outer surface.
8 is a partially enlarged cross-sectional view of a portion B in FIG.
FIG. 9 is a block diagram showing an example of a test apparatus for determining the bactericidal effect of the filter of the present invention.
FIG. 10 is a photograph of an agar medium showing the results of a self-heating SPG 60-minute air permeation falling bacteria test (SPG 150 ° C. warming, permeated air amount of about 10 L / min).
FIG. 11 is a photograph of an agar medium showing the results of a self-heating SPG 60-minute air-permeating fungus test (SPG 200 ° C. heating, permeated air amount of about 10 L / min).
FIG. 12 is a photograph of an agar medium showing the results of a self-heating SPG 60-minute air permeation falling bacteria test (SPG 250 ° C. warming, permeated air amount about 10 L / min).
FIG. 13 is a photograph of an agar medium showing the results of a self-heating SPG 15-minute air permeation falling bacteria test (SPG 250 ° C. warming, permeated air amount about 10 L / min).
[Explanation of symbols]
1 Nickel alloy plating layer (heating resistor)
2 Porous glass layer (inorganic porous membrane)
3 Nickel alloy plating film 4 Porous glass (SPG)
5 Pores 6 Porous glass surface 7 Power supply 8 Slidac resistor 9 Sterilization filter (self-heating inorganic porous film)
10 Agar medium 11 Sealed clean room (desiccator)
12 Suction pump 13 Suction tube 14 Air guide tube 15 Electric wire

Claims (3)

導電することにより発熱する自己発熱型無機多孔質膜の細孔に気体又は液体を通過させて当該気体又は液体を殺菌することを特徴とする自己発熱型無機多孔質膜を用いた気体又は液体の殺菌方法。Gas or liquid using a self-heating inorganic porous membrane characterized in that the gas or liquid is passed through the pores of the self-heating inorganic porous membrane that generates heat by electrical conduction to sterilize the gas or liquid. Sterilization method. 細孔に詰まった汚物を焼却除去することを特徴とする請求項1記載の自己発熱型無機多孔質膜を用いた気体又は液体の殺菌方法。2. A method for sterilizing a gas or liquid using a self-heating inorganic porous membrane according to claim 1, wherein the dirt clogged in the pores is removed by incineration. 請求項1記載の自己発熱型無機多孔質膜を用いた殺菌フィルターを搭載したことを特徴とする空調機器。An air conditioner equipped with a sterilizing filter using the self-heating inorganic porous membrane according to claim 1.
JP2003204136A 2003-06-24 2003-06-24 Gas or liquid sterilizing method using self-heating inorganic porous film and air conditioner equipped with sterilizing filter using the same Pending JP2005013687A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003204136A JP2005013687A (en) 2003-06-24 2003-06-24 Gas or liquid sterilizing method using self-heating inorganic porous film and air conditioner equipped with sterilizing filter using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003204136A JP2005013687A (en) 2003-06-24 2003-06-24 Gas or liquid sterilizing method using self-heating inorganic porous film and air conditioner equipped with sterilizing filter using the same

Publications (1)

Publication Number Publication Date
JP2005013687A true JP2005013687A (en) 2005-01-20

Family

ID=34189894

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003204136A Pending JP2005013687A (en) 2003-06-24 2003-06-24 Gas or liquid sterilizing method using self-heating inorganic porous film and air conditioner equipped with sterilizing filter using the same

Country Status (1)

Country Link
JP (1) JP2005013687A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005137871A (en) * 2003-10-17 2005-06-02 Sanwa Newtec Co Ltd Air cleaner
JP2021173517A (en) * 2020-04-30 2021-11-01 インテグレイテッド バイラル プロテクション ソリューションズ, エルエルシーIntegrated Viral Protection Solutions, LLC Purification device having heated filter for killing biological species, including covid-19
US11446600B2 (en) 2020-12-10 2022-09-20 Hourani Ip, Llc Detoxification device having heated filter for killing pathogens

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005137871A (en) * 2003-10-17 2005-06-02 Sanwa Newtec Co Ltd Air cleaner
JP4636803B2 (en) * 2003-10-17 2011-02-23 三和ニューテック株式会社 Air purification device
JP2021173517A (en) * 2020-04-30 2021-11-01 インテグレイテッド バイラル プロテクション ソリューションズ, エルエルシーIntegrated Viral Protection Solutions, LLC Purification device having heated filter for killing biological species, including covid-19
JP7170193B2 (en) 2020-04-30 2022-11-14 インテグレイテッド バイラル プロテクション ソリューションズ,エルエルシー Purifier with heated filter to kill biological species including COVID-19
US11446600B2 (en) 2020-12-10 2022-09-20 Hourani Ip, Llc Detoxification device having heated filter for killing pathogens

Similar Documents

Publication Publication Date Title
JP3509741B2 (en) Non-discharge air purifier, non-discharge air cleaning method, and non-discharge air sterilizer
US11958006B2 (en) Laser-induced graphene filters and methods of making and using same
CN1700544A (en) Negative ion generator using carbon fiber
JP6625070B2 (en) Air disinfection and decontamination methods and equipment
CN212467405U (en) Antibacterial copper filter with antibacterial copper net
CN106457603B (en) Antimicrobial air filter
JP2004508163A (en) Filter assembly and method for sterilizing filter media
US20060278075A1 (en) Air purifier and related methods for residential dwellings
JP2020006314A (en) Filter medium for air filter, and air filter
CN105841265A (en) Plasma air purification unit
JP2005013687A (en) Gas or liquid sterilizing method using self-heating inorganic porous film and air conditioner equipped with sterilizing filter using the same
KR20220023359A (en) Portable sterilization air cleaner with air cooling
JP4401695B2 (en) Humidifier
JP2005152793A (en) Functional filter, apparatus using the same and method for manufacturing the same
Lakshmanan et al. Electric field activated ON/OFF surface charge polarization of transparent filter media for high-efficiency PM2. 5 filtration
KR100477300B1 (en) Air purifier with moisture generator to control humidity
JP2008086599A (en) Air sterilizer
JPH10328575A (en) Air cleaning device and dust collecting electrode for the device
JP4636803B2 (en) Air purification device
KR20180000070U (en) Ward Pressure group
JP3928265B2 (en) Indoor floating allergen removal filter and air purification apparatus using the same
JP4496334B2 (en) Air purifying filter and air purifier provided with the same
JP3204160U (en) Air conditioner filter
JP2009165974A (en) Electrostatic filtration apparatus
JP2004174409A (en) Air cleaning apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060623

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090714

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091117