JP2005009772A - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP2005009772A
JP2005009772A JP2003174637A JP2003174637A JP2005009772A JP 2005009772 A JP2005009772 A JP 2005009772A JP 2003174637 A JP2003174637 A JP 2003174637A JP 2003174637 A JP2003174637 A JP 2003174637A JP 2005009772 A JP2005009772 A JP 2005009772A
Authority
JP
Japan
Prior art keywords
compressor
control
load
frequency
air conditioner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003174637A
Other languages
Japanese (ja)
Other versions
JP2005009772A5 (en
JP4027273B2 (en
Inventor
Kanji Haneda
完爾 羽根田
Takahiko Ao
孝彦 青
Mitsuhide Azuma
光英 東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003174637A priority Critical patent/JP4027273B2/en
Priority to CNB2003101230515A priority patent/CN1260529C/en
Publication of JP2005009772A publication Critical patent/JP2005009772A/en
Publication of JP2005009772A5 publication Critical patent/JP2005009772A5/ja
Application granted granted Critical
Publication of JP4027273B2 publication Critical patent/JP4027273B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Control Of Positive-Displacement Pumps (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an air conditioner capable of securing stable operations of a compressor by smoothly switching torque control and load-corresponded control. <P>SOLUTION: When the operation frequency of the compressor is changed and the switching frequency of the torque control and load-corresponded control is included between the operation frequency before changing and the target operation frequency, the switching frequency is maintained for a predetermined time and then controlled again to change to the target operation frequency. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、容量(周波数)可変型圧縮機を備えた空気調和機に関し、より詳しくは、圧縮機の運転制御方法としてトルク制御を採用する空気調和機に関する。
【0002】
【従来の技術】
トルク制御により圧縮機の運転を制御する従来の空気調和機では、圧縮機の1回転中における負荷トルク変動に応じてインバータ装置の出力電圧を変化させてトルク制御を行っている(例えば、特許文献1参照。)。
【0003】
また、圧縮機運転周波数を減少させる場合、圧縮機の入力電流の急上昇を抑制するため、圧縮機モーターへの交流電流やインバータ用直流電圧などに関係なく圧縮機の運転周波数減少速度を増加速度より遅くしているものもある(例えば、特許文献2参照。)。
【0004】
さらに、圧縮機運転周波数が減少する際に、減少途中の所定の運転周波数で所定時間その運転周波数を維持し、所定時間経過後、再度運転周波数を減少する制御を行うものも提案されている(例えば、特許文献3参照。)。
【0005】
【特許文献1】
特開平6−311778号公報(第3−4頁、図4)
【特許文献2】
特開平1−237373号公報(第3頁、第4図)
【特許文献3】
特開昭64−75849号公報(第2−3頁、第1図)
【0006】
【発明が解決しようとする課題】
しかしながら、圧縮機の1回転中における負荷トルク変動に応じてインバータ装置の出力電圧を変化させてトルク制御を行うだけでは、低速運転領域のトルク制御と中高速運転領域の負荷対応制御の切換え周波数において、圧縮機の運転が不安定になったり、振動が発生することがある。
【0007】
本発明は、従来技術の有するこのような問題点に鑑みてなされたものであり、トルク制御と負荷対応制御の切換えをスムーズに行うことにより、圧縮機の安定した運転を確保することができる空気調和機を提供することを目的としている。
【0008】
【課題を解決するための手段】
上記目的を達成するために、本発明のうちで請求項1に記載の発明は、容量可変型圧縮機と凝縮器と流量固定型減圧手段と蒸発器とが冷媒配管により順次接続され、前記圧縮機の運転速度を変化させるインバータ装置を有する空気調和機であって、前記圧縮機の運転速度が所定値以下のときは前記圧縮機の1回転中における負荷トルク変動に応じて前記インバータ装置の出力電圧を変化させるトルク制御を行う一方、前記圧縮機の運転速度が前記所定値より大きいときは負荷に見合った能力を出力するのに必要な運転周波数に変更する負荷対応制御を行い、運転周波数を変化させるに際し前記所定値を通過する場合、運転周波数を所定時間前記所定値に維持した後、再度目標運転周波数まで変化させるようにしたことを特徴とする。
【0009】
【発明の実施の形態】
以下、本発明の実施の形態について、図面を参照しながら説明する。
図1は、本発明にかかる空気調和機を示しており、インバータ駆動の容量(周波数)可変型圧縮機2と凝縮器4とキャピラリーチューブ(流量固定型減圧手段)6と蒸発器8を冷媒配管により順次接続して冷凍サイクルを構成している。
【0010】
図1に示されるように、冷媒は、圧縮機2を吐出された後、凝縮器4で凝縮し、さらにキャピラリーチューブ6で減圧された後、蒸発器8で蒸発し、圧縮機2に戻る構成となっている。圧縮機2は、室外側制御部10からの運転周波数指令信号により、トルク制御と負荷対応制御とが切り換わるよう制御されている。
【0011】
ここで、トルク制御とは、圧縮機の1回転中における負荷トルク変動に応じてインバータ装置(図示せず)の出力電圧を変化させる制御のことを言い、速度変動がゼロとなるようにインバータ出力へフィードバックし、出力トルクを負荷トルクと一致させる制御を行うものである。一方、負荷対応制御とは、空調負荷に見合った冷房能力あるいは暖房能力を出力すのに必要な圧縮機の運転周波数に変更する制御のことを言う。トルク制御は、圧縮機における低速度領域での振動を低減させるのに効果があり、同時に騒音やトータル効率の最適化も行うことが可能である。しかしながら、所定速度以上では振動や騒音が小さくなることから、トルク制御を行う必要がなく、逆にトルク制御を行うと、圧縮機流入直流電流が高くなり、過電流が原因で頻繁に発停を繰り返してしまうことがある。したがって、低速度領域ではトルク制御を行い、中高速度領域では負荷対応制御を行うのが一般的である。
【0012】
実施の形態1.
図2は、本発明の実施の形態1にかかる空気調和機の圧縮機運転周波数の変化を示すタイムチャートである。
【0013】
図2に示されるように、本発明にかかる空気調和機は、上述したトルク制御と負荷対応制御の切換えを共振周波数ではない所定の周波数F1で行っており、圧縮機運転周波数を増加あるいは減少させる場合、切換え周波数F1前後での制御方法が異なる。
【0014】
そこで、本実施の形態においては、圧縮機運転周波数を増加あるいは減少させるに際し、切換え周波数F1を通過する場合、切換え周波数F1で所定時間維持した後、再度目標運転周波数まで変化させるように圧縮機2の運転を行うことによりトルク制御と負荷対応制御の滑らかな制御切換えを行うようにしている。
【0015】
図3は、トルク制御と負荷対応制御との切換え時における圧縮機2の脚加速度を示しており、同図に示されるように、トルク制御と負荷対応制御の切換え時、圧縮機2を切換え周波数F1に所定時間維持し、その後再度目標運転周波数まで変化させるように運転することで、トルク制御と負荷対応制御の切換えをスムーズに行うことが可能となり、圧縮機2の振動が抑制でき、圧縮機2の安定した運転を確保することができる。
【0016】
実施の形態2.
図4は、本発明の実施の形態2にかかる空気調和機の圧縮機運転周波数の変化を示すタイムチャートである。
【0017】
図4に示されるように、本実施の形態においては、圧縮機運転周波数を上昇させる場合には、圧縮機運転周波数を切換え周波数F1において所定時間維持することなく目標運転周波数まで上昇させる一方、圧縮機運転周波数を減少させる場合には、切換え周波数F1で所定時間維持し、その後、再度目標運転周波数まで減少させるように圧縮機2の運転を行うようにしている。
【0018】
図5は、トルク制御と負荷対応制御との切換え時における圧縮機流入直流電流の変化を示している。同図に示されるように、圧縮機2の運転周波数を上昇させる場合には、冷凍サイクルの凝縮圧力と蒸発圧力の圧力差が小さいために、圧縮機流入直流電流は比較的小さく、制御回路の許容電流との差が大きく余裕がある。ただし、切換え周波数F1において所定時間維持した場合、トルク制御と負荷対応制御の切換えはスムーズに行われる反面、所定時間切換え周波数F1に維持する間に圧力上昇があることから、かえって圧縮機流入直流電流が上昇してしまうことになる。
【0019】
一方、圧縮機2の運転周波数を減少させる場合は、冷凍サイクルの凝縮圧力と蒸発圧力の圧力差が大きいために、圧縮機流入直流電流が大きい。したがって、圧縮機2を切換え周波数F1に所定時間維持し、その後再度目標運転周波数まで減少させるように運転することで、トルク制御と負荷対応制御の切換えをスムーズに行うことが可能となり、圧縮機2の振動が抑制でき、圧縮機2の安定した運転を確保することができる。
【0020】
図6は、トルク制御と負荷対応制御との切換え時における圧縮機2の脚加速度を示しており、同図に示されるように、圧縮機2の運転周波数を上昇させる場合は、圧縮機2の切換え周波数F1で所定時間維持した場合と維持しない場合とで脚加速度に大きな変化は見られないが、圧縮機2の運転周波数を減少させる場合には、大きな差がある。すなわち、トルク制御と負荷対応制御の切換え周波数F1において、圧縮機2の運転周波数を減少する場合に、所定時間切換え周波数F1に維持することにより、トルク制御と負荷対応制御の切換えをスムーズに行うことが可能となり、圧縮機2の振動が抑制できるばかりでなく、圧縮機流入直流電流も小さくすることができ、圧縮機2の運転において過電流が原因で頻繁に発停を繰り返すことを防止することができる。
【0021】
【発明の効果】
本発明は、以上説明したように構成されているので、以下に記載されるような効果を奏する。
本発明によれば、圧縮機の運転周波数変更時に少なくとも変更前の運転周波数と目標運転周波数との間にトルク制御と負荷対応制御の切換え周波数が含まれる場合には、所定時間この切換え周波数を維持して、その後再度目標運転周波数まで変化させるように制御を行うようにしたので、トルク制御と負荷対応制御の切換えをスムーズに行うことが可能となり、トルク制御と負荷対応制御の切換え周波数付近において、安定した圧縮機周波数制御を実現することができる。
【0022】
なお、この制御を少なくとも運転周波数の減少時に行うようにすると、圧縮機流入直流電流も小さくすることができ、圧縮機の運転において過電流が原因で頻繁に発停を繰り返すのを防止することができる。
【図面の簡単な説明】
【図1】本発明にかかる空気調和機の冷凍サイクル図である。
【図2】本発明の実施の形態1にかかる空気調和機の圧縮機運転周波数の変化を示すタイムチャートである。
【図3】本発明の実施の形態1にかかる空気調和機において、トルク制御と負荷対応制御との切換え時における圧縮機の脚加速度を示すグラフである。
【図4】本発明の実施の形態2にかかる空気調和機の圧縮機運転周波数の変化を示すタイムチャートである。
【図5】本発明の実施の形態2にかかる空気調和機の圧縮機流入直流電流の変化を示すグラフである。
【図6】本発明の実施の形態2にかかる空気調和機において、トルク制御と負荷対応制御との切換え時における圧縮機の脚加速度を示すグラフである。
【符号の説明】
2 圧縮機、
4 凝縮器、
6 キャピラリーチューブ、
8 蒸発器、
10 室外側制御部。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an air conditioner including a variable capacity (frequency) compressor, and more particularly to an air conditioner that employs torque control as an operation control method for the compressor.
[0002]
[Prior art]
In a conventional air conditioner that controls the operation of a compressor by torque control, torque control is performed by changing the output voltage of the inverter device in accordance with load torque fluctuation during one rotation of the compressor (for example, Patent Documents). 1).
[0003]
Also, when the compressor operating frequency is decreased, the compressor operating frequency decrease rate is made higher than the increased rate regardless of the AC current to the compressor motor or the inverter DC voltage, etc., in order to suppress the sudden increase in the compressor input current. Some have slowed down (for example, refer patent document 2).
[0004]
Furthermore, it has been proposed that when the compressor operating frequency decreases, control is performed to maintain the operating frequency for a predetermined time at a predetermined operating frequency in the middle of the decrease, and to decrease the operating frequency again after the predetermined time has elapsed ( For example, see Patent Document 3.)
[0005]
[Patent Document 1]
Japanese Patent Laid-Open No. 6-31778 (page 3-4, FIG. 4)
[Patent Document 2]
JP-A-1-237373 (page 3, FIG. 4)
[Patent Document 3]
JP-A-64-75849 (page 2-3, FIG. 1)
[0006]
[Problems to be solved by the invention]
However, only by changing the output voltage of the inverter device in accordance with the load torque fluctuation during one rotation of the compressor, the torque control is performed at the switching frequency between the torque control in the low speed operation region and the load corresponding control in the medium / high speed operation region. Compressor operation may become unstable or vibration may occur.
[0007]
The present invention has been made in view of such problems of the prior art, and an air that can ensure stable operation of the compressor by smoothly switching between torque control and load response control. It aims to provide a harmony machine.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, the invention according to claim 1 of the present invention is such that a variable capacity compressor, a condenser, a fixed flow rate reducing means and an evaporator are sequentially connected by a refrigerant pipe, and the compression is performed. An air conditioner having an inverter device for changing the operating speed of the compressor, wherein when the operating speed of the compressor is equal to or less than a predetermined value, the output of the inverter device according to a load torque fluctuation during one rotation of the compressor While performing torque control to change the voltage, when the operation speed of the compressor is greater than the predetermined value, load correspondence control is performed to change to the operation frequency necessary to output the capacity commensurate with the load, and the operation frequency is When the predetermined value is passed when changing, the operating frequency is maintained at the predetermined value for a predetermined time and then changed to the target operating frequency again.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows an air conditioner according to the present invention, wherein an inverter-driven capacity (frequency) variable compressor 2, a condenser 4, a capillary tube (fixed flow rate decompression means) 6, and an evaporator 8 are connected to a refrigerant pipe. Are sequentially connected to form a refrigeration cycle.
[0010]
As shown in FIG. 1, the refrigerant is discharged from the compressor 2, condensed in the condenser 4, further depressurized in the capillary tube 6, evaporated in the evaporator 8, and returned to the compressor 2. It has become. The compressor 2 is controlled by the operation frequency command signal from the outdoor side control unit 10 so that the torque control and the load corresponding control are switched.
[0011]
Here, torque control refers to control in which the output voltage of an inverter device (not shown) is changed in accordance with load torque fluctuation during one rotation of the compressor, and the inverter output is set so that the speed fluctuation becomes zero. To control the output torque to match the load torque. On the other hand, the load-adaptive control refers to control for changing to the operating frequency of the compressor necessary to output the cooling capacity or heating capacity corresponding to the air conditioning load. Torque control is effective in reducing vibrations in the low speed region of the compressor, and at the same time, noise and total efficiency can be optimized. However, since vibration and noise are reduced above a predetermined speed, there is no need to perform torque control. Conversely, when torque control is performed, the compressor inflow DC current increases and frequent on / off occurs due to overcurrent. May be repeated. Therefore, torque control is generally performed in the low speed region, and load response control is generally performed in the medium and high speed regions.
[0012]
Embodiment 1 FIG.
FIG. 2 is a time chart showing changes in the compressor operating frequency of the air conditioner according to the first embodiment of the present invention.
[0013]
As shown in FIG. 2, the air conditioner according to the present invention performs the switching between the torque control and the load corresponding control described above at a predetermined frequency F1 that is not the resonance frequency, and increases or decreases the compressor operating frequency. In this case, the control method before and after the switching frequency F1 is different.
[0014]
Therefore, in the present embodiment, when the compressor operating frequency is increased or decreased, when passing through the switching frequency F1, the compressor 2 is maintained so as to maintain the switching frequency F1 for a predetermined time and then change to the target operating frequency again. By performing this operation, smooth control switching between torque control and load response control is performed.
[0015]
FIG. 3 shows the leg acceleration of the compressor 2 at the time of switching between the torque control and the load corresponding control. As shown in FIG. 3, the switching frequency of the compressor 2 is switched at the time of switching between the torque control and the load corresponding control. By maintaining for a predetermined time at F1 and then operating again to change to the target operating frequency, it is possible to smoothly switch between torque control and load response control, and vibration of the compressor 2 can be suppressed. 2 stable operation can be ensured.
[0016]
Embodiment 2. FIG.
FIG. 4 is a time chart showing changes in the compressor operating frequency of the air conditioner according to the second embodiment of the present invention.
[0017]
As shown in FIG. 4, in the present embodiment, when the compressor operating frequency is increased, the compressor operating frequency is increased to the target operating frequency without maintaining the switching frequency F1 for a predetermined time, while the compression frequency is increased. When the machine operating frequency is decreased, the compressor 2 is operated so as to be maintained at the switching frequency F1 for a predetermined time and then decreased to the target operating frequency again.
[0018]
FIG. 5 shows changes in the DC current flowing into the compressor when switching between torque control and load response control. As shown in the figure, when the operating frequency of the compressor 2 is increased, since the pressure difference between the condensation pressure and the evaporation pressure in the refrigeration cycle is small, the compressor inflow DC current is relatively small, and the control circuit The difference from the allowable current is large and there is room. However, when the switching frequency F1 is maintained for a predetermined time, the torque control and the load corresponding control are smoothly switched. However, since the pressure rises while maintaining the switching frequency F1 for the predetermined time, the compressor inflow DC current Will rise.
[0019]
On the other hand, when the operating frequency of the compressor 2 is decreased, the compressor inflow DC current is large because the pressure difference between the condensation pressure and the evaporation pressure in the refrigeration cycle is large. Accordingly, by maintaining the compressor 2 at the switching frequency F1 for a predetermined time and then operating it so as to decrease it again to the target operating frequency, it is possible to smoothly switch between torque control and load response control. Therefore, stable operation of the compressor 2 can be ensured.
[0020]
FIG. 6 shows the leg acceleration of the compressor 2 at the time of switching between the torque control and the load handling control. As shown in the figure, when the operating frequency of the compressor 2 is increased, the compressor 2 There is no significant change in leg acceleration between when the switching frequency F1 is maintained for a predetermined time and when it is not maintained, but there is a large difference when the operating frequency of the compressor 2 is decreased. That is, when the operating frequency of the compressor 2 is decreased at the switching frequency F1 between the torque control and the load corresponding control, the torque control and the load corresponding control are smoothly switched by maintaining the switching frequency F1 for a predetermined time. In addition to being able to suppress vibrations of the compressor 2, it is also possible to reduce the DC current flowing into the compressor, and to prevent frequent start and stop due to overcurrent in the operation of the compressor 2. Can do.
[0021]
【The invention's effect】
Since the present invention is configured as described above, the following effects can be obtained.
According to the present invention, when the operating frequency of the compressor is changed, if the switching frequency of torque control and load corresponding control is included at least between the operating frequency before the change and the target operating frequency, the switching frequency is maintained for a predetermined time. Then, since the control is performed so as to change to the target operating frequency again, it is possible to smoothly switch between the torque control and the load corresponding control, and in the vicinity of the switching frequency between the torque control and the load corresponding control, Stable compressor frequency control can be realized.
[0022]
If this control is performed at least when the operating frequency is reduced, the DC current flowing into the compressor can also be reduced, and it is possible to prevent frequent repetition of on / off due to overcurrent in the operation of the compressor. it can.
[Brief description of the drawings]
FIG. 1 is a refrigeration cycle diagram of an air conditioner according to the present invention.
FIG. 2 is a time chart showing changes in the compressor operating frequency of the air conditioner according to the first embodiment of the present invention.
FIG. 3 is a graph showing the leg acceleration of the compressor at the time of switching between torque control and load handling control in the air conditioner according to the first embodiment of the present invention.
FIG. 4 is a time chart showing changes in the compressor operating frequency of the air conditioner according to the second embodiment of the present invention.
FIG. 5 is a graph showing changes in compressor inflow DC current of the air conditioner according to the second embodiment of the present invention;
FIG. 6 is a graph showing the leg acceleration of the compressor at the time of switching between torque control and load handling control in the air conditioner according to the second embodiment of the present invention.
[Explanation of symbols]
2 compressors,
4 Condenser,
6 Capillary tube,
8 Evaporator,
10 Outdoor control unit.

Claims (1)

容量可変型圧縮機と凝縮器と流量固定型減圧手段と蒸発器とが冷媒配管により順次接続され、前記圧縮機の運転速度を変化させるインバータ装置を有する空気調和機であって、
前記圧縮機の運転速度が所定値以下のときは前記圧縮機の1回転中における負荷トルク変動に応じて前記インバータ装置の出力電圧を変化させるトルク制御を行う一方、前記圧縮機の運転速度が前記所定値より大きいときは負荷に見合った能力を出力するのに必要な運転周波数に変更する負荷対応制御を行い、運転周波数を変化させるに際し前記所定値を通過する場合、運転周波数を所定時間前記所定値に維持した後、再度目標運転周波数まで変化させるようにしたことを特徴とする空気調和機。
A variable capacity compressor, a condenser, a fixed flow rate reducing means and an evaporator are sequentially connected by a refrigerant pipe, and an air conditioner having an inverter device for changing the operating speed of the compressor,
When the operating speed of the compressor is less than or equal to a predetermined value, torque control is performed to change the output voltage of the inverter device according to load torque fluctuation during one rotation of the compressor, while the operating speed of the compressor is When it is larger than the predetermined value, the load corresponding control is performed to change to the operation frequency necessary to output the capacity corresponding to the load, and when the operation frequency is changed, when the predetermined value is passed, the operation frequency is determined for the predetermined time. After maintaining the value, the air conditioner is changed to the target operating frequency again.
JP2003174637A 2003-06-19 2003-06-19 Air conditioner Expired - Fee Related JP4027273B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003174637A JP4027273B2 (en) 2003-06-19 2003-06-19 Air conditioner
CNB2003101230515A CN1260529C (en) 2003-06-19 2003-12-23 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003174637A JP4027273B2 (en) 2003-06-19 2003-06-19 Air conditioner

Publications (3)

Publication Number Publication Date
JP2005009772A true JP2005009772A (en) 2005-01-13
JP2005009772A5 JP2005009772A5 (en) 2005-09-02
JP4027273B2 JP4027273B2 (en) 2007-12-26

Family

ID=34098071

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003174637A Expired - Fee Related JP4027273B2 (en) 2003-06-19 2003-06-19 Air conditioner

Country Status (1)

Country Link
JP (1) JP4027273B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8018408B2 (en) 2006-12-20 2011-09-13 Samsung Mobile Display Co., Ltd. Organic light emitting diode display
JP6431648B1 (en) * 2017-11-27 2018-11-28 日立ジョンソンコントロールズ空調株式会社 Air conditioner and motor control device
WO2023015899A1 (en) * 2021-08-13 2023-02-16 青岛海尔空调器有限总公司 Method and apparatus for controlling frequency stability of air conditioner compressor, and electronic device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8018408B2 (en) 2006-12-20 2011-09-13 Samsung Mobile Display Co., Ltd. Organic light emitting diode display
JP6431648B1 (en) * 2017-11-27 2018-11-28 日立ジョンソンコントロールズ空調株式会社 Air conditioner and motor control device
WO2019102611A1 (en) * 2017-11-27 2019-05-31 日立ジョンソンコントロールズ空調株式会社 Air conditioner and motor control device
US10571178B2 (en) 2017-11-27 2020-02-25 Hitachi-Johnson Controls Air Conditioning, Inc. Air conditioner and motor controller
WO2023015899A1 (en) * 2021-08-13 2023-02-16 青岛海尔空调器有限总公司 Method and apparatus for controlling frequency stability of air conditioner compressor, and electronic device

Also Published As

Publication number Publication date
JP4027273B2 (en) 2007-12-26

Similar Documents

Publication Publication Date Title
JP3948919B2 (en) Method and apparatus for controlling at least one compressor of a cooling system with a variable speed drive
US20050091998A1 (en) Method for controlling operation of air-conditioner
JP2007183020A (en) Capacity variable air conditioner
JP2012072920A (en) Refrigeration apparatus
JPH09310902A (en) Control method of air conditioner
JPS61272483A (en) Refrigerating cycle device
JP2010112683A (en) Heat pump cycle device
JP2010159934A (en) Air conditioner
WO2017081803A1 (en) Gas compressor
JP4027273B2 (en) Air conditioner
JP2005048973A (en) Air conditioner and method of controlling the same
JP2009133539A (en) Multi-way refrigerating apparatus
JP3979361B2 (en) Air conditioner
JP2011149611A (en) Air-conditioning apparatus
JP4859483B2 (en) Air conditioner
JP2006162214A (en) Air conditioner
JP2003072363A (en) Cooling equipment for vehicle
JP3870736B2 (en) Air conditioner
JP2004212004A (en) Motor/compressor system, air-conditioner and heat generation suppression method of inverter in air-conditioner
JP2005009725A (en) Air conditioner and control method of air conditioner
JP4006390B2 (en) Air conditioner
JP2005140373A (en) Engine driven type refrigeration cycle device with generator
JP2011158172A (en) Air-conditioner
JPH11201560A (en) Supercritical refrigerating cycle
JP2007298256A (en) Air conditioner

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050224

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050224

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20061206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070417

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070911

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071009

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101019

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111019

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121019

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131019

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees