JP2005012779A - Antenna assembly - Google Patents

Antenna assembly Download PDF

Info

Publication number
JP2005012779A
JP2005012779A JP2004149993A JP2004149993A JP2005012779A JP 2005012779 A JP2005012779 A JP 2005012779A JP 2004149993 A JP2004149993 A JP 2004149993A JP 2004149993 A JP2004149993 A JP 2004149993A JP 2005012779 A JP2005012779 A JP 2005012779A
Authority
JP
Japan
Prior art keywords
antenna device
directivity
parasitic element
control signal
pieces
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004149993A
Other languages
Japanese (ja)
Inventor
Naoki Adachi
尚季 安達
Yoshifumi Hosokawa
嘉史 細川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2004149993A priority Critical patent/JP2005012779A/en
Publication of JP2005012779A publication Critical patent/JP2005012779A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To realize an antenna assembly whose directivity can be changed in a main polarization plane as an antenna used in wireless communication, mainly in a microwave band. <P>SOLUTION: The antenna assembly has a radiation element 101 having a feed port 102, a plurality of parasitic element pieces 103 which are positioned in the main polarization plane of the radiation element 101, and an impedance-variable connecting means 104 of connecting the plurality of parasitic element pieces 103 to one another, and then the advantageous effects of the size being small in size at low attitude and the directivity in the main polarization plane being able to be switched. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、主としてマイクロ波帯・ミリ波帯を用いる無線通信システムに用いられるアンテナ装置に関する。   The present invention relates to an antenna device used in a radio communication system mainly using a microwave band and a millimeter wave band.

従来から無線通信装置に用いられているアンテナ装置として、アンテナ装置の主偏波面に直交する面内での指向特性を変更するものがある(例えば、特許文献1参照)。   2. Description of the Related Art As an antenna device conventionally used in a wireless communication device, there is one that changes directivity characteristics in a plane orthogonal to the main polarization plane of the antenna device (see, for example, Patent Document 1).

図13は従来のアンテナ装置の構造を示した斜視図である。図13において、アンテナ装置は無線信号が給電される放射素子1と、放射素子1に並行に所定の間隔だけ離れて設けられた複数の非励振素子2と、非励振素子2に接続された可変リアクタンス素子3とを備えている。   FIG. 13 is a perspective view showing the structure of a conventional antenna device. In FIG. 13, the antenna device includes a radiating element 1 to which a radio signal is fed, a plurality of non-exciting elements 2 provided in parallel to the radiating element 1 at a predetermined interval, and a variable connected to the non-exciting element 2. The reactance element 3 is provided.

そしてこの構成をとることにより、可変リアクタンス素子3のリアクタンス値を変化させ、アンテナ装置の主偏波面と直交する面内での指向特性の制御を行っていた。
特開2001−24431号公報(第1〜3頁、第1図)
By adopting this configuration, the reactance value of the variable reactance element 3 is changed to control the directivity in the plane perpendicular to the main polarization plane of the antenna device.
Japanese Patent Laid-Open No. 2001-24431 (pages 1 to 3, FIG. 1)

しかしながら上記従来のアンテナ装置は、主偏波に対して水平面での指向特性制御に適用した場合、高さ方向に四分の一波長の電気長を必要し、低姿勢なアンテナ装置の実現が困難であるという課題を有している。   However, the above conventional antenna device requires an electrical length of a quarter wavelength in the height direction when applied to directivity control in the horizontal plane with respect to the main polarization, and it is difficult to realize a low-profile antenna device. It has the problem of being.

本発明は上記従来の課題を解決し、主偏波面内での指向特性制御が可能な小型で低姿勢なアンテナ装置を実現することを目的とする。   An object of the present invention is to solve the above-described conventional problems and to realize a small and low-profile antenna apparatus capable of controlling directivity in the main polarization plane.

以上の課題を解決するために本発明は、給電ポートを有する放射素子と、前記放射素子の主偏波面内に位置する複数の寄生素子片と、前記複数の寄生素子片の間を接続するインピーダンス可変な接続手段とを有するアンテナ装置とした。   In order to solve the above problems, the present invention provides a radiating element having a feed port, a plurality of parasitic element pieces located in a main polarization plane of the radiating element, and an impedance for connecting the plurality of parasitic element pieces. The antenna device has variable connecting means.

これによって主偏波面内での指向特性制御が可能となり、小型で低姿勢なアンテナ装置を提供することができる。   As a result, directivity control within the main polarization plane becomes possible, and a small and low-profile antenna device can be provided.

本発明のアンテナ装置によれば、給電ポートを有する放射素子と、前記放射素子の主偏波面内に位置する複数の寄生素子片と、前記複数の寄生素子片の間を接続するインピーダンス可変な接続手段とを有するアンテナ装置とすることにより、小型で低姿勢で主偏波面内での指向特性切り換えを可能とする有利な効果が得られる。   According to the antenna device of the present invention, a radiating element having a feeding port, a plurality of parasitic element pieces located in a main polarization plane of the radiating element, and a variable impedance connection for connecting the plurality of parasitic element pieces. By using the antenna device having the means, it is possible to obtain an advantageous effect that enables switching of directivity characteristics in the main polarization plane with a small size and a low attitude.

更に、本発明のアンテナ装置と、通信状況に適した指向特性を判定する指向特性制御信号生成手段を備えた無線通信装置においては、通信状況に適した指向特性に切り換えることで、より良好な通信品質が得られるという有利な効果が得られる。   Furthermore, in the wireless communication apparatus provided with the antenna device of the present invention and the directivity control signal generating means for determining the directivity suitable for the communication situation, switching to the directivity suitable for the communication situation enables better communication. The advantageous effect that quality is obtained is obtained.

以下、本発明の実施の形態について、図1から図12を用いて説明する。   Hereinafter, embodiments of the present invention will be described with reference to FIGS.

(実施の形態1)
図1は本発明第1の実施の形態のアンテナ装置の主要部の構成を上方から見た図、図2はアンテナ装置の機能ブロック図である。図1、2において、アンテナ装置100は放射素子101を有する。放射素子101はストリップ状の導体からなり、給電ポート102を具備する。放射素子101の主偏波面内には、ストリップ状導体からなる複数の寄生素子片103a〜103xが放射素子101を中心として環状に配置されている。
(Embodiment 1)
FIG. 1 is a diagram of the main part of the antenna device according to the first embodiment of the present invention as viewed from above, and FIG. 2 is a functional block diagram of the antenna device. 1 and 2, the antenna device 100 includes a radiating element 101. The radiating element 101 is made of a strip-shaped conductor and includes a feeding port 102. In the main polarization plane of the radiating element 101, a plurality of parasitic element pieces 103a to 103x made of strip-like conductors are arranged in an annular shape with the radiating element 101 as the center.

そして、隣り合う寄生素子片103の間は接続手段104によって接続される。寄生素子片103aと寄生素子片103bの間を接続するものを接続手段104aとし、最終的に寄生素子片103xと寄生素子片103aの間を接続するものを接続手段104xとする。これら複数の接続手段104はインピーダンスが可変であり、オンの場合接続点間のインピーダンスを低くして導通状態とし、オフの場合インピーダンスを高くして開放状態とする。   The adjacent parasitic element pieces 103 are connected by the connecting means 104. What connects between the parasitic element piece 103a and the parasitic element piece 103b is referred to as connecting means 104a, and what finally connects between the parasitic element piece 103x and the parasitic element piece 103a is referred to as connecting means 104x. The plurality of connection means 104 are variable in impedance, and when turned on, the impedance between the connection points is lowered to be in a conductive state, and when turned off, the impedance is raised to be in an open state.

また、複数の接続手段104でつながれる複数の寄生素子片103を寄生素子と呼ぶ。接続手段104のオン/オフは指向特性制御手段105によって切り換えられ、この切り換えは制御入力ポート106から入力される制御信号に従って行われる。   A plurality of parasitic element pieces 103 connected by a plurality of connection means 104 are called parasitic elements. The connection means 104 is turned on / off by the directivity control means 105, and this switching is performed according to a control signal input from the control input port 106.

次に、上記構成をとるアンテナ装置の動作を説明する。   Next, the operation of the antenna device having the above configuration will be described.

アンテナ装置100への入力信号は、給電ポート102を経て放射素子101に入力される。そしてダイポールアンテナとして動作する放射素子101からの放射電波となる。一方、アンテナ装置100への入射電波は、放射素子101で受信され、給電ポート102からの出力信号となる。放射素子101の長さが電気長で半波長の整数倍の場合、より良好な特性が得られる。   An input signal to the antenna device 100 is input to the radiating element 101 via the feeding port 102. And it becomes a radiation wave from radiation element 101 which operates as a dipole antenna. On the other hand, the incident radio wave to the antenna device 100 is received by the radiating element 101 and becomes an output signal from the power feeding port 102. When the length of the radiating element 101 is an electrical length that is an integral multiple of a half wavelength, better characteristics can be obtained.

接続手段104のオン/オフ制御により、全長が電気長で半波長以上の長さになるまで寄生素子片103の間の導通をとることで反射器が形成される。一方、導通がとれる複数の寄生素子片103が電気長で半波長未満の場合は導波器が形成される。アンテナ装置100の指向特性は、反射器の反対方向へ傾き、導波器の方向へ傾く。指向特性制御手段105で、接続手段104a〜104xのオン/オフを切り換えることで、反射器および導波器を形成する位置および長さを変更し、アンテナ装置100の指向特性を制御する。   By the on / off control of the connecting means 104, a reflector is formed by establishing conduction between the parasitic element pieces 103 until the total length is equal to or longer than a half wavelength in electrical length. On the other hand, a waveguide is formed when the plurality of parasitic element pieces 103 that can be electrically connected have an electrical length of less than half a wavelength. The directivity characteristic of the antenna device 100 is inclined in the opposite direction of the reflector and is inclined in the direction of the waveguide. The directivity characteristic control means 105 switches on / off of the connection means 104a to 104x, thereby changing the positions and lengths where the reflectors and the waveguides are formed, and controlling the directivity characteristics of the antenna device 100.

放射素子101および寄生素子片103は、プリント基板等の高周波基板上の帯状電極パターンとして、基板製造技術等により形成されるので、アンテナ装置の厚みはこの基板とほぼ等しいものとなる。放射素子101の長さは使用する周波数が3GHz程度であれば半波長相当の5cmが最小長さとなるので、小型で低姿勢なアンテナ装置となる。また、給電ポート102としては、スルーホール等の基板金属層間を繋ぐ構造により形成される。なお、放射素子101および寄生素子片103として、ストリップ状導体の場合について説明したが、線状導体等他の形状でもよい。   Since the radiating element 101 and the parasitic element piece 103 are formed as a band-like electrode pattern on a high frequency substrate such as a printed circuit board by a substrate manufacturing technique or the like, the thickness of the antenna device is substantially equal to this substrate. If the frequency used is about 3 GHz, the length of the radiating element 101 is 5 cm, which is equivalent to a half wavelength, and thus the antenna device has a small and low profile. The power supply port 102 is formed by a structure connecting substrate metal layers such as through holes. Although the strip-shaped conductor has been described as the radiating element 101 and the parasitic element piece 103, other shapes such as a linear conductor may be used.

また、図1では真円状に寄生素子片103を配置した例を示したが、楕円状でもよい。特定の方向への電波の送受信を必要としない場合は、その方向に対応する寄生素子片103や接続手段104を設けなくともよい。   Moreover, although the example which has arrange | positioned the parasitic element piece 103 in perfect circle shape was shown in FIG. 1, an elliptical shape may be sufficient. In the case where transmission / reception of radio waves in a specific direction is not required, the parasitic element piece 103 and the connection unit 104 corresponding to the direction may not be provided.

また、さらに短い寄生素子片103を多数用いることで、導波器、反射器を形成する位置・長さの選択の幅が増え、より細やかな指向特性の調整が可能となる。   Further, by using a larger number of shorter parasitic element pieces 103, the range of selection of positions and lengths for forming the director and reflector is increased, and finer directivity characteristics can be adjusted.

なお、本発明のアンテナ装置100を直線状、格子状、円形に一定間隔で複数並べたり、ランダムに配置させたりすることで、アレーアンテナとして用いることもできる。各アンテナ装置への入出力信号の振幅・位相制御によりアレーの指向特性を制御し、同時に、各アンテナ装置100の指向特性をアレー指向特性に適した指向特性に切り換えることで、アレーで必要とする方向の各アンテナ装置100の指向特性が向上するため、より良好なアレー指向特性が得られる。   Note that a plurality of the antenna devices 100 of the present invention can be used as an array antenna by arranging a plurality of antenna devices 100 in a linear shape, a lattice shape, and a circular shape at regular intervals, or randomly arranging them. The array directivity is controlled by controlling the amplitude / phase of input / output signals to / from each antenna device, and at the same time, the directivity of each antenna device 100 is switched to the directivity suitable for the array directivity so that it is required for the array. Since the directivity of each antenna device 100 in the direction is improved, better array directivity can be obtained.

以上のように、給電ポートを有する放射素子と、前記放射素子の主偏波面内に位置する複数の寄生素子片と、前記複数の寄生素子片の間を接続するインピーダンス可変な接続手段とを有するアンテナ装置とすることで、主偏波面内での指向特性の切り換え可能な小型で低姿勢なアンテナの実現が可能となる。   As described above, it has a radiating element having a feeding port, a plurality of parasitic element pieces located in the main polarization plane of the radiating element, and a variable impedance connecting means for connecting the plurality of parasitic element pieces. By using the antenna device, it is possible to realize a small and low-profile antenna capable of switching the directivity in the main polarization plane.

(実施の形態2)
図3は本発明第2の実施の形態のアンテナ装置の主要部を上方から見た図である。図3において、アンテナ装置は、主偏波面内において放射素子101の周囲に菱形に位置し放射素子101に対して45度傾いた8つの寄生素子片201と、その間を接続する接続手段202とを具備する。8つの寄生素子片201aから201hはすべて電気長で四分の一波長の長さの線状導体からなる。その他の構成は実施の形態1と同様である。
(Embodiment 2)
FIG. 3 is a top view of the main part of the antenna device according to the second embodiment of the present invention. In FIG. 3, the antenna device includes eight parasitic element pieces 201 positioned in a rhombus around the radiating element 101 in the main polarization plane and inclined by 45 degrees with respect to the radiating element 101, and connection means 202 that connects between them. It has. All of the eight parasitic element pieces 201a to 201h are linear conductors having an electrical length of a quarter wavelength. Other configurations are the same as those of the first embodiment.

図4は本発明第2の実施の形態のアンテナ装置の有する寄生素子の導通部分と、指向特性との関係を示した図である。図4の上段は寄生素子の導通部分を示した図である。菱形に位置した8つの寄生素子片201のうち、導通状態となっているものを太線で示した。図4の下段は上段に示した寄生素子の指向特性のシミュレーション結果である。図4(a)は全ての接続手段202をオフとし、図4(b)は接続手段202eのみをオンとし、図4(c)は接続手段202b、202dをオンとした状態を示したものである。以上の構成によるアンテナ装置について、以下その動作を説明する。   FIG. 4 is a diagram showing the relationship between the directional characteristics and the conductive portion of the parasitic element of the antenna device according to the second embodiment of the present invention. The upper part of FIG. 4 is a diagram showing a conductive portion of the parasitic element. Of the eight parasitic element pieces 201 located in the rhombus, those in the conductive state are indicated by thick lines. The lower part of FIG. 4 is a simulation result of the directivity characteristics of the parasitic element shown in the upper part. 4A shows a state in which all connection means 202 are turned off, FIG. 4B shows a state in which only the connection means 202e is turned on, and FIG. 4C shows a state in which the connection means 202b and 202d are turned on. is there. The operation of the antenna device having the above configuration will be described below.

接続手段202を全てオフにすることで、寄生素子片201a〜201hは、四分の一波長の線状導体となり、放射素子101からの指向特性への影響が軽微であるため、アンテナ装置の指向特性は、図4(a)に示すように放射素子相当の放射素子101を軸とした軸対象の指向特性となる。   By turning off all the connection means 202, the parasitic element pieces 201a to 201h become linear conductors of a quarter wavelength, and the influence on the directivity from the radiation element 101 is negligible. As shown in FIG. 4A, the characteristic is a directivity characteristic of an axis object with the radiating element 101 corresponding to the radiating element as an axis.

接続手段202eのみをオンにすることで寄生素子片201dと201eの導通をとり、電気長で半波長の反射器を形成する。図4(b)に示すとおり反射器の反射動作により、放射素子101を挟んで反対側の寄生素子片201aおよび201bの方向への指向特性に切り換わる。同様に接続手段202aのみをオンすることで、図中下方に向いた指向特性に切り換わる。   By turning on only the connecting means 202e, the parasitic element pieces 201d and 201e are brought into conduction, and a reflector having an electrical length and a half wavelength is formed. As shown in FIG. 4B, the reflecting operation of the reflector switches to directivity characteristics in the direction of the parasitic element pieces 201a and 201b on the opposite side across the radiation element 101. Similarly, when only the connection means 202a is turned on, the directivity characteristic is turned downward.

接続手段202b、202dのみをオンすることで、寄生素子片201a、201bおよび201c、201dを各々接続して図中右側に2つの電気長で半波長の反射器を形成する。反射器の反射動作により、図4(c)に示すように、接続手段201a、201bおよび201c、201dに対向する方向へと指向特性が切り換わる。同様に、接続手段202f、202hのみをオンすることで、図中右方向に向いた指向特性に切り換わる。また、接続手段202bのみをオンした場合は、寄生素子片201a、201bを各々接続して放射素子に対して図中45度右上方向に電気長で半波長の反射器を形成され、左下方向へ指向特性が切り変わる。   By turning on only the connecting means 202b and 202d, the parasitic element pieces 201a and 201b and 201c and 201d are respectively connected to form a two-wavelength, half-wavelength reflector on the right side in the drawing. Due to the reflecting operation of the reflector, the directivity is switched in the direction facing the connecting means 201a, 201b and 201c, 201d as shown in FIG. Similarly, by turning on only the connection means 202f and 202h, the directivity characteristics are switched to the right in the figure. Further, when only the connecting means 202b is turned on, the parasitic element pieces 201a and 201b are connected to each other to form a reflector having an electrical length of half wavelength in the upper right direction of 45 degrees in the figure with respect to the radiating element, and to the lower left direction. Directional characteristics change.

以上のように、接続手段202のオン/オフ制御により、反射器を形成する位置を変更することにより、放射素子の前後のみならず左右および斜め方向へ指向特性を切り換えることができる。   As described above, by changing the position where the reflector is formed by the on / off control of the connecting means 202, the directivity can be switched not only before and after the radiating element but also right and left and diagonally.

なお、反射器を形成する構成について説明したが、四分の一波長より短い寄生素子片を用い、半波長より短い長さの導波器を形成し、導波器方向に指向特性が傾く動作を用いてもよい。更に、導波器および反射器の動作を両方用いて、指向特性を切り換えてもよい。   In addition, although the structure which forms a reflector was explained, the operation which makes a directional characteristic incline in the direction of a director by using a parasitic element piece shorter than a quarter wavelength and forming a director shorter than a half wavelength. May be used. Further, the directivity may be switched by using both the operations of the director and the reflector.

また、放射素子が例えば装架リアクタンスの変更により対応する周波数を変更する対応周波数変更手段を備え、インピーダンスを制御する手段において寄生素子片の接続点間の装架リアクタンスを変更することによって、対応周波数および指向特性を制御可能なアンテナ装置構成としてもよい。   Further, the radiating element is provided with a corresponding frequency changing means for changing the corresponding frequency by changing the mounting reactance, for example, and by changing the mounting reactance between the connection points of the parasitic element pieces in the means for controlling the impedance, the corresponding frequency is changed. The antenna device may be configured to control the directivity.

なお、放射素子、寄生素子片が線状導体の例を示したが、この場合、給電端子および接続手段で線状導体間をつなぐことで、アンテナ装置を構成する。また、放射素子、寄生素子片は、ストリップ状導体で構成しても良く、例えば基板上に形成された金属パターンを用いてもよい。また、パッチアンテナ等のマイクロストリップアンテナ構造による、放射素子、寄生素子片を用いてもよい。   In addition, although the radiation | emission element and the parasitic element piece showed the example of a linear conductor, in this case, an antenna apparatus is comprised by connecting between linear conductors by a feed terminal and a connection means. Further, the radiating element and the parasitic element piece may be formed of a strip-shaped conductor, for example, a metal pattern formed on a substrate may be used. Further, a radiating element or a parasitic element piece having a microstrip antenna structure such as a patch antenna may be used.

なお、3種類の指向特性例を示したが、接続手段のオン/オフ制御はこれに限定するものではない。更に接続手段202c、202gを配置した場合、より多種類の指向特性切換が可能となるが、配置しなくてもよい。   Although three examples of directivity characteristics have been shown, the on / off control of the connecting means is not limited to this. Further, when the connecting means 202c and 202g are arranged, more types of directional characteristics can be switched, but it is not necessary to arrange them.

なお、本発明のアンテナ装置を直線状、格子状、円形に一定間隔で複数並べたり、ランダムに配置させたりすることで、アレーアンテナとして用いることもできる。各アンテナ装置への入出力信号の振幅・位相制御によりアレーの指向特性を制御し、同時に、各アンテナ装置の指向特性をアレー指向特性に適した指向特性に切り換えることで、アレーで必要とする方向の各アンテナ装置の指向特性が向上するため、より良好なアレー指向特性が得られる。   Note that a plurality of the antenna devices of the present invention can be used as an array antenna by arranging a plurality of antenna devices in a linear shape, a lattice shape, or a circular shape at regular intervals, or randomly arranging them. Direction required by the array by controlling the directivity of the array by controlling the amplitude and phase of the input and output signals to each antenna device, and simultaneously switching the directivity of each antenna device to a directivity suitable for the array directivity Since the directivity of each of the antenna devices is improved, better array directivity can be obtained.

以上のように、放射素子と、放射素子の主偏波面内に45度傾いて菱形状に配置された四分の一波長の寄生素子片と隣接する寄生素子片間を接続する接続手段と、接続手段を制御する指向特性制御手段とでアンテナ装置を構成し、接続手段のオン/オフ制御により、主偏波面内で放射素子の前後、左右、斜め方向への指向特性の切り換え可能な簡易な制御による低姿勢なアンテナの実現が可能となる。   As described above, the radiating element and the connecting means for connecting between the adjacent parasitic element pieces and the quarter-wavelength parasitic element pieces arranged in a rhombus shape inclined at 45 degrees in the main polarization plane of the radiating element; The antenna device is configured with the directivity control means for controlling the connection means, and the on / off control of the connection means allows easy switching of the directivity characteristics in the main polarization plane in the front, rear, left, and right directions of the radiating element. A low-profile antenna can be realized by control.

(実施の形態3)
図5は本発明第3の実施の形態のアンテナ装置の構成図である。図5において、アンテナ装置は電気長四分の一波長の線状導体からなる寄生素子片301a、301b、電気長で八分の一波長の線状導体からなる寄生素子片302a〜302h、および隣接する寄生素子片間を接続する複数の接続手段303a〜303jを有する。複数の寄生素子片301および302はアンテナ装置の主偏波面内において六角形状に配置されている。
(Embodiment 3)
FIG. 5 is a block diagram of an antenna apparatus according to the third embodiment of the present invention. In FIG. 5, the antenna device includes parasitic element pieces 301 a and 301 b made of linear conductors having an electrical quarter wavelength, parasitic element pieces 302 a to 302 h made of linear conductors having an electrical length of 1/8 wavelength, and adjacent elements. A plurality of connecting means 303a to 303j for connecting the parasitic element pieces to be connected. The plurality of parasitic element pieces 301 and 302 are arranged in a hexagonal shape in the main polarization plane of the antenna device.

図6は前記アンテナ装置の有する寄生素子の導通部分と、指向特性との関係を示した図である。図6の上段は寄生素子の導通部分を示した図である。六角形に位置した6つの寄生素子片301および302のうち、導通状態となっているものを太線で示した。図6の下段は上段に示した寄生素子の指向特性のシミュレーション結果である。   FIG. 6 is a diagram showing the relationship between the conduction portion of the parasitic element of the antenna device and the directivity. The upper part of FIG. 6 is a diagram showing a conduction portion of the parasitic element. Of the six parasitic element pieces 301 and 302 located in the hexagonal shape, the conductive state is indicated by a thick line. The lower part of FIG. 6 is a simulation result of the directivity characteristics of the parasitic element shown in the upper part.

図6(a)は全ての接続手段303をオフとし、図6(b)は接続手段303e、303fのみをオンとし、図6(c)は接続手段303f、303gのみをオンとし、図6(d)は接続手段303f、303g、303i、303jのみをオンとした状態を示したものである。以上の構成によるアンテナ装置について、以下その動作を説明する。   6A turns off all the connecting means 303, FIG. 6B turns on only the connecting means 303e and 303f, FIG. 6C turns on only the connecting means 303f and 303g, and FIG. d) shows a state in which only the connection means 303f, 303g, 303i, and 303j are turned on. The operation of the antenna device having the above configuration will be described below.

接続手段303を全てオフにすることで、寄生素子片301a、301bは四分の一波長の線状導体片、302a〜302hは八分の一波長の線状導体片となり、放射素子からの指向特性への影響が軽微であるため、アンテナ装置の指向特性は、図6(a)に示すように放射素子相当の放射素子101を軸とした軸対象の指向特性となる。   By turning off all the connection means 303, the parasitic element pieces 301a and 301b become quarter-wavelength linear conductor pieces, and 302a to 302h become quarter-wavelength linear conductor pieces, and direct from the radiation element. Since the influence on the characteristic is slight, the directivity characteristic of the antenna device is the directivity characteristic of the axis object about the radiation element 101 corresponding to the radiation element as shown in FIG.

接続手段303e、303fのみをオンすることで、寄生素子片301b、302d、302eを接続して電気長で半波長の反射器を形成する。反射器の反射動作により、図6(b)に示すように放射素子101を挟んで反対側へと指向特性が切り換わる。同様に接続手段303a、303jのみをオンとする場合は、寄生素子片301b方向への指向特性に切り換わる。   By turning on only the connection means 303e and 303f, the parasitic element pieces 301b, 302d, and 302e are connected to form a reflector having an electrical length and a half wavelength. Due to the reflection operation of the reflector, the directivity is switched to the opposite side across the radiating element 101 as shown in FIG. Similarly, when only the connection means 303a and 303j are turned on, the directivity characteristic in the direction of the parasitic element piece 301b is switched.

図6(c)は接続手段303f、303gのみをオンとしたものである。寄生素子片301b、302e、302fを接続し電気長で半波長の反射器を形成する。反射器の反射動作により、寄生素子片301a、302a、302bの方向への指向特性に切り換わる。同様に、接続手段303i、303jのみをオンすることで図中右斜め下方向、接続手段303d、303eのみをオンとした場合は、寄生素子片301a、302g、302h、接続手段303a、303bのみをオンとした場合は301b、302e、302fの方向への指向特性に切り換わる。   FIG. 6C shows only the connection means 303f and 303g turned on. The parasitic element pieces 301b, 302e, and 302f are connected to form a reflector having an electrical length and a half wavelength. By the reflection operation of the reflector, the directional characteristics in the direction of the parasitic element pieces 301a, 302a, and 302b are switched. Similarly, when only the connecting means 303i and 303j are turned on and the connecting means 303d and 303e are turned on in the diagonally lower right direction in the figure, only the parasitic element pieces 301a, 302g and 302h and only the connecting means 303a and 303b are connected. When turned on, the directivity characteristics in the directions 301b, 302e, and 302f are switched.

図6(d)は接続手段303f、303g、303i、303jのみをオンとしたものである。寄生素子片301b、302e、302fを接続した電気長で半波長の反射器と、寄生素子片301a、302g、302hを接続した電気長で半波長の反射器を形成する。反射器の反射動作により、寄生素子片302a、302b、302c、302dへ向いた指向特性に切り換わる。同様に、接続手段303a、303b、303d、303eのみをオンとすると、寄生素子片302e、302f、302g、302hへ向いた指向特性に切り換わる。   FIG. 6D shows only the connection means 303f, 303g, 303i, and 303j turned on. A reflector having an electrical length and a half wavelength connected to the parasitic element pieces 301b, 302e, and 302f and a reflector having an electrical length and a half wavelength connected to the parasitic element pieces 301a, 302g, and 302h are formed. By the reflection operation of the reflector, the directional characteristics directed to the parasitic element pieces 302a, 302b, 302c, and 302d are switched. Similarly, when only the connection means 303a, 303b, 303d, and 303e are turned on, the directional characteristics toward the parasitic element pieces 302e, 302f, 302g, and 302h are switched.

なお、4種類の指向特性例を示したが、接続手段303のオン/オフ制御はこれに限定するものではない。更に接続手段303c、303hを配置した場合、より多種類の指向特性切換が可能となるが、配置しなくてもよい。   Although four examples of directivity characteristics are shown, the on / off control of the connection means 303 is not limited to this. Further, when the connection means 303c and 303h are arranged, more types of directivity switching can be performed, but it is not necessary to arrange them.

なお、反射器を形成する構成について説明したが、四分の一波長より短い寄生素子片を用い、半波長より短い長さに寄生素子片を接続して形成される導波器による、導波器方向に指向特性が傾く動作を用いてもよい。   In addition, although the structure which forms a reflector was demonstrated, it was guided by the waveguide formed by using a parasitic element piece shorter than a quarter wavelength and connecting a parasitic element piece to a length shorter than a half wavelength. You may use the operation | movement in which a directional characteristic inclines in a vessel direction.

以上のように、放射素子と、放射素子の主偏波面内に六角形状に配置された四分の一波長および八分の一波長の寄生素子片と隣接する寄生素子片間を接続する接続手段を有する寄生素子と、接続手段を制御する指向特性制御手段でアンテナ装置を構成し、接続手段のオン/オフ制御により、2つないし3つの寄生素子片を接続することで電気長で半波長の反射器を形成し、反射器を形成する位置を変更することで、主偏波面内での指向特性の切り換え可能な簡易な制御による低姿勢なアンテナの実現が可能となる。   As described above, the connecting means for connecting between the radiating element and the adjacent parasitic element piece and the quarter-wave and eighth-wavelength parasitic element pieces arranged in a hexagonal shape in the main polarization plane of the radiating element. The antenna device is composed of a parasitic element having a directivity characteristic control means for controlling the connection means, and by connecting two or three parasitic element pieces by on / off control of the connection means, an electrical length of half wavelength is obtained. By forming the reflector and changing the position at which the reflector is formed, it is possible to realize a low-profile antenna by simple control capable of switching the directivity in the main polarization plane.

(実施の形態4)
図7は本発明第4の実施の形態の無線通信装置の機能ブロック図である。図7において、無線通信装置は、アンテナ装置100、受信部401、指向特性制御信号生成手段403を有する。また、受信部401は受信部無線通信装置が受信している信号の強度を検出する受信強度検出手段402を有する。アンテナ装置100の構成は実施の形態1のアンテナ装置と同様である。以上の構成による無線通信装置について、以下その動作を説明する。
(Embodiment 4)
FIG. 7 is a functional block diagram of a wireless communication apparatus according to the fourth embodiment of the present invention. In FIG. 7, the wireless communication device includes an antenna device 100, a reception unit 401, and directivity characteristic control signal generation means 403. In addition, the reception unit 401 includes reception intensity detection means 402 that detects the intensity of a signal received by the reception unit wireless communication apparatus. The configuration of antenna apparatus 100 is the same as that of the antenna apparatus of the first embodiment. The operation of the wireless communication apparatus having the above configuration will be described below.

まず、無線通信装置へ到達する入射電波を放射素子101が受信すると、出力信号が給電ポート102から受信部401へと送られる。そして、受信部401が有する受信強度検出手段402によって、入射電波の方向と強度の検出が行われる。   First, when the radiating element 101 receives incident radio waves that reach the wireless communication device, an output signal is sent from the power supply port 102 to the receiving unit 401. Then, the direction and intensity of the incident radio wave are detected by the reception intensity detection unit 402 included in the reception unit 401.

なお、アンテナ装置100に対応する周波数成分を含む入射電波は受信信号と呼ばれることが多く、高周波信号、RF信号とも呼ばれる。受信時の動作としては、RF信号を復調し、デジタルデータを得ることとなる。   An incident radio wave including a frequency component corresponding to the antenna device 100 is often referred to as a received signal, and is also referred to as a high-frequency signal or an RF signal. As an operation during reception, the RF signal is demodulated to obtain digital data.

指向特性制御信号生成手段403は、受信部401の出力をもとにデジタルデータの送受信動作への影響の少ないタイミングにおいて指向特性を切り換え、受信強度検出手段402の出力をもとに、最も良好な受信信号強度が得られる指向特性を通信状況に適した指向特性として設定する。そして、その設定に即して指向特性制御手段105が動作するような制御信号を生成し、その制御信号を指向特性制御手段105へと送る。デジタルデータの送受信動作においては、前記指向特性を用いることで、より良好な通信品質が得られる。例えば、受信信号のシンボル周期に同期して、シンボル周期内で指向特性の切り変えを行うことで、指向特性切り換えによる通信伝送路の変化の直接的な影響が1シンボルに限定され、指向特性制御の受信特性への影響を最小に抑えることができる。さらに、シンボル間のタイムインターバル内で指向特性を切り換えることで、指向特性制御による伝送特性変化のシンボル期間中への影響を減らすことが出来る。   The directivity characteristic control signal generation unit 403 switches the directivity characteristic at a timing with little influence on the transmission / reception operation of digital data based on the output of the reception unit 401, and is the best based on the output of the reception intensity detection unit 402. The directivity characteristic that provides the received signal strength is set as the directivity characteristic suitable for the communication situation. Then, a control signal for operating the directivity control unit 105 in accordance with the setting is generated, and the control signal is sent to the directivity control unit 105. In the transmission / reception operation of digital data, better communication quality can be obtained by using the directivity characteristics. For example, by switching the directivity within the symbol period in synchronization with the symbol period of the received signal, the direct influence of the change in the communication transmission path due to the directivity switching is limited to one symbol, and directivity control Can minimize the influence on the reception characteristics. Further, by switching the directivity within the time interval between symbols, it is possible to reduce the influence of the change in transmission characteristics due to directivity control during the symbol period.

また、無線通信装置が受信動作と送信動作で同じ周波数を用いる構成では、無線信号の伝搬特性がほぼ等しいため、受信動作の通信状況に適した指向特性と送信動作の通信状況に適した指向特性がほぼ等しくなる。つまり、受信動作で得られた指向特性を用いることで送信動作においても良好な通信品質が得られる。   Also, in the configuration where the wireless communication device uses the same frequency for the reception operation and the transmission operation, the propagation characteristics of the radio signal are almost equal, so the directivity characteristic suitable for the communication situation of the reception operation and the directivity characteristic suitable for the communication situation of the transmission operation Are almost equal. That is, good communication quality can be obtained in the transmission operation by using the directivity obtained in the reception operation.

また、無線通信装置が受信動作と送信動作で異なる周波数を用いる構成でも、相手の無線通信装置との位置関係は変わらないため、受信動作で得られた指向特性を用いることができ、送信動作においても受信動作に準じる良好な通信品質が得られる。さらに、無線通信装置からの送信信号の到達状態を相手の無線通信装置から返送することで、受信動作での指向特性切り換え動作と同様の動作により、送信動作の通信状況に適した指向特性を検出してもよい。これにより、更に良好な通信品質が得られる。   Even if the wireless communication device uses different frequencies for the reception operation and the transmission operation, the positional relationship with the counterpart wireless communication device does not change, so the directivity obtained by the reception operation can be used. Also, good communication quality according to the reception operation can be obtained. Furthermore, by returning the arrival state of the transmission signal from the wireless communication device from the partner wireless communication device, the directivity characteristics suitable for the communication status of the transmission operation are detected by the same operation as the directivity switching operation in the reception operation. May be. Thereby, better communication quality can be obtained.

なお受信部401は、入射電波から得られるデジタルデータである受信データの誤り率を検出する受信誤検出手段を備えたものとしてもよい。この場合、指向特性制御信号生成手段403は受信誤検出手段の出力に基づき通信状況に適した指向特性を判定し対応する制御信号を指向特性制御手段105へ送る。受信誤り検出には、既知のデータ系列を受信する必要があるが、通信フレームのプリアンブル等の所定のデータ系列が送れられているタイミングで指向特性判定を行うことで、誤り検出が可能となる。多重波伝搬や干渉波により通信に寄与しない信号がある場合、受信強度では非所望波の強度も加算されてしまい、指向特性判定の精度が低下するが、受信データの誤り率により指向特性を判定することで、実際の通信動作に寄与している無線信号において、通信状況に適した指向特性が得られ、より良好な通信品質が得られる。   The receiving unit 401 may include a reception error detection unit that detects an error rate of received data that is digital data obtained from incident radio waves. In this case, the directivity characteristic control signal generation unit 403 determines the directivity characteristic suitable for the communication state based on the output of the reception error detection unit, and sends a corresponding control signal to the directivity characteristic control unit 105. In order to detect reception errors, it is necessary to receive a known data sequence, but error detection can be performed by performing directional characteristic determination at a timing when a predetermined data sequence such as a preamble of a communication frame is transmitted. If there is a signal that does not contribute to communication due to multiple wave propagation or interference wave, the intensity of the undesired wave is also added to the received intensity and the accuracy of directional characteristic determination is reduced, but the directional characteristic is determined by the error rate of the received data Thus, directivity characteristics suitable for the communication state can be obtained in the radio signal contributing to the actual communication operation, and better communication quality can be obtained.

なお、本実施の形態の無線通信装置を移動局または基地局に用いることができる。通信動作への寄与の高い指向特性に設定することで、より良好な通信品質が得られ、より高効率な移動無線システムの構築が可能となる。また、通信状況に適した指向特性を判定するためのデータを送受信するフレームを通信フォーマットに含めることで、より高精度な指向特性設定が可能となり、より良好な通信品質が得られる。   Note that the wireless communication apparatus of this embodiment can be used for a mobile station or a base station. By setting the directivity characteristics that contribute greatly to the communication operation, better communication quality can be obtained and a more efficient mobile radio system can be constructed. In addition, by including a frame for transmitting and receiving data for determining directivity suitable for the communication state in the communication format, it is possible to set the directivity with higher accuracy and obtain better communication quality.

以上のように、アンテナ装置と、指向特性制御手段を制御する制御信号を生成する指向特性制御信号生成手段と、入射電波の強度を検出する受信強度検出手段とを有し、前記指向特性制御信号生成手段は前記受信強度検出手段の検出の結果に対応する制御信号を生成する無線通信装置とすることで、より高効率な通信が可能な無線通信端末の実現が可能となる。   As described above, the antenna device, the directivity control signal generating means for generating the control signal for controlling the directivity control means, and the reception intensity detecting means for detecting the intensity of the incident radio wave, the directivity control signal When the generation unit is a radio communication device that generates a control signal corresponding to the detection result of the reception intensity detection unit, a radio communication terminal capable of more efficient communication can be realized.

(実施の形態5)
図8は本発明第5の実施の形態の折り畳み型の無線通信装置500の斜視図である。図8(a)は無線通信装置500が折り畳まれている状態、図8(b)は無線通信装置500が開いている状態を示している。図9は無線通信装置500の機能ブロック図である。
(Embodiment 5)
FIG. 8 is a perspective view of a foldable wireless communication apparatus 500 according to the fifth embodiment of the present invention. FIG. 8A shows a state where the wireless communication apparatus 500 is folded, and FIG. 8B shows a state where the wireless communication apparatus 500 is open. FIG. 9 is a functional block diagram of the wireless communication apparatus 500.

図8、図9において、無線通信装置500はアンテナ装置100を有し、さらに無線通信装置500の開閉状態を検出する形状状態検出手段501と、形状状態検出手段501の出力から必要な指向特性を判定し、対応する制御信号を指向特性制御手段105へと送る指向特性制御信号生成手段502とを有する。アンテナ装置100の構成は実施の形態1と同様であり、受信部401の構成は実施の形態4と同様である。以下、上記の構成による無線通信装置500の動作説明を行う。   8 and 9, the wireless communication device 500 includes the antenna device 100, and further, a shape state detection unit 501 that detects the open / closed state of the wireless communication device 500, and a necessary directivity characteristic from the output of the shape state detection unit 501. A directional characteristic control signal generating unit 502 that determines and sends a corresponding control signal to the directional characteristic control unit 105; The configuration of antenna apparatus 100 is the same as that of the first embodiment, and the configuration of receiving section 401 is the same as that of the fourth embodiment. Hereinafter, the operation of the wireless communication apparatus 500 configured as described above will be described.

図8(a)の無線通信装置500が閉じられた状態では、アンテナ装置100から見て斜め上方向には障害物がないため放射素子相当の指向特性に切り換える。一方、図8(b)の無線通信が開かれた状態では、開かれた無線通信装置500の筐体に遮られる方向への指向特性の通信動作への寄与度が下がるので、筐体と反対方向に向けた指向特性に切り換えることにより、無線通信装置500の機械的な形状変化に対応して、より望ましい無線通信装置500の指向特性が形成される。   In the state where the wireless communication device 500 in FIG. 8A is closed, there is no obstacle in the diagonally upward direction when viewed from the antenna device 100, so that the directivity characteristic corresponding to the radiation element is switched. On the other hand, in the state where the wireless communication in FIG. 8B is opened, the degree of contribution to the communication operation of the directivity characteristic in the direction blocked by the housing of the opened wireless communication device 500 is reduced, so that it is opposite to the housing. By switching to the directivity characteristic directed in the direction, a more desirable directivity characteristic of the wireless communication device 500 is formed in response to the mechanical shape change of the wireless communication device 500.

なお、無線通信装置500が折り畳み型で、開閉の2状態に対応する指向特性制御信号生成手段502を用いた構成例を示したが、これに限定するものではない。機械的な形状変化により、アンテナ装置100の指向特性の通信動作への寄与度に偏りが生じる形状の無線通信装置500において、寄与度の偏りを補う指向特性に変更する指向特性制御信号生成手段502を用いてもよい。   In addition, although the wireless communication apparatus 500 is a foldable type and the configuration example using the directivity characteristic control signal generation unit 502 corresponding to the two states of opening and closing is shown, it is not limited to this. In the wireless communication device 500 having a shape in which the contribution of the directivity of the antenna device 100 to the communication operation is biased due to the mechanical shape change, the directivity control signal generation unit 502 that changes the directivity to the directivity that compensates for the bias of the contribution. May be used.

なお、本実施の形態の無線通信装置500を移動局または基地局に用いることができる。通信動作への寄与の高い指向特性に設定することで、より良好な通信品質が得られ、より高効率な移動無線システムの構築が可能となる。また、通信状況に適した指向特性を判定するためのデータを送受信するフレームを通信フォーマットに含めることで、より高精度な指向特性設定が可能となり、より良好な通信品質が得られる。   Note that the wireless communication apparatus 500 of this embodiment can be used for a mobile station or a base station. By setting the directivity characteristics that contribute greatly to the communication operation, better communication quality can be obtained and a more efficient mobile radio system can be constructed. In addition, by including a frame for transmitting and receiving data for determining directivity suitable for the communication state in the communication format, it is possible to set the directivity with higher accuracy and obtain better communication quality.

以上のように、無線通信装置500の機械的な形状変化を検出する形状状態検出手段501と、形状状態検出手段501の出力から必要な指向特性を判定し対応する制御信号を指向特性制御手段105へ送る指向特性制御信号生成手段502と、指向特性制御可能なアンテナ装置100を備えることで、機械的な形状変化に対応して指向特性を変更し、より高効率な通信が可能な無線通信端末の実現が可能となる。   As described above, the shape state detection unit 501 that detects a mechanical shape change of the wireless communication apparatus 500, the necessary directivity characteristic is determined from the output of the shape state detection unit 501, and the corresponding control signal is transmitted to the directivity characteristic control unit 105. Wireless communication terminal capable of performing more efficient communication by changing the directivity in response to a mechanical shape change by including the directivity control signal generation means 502 to be sent to the antenna and the antenna device 100 capable of controlling directivity Can be realized.

(実施の形態6)
図10は本発明第6の実施の形態のアンテナ装置の斜視図である。図10(a)において、601は寄生素子片201を上下に平行移動した寄生素子片、602は寄生素子片601間を接続する接続手段、603はアンテナ装置の主偏波面である。図10(b)は、接続手段202、602により反射器を形成した例で、604は寄生素子片201を接続手段202により接続して形成した反射器、605は反射器604に対応して接続手段602により寄生素子片601を接続して形成した反射器である。
(Embodiment 6)
FIG. 10 is a perspective view of an antenna device according to a sixth embodiment of the present invention. In FIG. 10A, reference numeral 601 denotes a parasitic element piece obtained by translating the parasitic element piece 201 up and down, 602 denotes connection means for connecting the parasitic element pieces 601, and 603 denotes a main polarization plane of the antenna device. FIG. 10B shows an example in which a reflector is formed by the connecting means 202 and 602, 604 is a reflector formed by connecting the parasitic element pieces 201 by the connecting means 202, and 605 is connected corresponding to the reflector 604. A reflector formed by connecting parasitic element pieces 601 by means 602.

放射素子101から見て、反射器604の上下方向に反射器605が形成されることで、反射器605方向への放射が抑えられることで、更に反射器604の反対方向への指向性が高まる。   When the reflector 605 is formed in the vertical direction of the reflector 604 when viewed from the radiation element 101, radiation in the direction of the reflector 605 is suppressed, and thus directivity in the opposite direction of the reflector 604 is further increased. .

また、主偏波面603の上方に反射器を形成することで、主偏波面603に対して反射器の反対方向に斜め下方へ傾いた指向特性に切り換えられる。   In addition, by forming a reflector above the main polarization plane 603, the directivity characteristics can be switched to the main polarization plane 603 inclined obliquely downward in the opposite direction of the reflector.

更に、図11は本発明の実施の形態6の別な形態のアンテナ装置の斜視図である。図11において、101は主偏波面603に対して傾けて直線A−A’上に配置した放射素子、606は格子状に配置された寄生素子片、607は寄生素子片606間の接続状態を切り換える接続手段、603はアンテナ装置の主偏波面である。   Furthermore, FIG. 11 is a perspective view of another form of antenna device according to Embodiment 6 of the present invention. In FIG. 11, reference numeral 101 denotes a radiating element which is inclined with respect to the main polarization plane 603 and is arranged on a straight line AA ′, 606 is a parasitic element piece arranged in a grid pattern, and 607 is a connection state between the parasitic element pieces 606. Connection means 603 for switching is the main polarization plane of the antenna device.

アンテナ装置の主偏波面603に対して斜めに放射素子101を配置することで、アンテナ装置の交差偏波に対する指向特性が向上する。更に、格子状に寄生素子片を配置し、寄生素子片間の接続条件を切り換えて、反射器または導波器を形成することで、主偏波および交差偏波に対する指向特性の切り換えが可能となる。都市部や屋内等での無線伝送においては、伝送路上の壁等の構造物での反射散乱により偏波面が変化し、例えば水平偏波を放射しても相手方に到達するまでに交差偏波である垂直偏波成分を生じるため、主編歩に加えて交差偏波の指向特性制御を行うことで、より良好な通信品質を実現することができる。   By disposing the radiating element 101 obliquely with respect to the main polarization plane 603 of the antenna device, the directivity characteristics with respect to the cross polarization of the antenna device are improved. Furthermore, by arranging the parasitic element pieces in a lattice pattern and switching the connection conditions between the parasitic element pieces to form a reflector or a director, it is possible to switch the directional characteristics for the main polarization and cross polarization. Become. In wireless transmission in urban areas and indoors, the plane of polarization changes due to reflection and scattering from structures such as walls on the transmission path.For example, even if horizontal polarization is radiated, Since some vertical polarization component is generated, better communication quality can be realized by controlling the directivity of cross polarization in addition to the main story.

以上のように、格子状に配置された寄生素子片606、および主偏波面603に斜めに配置した放射素子101をもちいることで、伝搬中の反射散乱により偏波面の変化した到来波に対しても良好な通信が可能なアンテナ装置の実現が可能となる。   As described above, by using the parasitic element pieces 606 arranged in a lattice pattern and the radiating element 101 arranged obliquely on the main polarization plane 603, an incoming wave whose polarization plane has changed due to reflection scattering during propagation is used. However, an antenna device capable of good communication can be realized.

(実施の形態7)
図12は本発明第7の実施の形態のアンテナ装置の斜視図である。図12において、701は反射器である。例えば、反射器701はアンテナ装置が組み込まれた機器の周辺構造物により、信号の到来が想定されない方向に配置されている。
(Embodiment 7)
FIG. 12 is a perspective view of an antenna device according to a seventh embodiment of the present invention. In FIG. 12, reference numeral 701 denotes a reflector. For example, the reflector 701 is arranged in a direction in which the arrival of a signal is not expected due to the peripheral structure of the device in which the antenna device is incorporated.

アンテナ装置が機器に内蔵された場合、機器内の他の部位からの雑音信号を受信してしまう場合があり、信号の到来が想定されない方向(例えば、アンテナ装置が搭載された機器の内部方向)から入射する信号は主として雑音信号となる。反射器701を配置することで、機器内部からの雑音信号の混入が減り、例えば受信電力に基づいて指向特性制御を行う場合に、より到来波に忠実に指向特性制御が可能となり、装置の受信性能を向上できる。   When an antenna device is built in a device, it may receive a noise signal from another part in the device, and the direction in which the signal is not expected (for example, the internal direction of the device on which the antenna device is mounted) The signal incident from the center is mainly a noise signal. By disposing the reflector 701, the noise signal from the inside of the device is reduced. For example, when the directivity control is performed based on the received power, the directivity control can be performed more faithfully to the incoming wave. Performance can be improved.

以上のように、信号の到来が想定されない方向に反射器701を配置することで、雑音信号の影響を削減し、到来波に対応した指向特性制御の精度が向上が可能となる。   As described above, by arranging the reflector 701 in a direction in which the arrival of a signal is not expected, the influence of the noise signal can be reduced, and the accuracy of directivity control corresponding to the incoming wave can be improved.

本発明にかかるアンテナ装置は、小型かつ低姿勢で主偏波面内での指向特性切り換えを可能とするので、主としてマイクロ波帯・ミリ波帯を用いる無線通信システムに用いられる。   The antenna device according to the present invention is small and low-profile, and can switch the directivity characteristics in the main polarization plane. Therefore, the antenna device is mainly used in a radio communication system using a microwave band and a millimeter wave band.

本発明実施の形態1におけるアンテナ装置の主要部の上面図Top view of the main part of the antenna device according to Embodiment 1 of the present invention 同実施の形態1におけるアンテナ装置の機能ブロック図Functional block diagram of the antenna device according to the first embodiment 同実施の形態2におけるアンテナ装置の主要部の上面図Top view of the main part of the antenna device according to the second embodiment 同実施の形態2におけるアンテナ装置の指向特性を示した図The figure which showed the directional characteristic of the antenna apparatus in Embodiment 2 同実施の形態3におけるアンテナ装置の主要部の上面図Top view of the main part of the antenna device according to the third embodiment 同実施の形態3におけるアンテナ装置の指向特性を示した図The figure which showed the directional characteristic of the antenna apparatus in Embodiment 3 同実施の形態4における無線通信装置の機能ブロック図Functional block diagram of the wireless communication apparatus in the fourth embodiment (a)実施の形態5における無線通信装置の閉じた状態の斜視図(b)実施の形態5における無線通信装置の開いた状態の斜視図(A) Perspective view of the wireless communication device in the fifth embodiment in a closed state (b) Perspective view of the wireless communication device in the fifth embodiment in an opened state 同実施の形態5における無線通信装置の機能ブロック図Functional block diagram of the wireless communication apparatus in the fifth embodiment (a)実施の形態6におけるアンテナ装置の斜視図(b)実施の形態6における接続手段202、602により形成した反射器の斜視図(A) Perspective view of antenna device in embodiment 6 (b) Perspective view of reflector formed by connecting means 202, 602 in embodiment 6. 同実施の形態6における他のアンテナ装置の斜視図The perspective view of the other antenna apparatus in Embodiment 6 同実施の形態7におけるアンテナ装置の斜視図The perspective view of the antenna apparatus in Embodiment 7 従来のアンテナ装置の斜視図A perspective view of a conventional antenna device

符号の説明Explanation of symbols

100 アンテナ装置
101 放射素子
102 給電ポート
103 寄生素子片
104 接続手段
105 指向特性制御手段
106 制御入力ポート
201 寄生素子片
202 接続手段
301 寄生素子片
302 寄生素子片
303 接続手段
401 受信部
402 受信強度検出手段
403 指向特性制御信号生成手段
500 無線通信装置
501 形状状態検出手段
502 指向特性制御信号生成手段
601 寄生素子片
602 接続手段
603 主偏波面
604 寄生素子片201を接続手段202により接続して形成した反射器
605 寄生素子片601を接続手段602により接続して形成した反射器
606 寄生素子
607 接続手段
701 反射器
DESCRIPTION OF SYMBOLS 100 Antenna apparatus 101 Radiation element 102 Feeding port 103 Parasitic element piece 104 Connection means 105 Directional characteristic control means 106 Control input port 201 Parasitic element piece 202 Connection means 301 Parasitic element piece 302 Parasitic element piece 303 Connection means 401 Reception part 402 Reception intensity detection Means 403 Directivity characteristic control signal generation means 500 Wireless communication apparatus 501 Shape state detection means 502 Directivity characteristic control signal generation means 601 Parasitic element piece 602 Connection means 603 Main polarization plane 604 Reflector 605 Reflector formed by connecting parasitic element pieces 601 by connecting means 602 606 Parasitic element 607 Connecting means 701 Reflector

Claims (21)

給電ポートを有する放射素子と、前記放射素子の主偏波面内に位置する複数の寄生素子片と、前記複数の寄生素子片の間を接続するインピーダンス可変な接続手段とを有するアンテナ装置。 An antenna apparatus comprising: a radiating element having a feeding port; a plurality of parasitic element pieces located in a main polarization plane of the radiating element; and a variable impedance connecting means for connecting the plurality of parasitic element pieces. 前記放射素子の対応周波数を変更する周波数変更手段を備える請求項1記載のアンテナ装置。 The antenna device according to claim 1, further comprising frequency changing means for changing a corresponding frequency of the radiating element. 前記複数の寄生素子片が前記放射素子の周囲に環状に位置する請求項1または2記載のアンテナ装置。 The antenna device according to claim 1, wherein the plurality of parasitic element pieces are annularly disposed around the radiation element. 前記複数の寄生素子片が前記放射素子の周囲に菱形状に位置する請求項1または2記載のアンテナ装置。 The antenna device according to claim 1, wherein the plurality of parasitic element pieces are located in a diamond shape around the radiating element. 前記複数の寄生素子片が前記放射素子の周囲に六角形状に位置する請求項1または2記載のアンテナ装置。 The antenna device according to claim 1, wherein the plurality of parasitic element pieces are arranged in a hexagonal shape around the radiation element. 前記複数の寄生素子片が前記放射素子の周囲に格子状に位置する請求項1または2記載のアンテナ装置。 The antenna device according to claim 1, wherein the plurality of parasitic element pieces are arranged in a lattice pattern around the radiation element. 電気長で四分の一波長の長さである寄生素子片を少なくとも一つ有する請求項1または2記載のアンテナ装置。 The antenna device according to claim 1 or 2, comprising at least one parasitic element piece having an electrical length of a quarter wavelength. 電気長で八分の一波長の長さである寄生素子片を少なくとも一つ有する請求項1または2記載のアンテナ装置。 The antenna device according to claim 1 or 2, comprising at least one parasitic element piece having an electrical length of 八 wavelength. 前記放射素子に対して45度傾いた寄生素子片を少なくとも一つ有する請求項1または2記載のアンテナ装置。 The antenna device according to claim 1, further comprising at least one parasitic element piece inclined at 45 degrees with respect to the radiating element. 前記寄生素子片の外側に反射素子を少なくとも一つ有する請求項1または2記載のアンテナ装置。 The antenna device according to claim 1, wherein at least one reflective element is provided outside the parasitic element piece. 前記放射素子がアンテナ装置の主偏波面に対して斜めに位置する請求項1または2記載のアンテナ装置。 The antenna device according to claim 1, wherein the radiating element is located obliquely with respect to a main polarization plane of the antenna device. 少なくとも一つ以上の前記接続手段が導通状態である請求項1ないし11のいずれか記載のアンテナ装置。 The antenna device according to claim 1, wherein at least one of the connection means is in a conductive state. 導通状態である前記接続手段によって電気的に接続される前記寄生素子片の全長が前記放射素子の長さと異なる請求項12記載のアンテナ装置。 The antenna device according to claim 12, wherein a total length of the parasitic element pieces electrically connected by the connection means in a conductive state is different from a length of the radiating element. 請求項1ないし13のいずれか記載のアンテナ装置がアレー状に位置するアンテナ装置。 An antenna device in which the antenna device according to any one of claims 1 to 13 is positioned in an array. 前記接続手段のインピーダンスを制御する指向特性制御手段を備える請求項1ないし14のいずれか記載のアンテナ装置。 15. The antenna device according to claim 1, further comprising directivity control means for controlling impedance of the connection means. 請求項15記載のアンテナ装置と、前記指向特性制御手段を制御する制御信号を生成する指向特性制御信号生成手段とを備える無線通信装置。 16. A wireless communication apparatus comprising: the antenna device according to claim 15; and directivity characteristic control signal generation means for generating a control signal for controlling the directivity characteristic control means. 入射電波の強度を検出する受信強度検出手段を有し、前記指向特性制御信号生成手段は前記受信強度検出手段の検出の結果に対応する制御信号を生成する請求項16記載の無線通信装置。 17. The wireless communication apparatus according to claim 16, further comprising reception intensity detection means for detecting the intensity of incident radio waves, wherein the directivity characteristic control signal generation means generates a control signal corresponding to a detection result of the reception intensity detection means. 入射電波から得られる受信データの誤り率を検出する受信誤検出手段を有し、前記指向特性制御信号生成手段は前記受信誤検出手段の検出の結果に対応する制御信号を生成する請求項16記載の無線通信装置。 17. A reception error detection means for detecting an error rate of received data obtained from incident radio waves, wherein the directivity characteristic control signal generation means generates a control signal corresponding to a detection result of the reception error detection means. Wireless communication device. 前記アンテナ装置と前記指向特性制御信号生成手段とを蔽う筐体と、前記筐体の形状変化を検出する形状状態検出手段とを備え、前記指向特性制御信号生成手段は前記形状状態検出手段の検出の結果に対応する制御信号を生成する請求項16記載の無線通信装置。 A housing that covers the antenna device and the directivity characteristic control signal generation means; and a shape state detection means that detects a change in the shape of the housing, wherein the directivity control signal generation means detects the shape state detection means. The wireless communication apparatus according to claim 16, wherein a control signal corresponding to the result is generated. 前記指向特性制御信号生成手段が通信データのシンボル周期に同期して制御信号を生成する請求項16記載の無線通信装置。 The radio communication apparatus according to claim 16, wherein the directivity characteristic control signal generating means generates a control signal in synchronization with a symbol period of communication data. 請求項16ないし20のいずれか記載の無線通信装置を備える移動局または基地局を含む移動無線システム。 A mobile radio system including a mobile station or a base station comprising the radio communication device according to any one of claims 16 to 20.
JP2004149993A 2003-05-28 2004-05-20 Antenna assembly Pending JP2005012779A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004149993A JP2005012779A (en) 2003-05-28 2004-05-20 Antenna assembly

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003150668 2003-05-28
JP2004149993A JP2005012779A (en) 2003-05-28 2004-05-20 Antenna assembly

Publications (1)

Publication Number Publication Date
JP2005012779A true JP2005012779A (en) 2005-01-13

Family

ID=34106719

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004149993A Pending JP2005012779A (en) 2003-05-28 2004-05-20 Antenna assembly

Country Status (1)

Country Link
JP (1) JP2005012779A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006115451A (en) * 2004-09-15 2006-04-27 Ricoh Co Ltd Directivity control micro strip antenna, radio module using the antenna, and radio system
JP2006339769A (en) * 2005-05-31 2006-12-14 Toyota Central Res & Dev Lab Inc Antenna device
WO2007072710A1 (en) * 2005-12-21 2007-06-28 Matsushita Electric Industrial Co., Ltd. Directivity-variable antenna
JP2009543394A (en) * 2006-07-07 2009-12-03 アイティーアイ スコットランド リミテッド Antenna array
JP2010538531A (en) * 2007-08-29 2010-12-09 アギア システムズ インコーポレーテッド Electronically operable antenna

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006115451A (en) * 2004-09-15 2006-04-27 Ricoh Co Ltd Directivity control micro strip antenna, radio module using the antenna, and radio system
JP2006339769A (en) * 2005-05-31 2006-12-14 Toyota Central Res & Dev Lab Inc Antenna device
JP4682705B2 (en) * 2005-05-31 2011-05-11 株式会社豊田中央研究所 Antenna device
WO2007072710A1 (en) * 2005-12-21 2007-06-28 Matsushita Electric Industrial Co., Ltd. Directivity-variable antenna
US7482993B2 (en) 2005-12-21 2009-01-27 Panasonic Corporation Variable-directivity antenna
JPWO2007072710A1 (en) * 2005-12-21 2009-05-28 パナソニック株式会社 Directional variable antenna
JP2009543394A (en) * 2006-07-07 2009-12-03 アイティーアイ スコットランド リミテッド Antenna array
JP2010538531A (en) * 2007-08-29 2010-12-09 アギア システムズ インコーポレーテッド Electronically operable antenna
KR101269402B1 (en) 2007-08-29 2013-05-31 에이저 시스템즈 엘엘시 Electronically steerable antenna

Similar Documents

Publication Publication Date Title
US8314749B2 (en) Dual band dual polarization antenna array
US7965252B2 (en) Dual polarization antenna array with increased wireless coverage
EP1782499B1 (en) System and method for an omnidirectional planar antenna apparatus with selectable elements
US9407012B2 (en) Antenna with dual polarization and mountable antenna elements
CN102868024B (en) There is the multiband omnidirectional planar antenna apparatus of selectable elements
CN1934750B (en) Circuit board having a peripheral antenna apparatus with selectable antenna elements
TWI527308B (en) Slot antennas, including meander slot antennas, and method of making and mobile phone device and integrated circuit comprising the same
US6480157B1 (en) Foldable directional antenna
US6762722B2 (en) Directional antenna
KR20160034011A (en) Antenna device and method for operation of the same
JP4564868B2 (en) Antenna device, wireless module, and wireless system
JP2006166262A (en) Antenna system for radio unit and portable radio unit with the same
JP2001345633A (en) Antenna device
CN115189143A (en) Reconfigurable antenna and network device
JP2005012779A (en) Antenna assembly
US20220216606A1 (en) Directional antenna and communication device
JP4542866B2 (en) Directional control microstrip antenna
US11581648B2 (en) Multi-port endfire beam-steerable planar antenna
JP4272154B2 (en) Directional dual frequency antenna device
JP2007517444A (en) Radiation controllable antenna
Tsai et al. A Novel 2.4-GHz Low-Profile Smart MIMO Antenna with Reconfigurable Frequency-Selective Reflectors
CN116365237A (en) Reconfigurable antenna and network device
KR20130026089A (en) Wi-fi band switched parasitic active beam forming antenna
JP2003078327A (en) Directional antenna