JP2005013311A - Grid for stereo-radiography - Google Patents

Grid for stereo-radiography Download PDF

Info

Publication number
JP2005013311A
JP2005013311A JP2003179057A JP2003179057A JP2005013311A JP 2005013311 A JP2005013311 A JP 2005013311A JP 2003179057 A JP2003179057 A JP 2003179057A JP 2003179057 A JP2003179057 A JP 2003179057A JP 2005013311 A JP2005013311 A JP 2005013311A
Authority
JP
Japan
Prior art keywords
grid
screen
radiation
shielding member
gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003179057A
Other languages
Japanese (ja)
Inventor
Akihiko Uchiyama
暁彦 内山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2003179057A priority Critical patent/JP2005013311A/en
Publication of JP2005013311A publication Critical patent/JP2005013311A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a scattered ray removing grid without cut-off in either two vessel positions in stereo-radiography. <P>SOLUTION: This grid has a grid screen of a first shading member and a grid screen of a second shading member disposed/layered with a gap T in-between in the front/rear relative to incident radiation, and is structured to accommodate to two focal positions FA and FB disposed parallel to the grid apart from the flat plane of the grid by the focal distance (f). The grid satisfies the following expressions when the distance between FA and FB is (d) and the grid densities of the first screen and the second screen are N1 and N2: f=N1×d×T, and N2=(N1×d-1)/d. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、ステレオ撮影用グリッドに関する。
【0002】
【従来の技術】
従来より、放射線撮影装置は被検者の医療診断、物質の非破壊検査等の多様な分野で使用されている。多くの放射線撮影装置は、点光源から発する放射線を被写体に照射し、透過した放射線の濃度分布を受像器で画像に変換するという原理に基づいて動作する。
【0003】
放射線撮影装置においては、放射線が被写体に入射した際に生ずる散乱放射線を除去し、良好な画像を得るために散乱線除去グリッドを使用して撮影される場合がある。代表的なグリッドは、放射線遮蔽部材である鉛の箔が、点光源からの放射線に対して平行に、間隙をあけながら多数積層された構造をしている。点光源から被写体を通過して減衰しながら直進した放射線は、鉛箔の間隙を通過して受像器に至るが、被写体内で散乱して方向を変えた放射線のうち、鉛箔に平行ではなくなったものは、間隙を通過できずに鉛箔で遮蔽される。グリッドの物理的構造を支持するため、間隙は木材やアルミなどの放射線透過部材で充填されている。間隙の光線方向にそった長さと、間隙の幅との比は、格子比と呼ばれ、散乱線除去の能率をあらわすパラメータの一つである。
【0004】
グリッドの鉛箔は点光源に向けて収束するように層構造を為しているため、光源の位置がずれると直接放射線であってもグリッドを透過できなくなる(カットオフ)場合がある(特開平09−066054号公報)。たとえば、平面の鉛箔を縞状に積層したグリッドでは、積層面に垂直な方向に光源がずれると、光源からの放射線はグリッドを透過できなくなる。しかし、光源が積層面に平行に移動するぶんには、光線と鉛箔との並行関係が崩れないため、このような問題は起きない。
【0005】
放射線撮影装置のなかには、光源と受像器の位置関係が変化することを特徴とするものがある。たとえば、ステレオ撮影や断層撮影は、光源と受像器の位置関係を変化させながら、複数の画像を撮影したり多重露光を行うところに特徴がある。
【0006】
【発明が解決しようとする課題】
ステレオ撮影法においては、放射線を二つの光源位置から照射し、それぞれに対する画像を得て、両眼で別々に観察することによって立体感を得る。良好な両眼視差を得るため、二つの光源位置はある程度の距離を確保できることが望ましい。また、視差方向の画像のボケはなるべく低減されていることが望ましい。
【0007】
このような撮影の際に散乱線除去グリッドを利用しようとすると、光源位置が複数存在することが問題となる。視差方向とグリッドの積層面を並行にした場合、光源位置によってカットオフが発生することはないが、前述の通り積層面に平行な散乱線は除去できないため、視差方向のボケを低減できない。視差方向とグリッドの積層面を直交させた場合には、光源の移動によりグリッドのカットオフが発生する。カットオフを減じて視差を確保するために格子比を下げると、散乱線の除去能率が悪くなるうえ、完全にカットオフを無くすことはできない。
【0008】
本発明では、上記のようなケースで有用となる、複数の焦点位置に対してカットオフが生じず、かつ焦点の移動方向と平行な方向にも散乱線除去能力のあるグリッドを提供する。
【0009】
【課題を解決するための手段】
上記の問題を解決する散乱線除去グリッドは、以下のような特徴を有する。入射する放射線に対して前後に、Tの間隙を挟んで重ねて配置した第1の遮蔽部材の格子スクリーンと第2の遮蔽部材の格子スクリーンを持つ。グリッドの平面から焦点距離fだけ離れてグリッドと平行に配置された、二つの焦点位置FAとFBに対して適合する。FAとFBの間隔をdと置き、第1のスクリーンと第2のスクリーンの格子密度をN1およびN2とおいたとき、
f=N1×d×T
N2=(N1×d−1)/d
を満たす。
【0010】
【発明の実施の形態】
図1は本発明による2焦点グリッドの断面図である。図中上側に、本発明の第1の遮蔽部材スクリーンが形成されており、下側に第2の遮蔽部材スクリーンが形成されている。放射線は図中上の焦点FAまたはFBより照射され、図示しない被写体を透過し、グリッドを下へ透過して図示しない受像器に像を結ぶ。
【0011】
焦点FAからの光線は、第1の遮蔽部材スクリーンの間隙1、2、3…を通過し、第2の遮蔽部材スクリーンの間隙1、2、3…を通過して受像器にいたる。焦点FBからの光線は、第1の遮蔽部材スクリーンの間隙2、3、4…を通過し、第2の遮蔽部材スクリーンの間隙1、2、3…を通過して受像器にいたる。
【0012】
この過程を逆に見ると、第2の遮蔽部材スクリーンの間隙1は、第1の遮蔽部材スクリーンの間隙1と2から光線を受け取り、それ以外の光線は遮蔽されるという性質がある事が分かる。また、通常のグリッドでは焦点以外の位置に光源があった場合、カットオフが発生するが、本発明のグリッドによれば、光源位置がFAとFBの両方で遮蔽面積が最小となり、カットオフがなくなる。
【0013】
【発明の効果】
以上説明したとおり、本発明の散乱線除去グリッドによれば、二つの焦点位置においてカットオフがなくなり、かつ焦点視差方向に散乱した散乱線に対しての除去能力も備えることができる。これらの焦点位置にX線管球を配置し、ステレオ撮影を行うことにより、視差方向の画像の解像を改善することができる。
【図面の簡単な説明】
【図1】本発明によるグリッドの原理図である。
【符号の説明】
1 第1の遮蔽部材スクリーン
2 第2の遮蔽部材スクリーン
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a stereo shooting grid.
[0002]
[Prior art]
Conventionally, radiographic apparatuses have been used in various fields such as medical diagnosis of subjects and non-destructive inspection of substances. Many radiographic apparatuses operate on the principle of irradiating a subject with radiation emitted from a point light source and converting the density distribution of the transmitted radiation into an image with a receiver.
[0003]
In the radiation imaging apparatus, in some cases, the scattered radiation generated when the radiation enters the subject is removed, and the scattered radiation removal grid is used to obtain a good image. A typical grid has a structure in which a large number of lead foils, which are radiation shielding members, are laminated in parallel to the radiation from a point light source with a gap. Radiation that travels straight from the point light source while passing through the subject passes through the gap in the lead foil and reaches the receiver. Of the radiation that is scattered within the subject and changes direction, it is no longer parallel to the lead foil. The object cannot be passed through the gap and is shielded with lead foil. In order to support the physical structure of the grid, the gap is filled with a radiation transmitting member such as wood or aluminum. The ratio of the length along the light beam direction of the gap to the width of the gap is called a lattice ratio, and is one of the parameters representing the efficiency of removing scattered radiation.
[0004]
Since the lead foil of the grid has a layer structure so as to converge toward the point light source, even if the radiation is shifted, the grid may not be able to pass through the grid (cut off) in some cases. 09-066054). For example, in a grid in which planar lead foils are stacked in a striped pattern, radiation from the light source cannot pass through the grid if the light source shifts in a direction perpendicular to the stacking surface. However, such a problem does not occur when the light source moves parallel to the laminated surface because the parallel relationship between the light beam and the lead foil is not broken.
[0005]
Some radiographic apparatuses are characterized in that the positional relationship between the light source and the receiver changes. For example, stereo photography and tomography are characterized in that a plurality of images are taken or multiple exposure is performed while changing the positional relationship between the light source and the receiver.
[0006]
[Problems to be solved by the invention]
In the stereo imaging method, a stereoscopic effect is obtained by irradiating radiation from two light source positions, obtaining images for each, and observing separately with both eyes. In order to obtain a good binocular parallax, it is desirable that a certain distance can be secured between the two light source positions. Further, it is desirable that the blur of the image in the parallax direction is reduced as much as possible.
[0007]
If the scattered radiation removal grid is to be used during such shooting, there is a problem that there are a plurality of light source positions. When the parallax direction and the laminated surface of the grid are parallel, no cut-off occurs depending on the light source position, but since the scattered rays parallel to the laminated surface cannot be removed as described above, the blur in the parallax direction cannot be reduced. In the case where the parallax direction and the grid stacking plane are orthogonal to each other, the grid cut-off occurs due to the movement of the light source. If the grating ratio is lowered in order to reduce the cutoff to ensure the parallax, the scattered radiation removal efficiency is deteriorated, and the cutoff cannot be completely eliminated.
[0008]
The present invention provides a grid that is useful in the above-described case and that has no cut-off with respect to a plurality of focal positions and is capable of removing scattered radiation in a direction parallel to the focal direction.
[0009]
[Means for Solving the Problems]
The scattered radiation removal grid that solves the above problem has the following characteristics. It has a lattice screen of a first shielding member and a lattice screen of a second shielding member, which are arranged so as to be overlapped with a gap of T before and after the incident radiation. The two focal positions FA and FB, which are arranged in parallel to the grid at a focal distance f away from the plane of the grid, are matched. When the distance between FA and FB is set to d and the lattice density of the first screen and the second screen is set to N1 and N2,
f = N1 × d × T
N2 = (N1 × d−1) / d
Meet.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a cross-sectional view of a bifocal grid according to the present invention. In the figure, the first shielding member screen of the present invention is formed on the upper side, and the second shielding member screen is formed on the lower side. The radiation is emitted from the upper focal point FA or FB in the drawing, passes through a subject (not shown), passes down the grid, and forms an image on a receiver (not shown).
[0011]
The light beam from the focal point FA passes through the gaps 1, 2, 3,... Of the first shielding member screen, and passes through the gaps 1, 2, 3,. The light beam from the focal point FB passes through the gaps 2, 3, 4,... Of the first shielding member screen, and passes through the gaps 1, 2, 3,.
[0012]
Looking back at this process, it can be seen that the gap 1 of the second shielding member screen receives light from the gaps 1 and 2 of the first shielding member screen, and the other rays are shielded. . Further, in a normal grid, when the light source is located at a position other than the focal point, cutoff occurs. However, according to the grid of the present invention, the shielding area is minimized when the light source position is both FA and FB, and the cutoff is reduced. Disappear.
[0013]
【The invention's effect】
As described above, according to the scattered radiation removal grid of the present invention, the cutoff can be eliminated at the two focal positions, and the ability to remove scattered radiation scattered in the focal parallax direction can be provided. By disposing an X-ray tube at these focal positions and performing stereo imaging, resolution of images in the parallax direction can be improved.
[Brief description of the drawings]
FIG. 1 is a principle diagram of a grid according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 1st shielding member screen 2 2nd shielding member screen

Claims (2)

放射線源からの放射線の一部を透過するように間隙をあけて配置された放射線遮蔽部材と、前記遮蔽部材の間隙を充填する放射線透過部材によってなる散乱放射線除去グリッドであって、前記遮蔽部材の配置は、縞目状あるいは格子状に配置された第1の遮蔽部材スクリーンと、前記第1のスクリーンに対して放射線源とは反対側に、第1のスクリーンよりもわずかに低い縞目あるいは格子の密度を持って、縞目状あるいは格子状に配置された、第2の遮蔽部材スクリーンと、からなることを特徴とする。A scattered radiation removal grid comprising a radiation shielding member disposed with a gap so as to transmit a part of radiation from a radiation source, and a radiation transmissive member filling the gap between the shielding members, The arrangement includes a first shielding member screen arranged in a stripe pattern or a grid pattern, and a stripe pattern or a grid slightly lower than the first screen on the side opposite to the radiation source with respect to the first screen. And a second shielding member screen arranged in a striped pattern or a grid pattern with a density of. 前記グリッドは、グリッド面に平行に配置された二つの焦点位置に対して最適化されており、その二つの間の距離をd(cm)とおき、前記第1のスクリーンと第2のスクリーンの間隔をT(cm)、前記第1のスクリーンの格子密度をN1(cm−1)、前記第2のスクリーンの格子密度をN2(cm−1)、焦点距離をf(cm)とおいたときに、
f=N1×d×T
N2=(N1×d−1)/d
とあらわせることを特徴とした、請求項1に記載の散乱放射線除去グリッド。
The grid is optimized with respect to two focal positions arranged parallel to the grid surface, the distance between the two being d (cm), and the first screen and the second screen. When the interval is T (cm), the lattice density of the first screen is N1 (cm −1 ), the lattice density of the second screen is N2 (cm −1 ), and the focal length is f (cm). ,
f = N1 × d × T
N2 = (N1 × d−1) / d
The scattered radiation removal grid according to claim 1, wherein
JP2003179057A 2003-06-24 2003-06-24 Grid for stereo-radiography Withdrawn JP2005013311A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003179057A JP2005013311A (en) 2003-06-24 2003-06-24 Grid for stereo-radiography

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003179057A JP2005013311A (en) 2003-06-24 2003-06-24 Grid for stereo-radiography

Publications (1)

Publication Number Publication Date
JP2005013311A true JP2005013311A (en) 2005-01-20

Family

ID=34180469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003179057A Withdrawn JP2005013311A (en) 2003-06-24 2003-06-24 Grid for stereo-radiography

Country Status (1)

Country Link
JP (1) JP2005013311A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010233858A (en) * 2009-03-31 2010-10-21 Fujifilm Corp Biopsy apparatus and biopsy method
JP2011177456A (en) * 2010-03-04 2011-09-15 Fujifilm Corp Radiation image photographing method, device therefor, radiation image generation method and device therefor
JP2019521725A (en) * 2016-05-11 2019-08-08 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Acquisition adapted to anatomy with fixed multi-source X-ray system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010233858A (en) * 2009-03-31 2010-10-21 Fujifilm Corp Biopsy apparatus and biopsy method
US8454530B2 (en) 2009-03-31 2013-06-04 Fujifilm Corporation Biopsy apparatus and biopsy method
US8684948B2 (en) 2009-03-31 2014-04-01 Fujifilm Corporation Biopsy apparatus and biopsy method
JP2011177456A (en) * 2010-03-04 2011-09-15 Fujifilm Corp Radiation image photographing method, device therefor, radiation image generation method and device therefor
JP2019521725A (en) * 2016-05-11 2019-08-08 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Acquisition adapted to anatomy with fixed multi-source X-ray system

Similar Documents

Publication Publication Date Title
US4651002A (en) Radiographic method and apparatus for reducing the effects of scatter in the image
JP2012161412A (en) Grid for use in radiation imaging and grid producing method, and radiation imaging system
US20090003530A1 (en) Anti-Scatter Grid for an X-Ray Device with Non-Uniform Distance and/or Width of the Lamellae
JP2001194463A (en) Grid for absorbing x-rays
JP4357050B2 (en) Method and apparatus for x-ray imaging with anti-scatter grid
JP5618880B2 (en) Image processing apparatus, image processing method, and image processing program
WO2013128891A1 (en) Image processing device and method
KR101125284B1 (en) X-ray grid and manufacturing method therefor
JP2011136102A (en) Radiographic apparatus
JP2011133395A (en) Radiation detector and radiographic device
JP2007267787A (en) X-ray equipment
JP2024026391A (en) X-ray detector with focused scintillator structure for uniform imaging
JP2005013311A (en) Grid for stereo-radiography
US11000249B2 (en) X-ray detector for grating-based phase-contrast imaging
CN111566471A (en) X-ray imaging apparatus
JP5753502B2 (en) Image processing apparatus and method
JP2012093117A (en) Grid for photographing radiation image, manufacturing method thereof, and radiation image photographing system
JP2014006047A (en) Grid for capturing radiation image, manufacturing method therefor, and radiation image capturing system
JP2009276138A (en) Radiation grid and radiation imaging apparatus equipped therewith
JP5530295B2 (en) X-ray CT system
JP2017023469A (en) Radiation phase difference imaging apparatus
JP4759131B2 (en) X-ray imaging device
WO2017094294A1 (en) X-ray talbot photographing apparatus
JP4239878B2 (en) Two-dimensional radiation detector and manufacturing method thereof
KR101669584B1 (en) Apparatus for radiography, method for processing radiography and designing radiation grid

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060905