JP2005009985A - Method and device for immobilizing dna - Google Patents

Method and device for immobilizing dna Download PDF

Info

Publication number
JP2005009985A
JP2005009985A JP2003173689A JP2003173689A JP2005009985A JP 2005009985 A JP2005009985 A JP 2005009985A JP 2003173689 A JP2003173689 A JP 2003173689A JP 2003173689 A JP2003173689 A JP 2003173689A JP 2005009985 A JP2005009985 A JP 2005009985A
Authority
JP
Japan
Prior art keywords
dna
substrate
buffer solution
immobilization
immobilized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003173689A
Other languages
Japanese (ja)
Inventor
Kazunori Hake
一徳 吐合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP2003173689A priority Critical patent/JP2005009985A/en
Publication of JP2005009985A publication Critical patent/JP2005009985A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a DNA (deoxyribonucleic acid)-immobilizing device which is enhanced in detection accuracy after hydridization reaction. <P>SOLUTION: This DNA immobilizing device is equipped with a high-voltage electrode 4 and a grounding electrode 2 arranged facing so as to hold a substrate 1 to which DNAs are fixed, a temperature-adjusting device 3 for adjusting the temperature of the buffer solution dripped on the substrate and a power supply 6 for applying bias voltage across the electrodes, and constituted so as to adjust the substrate to a predetermined temperature, for adding a testing solution, which modifies one terminal of DNA, to the buffer solution, for dripping the buffer solution on the substrate to chemically bond DNAs, to apply bias voltage across the electrodes arranged on the substrate in a facing relationship and to hold DNAs in an electrically stretched state. Further, an immobilizing film may be provided on the substrate. Furthermore, a bipolar voltage or pulsed voltage may be used as the bias voltage. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、遺伝子解析を行うために標識または検体となるDNAを固定化した基板において、DNAを伸張させた状態で基板上に保持する固定化方法及び装置に関する。
【0002】
【従来の技術】
極めて多数の遺伝子の総合的・系統的解析を行うために、多数遺伝子の一括発現解析を可能とする方法として、予め調整したDNAを基板に固定化するDNAマイクロアレイ法(DNAチップ法)が提唱され、それに関する新しい分析法や方法論が開発されてきた(例えば、非特許文献1参照)。
従来の固定化方法及び装置では、RT−PCR(Real Time−Polymerase Chain Reaction:リアルタイムポリメラーゼ連鎖反応)などで別途作成したプローブDNAを含む溶液(緩衝液)をスポッターまたはアレイヤーという装置で数nlから数plの微小体積でスライドガラスやシリコンなどの基板上に並べ、基板上の特定領域に固定化していた(例えば、非特許文献2参照)。最近では、基板表面にはDNAの固定化を確実に行うために固定化膜をコーティングしたものが主流となっている。
【0003】
【非特許文献1】
Schena,M.、Shalon,D.、Davis,R.D.、Brown,P.O.著「Science270」、1995年、pp.467〜470
【非特許文献2】
君塚房夫、加藤郁之進著「蛋白質 核酸 酵素 43(13)」共立出版、1998年、pp.2004〜2011
【0004】
図5において1は基板、11は縮小DNA、13は非固定化DNA、14は固定化膜、15は官能基、17は不純物であり、予め調整されたDNAを含んだ緩衝液10を固定化膜14でコーティングされた基板1上にスポッターによってスポッティング(滴下)を行い、縮小DNA11の末端基を固定化膜14の官能基15と化学結合させ、自然乾燥を行うことで固定化する。
このように、従来の固定化方法及び装置では、基板表面に固定化膜を配置することで基板上に単にスポッティングするよりも固定化率を大幅に改善させるのである。
【0005】
【発明が解決しようとする課題】
しかしながら、従来の固定化方法及び装置は、緩衝液中のDNA数を基板表面の固定化膜にある官能基数よりもはるかに多くしているため、固定化されていないDNAが官能基間や固定化されたDNAの間に潜り込んだまま固定化処理が終了し、検出段階で相補結合させるDNAとのハイブリダイズ(混成)反応後の検出時にばらつきが大きくなるという問題があった。また、緩衝液中の不純物が基板表面に残り、同様に検出感度を下げるという問題があった。さらに、緩衝液中のDNAは通常の状態ではまっすぐに伸びた状態にはなっておらず、特有な糸が丸まったような屈曲した立体的形状になっているため、固定化反応やハイブリダイズ反応を阻害し、検出結果の均一性を損なうというような問題も抱えていた。
そこで、本発明はこのような問題点に鑑みてなされたものであり、ハイブリダイズ反応後の検出精度が高いDNA固定化装置を提供することを目的とする。
【0006】
【課題を解決するための手段】
上記問題を解決するため、本発明は、次のように構成したのである。
請求項1に記載の発明は、予め調整されたDNAを基板上に滴下して固定化するDNAの固定化方法において、前記基板を所定の温度に調整し、前記DNAの一方の末端を修飾した試液を緩衝液に添加し、この緩衝液を前記基板上に滴下して前記DNAを化学結合させ、前記基板に対向して配置した電極にバイアス電圧を印加し、前記DNAを電気的に伸張させた状態で保持するものである。
このようになっているため、温度調整をすることで全DNAを変形しやすい状態にでき、電極間にバイアス電圧を印加することで、基板上の固定化DNAに固定化されていない他末端部を中心にして静電気的に高電圧電極側に向かって直線状に保持して固定化を行うことができる。また、基板面と化学結合していない緩衝液中の非固定化DNAや不純物を高電圧電極側へ移動させることができるため、固定化DNA間等に挟まれた状態の非固定化DNAや不純物を基板表面より排除することができ、固定化処理の後段であるハイブリダイズ反応後の検出精度を向上することができる。
請求項2に記載の発明は、基板表面に固定化膜を有するものである。
このようになっているため、予め調整したDNAを容易かつ確実に基板面と化学結合を行うことができ、バイアス電圧印加による静電力によって基板上の固定化DNAが剥離するのを防ぐことができる。また、基板材質に関係なく固定化膜を利用する事で固定化DNAを容易に化学結合させることができる。
請求項3に記載の発明は、バイアス電圧に両極性の電圧を用いるものである。
このようになっているため、緩衝液内部に振動電界を付与することができ、緩衝液中の非固定化DNAや不純物を基板面上から容易に排除することができる。また、基板面上の固定化DNA間等での絡まりを抑制することができる。
請求項4に記載の発明は、バイアス電圧にパルス電圧を用いるものである。
このようになっているため、パルスの衝撃により緩衝液中の非固定化DNAや不純物を基板面上から容易に排除することができる。また、小刻みなパルス電圧を印加することでバイアス電圧を低く抑えることができ、熱エネルギー損失を抑制することができる。
請求項5に記載の発明は、緩衝液が所定の温度に調整されたものを基板上に滴下するものである。
このようになっているため、予め全DNAを変形しやすい状態にしておくことで、緩衝液の基板上への滴下からDNAの固定化までの時間を大幅に削減することができる。また、温調装置による基板温度の所定温度までの温度上昇期間に緩衝液の気化が発生し、不完全な状態でDNAが固定化されることを抑制することができる。
請求項6に記載の発明は、緩衝液中のDNAの他方末端に極性を有するイオン、分子または粒子を修飾したものである。
このようになっているため、修飾した他末端部の極性に応じたバイアス電圧を印加することで容易かつ確実に固定化DNAを直線状に保持することができる。また、固定化に不要となった非固定化DNAや不純物を高電圧電極に容易に移動させることができる。
請求項7に記載の発明は、前記緩衝液を、前記高電圧電極の表面に設けた誘電体に接触させたものである。
このようになっているため、緩衝液に対して効率よく静電エネルギーを供給することができる。また、非固定化DNAや不純物を高電圧電極面上に凝集することができるため、基板上の不要なDNAや不純物を取り除くことができる。
請求項8に記載の発明は、DNAを固定する基板を挟んでそれぞれ対向配置した高電圧電極及び接地電極と、基板に滴下した緩衝液の温度調整を行う温調装置と、バイアス電圧を印加する電源とを備え、前記基板上に予め調整された前記DNAを含んだ緩衝液を滴下して固定するものである。
このようになっているため、温度調整をすることで全DNAを変形しやすい状態にでき、電極間にバイアス電圧を印加することで、基板上の固定化DNAに固定化されていない他末端部を中心にして静電気的に高電圧電極側に向かって直線状に保持して固定化を行うことができる。また、基板面と化学結合していない緩衝液中の非固定化DNAや不純物を高電圧電極側へ移動させることができるため、固定化DNA間等に挟まれた状態の非固定化DNAや不純物を基板表面より排除することができ、固定化処理の後段であるハイブリダイズ反応後の検出精度を向上することができる。
請求項9に記載の発明は、高電圧電極の表面に誘電体を配置した構造のものである。
このようになっているため、高電圧電極表面の微小な凹凸や緩衝液と気相との気液接面の不均一性による静電エネルギーの局所的印加を防ぐことができる。また、緩衝液中のスパーク(火花放電)への遷移を抑制することができる。
請求項10に記載の発明は、高電圧電極が固定化させたいスポット径と同等の面積を有する凹凸表面としたものである。
このようになっているため、非固定化DNAや不純物を高電圧電極面上に凝集することができるため、基板上の不要な物質を取り除くことができる。また、高電圧電極と緩衝液が直接接することで効率よく静電エネルギーを供給することができる。
【0007】
【発明の実施の形態】
以下、本発明の具体的実施例を図に基づいて説明する。
【0008】
(第1実施例)
図1は、本発明の固定化装置におけるバイアス電圧印加前の部分断面図であり、図2は本発明の固定化装置におけるバイアス電圧印加後の部分断面図である。図において、共通する部分には同一符号を用いてあり、2は接地電極、3は温調装置、4は高電圧電極、5は誘電体、6は電源、7はバイアス電圧、12は伸張DNA,18は気相、19は気液接面となっている。
高密度アミノ基をコート剤とする固定化膜14を塗布したスライドガラスを基板1として用い、弱アルカリ溶液に酵母菌より抽出したDNA断片に固定化末端基15を修飾させたものを混入させたものを緩衝液10として用いた。なお、温調装置3は60〜90℃の範囲で調整した。
次に、本実施例の動作について説明する。
緩衝液10をスポッターを用いて20〜25μmの大きさで基板1上にスポットする。基板1は予め温調装置3により所定の温度に暖められており、この状態で高電圧電極4を基板1の下面に配された接地電極2と平行に配置する。緩衝液10中のDNAは末端基と固定化膜14の官能基15で化学結合を始める。緩衝液10中のDNAの大半は温度調整により柔らかくなった縮小DNA11となっており、既に固定化された縮小DNA11間等に介在する非固定化DNA13や不純物17が多数存在している。ここで図2に示すように、高電圧電極4に電源6よりバイアス電圧7を印加すると、両電極間に発生する静電力により柔らかくなった縮小DNA11が引き伸ばされほぼ直線状になる。また、緩衝液10中の非固定化DNA13や不純物17は静電力により気液接面19近傍に集められる。この状態で温調装置3により基板1を冷却することで伸張DNA12は直線状に保持される。次に、緩衝液10を乾燥させることで伸張DNA12を基板1上に固定化する。場合によっては、乾燥時に高電圧電極4の高さやバイアス電圧7を調整することで、不要となった非固定化DNA13や不純物17を排除することができる。
例えば、固定化処理した基板1に蛍光色素を修飾した相補DNAとハイブリダイズ反応を行い、蛍光分析装置で発現量を測定したところ、検出強度のばらつきを大幅に抑制することができた。
【0009】
(第2実施例)
図3は第2実施例の構成を示す図である。図において、共通する部分には同一符号を用いてあり、16は誘導末端基となっている。
第1実施例と同様な基板1を用い、酵母菌より抽出したDNA断片に固定化末端基15を修飾させ、他端に誘導末端基16を修飾させたものを弱アルカリ溶液に混入し緩衝液10として用いた。なお、温調装置3は60〜90℃の範囲で調整した。
次に、本実施例の動作について説明する。
緩衝液10をスポッターを用いて20〜25μmの大きさで基板1上にスポットする。基板1は予め温調装置3により所定の温度に暖められており、この状態で高電圧電極4を基板1の下面に配された接地電極2と平行に配置する。緩衝液10中のDNAは末端基と固定化膜14の官能基15で化学結合を始める。緩衝液10中のDNAの大半は温度調整により柔らかくなったDNAとなっており、既に固定化されたDNA間等に介在する非固定化DNA13や不純物17が多数存在している。ここで高電圧電極4に電源6よりバイアス電圧7を印加すると、官能基15と化学結合したDNAに修飾された誘導末端基16が両電極間に発生する静電力により引っ張られることで直線状の伸張DNA12となる。また、非固定化DNA13及び不純物17は静電力により気液接面18近傍に集められる。この状態で温調装置3により基板1を冷却することで伸張DNA12は直線状に保持される。次に、緩衝液10を乾燥させることで伸張DNA12を基板1上に固定化する。場合によっては、乾燥時に高電圧電極4の高さやバイアス電圧7を調整することで、不要となった非固定化DNA13や不純物17を排除する。例えば、固定化処理した基板1に蛍光色素を修飾した相補DNAとハイブリダイズ反応を行い、蛍光分析装置で発現量を測定したところ、検出強度のばらつきを大幅に抑制することができた。
【0010】
(第3実施例)
図4は、第3実施例の構成を示す図である。図において、共通する部分には同一符号を用いている。
第2実施例と同様な基板1、緩衝液10及び温調装置3による温度調節を用いた。
次に、本実施例の動作について説明する。
緩衝液10をスポッターを用いて20〜25μmの大きさで基板1上にスポットする。基板1は予め温調装置3により所定の温度に暖められており、この状態で高電圧電極4を基板1の下面に配された接地電極2と平行に配置する。緩衝液10中のDNAは固定化膜14の官能基15と化学結合を始める。緩衝液10中のDNAの大半は温度調整により柔らかくなったDNAとなっており、既に固定化されたDNA間等に介在する非固定化DNA13や不純物17が多数存在している。ここで高電圧電極4に電源6よりバイアス電圧7を印加すると、官能基15と化学結合したDNAに修飾された誘導末端基16が両電極間に発生する静電力により引っ張られることで直線状の伸張DNA12となる。また、非固定化DNA13及び不純物17は静電力により高電圧電極4表面近傍に集められる。この状態で温調装置3により基板1を冷却することで伸張DNA12は直線状に保持される。次に、緩衝液10を乾燥させることで伸張DNA12を基板1上に固定化し、不要となった非固定化DNA13及び不純物17は高電圧電極4にトラップした状態で基板1上から排除する。
例えば、固定化処理した基板1に蛍光色素を修飾した相補DNAとハイブリダイズ反応を行い、蛍光分析装置で発現量を測定したところ、検出強度のばらつきを大幅に抑制することができた。
なお、本実施例ではバイアス電圧7として直流電圧を印加したが、両極性電圧及びパルス電圧を用いることで、緩衝液内部に振動電界やパルス電界を付与することができるため、非固定化DNAを基板面上から容易に排除することができる。また、特異的な形状を持つDNAや隣接するDNA間との絡まりから非固定化DNAを排除することも可能となり固定化後の検出精度を向上することができる。
緩衝液10中のDNAを予め所定の温度に調整し、DNAを変形しやすい状態に予めしておくことで、バイアス電圧印加までの時間を短く、かつ固定化膜14との化学結合時間を大幅に削減することができる。
高電圧電極は平板形状にする必要は無く、例えば固定化させたいスポット径と同等の面積を有する凹凸表面など緩衝液へ効率よく静電エネルギーを供給できる形状であれば同様の効果を得ることができる。
なお、本発明の固定化方法及び装置は、前述の実施例のみに限定するものではなく、例えば緩衝液10の組成及び基板1上に固定化する物質や他の分野においても本発明の要旨を逸脱しない範囲の固定化方法及び装置に適用できることは無論である。
【0011】
【発明の効果】
以上述べたように、本発明によればつぎの効果がある。
請求項1に記載のDNAの固定化方法によれば、DNAの一方の末端を修飾した試液を緩衝液に添加し、この緩衝液を基板上に滴下してDNAを化学結合させ、基板に対向して配置した電極にバイアス電圧を印加し、DNAを電気的に伸張させた状態で保持するので、ハイブリダイズ反応後の検出精度を向上することができるという効果がある。
請求項2に記載のDNAの固定化方法によれば、基板表面に固定化膜を設けたので、予め調整したDNAを容易かつ確実に基板と化学結合を行うことができる。また、基板材質に関係なく、固定化DNAを容易に化学結合させることができる。
請求項3に記載のDNAの固定化方法によれば、バイアス電圧を両極性の電圧にしたので、非固定化DNAを基板面上から容易に排除でき、また、固定化DNA間における非固定化DNAの絡まりを抑制することができる。
請求項4に記載のDNAの固定化方法によれば、バイアス電圧をパルス電圧にしたので、パルスの衝撃により非固定化DNAを基板面上から容易に排除できる。また、小刻みなパルス電圧を印加することでバイアス電圧を低く抑えることができ、熱エネルギー損失を抑制することができる。
請求項5に記載のDNAの固定化方法によれば、緩衝液を所定の温度に調整したものを基板上に滴下するので、スポッティングから固定化までの時間を大幅に削減することができる。また、緩衝液の気化による不完全な固定化を抑制することができる。
請求項6に記載のDNAの固定化方法によれば、緩衝液中のDNAを他方の末端に極性を有するイオン、分子または粒子を修飾させたので、容易かつ確実に固定化DNAを直線状に伸張させ、保持することができる。
請求項7に記載のDNAの固定化方法によれば、緩衝液を高電圧電極の表面に設けた誘電体と接触させるようにしたので、緩衝液に対して効率よく静電エネルギーを供給することができる。また、非固定化DNAを高電圧電極面上に凝集することができ、基板上の不要なDNAを取り除くことができる。
請求項8に記載のDNAの固定化装置によれば、DNAを固定する基板を挟んでそれぞれ対向配置した高電圧電極及び接地電極と、基板に滴下した緩衝液の温度調整を行う温調装置と、バイアス電圧を印加する電源とを備え、基板上に予め調整されたDNAを含んだ緩衝液を滴下して固定するので、全DNAを変形しやすい状態にでき、基板上の固定化DNAの固定化されていない他末端部を中心にして静電気的に高電圧電極側に向かって直線状に保持して固定化を行うことができる。また、基板面と化学結合していない非固定化DNAや不純物を高電圧電極側へ移動させることができ、固定化DNA間等で引っ掛った状態の非固定化DNAを基板より排除することができるので、後段階であるハイブリダイズ反応後の検出精度を向上することができる。
請求項9に記載のDNAの固定化装置によれば、表面に誘電体を配置した構造にしたので、高電圧電極表面の微小な凹凸や緩衝液と気相との気液接面の不均一性による静電エネルギーの局所的印加を防ぐことができる。また、スパーク(火花放電)への遷移を抑制することができるという効果がある。
請求項10に記載のDNAの固定化装置によれば、高電圧電極を固定化させたいスポット径と同等の面積を有する凹凸表面にしたので、緩衝液中の非固定化DNAや不純物を高電圧電極面上に凝集することができ、基板上から取り除くことができる。また、高電圧電極と緩衝液が直接接することができ、効率よく静電エネルギーを供給できる。
【図面の簡単な説明】
【図1】本発明の第1実施例を示す固定化装置の電圧印加前の部分断面図
【図2】本発明の第1実施例を示す固定化装置の電圧印加後の部分断面図
【図3】本発明の第2実施例を示す固定化装置の部分断面図
【図4】本発明の第3実施例を示す固定化装置の部分断面図
【図5】従来の固定化装置の部分断面図
【符号の説明】
1 基板
2 接地電極
3 温調装置
4 高電圧電極
5 誘電体
6 電源
7 バイアス電圧
10 緩衝液
11 縮小DNA
12 伸張DNA
13 非固定化DNA
14 固定化膜
15 官能基
16 誘導末端基
17 不純物
18 気相
19 気液接面
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an immobilization method and apparatus for immobilizing DNA on a substrate in a stretched state on a substrate on which DNA to be labeled or specimen is immobilized for gene analysis.
[0002]
[Prior art]
In order to perform comprehensive and systematic analysis of an extremely large number of genes, a DNA microarray method (DNA chip method) in which preliminarily prepared DNA is immobilized on a substrate has been proposed as a method that enables collective expression analysis of a large number of genes. New analytical methods and methodologies relating to this have been developed (see, for example, Non-Patent Document 1).
In the conventional immobilization method and apparatus, a solution (buffer solution) containing a probe DNA separately prepared by RT-PCR (Real Time-Polymerase Chain Reaction) or the like is used with a spotter or an arrayer from several nl. They were arranged on a substrate such as a slide glass or silicon with a small volume of several pl and fixed to a specific region on the substrate (for example, see Non-Patent Document 2). Recently, the surface of the substrate is coated with an immobilization film to ensure DNA immobilization.
[0003]
[Non-Patent Document 1]
Schena, M .; Shalon, D .; Davis, R .; D. Brown, P .; O. "Science 270", 1995, pp. 467-470
[Non-Patent Document 2]
Fumio Kimizuka and Yasuyuki Kato, “Protein Nucleic Acid Enzyme 43 (13)”, Kyoritsu Shuppan, 1998, pp. 2004-2011
[0004]
In FIG. 5, 1 is a substrate, 11 is reduced DNA, 13 is non-immobilized DNA, 14 is an immobilized membrane, 15 is a functional group, 17 is an impurity, and immobilizes a buffer solution 10 containing preliminarily prepared DNA. The substrate 1 coated with the film 14 is spotted (dropped) by a spotter, the end groups of the reduced DNA 11 are chemically bonded to the functional groups 15 of the immobilization film 14, and are immobilized by natural drying.
As described above, in the conventional immobilization method and apparatus, the immobilization rate is greatly improved by arranging the immobilization film on the surface of the substrate rather than simply spotting on the substrate.
[0005]
[Problems to be solved by the invention]
However, since the number of DNAs in the buffer solution in the conventional immobilization method and apparatus is much larger than the number of functional groups in the immobilization film on the substrate surface, unimmobilized DNA can be immobilized between functional groups or immobilized. There is a problem that the immobilization process is completed while the DNA is submerged, and the variation becomes large at the time of detection after hybridization (hybridization) reaction with DNA to be complementary-bonded in the detection stage. Further, impurities in the buffer solution remain on the substrate surface, and there is a problem in that the detection sensitivity is similarly lowered. Furthermore, the DNA in the buffer solution is not in a straight stretched state under normal conditions, but has a three-dimensional shape that is bent as if a special thread is rounded. It also has the problem that the uniformity of the detection results is impaired.
Accordingly, the present invention has been made in view of such problems, and an object thereof is to provide a DNA immobilization apparatus having high detection accuracy after a hybridization reaction.
[0006]
[Means for Solving the Problems]
In order to solve the above problem, the present invention is configured as follows.
The invention according to claim 1 is a DNA immobilization method in which a DNA prepared in advance is dropped onto a substrate for immobilization, the substrate is adjusted to a predetermined temperature, and one end of the DNA is modified. A test solution is added to a buffer solution, and the buffer solution is dropped onto the substrate to chemically bond the DNA. A bias voltage is applied to an electrode disposed opposite the substrate to electrically extend the DNA. It is to hold in the state.
As a result, the temperature can be adjusted so that the entire DNA can be easily deformed. By applying a bias voltage between the electrodes, the other end not immobilized on the immobilized DNA on the substrate can be obtained. Fixing can be performed by electrostatically holding the electrode in a straight line toward the high voltage electrode side. In addition, since non-immobilized DNA and impurities in a buffer solution that is not chemically bonded to the substrate surface can be moved to the high voltage electrode side, non-immobilized DNA and impurities sandwiched between the immobilized DNA and the like Can be eliminated from the substrate surface, and the detection accuracy after the hybridization reaction, which is the latter stage of the immobilization treatment, can be improved.
The invention described in claim 2 has an immobilization film on the substrate surface.
As a result, the DNA prepared in advance can be easily and reliably chemically bonded to the substrate surface, and the immobilized DNA on the substrate can be prevented from being peeled off due to an electrostatic force due to bias voltage application. . In addition, the immobilized DNA can be easily chemically bonded by using the immobilized film regardless of the substrate material.
The invention described in claim 3 uses a bipolar voltage as the bias voltage.
Thus, an oscillating electric field can be applied to the inside of the buffer solution, and non-immobilized DNA and impurities in the buffer solution can be easily removed from the substrate surface. Moreover, the entanglement between the immobilized DNAs on the substrate surface can be suppressed.
The invention according to claim 4 uses a pulse voltage as the bias voltage.
Thus, non-immobilized DNA and impurities in the buffer can be easily removed from the substrate surface by the impact of the pulse. Further, by applying a pulse voltage every minute, the bias voltage can be kept low, and thermal energy loss can be suppressed.
According to the fifth aspect of the present invention, the buffer solution adjusted to a predetermined temperature is dropped onto the substrate.
Because of this, it is possible to greatly reduce the time from dropping the buffer solution onto the substrate to immobilizing the DNA by preliminarily making the entire DNA easily deformable. Further, it is possible to suppress the buffer solution from being vaporized during the temperature rise period up to a predetermined temperature of the substrate temperature by the temperature control device, and immobilizing DNA in an incomplete state.
The invention according to claim 6 is obtained by modifying a polar ion, molecule or particle at the other end of the DNA in the buffer.
Thus, the immobilized DNA can be held in a straight line easily and reliably by applying a bias voltage corresponding to the polarity of the modified other end. Also, non-immobilized DNA and impurities that are no longer necessary for immobilization can be easily moved to the high voltage electrode.
According to a seventh aspect of the present invention, the buffer solution is brought into contact with a dielectric provided on the surface of the high voltage electrode.
Thus, electrostatic energy can be efficiently supplied to the buffer solution. Further, since non-immobilized DNA and impurities can be aggregated on the high voltage electrode surface, unnecessary DNA and impurities on the substrate can be removed.
The invention according to claim 8 applies a bias voltage to a high voltage electrode and a ground electrode that are arranged to face each other across a substrate on which DNA is fixed, a temperature control device that adjusts the temperature of a buffer solution dropped on the substrate, and a bias voltage. And a power supply, and a buffer solution containing the DNA prepared in advance is dropped onto the substrate and fixed.
As a result, the temperature can be adjusted so that the entire DNA can be easily deformed. By applying a bias voltage between the electrodes, the other end not immobilized on the immobilized DNA on the substrate can be obtained. Fixing can be performed by electrostatically holding the electrode in a straight line toward the high voltage electrode side. In addition, since non-immobilized DNA and impurities in a buffer solution that is not chemically bonded to the substrate surface can be moved to the high voltage electrode side, non-immobilized DNA and impurities sandwiched between the immobilized DNA and the like Can be eliminated from the substrate surface, and the detection accuracy after the hybridization reaction, which is the latter stage of the immobilization treatment, can be improved.
The invention described in claim 9 has a structure in which a dielectric is disposed on the surface of the high voltage electrode.
Thus, it is possible to prevent local application of electrostatic energy due to minute irregularities on the surface of the high voltage electrode and non-uniformity of the gas-liquid contact surface between the buffer solution and the gas phase. Moreover, the transition to the spark (spark discharge) in the buffer solution can be suppressed.
The invention described in claim 10 is an uneven surface having an area equivalent to the spot diameter to which the high voltage electrode is to be fixed.
In this way, non-immobilized DNA and impurities can be aggregated on the high voltage electrode surface, so that unnecessary substances on the substrate can be removed. Further, electrostatic energy can be efficiently supplied by directly contacting the high voltage electrode and the buffer solution.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, specific embodiments of the present invention will be described with reference to the drawings.
[0008]
(First embodiment)
FIG. 1 is a partial cross-sectional view before applying a bias voltage in the fixing device of the present invention, and FIG. 2 is a partial cross-sectional view after applying a bias voltage in the fixing device of the present invention. In the figure, the same reference numerals are used for common parts, 2 is a ground electrode, 3 is a temperature control device, 4 is a high voltage electrode, 5 is a dielectric, 6 is a power supply, 7 is a bias voltage, and 12 is a stretched DNA. , 18 is a gas phase, and 19 is a gas-liquid contact surface.
A glass slide coated with an immobilizing film 14 having a high-density amino group as a coating agent was used as a substrate 1, and a weakly alkaline solution was mixed with a DNA fragment extracted from yeast and modified with an immobilized end group 15. This was used as buffer solution 10. In addition, the temperature control apparatus 3 adjusted in the range of 60-90 degreeC.
Next, the operation of this embodiment will be described.
The buffer solution 10 is spotted on the substrate 1 with a size of 20 to 25 μm using a spotter. The substrate 1 is warmed to a predetermined temperature by the temperature control device 3 in advance, and in this state, the high voltage electrode 4 is arranged in parallel with the ground electrode 2 disposed on the lower surface of the substrate 1. The DNA in the buffer solution 10 starts chemical bonding at the end group and the functional group 15 of the immobilization film 14. Most of the DNA in the buffer solution 10 is reduced DNA 11 softened by temperature adjustment, and there are a large number of non-immobilized DNA 13 and impurities 17 interposed between the already-reduced reduced DNA 11 and the like. Here, as shown in FIG. 2, when a bias voltage 7 is applied to the high voltage electrode 4 from the power supply 6, the reduced DNA 11 softened by the electrostatic force generated between the two electrodes is stretched and becomes almost linear. Further, non-immobilized DNA 13 and impurities 17 in the buffer solution 10 are collected in the vicinity of the gas-liquid contact surface 19 by electrostatic force. In this state, the extended DNA 12 is held in a straight line by cooling the substrate 1 by the temperature control device 3. Next, the extended DNA 12 is immobilized on the substrate 1 by drying the buffer solution 10. In some cases, the unnecessary non-immobilized DNA 13 and impurities 17 can be eliminated by adjusting the height of the high voltage electrode 4 and the bias voltage 7 during drying.
For example, when the substrate 1 subjected to the immobilization treatment was hybridized with a complementary DNA modified with a fluorescent dye and the expression level was measured with a fluorescence analyzer, variation in detection intensity could be greatly suppressed.
[0009]
(Second embodiment)
FIG. 3 is a diagram showing the configuration of the second embodiment. In the figure, the same reference numerals are used for common parts, and 16 is a derived end group.
Using the same substrate 1 as in the first embodiment, a DNA fragment extracted from yeast is modified with an immobilized end group 15 and the other end is modified with an induced end group 16 and mixed in a weak alkaline solution to obtain a buffer solution. 10 was used. In addition, the temperature control apparatus 3 adjusted in the range of 60-90 degreeC.
Next, the operation of this embodiment will be described.
The buffer solution 10 is spotted on the substrate 1 with a size of 20 to 25 μm using a spotter. The substrate 1 is warmed to a predetermined temperature by the temperature control device 3 in advance, and in this state, the high voltage electrode 4 is arranged in parallel with the ground electrode 2 disposed on the lower surface of the substrate 1. The DNA in the buffer solution 10 starts chemical bonding at the end group and the functional group 15 of the immobilization film 14. Most of the DNA in the buffer solution 10 is softened by temperature adjustment, and there are a large number of non-immobilized DNA 13 and impurities 17 intervening between already immobilized DNA. Here, when a bias voltage 7 is applied to the high voltage electrode 4 from the power source 6, the induced terminal group 16 modified with DNA chemically bonded to the functional group 15 is pulled by the electrostatic force generated between both electrodes, thereby forming a linear shape. It becomes extended DNA12. Non-immobilized DNA 13 and impurities 17 are collected near the gas-liquid contact surface 18 by electrostatic force. In this state, the extended DNA 12 is held in a straight line by cooling the substrate 1 by the temperature control device 3. Next, the extended DNA 12 is immobilized on the substrate 1 by drying the buffer solution 10. In some cases, the height of the high-voltage electrode 4 and the bias voltage 7 are adjusted during drying to eliminate the non-immobilized DNA 13 and the impurities 17 that are no longer needed. For example, when the substrate 1 subjected to the immobilization treatment was hybridized with a complementary DNA modified with a fluorescent dye and the expression level was measured with a fluorescence analyzer, variation in detection intensity could be greatly suppressed.
[0010]
(Third embodiment)
FIG. 4 is a diagram showing the configuration of the third embodiment. In the figure, the same reference numerals are used for common parts.
The same temperature control by the substrate 1, the buffer solution 10 and the temperature control device 3 as in the second example was used.
Next, the operation of this embodiment will be described.
The buffer solution 10 is spotted on the substrate 1 with a size of 20 to 25 μm using a spotter. The substrate 1 is warmed to a predetermined temperature by the temperature control device 3 in advance, and in this state, the high voltage electrode 4 is arranged in parallel with the ground electrode 2 disposed on the lower surface of the substrate 1. The DNA in the buffer solution 10 starts chemical bonding with the functional group 15 of the immobilized membrane 14. Most of the DNA in the buffer solution 10 is softened by temperature adjustment, and there are a large number of non-immobilized DNA 13 and impurities 17 intervening between already immobilized DNA. Here, when a bias voltage 7 is applied to the high voltage electrode 4 from the power source 6, the induced terminal group 16 modified with DNA chemically bonded to the functional group 15 is pulled by the electrostatic force generated between both electrodes, thereby forming a linear shape. It becomes extended DNA12. Non-immobilized DNA 13 and impurities 17 are collected near the surface of the high voltage electrode 4 by electrostatic force. In this state, the extended DNA 12 is held in a straight line by cooling the substrate 1 by the temperature control device 3. Next, the extended DNA 12 is immobilized on the substrate 1 by drying the buffer solution 10, and unnecessary non-immobilized DNA 13 and impurities 17 are removed from the substrate 1 while being trapped in the high voltage electrode 4.
For example, when the substrate 1 subjected to the immobilization treatment was hybridized with a complementary DNA modified with a fluorescent dye and the expression level was measured with a fluorescence analyzer, variation in detection intensity could be greatly suppressed.
In this example, a DC voltage was applied as the bias voltage 7. However, by using a bipolar voltage and a pulse voltage, an oscillating electric field or a pulse electric field can be applied to the buffer solution. It can be easily excluded from the substrate surface. In addition, non-immobilized DNA can be excluded from tangling between DNA having a specific shape and adjacent DNA, and detection accuracy after immobilization can be improved.
By adjusting the DNA in the buffer 10 to a predetermined temperature in advance and making the DNA easily deformable, the time until the bias voltage is applied is shortened and the chemical bonding time with the immobilization film 14 is greatly increased. Can be reduced.
The high-voltage electrode does not need to have a flat plate shape, and the same effect can be obtained as long as it can efficiently supply electrostatic energy to the buffer solution, such as an uneven surface having an area equivalent to the spot diameter to be fixed. it can.
The immobilization method and apparatus of the present invention are not limited to the above-described embodiments. For example, the gist of the present invention also applies to the composition of the buffer solution 10 and the substance to be immobilized on the substrate 1 and other fields. Needless to say, the present invention can be applied to immobilization methods and apparatuses within a range that does not depart.
[0011]
【The invention's effect】
As described above, the present invention has the following effects.
According to the method for immobilizing DNA according to claim 1, a test solution in which one end of DNA is modified is added to a buffer solution, and the buffer solution is dropped onto the substrate to chemically bond the DNA and face the substrate. Since the bias voltage is applied to the arranged electrodes and the DNA is held in an electrically stretched state, the detection accuracy after the hybridization reaction can be improved.
According to the DNA immobilization method of the second aspect, since the immobilization film is provided on the surface of the substrate, it is possible to easily and reliably chemically bond the DNA prepared in advance with the substrate. Moreover, the immobilized DNA can be easily chemically bonded regardless of the substrate material.
According to the method for immobilizing DNA according to claim 3, since the bias voltage is a bipolar voltage, non-immobilized DNA can be easily removed from the substrate surface, and non-immobilization between immobilized DNAs is possible. Tangles of DNA can be suppressed.
According to the method for immobilizing DNA according to claim 4, since the bias voltage is a pulse voltage, non-immobilized DNA can be easily removed from the substrate surface by the impact of the pulse. Further, by applying a pulse voltage every minute, the bias voltage can be kept low, and thermal energy loss can be suppressed.
According to the method for immobilizing DNA according to claim 5, since the buffer solution adjusted to a predetermined temperature is dropped on the substrate, the time from spotting to immobilization can be greatly reduced. Further, incomplete immobilization due to vaporization of the buffer solution can be suppressed.
According to the method for immobilizing DNA according to claim 6, since the ion, molecule or particle having polarity at the other end of the DNA in the buffer is modified, the immobilized DNA can be linearized easily and reliably. Can be stretched and held.
According to the method for immobilizing DNA according to claim 7, since the buffer solution is brought into contact with the dielectric provided on the surface of the high voltage electrode, electrostatic energy can be efficiently supplied to the buffer solution. Can do. Further, non-immobilized DNA can be aggregated on the high voltage electrode surface, and unnecessary DNA on the substrate can be removed.
According to the DNA immobilization apparatus according to claim 8, the high-voltage electrode and the ground electrode that are respectively opposed to each other across the substrate on which the DNA is immobilized, and the temperature adjustment device that adjusts the temperature of the buffer solution dropped on the substrate; And a power source for applying a bias voltage, and a buffer solution containing DNA prepared in advance is dropped and fixed on the substrate, so that all DNA can be easily deformed, and the immobilized DNA on the substrate is fixed. The immobilization can be carried out by electrostatically holding the other end portion that is not formed in a straight line toward the high voltage electrode side. In addition, non-immobilized DNA and impurities that are not chemically bonded to the substrate surface can be moved to the high voltage electrode side, and non-immobilized DNA that is caught between the immobilized DNAs can be removed from the substrate. Therefore, the detection accuracy after the hybridization reaction, which is a later stage, can be improved.
According to the DNA immobilization device of claim 9, since the dielectric is arranged on the surface, minute irregularities on the surface of the high voltage electrode and non-uniformity of the gas-liquid contact surface between the buffer solution and the gas phase The local application of electrostatic energy due to the property can be prevented. Moreover, there exists an effect that the transition to a spark (spark discharge) can be suppressed.
According to the DNA immobilization apparatus according to claim 10, since the uneven surface having an area equivalent to the spot diameter on which the high voltage electrode is to be immobilized is formed, the non-immobilized DNA and impurities in the buffer solution are treated with a high voltage. It can aggregate on the electrode surface and can be removed from the substrate. In addition, the high voltage electrode and the buffer solution can be in direct contact, and electrostatic energy can be supplied efficiently.
[Brief description of the drawings]
FIG. 1 is a partial sectional view of a fixing device according to a first embodiment of the present invention before voltage application. FIG. 2 is a partial sectional view of a fixing device according to a first embodiment of the present invention after voltage application. 3 is a partial cross-sectional view of an immobilizing apparatus according to a second embodiment of the present invention. FIG. 4 is a partial cross-sectional view of an immobilizing apparatus according to a third embodiment of the present invention. Figure [Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Substrate 2 Ground electrode 3 Temperature control device 4 High voltage electrode 5 Dielectric 6 Power supply 7 Bias voltage 10 Buffer 11 Reduced DNA
12 Stretched DNA
13 Non-immobilized DNA
14 Immobilized film 15 Functional group 16 Derived end group 17 Impurity 18 Gas phase 19 Gas-liquid contact surface

Claims (10)

予め調整されたDNAを基板上に滴下して固定化するDNAの固定化方法において、
前記基板を所定の温度に調整し、前記DNAの一方の末端を修飾した試液を緩衝液に添加し、この緩衝液を前記基板上に滴下して前記DNAを化学結合させ、前記基板に対向して配置した電極にバイアス電圧を印加し、前記DNAを電気的に伸張させた状態で保持することを特徴とするDNAの固定化方法。
In a DNA immobilization method in which a DNA prepared in advance is dropped onto a substrate for immobilization,
The substrate is adjusted to a predetermined temperature, a test solution in which one end of the DNA is modified is added to a buffer solution, the buffer solution is dropped onto the substrate to chemically bond the DNA, and the substrate is opposed to the substrate. A method for immobilizing DNA, comprising applying a bias voltage to the arranged electrodes and holding the DNA in an electrically stretched state.
前記基板は、表面に固定化膜を有することを特徴とする請求項1記載のDNAの固定化方法。2. The DNA immobilization method according to claim 1, wherein the substrate has an immobilization film on a surface thereof. 前記バイアス電圧は、両極性の電圧を用いることを特徴とする請求項1または2記載のDNAの固定化方法。The DNA immobilization method according to claim 1 or 2, wherein a bipolar voltage is used as the bias voltage. 前記バイアス電圧は、パルス電圧を用いることを特徴とする請求項1から3のいずれ1項に記載のDNAの固定化方法。The DNA immobilization method according to any one of claims 1 to 3, wherein a pulse voltage is used as the bias voltage. 前記緩衝液は、所定の温度に調整して前記基板上に滴下することを特徴とする請求項1から4のいずれ1項に記載のDNAの固定化方法。The method for immobilizing DNA according to any one of claims 1 to 4, wherein the buffer solution is adjusted to a predetermined temperature and dropped onto the substrate. 前記緩衝液中のDNAは、他方の末端に極性を有するイオン、分子または粒子を修飾することを特徴とする請求項1から5のいずれか1項に記載のDNAの固定化方法。The DNA immobilization method according to any one of claims 1 to 5, wherein the DNA in the buffer solution modifies ions, molecules or particles having polarity at the other end. 前記緩衝液は、前記高電圧電極の表面に設けた誘電体と接触していることを特徴とする請求項1から6のいずれか1項に記載のDNAの固定化方法。The method for immobilizing DNA according to any one of claims 1 to 6, wherein the buffer solution is in contact with a dielectric provided on the surface of the high voltage electrode. DNAを固定する基板を挟んでそれぞれ対向配置した高電圧電極及び接地電極と、基板に滴下した緩衝液の温度調整を行う温調装置と、バイアス電圧を印加する電源とを備え、前記基板上に予め調整された前記DNAを含んだ緩衝液を滴下して固定することを特徴とするDNA固定化装置。A high-voltage electrode and a ground electrode arranged opposite to each other across a substrate on which DNA is fixed; a temperature adjustment device that adjusts the temperature of a buffer solution dropped on the substrate; and a power source that applies a bias voltage. A DNA immobilization apparatus characterized in that a buffer solution containing the DNA prepared in advance is dropped and fixed. 前記高電圧電極は、表面に誘電体を配置していることを特徴とする請求項8記載のDNA固定化装置。The DNA immobilization apparatus according to claim 8, wherein a dielectric is disposed on a surface of the high voltage electrode. 前記高電圧電極は、固定化させたいスポット径と同等の面積を有する凹凸表面であることを特徴とする請求項8または9記載のDNA固定化装置。The DNA immobilization apparatus according to claim 8 or 9, wherein the high-voltage electrode is an uneven surface having an area equivalent to a spot diameter to be immobilized.
JP2003173689A 2003-06-18 2003-06-18 Method and device for immobilizing dna Pending JP2005009985A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003173689A JP2005009985A (en) 2003-06-18 2003-06-18 Method and device for immobilizing dna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003173689A JP2005009985A (en) 2003-06-18 2003-06-18 Method and device for immobilizing dna

Publications (1)

Publication Number Publication Date
JP2005009985A true JP2005009985A (en) 2005-01-13

Family

ID=34097447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003173689A Pending JP2005009985A (en) 2003-06-18 2003-06-18 Method and device for immobilizing dna

Country Status (1)

Country Link
JP (1) JP2005009985A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006349571A (en) * 2005-06-17 2006-12-28 Toppan Printing Co Ltd Micro reaction chip
JP2014048241A (en) * 2012-09-03 2014-03-17 Osaka Univ Method of immobilizing sample

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006349571A (en) * 2005-06-17 2006-12-28 Toppan Printing Co Ltd Micro reaction chip
JP4639982B2 (en) * 2005-06-17 2011-02-23 凸版印刷株式会社 Micro reaction chip
JP2014048241A (en) * 2012-09-03 2014-03-17 Osaka Univ Method of immobilizing sample

Similar Documents

Publication Publication Date Title
US6350609B1 (en) Electrospraying for mass fabrication of chips and libraries
US6989086B2 (en) Channel-less separation of bioparticles on a bioelectronic chip by dielectrophoresis
JP4034351B2 (en) Light-controlled electrokinetic assembly of particle-proximal surfaces
JP4425420B2 (en) Microarray production equipment
US11691150B2 (en) Biological chip, manufacturing method thereof, operation method thereof, and biological detection system
WO2013109405A1 (en) Preparation of specimen arrays on an em grid
AU2007300996B2 (en) Method for deparaffinization of paraffin-embedded specimen and method for analysis of paraffin-embedded specimen
US20070263037A1 (en) Apparatus and method for printing biomolecular droplet on substrate
JP2001337088A (en) Biochip making method and biochip making apparatus using the same
Morozov Electrospray deposition of biomolecules
JP2005009985A (en) Method and device for immobilizing dna
EP1542001A1 (en) Solid support and method of mass spectrometry of multiple substances or composites immobilized on the solid support through desorption/ionization
JP2004347594A (en) Dispensing method of reagent to biological specimen and analysis method for biological specimen
JP2004532400A (en) Protein chips
US20200016567A1 (en) Heated device for array synthesis
US20110046019A1 (en) Method and apparatus for immobilizing target material on substrate
Syrzycka et al. Electronic concentration of negatively-charged molecules on a microfabricated biochip
JP2002303626A (en) Dna microarray
JP2005006549A (en) Method and apparatus for mixing liquid sample
JP2004163394A (en) Liquid droplet discharging head and method for manufacturing the same, apparatus for manufacturing microarray, and method for manufacturing the microarray
AU2002300555B2 (en) Electrospraying solutions of substances for mass fabrication of chips and libraries
JP2001343384A (en) Hybridizing method and dehybridizing method of sample chip
Fixe et al. Covalent immobilization of DNA and hybridization on microchips by microsecond electric field pulses
KR20160121971A (en) Method for localized electroporation using optical microscope with ion current measurement and device for the localized electroporation
CN114377736A (en) Hydrophilic and hydrophobic patterned array chip, preparation method and application thereof