JP2005011806A - Organic electroluminescent device - Google Patents

Organic electroluminescent device Download PDF

Info

Publication number
JP2005011806A
JP2005011806A JP2004159060A JP2004159060A JP2005011806A JP 2005011806 A JP2005011806 A JP 2005011806A JP 2004159060 A JP2004159060 A JP 2004159060A JP 2004159060 A JP2004159060 A JP 2004159060A JP 2005011806 A JP2005011806 A JP 2005011806A
Authority
JP
Japan
Prior art keywords
group
organic electroluminescent
organic
carbon atoms
compound represented
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004159060A
Other languages
Japanese (ja)
Other versions
JP4529547B2 (en
Inventor
Yukisaku Sakamoto
之作 坂本
Mari Ichimura
真理 市村
Mitsuhiro Kashiwabara
充宏 柏原
Shinichiro Tamura
眞一郎 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2004159060A priority Critical patent/JP4529547B2/en
Publication of JP2005011806A publication Critical patent/JP2005011806A/en
Application granted granted Critical
Publication of JP4529547B2 publication Critical patent/JP4529547B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • Y02B20/181

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electroluminescent device capable of producing white light by using an organic luminescent material for emitting white light, which is highly reliable and excellent in productivity, while having a simple layer structure. <P>SOLUTION: The organic electroluminescent device uses a compound expressed by formula 1, as the organic electroluminescent material. In formula 1, R1-R26 are preferably substituents arbitrarily selected from the group consisting of a hydrogen atom, alkyl groups, aromatic hydrocarbon groups, and aromatic heterocycle groups, and n1 represents a number from 1 to 3. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、単純な積層構造で白色近傍の発光を呈する有機電界発光素子に関するものである。   The present invention relates to an organic electroluminescent device that emits light in the vicinity of white with a simple laminated structure.

有機電界発光素子は自発光型の素子であり、高視野角かつ高輝度発光が可能であること、また、薄型であるといった特徴を持つことから、次世代平面ディスプレイや、その平面光源への応用が注目されている。この有機電界発光素子を用いてフルカラーディスプレイの表示を行うには、大きく分けて次の3つの方法が考えられる。   Organic electroluminescent devices are self-luminous devices that can emit light with a high viewing angle and high brightness, and that they are thin, so they can be applied to next-generation flat displays and flat light sources. Is attracting attention. In order to display a full-color display using this organic electroluminescent element, the following three methods are roughly considered.

一つの方法は、レッド(R),グリーン(G),ブルー(B)の各発光部を平面状に形成する方法であり、例えばメタルマスクを用いた抵抗加熱方式などによる蒸着により形成する。この製造プロセスは同一基板上にRGB3種の素子(サブピクセル)をそれぞれ作製し、これを組み合わせて一つの画素とする。このため、微細なピクセル形状の蒸着マスクを作製し、これを基板上に精度よく配置する必要があり、製造プロセスにおける生産性が低く、コスト高であるという問題がある。   One method is to form each light emitting portion of red (R), green (G), and blue (B) in a planar shape, for example, by vapor deposition by a resistance heating method using a metal mask. In this manufacturing process, RGB three types of elements (sub-pixels) are respectively formed on the same substrate, and are combined into one pixel. For this reason, it is necessary to produce a vapor deposition mask having a fine pixel shape and to dispose it on the substrate with high accuracy, resulting in low productivity and high cost in the manufacturing process.

もう一つの方法は、単色光、例えば青色の有機発光層と、この青色を赤色や緑色に変換すべく光の出射方向前面に設けられた色変換層とを用いてフルカラー表示を行う方法である。   Another method is a method of performing full-color display using monochromatic light, for example, a blue organic light-emitting layer, and a color conversion layer provided in front of the light emission direction to convert the blue color into red or green. .

もう一つの方法は、白色光を呈する有機電界発光素子からの光をカラーフィルターを用いてRGBに分ける方法である。白色発光層にカラーフィルターを組み合わせて任意の発光色を取り出す方法では、蒸着マスクを配列して各発光色を塗り分ける必要がないので簡便であり、また工程数を少なくすることができるので、製造プロセスにおける生産性が高く、コストを抑えることができる。   The other method is a method of dividing light from an organic electroluminescent element exhibiting white light into RGB using a color filter. The method of taking out any luminescent color by combining a color filter with a white luminescent layer is convenient because it does not require the deposition masks to be arranged separately and each luminescent color is applied separately, and the number of steps can be reduced. Productivity in the process is high and costs can be reduced.

白色発光を得る方法として、(1)RGBの発光層を組み合わせる方法と、(2)青緑+赤、又は青+黄色〜橙色の2波長の補色関係にある発光を単一もしくは複数発光層から発光させる方法、(3)エキサイプレックス発光を利用した方法、等がある。上記(1)の方法では、青、緑、赤の発光層を積層にして、白色光を得る方法等が提案されている(例えば、特許文献1)。上記(2)の方法では、各色の発光層を2層積層する方法(例えば、特許文献2,3)と、一つの発光層で2色の発光を得る方法(例えば、特許文献4)等がある。上記(3)の方法では、ボロンヒドロキシフェニルピリジン錯体を用いた白色デバイス(例えば、非特許文献1)等が報告されている。   As a method of obtaining white light emission, (1) a method of combining RGB light emitting layers, and (2) light emission having a complementary color relationship of two wavelengths of blue green + red or blue + yellow to orange from a single or a plurality of light emitting layers. There are a method of emitting light, and (3) a method of using exciplex light emission. In the method (1), a method of obtaining white light by stacking blue, green, and red light emitting layers has been proposed (for example, Patent Document 1). In the above method (2), there are a method of laminating two light emitting layers of each color (for example, Patent Documents 2 and 3), a method of obtaining light emission of two colors with one light emitting layer (for example, Patent Document 4), and the like. is there. In the method (3), a white device (for example, Non-Patent Document 1) using a boron hydroxyphenylpyridine complex has been reported.

特開平7−142169号公報JP-A-7-142169 特開平6−158038号公報JP-A-6-1558038 特開平7−65958号公報JP-A-7-65958 特開平9−208946号公報Japanese Patent Laid-Open No. 9-208946 Angew.Chem.Int.Ed.2002,41,No. 1Angew.Chem.Int.Ed.2002,41, No. 1

本発明は、生産性が高く、単純な積層構造で白色近傍の発光を呈する有機電界発光素子を提供することを目的とする。   An object of the present invention is to provide an organic electroluminescent device that exhibits high productivity and emits light in the vicinity of white with a simple laminated structure.

このため、請求項1に記載の発明は、発光領域を有する有機層が陽極と陰極との間に設けられている有機電界発光素子において、
前記有機層に下記一般式(1)で表される化合物が有機発光材料として含まれていることを特徴とする有機電界発光素子である。
Therefore, the invention according to claim 1 is an organic electroluminescent device in which an organic layer having a light emitting region is provided between an anode and a cathode.
A compound represented by the following general formula (1) is contained in the organic layer as an organic light emitting material.

Figure 2005011806
Figure 2005011806

〔式中、R1〜R26は水素原子、ハロゲン原子、ヒドロキシル基、メルカプト基、ニトロ基、アミノ基、シアノ基、アルキル基、アルケニル基、シクロアルキル基、アルコキシ基、アルキルチオ基、シリル基、アルキルシリル基、シロキサニル基、アラルキル基、芳香族炭化水素基、芳香族複素環基、エステル基、アリールオキシ基、ホルミル基、アルコキシカルボニル基およびカルボキシル基から任意に選ばれた置換基であり、n1は1以上3以下の任意の数である。〕 [In the formula, R1 to R26 are hydrogen atom, halogen atom, hydroxyl group, mercapto group, nitro group, amino group, cyano group, alkyl group, alkenyl group, cycloalkyl group, alkoxy group, alkylthio group, silyl group, alkylsilyl. A substituent selected arbitrarily from a group, a siloxanyl group, an aralkyl group, an aromatic hydrocarbon group, an aromatic heterocyclic group, an ester group, an aryloxy group, a formyl group, an alkoxycarbonyl group and a carboxyl group, and n1 is 1 Any number of 3 or less. ]

請求項2に記載の発明は、請求項1に記載の有機電界発光素子において、前記一般式(1)で表される化合物のうち、R1〜R26が水素原子、炭素数10以下のアルキル基、炭素数10以下のアルコキシ基、炭素数30以下の芳香族炭化水素基および炭素数30以下の芳香族複素環基から任意に選ばれた置換基であることを特徴とする。   Invention of Claim 2 is an organic electroluminescent element of Claim 1, Among the compounds represented by the said General formula (1), R1-R26 is a hydrogen atom, a C10 or less alkyl group, It is a substituent arbitrarily selected from an alkoxy group having 10 or less carbon atoms, an aromatic hydrocarbon group having 30 or less carbon atoms, and an aromatic heterocyclic group having 30 or less carbon atoms.

請求項3に記載の発明は、請求項2に記載の有機電界発光素子において、白色光を呈する有機電界発光素子であることを特徴とする。   The invention described in claim 3 is the organic electroluminescent element according to claim 2, wherein the organic electroluminescent element exhibits white light.

請求項4に記載の発明は、発光領域を有する有機層が陽極と陰極との間に設けられている有機電界発光素子において、
前記有機層に下記一般式(2)で表される化合物が有機発光材料として含まれていることを特徴とする有機電界発光素子である。
The invention according to claim 4 is an organic electroluminescent device in which an organic layer having a light emitting region is provided between an anode and a cathode.
The organic electroluminescent device is characterized in that the organic layer contains a compound represented by the following general formula (2) as an organic light emitting material.

Figure 2005011806
Figure 2005011806

〔式中、R1〜R26は水素原子、ハロゲン原子、ヒドロキシル基、メルカプト基、ニトロ基、アミノ基、シアノ基、アルキル基、アルケニル基、シクロアルキル基、アルコキシ基、アルキルチオ基、シリル基、アルキルシリル基、シロキサニル基、アラルキル基、芳香族炭化水素基、芳香族複素環基、エステル基、アリールオキシ基、ホルミル基、アルコキシカルボニル基およびカルボキシル基から任意に選ばれた置換基である。〕 [In the formula, R1 to R26 are hydrogen atom, halogen atom, hydroxyl group, mercapto group, nitro group, amino group, cyano group, alkyl group, alkenyl group, cycloalkyl group, alkoxy group, alkylthio group, silyl group, alkylsilyl. And a substituent arbitrarily selected from a group, a siloxanyl group, an aralkyl group, an aromatic hydrocarbon group, an aromatic heterocyclic group, an ester group, an aryloxy group, a formyl group, an alkoxycarbonyl group, and a carboxyl group. ]

請求項5に記載の発明は、請求項4に記載の有機電界発光素子において、前記一般式(2)で表される化合物のうち、R1〜R26が水素原子、炭素数10以下のアルキル基、炭素数10以下のアルコキシ基、炭素数30以下の芳香族炭化水素基および炭素数30以下の芳香族複素環基から任意に選ばれた置換基であることを特徴とする。   Invention of Claim 5 WHEREIN: In the organic electroluminescent element of Claim 4, among the compounds represented by the said General formula (2), R1-R26 is a hydrogen atom, a C10 or less alkyl group, It is a substituent arbitrarily selected from an alkoxy group having 10 or less carbon atoms, an aromatic hydrocarbon group having 30 or less carbon atoms, and an aromatic heterocyclic group having 30 or less carbon atoms.

請求項6に記載の発明は、請求項5に記載の有機電界発光素子において、白色光を呈する有機電界発光素子であることを特徴とする。   The invention according to claim 6 is the organic electroluminescent element according to claim 5, wherein the organic electroluminescent element exhibits white light.

請求項7に記載の発明は、請求項4に記載の有機電界発光素子において、前記一般式(2)で表される化合物として、下記構造式(3)で表されるものを用いることを特徴とする。   Invention of Claim 7 uses the thing represented by following Structural formula (3) as a compound represented by the said General formula (2) in the organic electroluminescent element of Claim 4. And

Figure 2005011806
Figure 2005011806

請求項8に記載の発明は、請求項4に記載の有機電界発光素子において、前記一般式(2)で表される化合物として、下記構造式(4)で表されるものを用いることを特徴とする。   Invention of Claim 8 uses the thing represented by following Structural formula (4) as a compound represented by the said General formula (2) in the organic electroluminescent element of Claim 4. And

Figure 2005011806
Figure 2005011806

請求項9に記載の発明は、請求項4に記載の有機電界発光素子において、前記一般式(2)で表される化合物として、下記構造式(5)で表されるものを用いることを特徴とする。   Invention of Claim 9 uses the thing represented by following Structural formula (5) as a compound represented by the said General formula (2) in the organic electroluminescent element of Claim 4. And

Figure 2005011806
Figure 2005011806

本発明の上記一般式(1)で表される化合物は、それ自体で白色近傍の発色を呈する、すなわちRGBの各領域にピークトップを有する単一の化合物である。そのため、この化合物を含む発光材料を発光させカラーフィルターを作用させることによって、それぞれRGBの画素に分けることができ、単純な積層構造を持つ有機電界発光素子の作製が可能となる。
また、好適な青色材料をホストとし、この発光材料をドーパントとして用い、B領域を補正することによってより完成された白色光を得ることが可能となる。
The compound represented by the general formula (1) of the present invention is a single compound that exhibits a color near white by itself, that is, has a peak top in each region of RGB. Therefore, by emitting a light emitting material containing this compound and operating a color filter, it can be divided into RGB pixels, and an organic electroluminescent element having a simple laminated structure can be manufactured.
Further, a more complete white light can be obtained by using a suitable blue material as a host and using the light emitting material as a dopant and correcting the B region.

本発明によれば、生産性が高く、単純な積層構造で白色発光が得られる高信頼性の有機電界発光素子を提供することができる。   According to the present invention, it is possible to provide a highly reliable organic electroluminescence device that has high productivity and can obtain white light emission with a simple laminated structure.

以下に本発明の実施の形態について説明する。
なお、本発明において、「発光領域を有する有機層」としては例えば以下のものが挙げられる。
(1)ホール輸送層、発光層の2層型
(2)ホール輸送層、発光層、電子輸送層の3層型
(3)ホール注入層、ホール輸送層、発光層、電子輸送層、電子注入層の5層型
Embodiments of the present invention will be described below.
In the present invention, examples of the “organic layer having a light emitting region” include the following.
(1) Hole transport layer, two-layer type of light emitting layer (2) Three layer type of hole transport layer, light emitting layer, electron transport layer (3) Hole injection layer, hole transport layer, light emitting layer, electron transport layer, electron injection 5-layer type

また、「化合物が有機発光材料として含まれている」とは、一般式(1)の化合物が上記した各層の少なくとも一層に含まれ、発光に寄与していることを意味する。有機層中における本発明の化合物の使用は、一般式(1)の化合物単一の使用でも良く、あるいは一般式(1)の化合物をドーパントとして用い、これとホスト材料とを組み合わせて使用してもよい。   Further, “compound is contained as an organic light emitting material” means that the compound of the general formula (1) is contained in at least one of the above-described layers and contributes to light emission. The use of the compound of the present invention in the organic layer may be a single use of the compound of the general formula (1), or the compound of the general formula (1) is used as a dopant and is used in combination with a host material. Also good.

本発明の上記一般式(1)で表される化合物は、式中、R1〜R26が水素原子、ハロゲン原子、ヒドロキシル基、メルカプト基、ニトロ基、アミノ基、シアノ基、アルキル基、アルケニル基、シクロアルキル基、アルコキシ基、アルキルチオ基、シリル基、アルキルシリル基、シロキサニル基、アラルキル基、芳香族炭化水素基、芳香族複素環基、エステル基、アリールオキシ基、ホルミル基、アルコキシカルボニル基およびカルボキシル基から任意に選ばれた置換基であり、n1は1以上3以下の任意の数である。また、好ましくは式中、R1〜R26が水素原子、炭素数10以下のアルキル基、炭素数10以下のアルコキシ基、炭素数30以下の芳香族炭化水素基および炭素数30以下の芳香族複素環基から任意に選ばれた置換基である。   In the compound represented by the above general formula (1) of the present invention, R1 to R26 are hydrogen atom, halogen atom, hydroxyl group, mercapto group, nitro group, amino group, cyano group, alkyl group, alkenyl group, Cycloalkyl group, alkoxy group, alkylthio group, silyl group, alkylsilyl group, siloxanyl group, aralkyl group, aromatic hydrocarbon group, aromatic heterocyclic group, ester group, aryloxy group, formyl group, alkoxycarbonyl group and carboxyl And n1 is an arbitrary number of 1 or more and 3 or less. Preferably, in the formula, R1 to R26 are a hydrogen atom, an alkyl group having 10 or less carbon atoms, an alkoxy group having 10 or less carbon atoms, an aromatic hydrocarbon group having 30 or less carbon atoms, and an aromatic heterocyclic ring having 30 or less carbon atoms. The substituent is arbitrarily selected from the group.

また、本発明の上記一般式(1)で表される化合物は、式中、n1=1(上記一般式(2))であって、R1〜R26は水素原子、ハロゲン原子、ヒドロキシル基、メルカプト基、ニトロ基、アミノ基、シアノ基、アルキル基、アルケニル基、シクロアルキル基、アルコキシ基、アルキルチオ基、シリル基、アルキルシリル基、シロキサニル基、アラルキル基、芳香族炭化水素基、芳香族複素環基、エステル基、アリールオキシ基、ホルミル基、アルコキシカルボニル基およびカルボキシル基から任意に選ばれた置換基である。また、好ましくは式中、R1〜R26が水素原子、炭素数10以下のアルキル基、炭素数10以下のアルコキシ基、炭素数30以下の芳香族炭化水素基および炭素数30以下の芳香族複素環基から任意に選ばれた置換基である。さらに、一般式(2)は、上記構造式(3)〜(5)で表される化合物の他に、下記構造式(6)〜(42)の化合物が挙げられる。   The compound represented by the general formula (1) of the present invention is represented by the formula: n1 = 1 (the general formula (2)), and R1 to R26 are a hydrogen atom, a halogen atom, a hydroxyl group, a mercapto. Group, nitro group, amino group, cyano group, alkyl group, alkenyl group, cycloalkyl group, alkoxy group, alkylthio group, silyl group, alkylsilyl group, siloxanyl group, aralkyl group, aromatic hydrocarbon group, aromatic heterocyclic ring And a substituent arbitrarily selected from a group, an ester group, an aryloxy group, a formyl group, an alkoxycarbonyl group, and a carboxyl group. Preferably, in the formula, R1 to R26 are a hydrogen atom, an alkyl group having 10 or less carbon atoms, an alkoxy group having 10 or less carbon atoms, an aromatic hydrocarbon group having 30 or less carbon atoms, and an aromatic heterocyclic ring having 30 or less carbon atoms. The substituent is arbitrarily selected from the group. Furthermore, examples of the general formula (2) include compounds represented by the following structural formulas (6) to (42) in addition to the compounds represented by the above structural formulas (3) to (5).

Figure 2005011806
Figure 2005011806

Figure 2005011806
Figure 2005011806

Figure 2005011806
Figure 2005011806

Figure 2005011806
Figure 2005011806

Figure 2005011806
Figure 2005011806

Figure 2005011806
Figure 2005011806

Figure 2005011806
Figure 2005011806

Figure 2005011806
Figure 2005011806

Figure 2005011806
Figure 2005011806

Figure 2005011806
Figure 2005011806

Figure 2005011806
Figure 2005011806

Figure 2005011806
Figure 2005011806

Figure 2005011806
Figure 2005011806

Figure 2005011806
Figure 2005011806

有機電界発光素子における発光スペクトルは、有機発光材料の蛍光スペクトルに相関がある。一般式(1)や(2)で表される化合物、中でも構造式(3)〜(42)で示される化合物群の蛍光波長は、RGBのそれぞれの領域にピークトップを持つことを特徴とする。例えば、代表する化合物として構造式(3)における蛍光スペクトルを図1に示す。図1から、B領域については少し強度が低いものの、RGBのそれぞれの領域近傍にピークトップを有していることがわかる。   The emission spectrum in the organic electroluminescent element is correlated with the fluorescence spectrum of the organic light emitting material. The fluorescence wavelength of the compounds represented by the general formulas (1) and (2), especially the compound groups represented by the structural formulas (3) to (42) has a peak top in each of the RGB regions. . For example, FIG. 1 shows a fluorescence spectrum in the structural formula (3) as a representative compound. FIG. 1 shows that the B area has a peak top in the vicinity of each of the RGB areas, although the intensity is slightly lower.

上記の有機発光材料の発光にカラーフィルターを作用させることにより、RGBに分光することができる。例えば、陽極と陰極との間に発光領域を有する有機層が設けられた有機電界発光素子において、有機層に一般式(1)や一般式(2)で表される化合物、中でも構造式(3)、(6)〜(16)で表される化合物が有機発光材料として少なくとも一種含まれている有機電界発光素子にカラーフィルターを作用させることによりRGBの各画素に分けることができる。   By causing a color filter to act on the light emission of the organic light emitting material, it is possible to split the light into RGB. For example, in an organic electroluminescent device in which an organic layer having a light emitting region is provided between an anode and a cathode, the organic layer is a compound represented by the general formula (1) or the general formula (2), particularly the structural formula (3 ), And (6) to (16) can be divided into RGB pixels by applying a color filter to an organic electroluminescent element containing at least one kind of compound as an organic luminescent material.

また、陽極と陰極との間に発光領域を有する有機層が設けられた有機電界発光素子において、有機層に一般式(1)や(2)で表される化合物、中でも構造式(3)、(6)〜(16)で表される化合物が有機発光材料として少なくとも一種含まれている有機電界発光素子にカラーフィルターを作用させてRGBを同レベルの強度とすることにより、白色光を得ることができる。   Moreover, in the organic electroluminescent element in which the organic layer having the light emitting region is provided between the anode and the cathode, the organic layer is a compound represented by the general formula (1) or (2), among which the structural formula (3), White light is obtained by causing a color filter to act on an organic electroluminescent element containing at least one kind of the compound represented by (6) to (16) as an organic light emitting material to make RGB have the same level of intensity. Can do.

これらの有機発光材料は有機層において単一の使用であってもよいし、B(ブルー)領域のスペクトルを好適に補正する青色材料からなる青色発光層と積層構造としてもよい。さらに、ホスト材料とドーパントとの組み合わせであってもよく、この場合には、有機層に青色発光を有する発光材料をホストとして、一般式(1)で示される少なくとも一種の発光材料をドーパントとして組み合わせても白色光が得られる。発光領域を有する有機層は単層であっても積層構造であってもよい。   These organic light emitting materials may be used singly in the organic layer, or may have a laminated structure with a blue light emitting layer made of a blue material that suitably corrects the spectrum of the B (blue) region. Further, a combination of a host material and a dopant may be used. In this case, a light emitting material having blue light emission in the organic layer is used as a host, and at least one light emitting material represented by the general formula (1) is used as a dopant. Even white light can be obtained. The organic layer having the light emitting region may be a single layer or a laminated structure.

本発明の化合物は、一般的には発光領域を有する有機層中の発光層に含まれるが、該有機層中の他の層に含まれていてもよい。   The compound of the present invention is generally contained in a light emitting layer in an organic layer having a light emitting region, but may be contained in other layers in the organic layer.

本発明によれば、単一の化学種によりRGBの発光が得られるため、色ずれなく安定した発光素子を提供でき、製造プロセスにおいても技術面、コスト面で非常に有利である。また、極めて単純な積層構造で白色光を得ることができる。   According to the present invention, light emission of RGB can be obtained by a single chemical species, so that a stable light emitting element without color misregistration can be provided, and the manufacturing process is very advantageous in terms of technology and cost. Moreover, white light can be obtained with a very simple laminated structure.

以下、本発明の実施の一形態を図面をもって説明する。
図2は、本発明の有機電界発光素子の一例を示す概略断面図である。この有機電界発光素子は、TFT基板1上に陽極2、発光領域を含む有機層3、陰極4がこの順に形成されている。この有機電界発光素子は、陰極側から光が取り出される上面発光型有機電界発光素子である。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
FIG. 2 is a schematic cross-sectional view showing an example of the organic electroluminescent element of the present invention. In this organic electroluminescent element, an anode 2, an organic layer 3 including a light emitting region, and a cathode 4 are formed on a TFT substrate 1 in this order. This organic electroluminescent element is a top emission type organic electroluminescent element from which light is extracted from the cathode side.

TFT基板1は、ガラス、プラスチック及び他の適宜の材料からなる支持体上に駆動用の薄膜トランジスタ(thin film transistor、以下TFTとする)を設けたものであって、画素ごとにパターニングされた陽極2がTFTの表面を平坦化する平坦化絶縁膜を介して形成されている。該陽極2は仕事関数の大きい銀、クロム、タングステン、銅などの金属やそれらを含む合金、これらの金属や合金の酸化物、またはそれらとITO(Indium Tin Oxide)などの積層構造でもよく、例えば、ITO層/銀合金層/ITO層の積層型構造が挙げられる。   The TFT substrate 1 is provided with a driving thin film transistor (hereinafter referred to as TFT) on a support made of glass, plastic, and other appropriate materials, and is patterned with an anode 2 for each pixel. Is formed through a planarization insulating film that planarizes the surface of the TFT. The anode 2 may be a metal having a high work function, such as silver, chromium, tungsten, or copper, an alloy containing them, an oxide of these metals or alloys, or a laminated structure of them and ITO (Indium Tin Oxide). And a laminated structure of ITO layer / silver alloy layer / ITO layer.

そして、該陽極2上に上記一般式(1)で表される有機発光材料を含む有機層3が形成される。この有機層3について、有機電界発光を得る層構成としては、従来公知の種々の構成を用いることができる。例えば、正孔輸送層と電子輸送層のいずれかを構成する材料が発光性を有する場合、正孔輸送層と電子輸送層の薄膜を積層した構造を使用できる。   Then, the organic layer 3 containing the organic light emitting material represented by the general formula (1) is formed on the anode 2. About this organic layer 3, conventionally well-known various structures can be used as a layer structure which obtains organic electroluminescence. For example, when the material constituting either the hole transport layer or the electron transport layer has a light emitting property, a structure in which thin films of the hole transport layer and the electron transport layer are stacked can be used.

更に本発明の目的を満たす範囲で電荷輸送性能を上げるために、正孔輸送層と電子輸送層のいずれか若しくは両方が、複数種の材料の薄膜を積層した構造、または、複数種の材料を混合した組成からなる薄膜を使用してもよい。また、発光性能を上げるために、少なくとも1種以上の蛍光性の材料を用いて、この薄膜を正孔輸送層と電子輸送層の間に挟持した構造、更に少なくとも1種以上の蛍光性の材料を正孔輸送層若しくは電子輸送層、またはこれらの両方に含ませた構造を使用してもよい。以上の場合には、発光効率を改善するため、さらに正孔または電子の輸送を制御するための薄膜をその層構成に含ませることも可能である。   Further, in order to improve the charge transport performance within the range satisfying the object of the present invention, either or both of the hole transport layer and the electron transport layer have a structure in which thin films of plural kinds of materials are laminated, or plural kinds of materials. A thin film having a mixed composition may be used. Further, in order to improve the light emitting performance, at least one kind of fluorescent material is used, and the thin film is sandwiched between the hole transport layer and the electron transport layer, and at least one kind of fluorescent material. May be used in the hole transport layer, the electron transport layer, or both. In the above case, in order to improve the luminous efficiency, it is also possible to include a thin film for controlling the transport of holes or electrons in the layer configuration.

陰極4の電極材料としては、Li、Mg、Ca等の活性な金属とAg、Al、In等の金属との合金、或いはこれらを積層した構造を使用できる。なお、陰極側から光を取り出す上面発光型有機電界発光素子においては、陰極の厚さを調節することにより、用途に合った光透過率を得ることができる。
この有機電界発光素子を用いて構成される表示装置は、TFT基板1の反対側から光を取り出すいわゆる上面発光構造となる。
As an electrode material of the cathode 4, an alloy of an active metal such as Li, Mg, or Ca and a metal such as Ag, Al, or In, or a structure in which these are laminated can be used. In a top emission organic electroluminescent element that extracts light from the cathode side, light transmittance suitable for the application can be obtained by adjusting the thickness of the cathode.
A display device configured using this organic electroluminescent element has a so-called top emission structure in which light is extracted from the opposite side of the TFT substrate 1.

図3は、後述するように、陰極4上にカラーフィルター5を設け、有機層3で発光した白色光をRGBの各画素に分けるような構成とした有機電界発光素子の概略断面図である。この場合、有機層3で発光した白色光は、RGBのうち特定の波長のみを通過させ、他はカットするようなカラーフィルター5に通すことで、RGBの各画素に分けることができる。   FIG. 3 is a schematic cross-sectional view of an organic electroluminescent element in which a color filter 5 is provided on the cathode 4 and white light emitted from the organic layer 3 is divided into RGB pixels, as will be described later. In this case, white light emitted from the organic layer 3 can be divided into RGB pixels by passing through a color filter 5 that passes only a specific wavelength of RGB and cuts the other.

なお、上述した実施の形態においては、有機電界発光素子の上面の電極側から発光を取り出すいわゆる上面発光型について説明したが、本発明はこれに限定されるものではなく、下面の電極側から発光を取り出すいわゆる下面発光型の有機電界発光素子についても適用しうる。下面発光型の有機電界発光素子は、例えばガラス基板上に、ITOなどの光透過性の陽極が形成され、その陽極の上に発光領域を含む有機層が形成され、有機層上には光反射性の陰極が形成されているものである。   In the above-described embodiment, a so-called top emission type in which light emission is extracted from the upper electrode side of the organic electroluminescence element has been described. However, the present invention is not limited to this, and light emission is performed from the lower electrode side. The present invention can also be applied to a so-called bottom emission type organic electroluminescent element that takes out the light. In the bottom emission type organic electroluminescence device, for example, a light-transmitting anode such as ITO is formed on a glass substrate, an organic layer including a light emitting region is formed on the anode, and light reflection is performed on the organic layer. The negative electrode is formed.

次に本発明の有機電界発光素子の実施例を示すが、本発明はこれに限定されるものではない。   Next, examples of the organic electroluminescence device of the present invention will be shown, but the present invention is not limited thereto.

合成例
2,6-Dibromopyreneと1-Pyrene boronic Acidを用いてPd(PPh(テトラキス(トリフェニルホスフィン)パラジウム)、NaCOの存在下、トルエン−水中で鈴木カップリング法により上記構造式(3)で表される化合物を合成した。反応式は以下の通りである。
Synthesis example
Using 2,6-Dibromopyrene and 1-Pyrene boronic acid, the above structural formula is obtained by the Suzuki coupling method in toluene-water in the presence of Pd (PPh 3 ) 4 (tetrakis (triphenylphosphine) palladium) and Na 2 CO 3. The compound represented by (3) was synthesized. The reaction formula is as follows.

Figure 2005011806
Figure 2005011806

得られた生成物は、マススペクトルにて分子イオンピーク(m/z 602)を確認した。この化合物を薄膜にしたときの蛍光スペクトルを図1に示す。構造式(4)および(5)で示される化合物についても上記と同様の方法で合成し、以下の実施例で用いた。   The obtained product confirmed the molecular ion peak (m / z 602) in the mass spectrum. FIG. 1 shows the fluorescence spectrum when this compound is made into a thin film. The compounds represented by structural formulas (4) and (5) were also synthesized in the same manner as described above and used in the following examples.

〔実施例1〕
本実施例は、青色材料からなる青色発光層と前記構造式(4)で示す化合物を積層構造として用いた有機電界発光素子を作製した例である。
まず、真空蒸着装置中に、例えば基板側から順にITO層(膜厚20nm)、Ag合金層(膜厚100nm)、ITO層(膜厚10nm)を積層した積層膜からなる陽極が一表面に形成された30mm×30mmのTFT基板をセッティングした。その陽極上に、正孔注入層として下記構造式で表されるm−MTDATA(4,4´,4"-Tris(3-methylphenylphenylamino)triphenylamine)を真空蒸着法により10−4Pa以下の真空下で10nmの厚さになるように成膜した。さらにその上層には、正孔輸送層材料として、下記構造式で表されるα−NPD(N,N´-bis-(1-naphthyl)-N,N´-diphenyl-1,1´-biphenyl-4,4´-diamine)を正孔注入層に接して膜厚100nmで蒸着した。蒸着レートは0.1nm/秒とした。
[Example 1]
In this example, an organic electroluminescent element using a blue light emitting layer made of a blue material and a compound represented by the structural formula (4) as a laminated structure was produced.
First, an anode made of a laminated film in which an ITO layer (film thickness 20 nm), an Ag alloy layer (film thickness 100 nm), and an ITO layer (film thickness 10 nm), for example, are sequentially formed on one surface in a vacuum deposition apparatus. A 30 mm × 30 mm TFT substrate was set. On the anode, m-MTDATA (4,4 ′, 4 ″ -Tris (3-methylphenylphenylamino) triphenylamine) represented by the following structural formula as a hole injection layer is vacuum-deposited at a pressure of 10 −4 Pa or less. In addition, α-NPD (N, N′-bis- (1-naphthyl)-) represented by the following structural formula is used as a hole transport layer material on the upper layer. N, N′-diphenyl-1,1′-biphenyl-4,4′-diamine) was deposited in contact with the hole injection layer to a thickness of 100 nm, and the deposition rate was set to 0.1 nm / second.

Figure 2005011806
Figure 2005011806

続いて、発光層として下記構造式で表されるDPVBi(4,4´-Bis(2,2-diphenyl-ethen-l-yl)-diphenyl、青色発光)を正孔輸送層に接して蒸着し、膜厚は10nmとした。   Subsequently, DPVBi (4,4′-Bis (2,2-diphenyl-ethen-yl) -diphenyl, blue light emission) represented by the following structural formula was deposited in contact with the hole transport layer as the light emitting layer. The film thickness was 10 nm.

Figure 2005011806
Figure 2005011806

さらに構造式(4)の化合物をDPVBiに接して蒸着し、膜厚は25nmとした。
次いで電子輸送層材料として下記構造式のAlq3(トリス(8−キノリノール)アルミニウム)を蒸着レート0.2nm/秒で蒸着し、膜厚は30nmとした。
Furthermore, the compound of the structural formula (4) was deposited in contact with DPVBi, and the film thickness was 25 nm.
Next, Alq 3 (tris (8-quinolinol) aluminum) having the following structural formula was deposited as an electron transport layer material at a deposition rate of 0.2 nm / second, and the film thickness was 30 nm.

Figure 2005011806
Figure 2005011806

陰極材料としてはMgとAgを採用し、これらを共蒸着により、蒸着レート1nm/秒で光が透過できる程度の厚さ、例えば70nmの厚さに形成し、その上層に例えばSiNからなるパッシベーション膜を成膜した。さらに、その上層に例えば熱硬化樹脂を塗布してガラス基板をかぶせ、加熱により該樹脂を硬化させて封止を行い、図2に示すような有機電界発光素子を作製した。 Mg and Ag are used as the cathode material, and these are formed by co-evaporation to a thickness that allows light to pass at a deposition rate of 1 nm / second, for example, 70 nm, and a passivation layer made of SiN x for example. A film was formed. Further, for example, a thermosetting resin was applied to the upper layer, and a glass substrate was covered, and the resin was cured by heating to perform sealing, and an organic electroluminescence device as shown in FIG. 2 was produced.

このように作製した実施例1の有機電界発光素子に、窒素雰囲気下で順バイアス直流電圧を加えて発光特性を評価した。発光色は白色であり、分光測定を行った結果、460nm、560nm、600nm付近に発光ピークを有する図4に示すようなスペクトルを得た。分光測定は、大塚電子社製のフォトダイオードアレイを検出器とした分光器を用いた。   The organic electroluminescence device of Example 1 produced in this manner was subjected to evaluation of luminescence characteristics by applying a forward bias DC voltage in a nitrogen atmosphere. The emission color was white, and as a result of spectroscopic measurement, a spectrum as shown in FIG. 4 having emission peaks in the vicinity of 460 nm, 560 nm, and 600 nm was obtained. For the spectroscopic measurement, a spectroscope using a photodiode array manufactured by Otsuka Electronics Co., Ltd. as a detector was used.

また、電圧−輝度測定を行ったところ、図5に示すような結果が得られ、8Vで1000cd/m2の輝度が得られた。電流発光効率は6cd/Aであった。
この有機電界発光素子を作製後、窒素雰囲気下に1カ月間放置したが、素子劣化は観察されなかった。また、初期輝度500cd/m2で電流値を一定に通電して連続発光し、強制劣化させた際、輝度が半減するまで1000時間であった。
Further, when the voltage-luminance measurement was performed, a result as shown in FIG. 5 was obtained, and a luminance of 1000 cd / m 2 was obtained at 8V. The current luminous efficiency was 6 cd / A.
After this organic electroluminescent device was fabricated, it was left in a nitrogen atmosphere for 1 month, but no device degradation was observed. In addition, when the initial luminance was 500 cd / m 2 and the current value was constantly supplied to continuously emit light and forcibly deteriorated, it was 1000 hours until the luminance was reduced to half.

〔実施例2〕
本実施例は、前記構造式(3)で示す化合物をドーパント材料として用いた有機電界発光素子を作製した例である。なお、発光層におけるドープ濃度はこれに限定しない。
[Example 2]
In this example, an organic electroluminescent device using the compound represented by the structural formula (3) as a dopant material was produced. The dope concentration in the light emitting layer is not limited to this.

まず、実施例1と同じTFT基板を用い、陽極から正孔輸送層(α−NPD)形成までは実施例1と同じ条件で各層を形成した。
続いて、発光層として前記構造式(3)で示す化合物を0.02nm/秒、前記DPVBiを0.2nm/秒で共蒸着し、正孔輸送層に接して膜厚40nmで蒸着した。
First, using the same TFT substrate as in Example 1, each layer was formed under the same conditions as in Example 1 from the anode to the formation of the hole transport layer (α-NPD).
Subsequently, the compound represented by the structural formula (3) was co-deposited at 0.02 nm / second and the DPVBi was 0.2 nm / second as a light-emitting layer, and was deposited in a thickness of 40 nm in contact with the hole transport layer.

次いで電子輸送層材料として前記構造式のAlq3(トリス(8−キノリノール)アルミニウム)を膜厚15nmで蒸着し、電子輸送層とした。蒸着レートは0.2nm/秒とした。
陰極材料としてはMgとAgを採用し、これらを共蒸着により、蒸着レート1nm/秒で70nmの厚さに形成し、その上層にはSiNからなるパッシベーション膜、さらにその上層に熱硬化性樹脂を塗布した後にガラス基板をかぶせ加熱により該樹脂を硬化させて封止を行い、図2に示すような有機電界発光素子を作製した。
Next, Alq 3 (tris (8-quinolinol) aluminum) having the above structural formula was vapor-deposited with a film thickness of 15 nm as an electron transport layer material to form an electron transport layer. The deposition rate was 0.2 nm / second.
As the cathode material, Mg and Ag are employed, and these are formed by co-evaporation to a thickness of 70 nm at a deposition rate of 1 nm / second, and a passivation film made of SiN x is formed on the upper layer, and a thermosetting resin is formed on the upper layer. After coating, the glass substrate was covered and the resin was cured by heating and sealed to produce an organic electroluminescent device as shown in FIG.

このように作製した実施例2の有機電界発光素子に、窒素雰囲気下で順バイアス直流電圧を加えて発光特性を評価した。発光色は白色であり、分光測定を行った結果、470nm、550nm、600nm付近に発光ピークを有するスペクトルを得た。分光測定は、大塚電子社製のフォトダイオードアレイを検出器とした分光器を用いた。また、電圧−輝度測定を行ったところ、8Vで900cd/m2の輝度が得られた。電流発光効率は5cd/Aであった。
この有機電界発光素子を作製後、窒素雰囲気下に1カ月間放置したが、素子劣化は観察されなかった。また、初期輝度500cd/m2で電流値を一定に通電して連続発光し、強制劣化させた際、輝度が半減するまで1300時間であった。
The organic electroluminescence device of Example 2 produced as described above was subjected to evaluation of luminescence characteristics by applying a forward bias DC voltage in a nitrogen atmosphere. The emission color was white, and as a result of spectroscopic measurement, spectra having emission peaks near 470 nm, 550 nm, and 600 nm were obtained. For the spectroscopic measurement, a spectroscope using a photodiode array manufactured by Otsuka Electronics Co., Ltd. as a detector was used. Further, when voltage-luminance measurement was performed, a luminance of 900 cd / m 2 was obtained at 8V. The current luminous efficiency was 5 cd / A.
After this organic electroluminescent device was fabricated, it was left in a nitrogen atmosphere for 1 month, but no device degradation was observed. Further, when the current value was constantly supplied at an initial luminance of 500 cd / m 2 to continuously emit light and forcibly deteriorated, it was 1300 hours until the luminance was reduced to half.

〔実施例3〕
本実施例は、構造式(5)で示す化合物を単膜にて発光層とした有機電界発光素子を作製した例である。
Example 3
This example is an example in which an organic electroluminescent device using a compound represented by the structural formula (5) as a light emitting layer with a single film was produced.

まず、実施例1と同じTFT基板を用い、正孔注入層(m−MTDATA)の膜厚を50nm、正孔輸送層(α−NPD)の膜厚を45nmとし、それ以外の条件は実施例1と同じ条件で陽極から正孔輸送層(α−NPD)までの各層を形成した。   First, using the same TFT substrate as in Example 1, the hole injection layer (m-MTDATA) has a thickness of 50 nm and the hole transport layer (α-NPD) has a thickness of 45 nm. Each layer from the anode to the hole transport layer (α-NPD) was formed under the same conditions as in 1.

次に、発光層として構造式(5)で示す化合物を膜厚30nmで正孔輸送層に接して蒸着した。次いで電子輸送層材料として前記構造式のAlq3(トリス(8−キノリノール)アルミニウム)を蒸着した。Alq3からなるこの電子輸送層の膜厚は35nmとし、蒸着レートは0.2nm/秒とした。 Next, a compound represented by the structural formula (5) was deposited as a light emitting layer in contact with the hole transport layer with a film thickness of 30 nm. Next, Alq 3 (tris (8-quinolinol) aluminum) having the above structural formula was deposited as an electron transport layer material. The thickness of this electron transport layer made of Alq 3 was 35 nm, and the deposition rate was 0.2 nm / second.

陰極材料としてはMgとAgを採用し、これらを共蒸着により、蒸着レート1nm/秒で70nmの厚さに形成し、その上層にはSiNからなるパッシベーション膜、さらにその上層に熱硬化性樹脂を塗布した後にガラス基板をかぶせ加熱により該樹脂を硬化させて封止を行い、図2に示すような有機電界発光素子を作製した。
このように作製した有機電界発光素子に、窒素雰囲気下で順バイアス直流電圧を加えて発光特性を評価した。発光色は黄白色であり、分光測定を行った結果、450nm、550nm、600nm付近に発光ピークを有するスペクトルを得た。分光測定は、大塚電子社製のフォトダイオードアレイを検出器とした分光器を用いた。また、電圧−輝度測定を行ったところ、8Vで900cd/mの輝度が得られた。電流発光効率は4cd/Aであった。
As the cathode material, Mg and Ag are employed, and these are formed by co-evaporation to a thickness of 70 nm at a deposition rate of 1 nm / second, and a passivation film made of SiN x is formed on the upper layer, and a thermosetting resin is formed on the upper layer. After coating, the glass substrate was covered and the resin was cured by heating and sealed to produce an organic electroluminescent device as shown in FIG.
The organic electroluminescence device thus fabricated was evaluated for light emission characteristics by applying a forward bias DC voltage in a nitrogen atmosphere. The emission color was yellowish white, and as a result of spectroscopic measurement, spectra having emission peaks in the vicinity of 450 nm, 550 nm, and 600 nm were obtained. For the spectroscopic measurement, a spectroscope using a photodiode array manufactured by Otsuka Electronics Co., Ltd. as a detector was used. Further, when voltage-luminance measurement was performed, a luminance of 900 cd / m 2 was obtained at 8V. The current luminous efficiency was 4 cd / A.

この有機電界発光素子を作製後、窒素雰囲気下に1カ月間放置したが、素子劣化は観察されなかった。また、初期輝度500cd/mで電流値を一定に通電して連続発光し、強制劣化させた際、輝度が半減するまで700時間であった。 After this organic electroluminescent device was fabricated, it was left in a nitrogen atmosphere for 1 month, but no device degradation was observed. In addition, when the initial luminance was 500 cd / m 2 and the current value was constantly supplied to continuously emit light and forcibly deteriorated, it was 700 hours until the luminance was reduced to half.

この発明の有機電界発光素子で用いられる構造式(3)の化合物の蛍光スペクトルを示した図である。It is the figure which showed the fluorescence spectrum of the compound of Structural formula (3) used with the organic electroluminescent element of this invention. この発明の有機電界発光素子の一例の概略断面図である。It is a schematic sectional drawing of an example of the organic electroluminescent element of this invention. この発明の有機電界発光素子の他の一例の概略断面図である。It is a schematic sectional drawing of other examples of the organic electroluminescent element of this invention. 実施例1で作製した有機電界発光素子の発光スペクトルを示した図である。FIG. 3 is a graph showing an emission spectrum of the organic electroluminescence device produced in Example 1. この発明の有機電界発光素子の一例の電圧−輝度測定の結果を示す図である。It is a figure which shows the result of the voltage-luminance measurement of an example of the organic electroluminescent element of this invention.

符号の説明Explanation of symbols

1…基板、2…陽極、3…有機層、4…陰極


DESCRIPTION OF SYMBOLS 1 ... Board | substrate, 2 ... Anode, 3 ... Organic layer, 4 ... Cathode


Claims (9)

発光領域を有する有機層が陽極と陰極との間に設けられている有機電界発光素子において、
前記有機層に下記一般式(1)で表される化合物が有機発光材料として含まれていることを特徴とする有機電界発光素子。
Figure 2005011806

〔式中、R1〜R26は水素原子、ハロゲン原子、ヒドロキシル基、メルカプト基、ニトロ基、アミノ基、シアノ基、アルキル基、アルケニル基、シクロアルキル基、アルコキシ基、アルキルチオ基、シリル基、アルキルシリル基、シロキサニル基、アラルキル基、芳香族炭化水素基、芳香族複素環基、エステル基、アリールオキシ基、ホルミル基、アルコキシカルボニル基およびカルボキシル基から任意に選ばれた置換基であり、n1は1以上3以下の任意の数である。〕
In an organic electroluminescent device in which an organic layer having a light emitting region is provided between an anode and a cathode,
A compound represented by the following general formula (1) is contained in the organic layer as an organic light emitting material.
Figure 2005011806

[In the formula, R1 to R26 are hydrogen atom, halogen atom, hydroxyl group, mercapto group, nitro group, amino group, cyano group, alkyl group, alkenyl group, cycloalkyl group, alkoxy group, alkylthio group, silyl group, alkylsilyl. A substituent selected arbitrarily from a group, a siloxanyl group, an aralkyl group, an aromatic hydrocarbon group, an aromatic heterocyclic group, an ester group, an aryloxy group, a formyl group, an alkoxycarbonyl group and a carboxyl group, and n1 is 1 Any number of 3 or less. ]
前記一般式(1)で表される化合物のうち、R1〜R26が水素原子、炭素数10以下のアルキル基、炭素数10以下のアルコキシ基、炭素数30以下の芳香族炭化水素基および炭素数30以下の芳香族複素環基から任意に選ばれた置換基であることを特徴とする請求項1に記載の有機電界発光素子。   Among the compounds represented by the general formula (1), R1 to R26 are a hydrogen atom, an alkyl group having 10 or less carbon atoms, an alkoxy group having 10 or less carbon atoms, an aromatic hydrocarbon group having 30 or less carbon atoms, and the number of carbon atoms. The organic electroluminescent element according to claim 1, wherein the organic electroluminescent element is a substituent arbitrarily selected from 30 or less aromatic heterocyclic groups. 白色光を呈する有機電界発光素子であることを特徴とする請求項2に記載の有機電界発光素子。   The organic electroluminescent device according to claim 2, wherein the organic electroluminescent device exhibits white light. 発光領域を有する有機層が陽極と陰極との間に設けられている有機電界発光素子において、
前記有機層に下記一般式(2)で表される化合物が有機発光材料として含まれていることを特徴とする有機電界発光素子。
Figure 2005011806

〔式中、R1〜R26は水素原子、ハロゲン原子、ヒドロキシル基、メルカプト基、ニトロ基、アミノ基、シアノ基、アルキル基、アルケニル基、シクロアルキル基、アルコキシ基、アルキルチオ基、シリル基、アルキルシリル基、シロキサニル基、アラルキル基、芳香族炭化水素基、芳香族複素環基、エステル基、アリールオキシ基、ホルミル基、アルコキシカルボニル基およびカルボキシル基から任意に選ばれた置換基である。〕
In an organic electroluminescent device in which an organic layer having a light emitting region is provided between an anode and a cathode,
A compound represented by the following general formula (2) is contained in the organic layer as an organic light emitting material.
Figure 2005011806

[In the formula, R1 to R26 are hydrogen atom, halogen atom, hydroxyl group, mercapto group, nitro group, amino group, cyano group, alkyl group, alkenyl group, cycloalkyl group, alkoxy group, alkylthio group, silyl group, alkylsilyl. And a substituent arbitrarily selected from a group, a siloxanyl group, an aralkyl group, an aromatic hydrocarbon group, an aromatic heterocyclic group, an ester group, an aryloxy group, a formyl group, an alkoxycarbonyl group, and a carboxyl group. ]
前記一般式(2)で表される化合物のうち、R1〜R26が水素原子、炭素数10以下のアルキル基、炭素数10以下のアルコキシ基、炭素数30以下の芳香族炭化水素基および炭素数30以下の芳香族複素環基から任意に選ばれた置換基であることを特徴とする請求項4に記載の有機電界発光素子。   Among the compounds represented by the general formula (2), R1 to R26 are a hydrogen atom, an alkyl group having 10 or less carbon atoms, an alkoxy group having 10 or less carbon atoms, an aromatic hydrocarbon group having 30 or less carbon atoms, and the number of carbon atoms. The organic electroluminescent element according to claim 4, wherein the organic electroluminescent element is a substituent arbitrarily selected from 30 or less aromatic heterocyclic groups. 白色光を呈する有機電界発光素子であることを特徴とする請求項5に記載の有機電界発光素子。   The organic electroluminescent device according to claim 5, wherein the organic electroluminescent device exhibits white light. 前記一般式(2)で表される化合物として、下記構造式(3)で表されるものを用いることを特徴とする請求項4に記載の有機電界発光素子。
Figure 2005011806
The organic electroluminescent element according to claim 4, wherein a compound represented by the following structural formula (3) is used as the compound represented by the general formula (2).
Figure 2005011806
前記一般式(2)で表される化合物として、下記構造式(4)で表されるものを用いることを特徴とする請求項4に記載の有機電界発光素子。
Figure 2005011806
The organic electroluminescent element according to claim 4, wherein a compound represented by the following structural formula (4) is used as the compound represented by the general formula (2).
Figure 2005011806
前記一般式(2)で表される化合物として、下記構造式(5)で表されるものを用いることを特徴とする請求項4に記載の有機電界発光素子。
Figure 2005011806

The organic electroluminescent element according to claim 4, wherein a compound represented by the following structural formula (5) is used as the compound represented by the general formula (2).
Figure 2005011806

JP2004159060A 2003-05-29 2004-05-28 Organic electroluminescence device Expired - Fee Related JP4529547B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004159060A JP4529547B2 (en) 2003-05-29 2004-05-28 Organic electroluminescence device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003152189 2003-05-29
JP2004159060A JP4529547B2 (en) 2003-05-29 2004-05-28 Organic electroluminescence device

Publications (2)

Publication Number Publication Date
JP2005011806A true JP2005011806A (en) 2005-01-13
JP4529547B2 JP4529547B2 (en) 2010-08-25

Family

ID=34106766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004159060A Expired - Fee Related JP4529547B2 (en) 2003-05-29 2004-05-28 Organic electroluminescence device

Country Status (1)

Country Link
JP (1) JP4529547B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006338916A (en) * 2005-05-31 2006-12-14 Sony Corp Organic el element, display device and manufacturing method of organic el element
WO2007004799A1 (en) * 2005-06-30 2007-01-11 Lg Chem. Ltd. Pyrene derivatives and organic electronic device using pyrene derivatives
KR100747311B1 (en) 2005-07-15 2007-08-07 엘지전자 주식회사 Host Material and Organic Light Emitting Diodes
KR100807797B1 (en) 2005-07-15 2008-02-27 엘지.필립스 엘시디 주식회사 Host Material and Organic Light Emitting Device comprising the same
JP2009070987A (en) * 2007-09-12 2009-04-02 Mitsui Chemicals Inc Organic transistor
KR100914783B1 (en) * 2005-07-15 2009-08-31 엘지디스플레이 주식회사 Host Material and Organic Light Emitting Device comprising the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002050480A (en) * 2000-08-04 2002-02-15 Toray Ind Inc Light emitting element
JP2004075567A (en) * 2002-08-12 2004-03-11 Idemitsu Kosan Co Ltd Oligoarylene derivative and organic electroluminescent element using the same
JP2004139957A (en) * 2002-10-16 2004-05-13 National Tsinghua Univ Organic light emitting diode

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002050480A (en) * 2000-08-04 2002-02-15 Toray Ind Inc Light emitting element
JP2004075567A (en) * 2002-08-12 2004-03-11 Idemitsu Kosan Co Ltd Oligoarylene derivative and organic electroluminescent element using the same
JP2004139957A (en) * 2002-10-16 2004-05-13 National Tsinghua Univ Organic light emitting diode

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006338916A (en) * 2005-05-31 2006-12-14 Sony Corp Organic el element, display device and manufacturing method of organic el element
WO2007004799A1 (en) * 2005-06-30 2007-01-11 Lg Chem. Ltd. Pyrene derivatives and organic electronic device using pyrene derivatives
US7745819B2 (en) 2005-06-30 2010-06-29 Lg Chem. Ltd. Pyrene derivatives and organic electronic device using pyrene derivatives
USRE44824E1 (en) 2005-06-30 2014-04-08 Lg Chem, Ltd. Pyrene derivatives and organic electronic device using pyrene derivatives
KR100747311B1 (en) 2005-07-15 2007-08-07 엘지전자 주식회사 Host Material and Organic Light Emitting Diodes
KR100807797B1 (en) 2005-07-15 2008-02-27 엘지.필립스 엘시디 주식회사 Host Material and Organic Light Emitting Device comprising the same
KR100914783B1 (en) * 2005-07-15 2009-08-31 엘지디스플레이 주식회사 Host Material and Organic Light Emitting Device comprising the same
JP2009070987A (en) * 2007-09-12 2009-04-02 Mitsui Chemicals Inc Organic transistor

Also Published As

Publication number Publication date
JP4529547B2 (en) 2010-08-25

Similar Documents

Publication Publication Date Title
US9530962B2 (en) Patterning method for OLEDs
KR101242630B1 (en) Efficient white-light oled display with filters
TWI524569B (en) Electroluminescent devices for lighting applications
US6329085B1 (en) Red-emitting organic light emitting devices (OLED&#39;s)
US20070104978A1 (en) Organometallic light-emitting material
JP4343511B2 (en) Multicolor light emitting device
JP2004311420A (en) Organic electroluminescent element
JP2004182738A (en) Phenylpyridine-iridium metal complex compound for organic electroluminescent element, method for producing the same and organic electroluminescent element using the same
JP2006273737A (en) Aminostyryl compound, organic electroluminescent element, and display device
KR100751464B1 (en) Organic electroluminescent device
US7279233B2 (en) Light-emitting material and light-emitting device
JP2005008588A (en) Quarter naphthyl and method for producing the same
JP4036812B2 (en) Organic electroluminescence device
JP4529547B2 (en) Organic electroluminescence device
KR101055120B1 (en) Organic Electroluminescent Devices and Amino Monostyrylnaphthalene Compounds
JP2001003044A (en) Organic luminescent element material and organic luminescent element using same
JP2005005226A (en) Organic electroluminescent element
US20040146742A1 (en) Organic electroluminescent material and electroluminescent device by using the same
JP2006013226A (en) Organic led element
JP2004047493A (en) Organic light emitting element
US7244516B1 (en) Organic electroluminescence device
KR20100068123A (en) White organic light-emitting device 2
JP2005139390A (en) Light-emitting, coumarin-containing organic material and organic el element
US7710017B2 (en) Organic light emitting device having a transparent microcavity
JP4214482B2 (en) Organic electroluminescence device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090916

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090916

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100309

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100518

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees