JP2005009166A - Earthquake-proof structure for wooden framework constructed building - Google Patents

Earthquake-proof structure for wooden framework constructed building Download PDF

Info

Publication number
JP2005009166A
JP2005009166A JP2003174306A JP2003174306A JP2005009166A JP 2005009166 A JP2005009166 A JP 2005009166A JP 2003174306 A JP2003174306 A JP 2003174306A JP 2003174306 A JP2003174306 A JP 2003174306A JP 2005009166 A JP2005009166 A JP 2005009166A
Authority
JP
Japan
Prior art keywords
floor
load
thickness
building
wall panel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003174306A
Other languages
Japanese (ja)
Inventor
Hisashi Minami
久志 南
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2003174306A priority Critical patent/JP2005009166A/en
Publication of JP2005009166A publication Critical patent/JP2005009166A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Load-Bearing And Curtain Walls (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a wooden framework constructed building in a superior earthquake-proof structure. <P>SOLUTION: In the earthquake-proof structure for the wooden framework constructed building, foundations 2, columns, lateral frame materials 4, etc. are fastened with hardware as conventional, floor wall parts for the outer periphery of the building and floor wall parts for the interior of the building, requiring structural proof stress, are formed with proof stress wall panels 5 constructed by structural plywoods 7 having thicknesses of 18mm to 28mm, floor parts for floors and floor parts for attics are formed with structural plywoods 7 having thicknesses of 18mm to 28mm, and four faces of the wall parts and two faces of the floor parts are fastened into a hexahedron construction with structural plywoods 7 having thicknesses of 18mm to 28mm. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、木造軸組構法建築物の耐震構造に関するものである。
【0002】
【従来の技術】
従来の木造軸組構法建築物の耐震方法は、床部に厚板を敷設する方法、柱、横架材などを金物で堅結する方法、壁部に筋かいを入れる方法、壁部に合板を取り付けする方法、壁部に耐力壁パネルを入れて取り付けする方法などがある。
【0003】
【発明が解決しようとする課題】
しかし、大きな地震の地震力は、水平方向だけでなく、上下方向、斜め方向などさまざまな方向から大きな荷重がかかる。従って、大きな地震が起きた時、金物や筋かいによる耐震方法では、大きな揺れが生じると共に、点で取り付けするため、取り付けする部分に力が集中し、釘が抜ける恐れがある。また、壁部に合板を取り付けする耐震方法でも、大きな揺れが生じる。また、壁部に耐力壁パネルを入れて取り付けする耐震方法でも、大きな揺れが生じる。
本発明は、これらの問題を解決し、優れた耐震構造の木造軸組構法建築物を提供することを目的とするものである。
【0004】
【課題を解決するための手段】
木造軸組構法建築物の床部は、建物の耐震性を高めるため、特開平11−93314にあるように、根太の上面と土台(二階、三階は、胴差し、桁)の上面が同一水平面構造の土台(二階、三階は、胴差し、桁)の上面全面を含めた床組に、下地材を敷設する床構造がある。また、最近根太を省略し、大引(二階、三階は、大梁、小梁)の上面と土台(二階、三階は、胴差し、桁)の上面が同一水平面構造の土台(二階、三階は、胴差し、桁)の上面全面を含めた床組に、下地材として厚さ18mmから28mの構造用合板を敷設する床構造がある。
本発明の請求項1記載の床部は、一階床部において、前記のように、大引3の上面と土台2の上面が同一水平面構造の土台2の上面全面を含めた床組に、厚さ18mmから28mmの構造用合板7を下地材として敷設し、二階から最上階の床部において、前記のように、大梁、小梁の上面と胴差し、桁の上面が同一水平面構造の胴差し、桁の上面全面を含めた床組に、厚さ18mmから28mmの構造用合板7を下地材として敷設し、また、さらに建物の耐震性を高めるため、小屋裏の床部において、大梁の上面と桁の上面が同一水平面構造の床組に、厚さ18mmから28mmの構造用合板7を敷設する。
このように、厚さ18mmから28mmの構造用合板7が使用される理由は、構造用合板の面内せん断耐力が厚さにほぼ比例し、構造用合板の内面せん断変形が厚さにほぼ反比例するので、構造用合板の厚さが厚くなれば、厚さにほぼ比例して、面に平行な方向の荷重に対して強くかつ変形しにくくなるためである。
【0005】
また、木造軸組構法建築物の壁部は、特開平8−302861及び特開平9−184211にあるように、該略9mm前後の構造用合板が柱のほぼ中央に位置する構造の真壁タイプ耐力壁パネルが用いられている。このような構造用合板が柱のほぼ中央に位置する構造の真壁タイプ耐力壁パネルは、水平荷重がかかった時、その荷重を構造用合板で直接受けるため、構造用合板の面内せん断耐力や内面せん断変形が、耐力壁パネルの耐力や変形に大きく係わる。
そこで、本発明は、耐震性を高めるため、厚さ18mmから28mmの構造用合板7が柱のほぼ中央に位置する構造の真壁タイプ耐力壁パネル5を形成し、これを請求項1記載の厚さ18mmから28mmの構造用合板7で構成した耐力壁パネル5とした。従って、この本発明の耐力壁パネル5の構造用合板7の厚さが、従来の真壁タイプ耐力壁パネルの構造用合板の9mm前後の厚さの二倍から三倍となる。ゆえに、前記で説明した構造用合板の厚さと耐力及び変形の関係から、少なくとも、本発明の耐力壁パネル5の耐力を従来の真壁タイプ耐力壁パネルのほぼ二倍、本発明の耐力壁パネル5の変形を従来の真壁タイプ耐力壁パネルのほぼ半分にできる。
【0006】
本発明の木造軸組構法建築物の耐震構造は、従来どおり、土台2、柱、横架材4などを金物で堅結すると共に、建物の外周の各階壁部と建物の内部の構造上耐力を必要とする各階壁部に、前記の厚さ18mmから28mmの構造用合板7で構成した耐力壁パネル5を形成し、各階の床部と小屋裏の床部に、前記の方法で厚さ18mmから28mmの構造用合板7を形成し、壁部四面と床部二面を堅結して六面体を構成したモノコック構造とする。
【0007】
本発明の厚さ18mmから28mmの構造用合板7で構成した耐力壁パネル5は、二つのタイプがある。
一つは、厚さが柱の径とほぼ同じで大きさが壁部と同一寸法の耐力壁パネル5である。この耐力壁パネル5の構造は、厚さ18mmから28mmの構造用合板7の両面に、構造用合板7と同一寸法の木の枠組6が取り付けしてあり、構造用合板7が耐力壁パネル5のほぼ中央に位置する。
もう一つは、厚さが柱の径のほぼ半分で大きさが壁部と同一寸法の耐力壁パネル5である。この耐力壁パネル5の構造は、木の枠組6の片側に、枠組6と同一寸法の厚さ18mmから28mmの構造用合板7が取り付けしてある。
【0008】
本発明の構造用合板7の厚さの下限を18mmとした理由は、厚さ9mm前後の構造用合板で構成した従来の真壁タイプ耐力壁パネルより、少なくとも、本発明の耐力壁パネル5の耐力をほぼ二倍、変形をほぼ半分にするためである。
また、本発明の構造用合板7の上限を28mmとした理由は、現在メーカーで作られているのは28mmまでであり、29mm以上になると特注になるため、コストの面に問題が生じると共に、重量による作業性の面に問題が生じるからである。
【0009】
本発明の課題を解決するための手段は以上の構成であり、木造軸組構法建築物が厚さ18mmから28mmの構造用合板7で六面体を構成したモノコック構造となる。
従って、建物の壁部と床部が厚さ18mmから28mmの構造用合板7で構成されているので、少なくとも従来の木造軸組構法建築物の耐震構造のほぼ2倍の耐震性がある。さらに、モノコック構造としたので、地震や台風などのあらゆる方向の外力に対して、建物が一体として受け止めることができる。ゆえに、優れた耐震構造となる。
【0010】
また、本発明の耐震構造は、これは単に耐力壁パネル5を厚さ18mmから28mmの構造用合板7で構成したのではなく、建物全体の構造を厚さ18mmから28mmの構造用合板7で六面体を構成したモノコック構造とし、優れた耐震構造とするために考案した。
また、本発明は、優れた耐震構造のため、一階建、二階建はもとより、三階建の木造軸組構法建築物に適しており、今後高さの規制が緩和されれば、四階建、五階建の木造住宅のニーズが発生し、そのニーズにも対応できる。
【0011】
【発明の実施の形態】
図2及び図3に示すように、工場で、厚さが柱の径と同じで大きさが壁部と同一寸法の耐力壁パネル5を構造耐力上安全に製作する。この耐力壁パネル5の製作方法は、厚さ18mmから28mmの構造用合板7の両面に、構造用合板7と同一寸法の木の枠組6をスクリュー釘又はスクリュー釘と接着剤を併用して取り付けする。
また、今回は使用しないが、図4及び図5に示すように、厚さが柱の径のほぼ半分で大きさが壁部と同一寸法の耐力壁パネル5がある。この耐力壁パネル5の製作方法は、木の枠組6の片側に、枠組6と同一寸法の厚さ18mmから28mmの構造用合板7をスクリュー釘又はスクリュー釘と接着剤を併用して取り付けする。
なお、耐力壁パネル5を製作する方法には、前記のように、枠組6に厚さ18mmから28mmの構造用合板7を取り付けする方法の他に、厚さ18mmから28mmの構造用合板7に木の芯材をスクリュー釘又はスクリュー釘と接着剤を併用して取り付けする方法もある。
【0012】
耐力壁パネル5を建築現場へ搬送する。
【0013】
以後建築の実施形態を記す。
木造軸組構法建築物において、土台2、柱、横架材4を金物で堅結する方法は、接合金物による軸組構法(金物工法)で金物を堅結する方法と従来の軸組構法の建物に金物を堅結する方法がある。
接合金物による軸組構法(金物工法)の建物の場合の金物の堅結は、従来の方法で行なう。この構法は、柱や横架材4の中に金物が隠れるため、耐力壁パネル5を使用するのに適している。
また、従来の軸組構法の建物の場合の金物の堅結は、従来の方法で行なう。
【0014】
図1に示すように、一階において、大引3の上面と土台2の上面が同一水平面構造の床組を行なった後、土台2の上面全面を含めた床組に、厚さ18mmから28mmの構造用合板7を下地材として木ネジで取り付けする。
【0015】
つぎに、図1に示すように、柱を立て、横架材4を組み、建物の外周の壁部と建物の内部の構造上耐力を必要とする壁部に、耐力壁パネル5を入れて仮に留める。接合金物による軸組構法(金物工法)の場合は、軸組の段階で金物を堅結する。耐力壁パネル5を取り付けする壁部の柱と柱の間のスパンは、四尺以内とする。スパンを四尺以内とした理由は、耐力壁パネル5を軽くして作業の安全性を確保するためである。但し、開口部両側の柱の間のスパンは、四尺以内に限定しない。
開口部がある壁部は、従来どおり開口部の両側に柱を立て、横架材4を組み、まぐさと窓台を取り付けし、開口部の左右の壁部と開口部の上下の壁部に耐力壁パネル5を入れて仮に留める。
作業手順は、柱を立て、柱と柱の間に耐力壁パネル5を入れ、横架材4を組み、耐力壁パネル5を仮に留める方法、柱を立て、横架材4を組み、壁部に耐力壁パネル5を入れて仮に留める方法、柱を立て、横架材4を組みつつ壁部に耐力壁パネル5を入れ、耐力壁パネルを仮に留める方法などがある。
【0016】
つぎに、図1に示すように、二階から最上階の建築作業は、床部を除き、一階の建築作業に準じて行なう。
二階から最上階の床部は、大梁、小梁の上面と胴差し、桁の上面が同一水平面構造の床組を行ない、胴差し、桁の上面全面を含めた床組に、厚さ18mmから28mmの構造用合板7を下地材として木ネジで取り付けする。
【0017】
つぎに、図1に示すように、小屋裏において、大梁の上面と桁の上面が同一水平面構造の床組を行ない、この床組に厚さ18mmから28mmの構造用合板7を木ネジで取り付けする。
【0018】
つぎに、建物全体の金物の堅結を行い、建物全体の耐力壁パネル5の取り付けをスクリュー釘又は木ネジを用いて構造耐力上安全に行なう。但し、接合金物による軸組構法(金物工法)の場合は、軸組の段階ですでに金物が堅結してあるので、金物を堅結する必要がない。
また、各階ごとに金物の堅結と耐力壁パネル5の取り付けを行なう方法もある。
【0019】
つぎに、建物の外周の耐力壁パネル5は、屋外側の枠組6の中に断熱材を入れ、その枠組6の外側に防水シートをはり、胴縁と外壁を取り付けし、屋内側の枠組6にプラスターボードを取り付けする。なお、断熱効果が不十分な場合は、屋内側の枠組6の中にも断熱材を入れる。
また、建物の内部の耐力壁パネル5は、枠組6の両側にプラスターボードを取り付けする。
【0020】
【発明の効果】
本発明は、以上のような構成であるから、構造用合板を厚くしたことで、構造用合板自体が水平荷重に対して大きな耐力を発揮し、かつ変形を抑えて揺れを小さくすると共に、六面体のモノコック構造としたことで、地震や台風などのあらゆる方向の外力を建物が一体となって受け止めることができる。
また、本発明は、優れた耐震構造のため、三階建の木造軸組構法建築物に適しており、今後高さの規制が緩和されれば、四階建、五階建の木造住宅のニーズが発生し、そのニーズにも対応できる。
【図面の簡単な説明】
【図1】本発明の木造軸組構法建築物縦断面図
【図2】柱の径と同じ厚さの耐力壁パネルの製作前のパーツ図
【図3】柱の径と同じ厚さの耐力壁パネル縦断面図
【図4】柱の径のほぼ半分の厚さの耐力壁パネルの製作前のパーツ図
【図5】柱の径のほぼ半分の厚さの耐力壁パネル縦断面図
【符号の説明】
1 基礎
2 土台
3 大引
4 横架材
5 耐力壁パネル
6 枠組
7 厚さ18mmから28mmの構造用合板
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an earthquake-resistant structure of a wooden frame construction method building.
[0002]
[Prior art]
Conventional seismic methods for wooden framed buildings include the method of laying thick plates on the floor, the method of fastening columns, horizontal members, etc. with hardware, the method of bracing the walls, and the plywood on the walls There are a method of attaching a load-bearing wall panel to a wall portion and a method of attaching.
[0003]
[Problems to be solved by the invention]
However, the seismic force of a large earthquake is subject to large loads not only in the horizontal direction but also in various directions such as up and down and diagonal directions. Therefore, when a large earthquake occurs, the earthquake-resistant method using hardware or a brace causes a large shaking and attaches at a point, so that the force concentrates on the attachment part and the nail may come off. In addition, even the earthquake-resistant method of attaching a plywood to the wall part causes a large shaking. In addition, even a seismic method in which a load-bearing wall panel is installed in the wall portion causes large shaking.
An object of the present invention is to solve these problems and to provide a wooden frame structure building having an excellent seismic structure.
[0004]
[Means for Solving the Problems]
In order to increase the earthquake resistance of the building, the floor of the wooden frame construction is the same on the top of the joists and the top of the foundation (the second and third floors are girder and girders) as described in JP-A-11-93314. There is a floor structure in which the base material is laid on the floor set including the entire upper surface of the base of the horizontal plane structure (the second and third floors are torso and girders). In addition, the joists have been omitted recently, and the top surface of the Oki (2nd and 3rd floors are big beams and small beams) and the top of the base (2nd and 3rd floors are torso and girders) are the same horizontal base (2nd and 3rd floors). The floor has a floor structure in which a structural plywood having a thickness of 18 mm to 28 m is laid as a base material on a floor set including the entire upper surface of the case and the girder.
In the floor portion according to claim 1 of the present invention, in the first floor portion, as described above, the floor set includes the entire upper surface of the base 2 having the same horizontal plane structure as the upper surface of the draw 3 and the upper surface of the base 2. A structural plywood 7 having a thickness of 18 mm to 28 mm is laid as a base material. As described above, the upper surface of the large beam and the small beam and the upper surface of the girder and the upper surface of the girder have the same horizontal structure. In addition, on the floor assembly including the entire upper surface of the girder, a structural plywood 7 having a thickness of 18 mm to 28 mm is laid as a base material, and in order to further improve the earthquake resistance of the building, A structural plywood 7 having a thickness of 18 mm to 28 mm is laid on a floor set in which the upper surface and the upper surface of the girders have the same horizontal structure.
As described above, the reason why the structural plywood 7 having a thickness of 18 mm to 28 mm is used is that the in-plane shear strength of the structural plywood is almost proportional to the thickness, and the internal shear deformation of the structural plywood is almost inversely proportional to the thickness. Therefore, if the thickness of the structural plywood is increased, the structural plywood is strong in proportion to the load in the direction parallel to the surface and hardly deforms in proportion to the thickness.
[0005]
Moreover, the wall part of a wooden frame construction method building is a true wall type proof stress of a structure in which the structural plywood of about 9 mm is located in the approximate center of the pillar as disclosed in Japanese Patent Laid-Open Nos. 8-302861 and 9-184211. Wall panels are used. True wall type load-bearing wall panels with such a structural plywood positioned almost in the middle of the column are directly subjected to the structural plywood when a horizontal load is applied. The internal shear deformation greatly affects the proof stress and deformation of the load-bearing wall panel.
Therefore, in the present invention, in order to improve the earthquake resistance, the structural plywood 7 having a thickness of 18 mm to 28 mm forms a true wall type load bearing wall panel 5 having a structure positioned substantially at the center of the column, and this is formed in the thickness according to claim 1. It was set as the load-bearing wall panel 5 comprised with the structural plywood 7 of thickness 18mm to 28mm. Therefore, the thickness of the structural plywood 7 of the load bearing wall panel 5 of the present invention is two to three times the thickness of about 9 mm of the structural plywood of the conventional true wall type load bearing wall panel. Therefore, from the relationship between the thickness, the proof stress, and the deformation of the structural plywood described above, at least the proof stress of the load resistant wall panel 5 of the present invention is almost twice that of the conventional true wall type load resistant wall panel, and the load resistant wall panel 5 of the present invention. The deformation of can be made almost half of the conventional wall-type load-bearing wall panel.
[0006]
The seismic structure of the wooden frame construction of the present invention is as follows. The base 2, pillars, horizontal members 4 and the like are firmly secured with hardware, and the structural strength of each floor of the building and the interior of the building The load-bearing wall panel 5 composed of the above-described structural plywood 7 having a thickness of 18 mm to 28 mm is formed on each floor wall portion that needs to have a thickness of the floor portion of each floor and the floor portion of the shed by the above method. A structural plywood 7 having a thickness of 18 mm to 28 mm is formed, and a monocoque structure in which a hexahedron is configured by firmly bonding four wall surfaces and two floor surfaces.
[0007]
There are two types of load-bearing wall panels 5 composed of the structural plywood 7 having a thickness of 18 mm to 28 mm according to the present invention.
One is a load-bearing wall panel 5 whose thickness is substantially the same as the diameter of the column and whose size is the same as that of the wall portion. The structure of the load-bearing wall panel 5 is such that a wooden frame 6 having the same dimensions as the structural plywood 7 is attached to both surfaces of the structural plywood 7 having a thickness of 18 mm to 28 mm. Located in the middle of
The other is a load-bearing wall panel 5 having a thickness approximately half of the diameter of the column and the same size as the wall. In the structure of the load-bearing wall panel 5, a structural plywood 7 having the same dimensions as the frame 6 and having a thickness of 18 mm to 28 mm is attached to one side of the wooden frame 6.
[0008]
The reason why the lower limit of the thickness of the structural plywood 7 of the present invention is 18 mm is that at least the proof stress of the load-bearing wall panel 5 of the present invention is at least as compared with the conventional true-wall type load-bearing wall panel composed of structural plywood having a thickness of about 9 mm. This is to almost double the deformation and almost half the deformation.
In addition, the reason why the upper limit of the structural plywood 7 of the present invention is set to 28 mm is that the manufacturer is currently made up to 28 mm, and because it becomes a special order when it is 29 mm or more, a problem arises in terms of cost, This is because a problem arises in terms of workability due to weight.
[0009]
Means for solving the problems of the present invention is the above-described configuration, and a wooden frame construction method building has a monocoque structure in which a hexahedron is configured by a structural plywood 7 having a thickness of 18 mm to 28 mm.
Therefore, since the wall and floor of the building are composed of the structural plywood 7 having a thickness of 18 mm to 28 mm, the building has at least twice the earthquake resistance of the conventional earthquake resistant structure of the wooden frame structure building. Furthermore, since the monocoque structure is adopted, the building can be received as a unit against external forces in all directions such as earthquakes and typhoons. Therefore, it becomes an excellent earthquake-resistant structure.
[0010]
Moreover, the seismic structure of the present invention is not simply composed of the load bearing wall panel 5 with the structural plywood 7 having a thickness of 18 mm to 28 mm, but the structure of the entire building with the structural plywood 7 having a thickness of 18 mm to 28 mm. A monocoque structure with a hexahedron structure was devised to create an excellent seismic structure.
Moreover, the present invention is suitable not only for one-story and two-story buildings but also for three-story wooden frame construction because of its excellent earthquake-resistant structure. There is a need for wooden houses with five-story buildings, and it is possible to meet those needs.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
As shown in FIGS. 2 and 3, the load bearing wall panel 5 having the same thickness as the column diameter and the same size as the wall portion is manufactured safely at the factory in terms of structural strength. The method of manufacturing the load-bearing wall panel 5 is to attach a wooden frame 6 having the same dimensions as the structural plywood 7 on both sides of the structural plywood 7 having a thickness of 18 mm to 28 mm by using screw nails or screw nails and an adhesive together. To do.
Although not used this time, as shown in FIGS. 4 and 5, there is a load-bearing wall panel 5 having a thickness approximately the half of the diameter of the column and the same size as the wall portion. In this method of manufacturing the load-bearing wall panel 5, a structural plywood 7 having a thickness of 18 mm to 28 mm having the same dimensions as the frame 6 is attached to one side of the wooden frame 6 by using screw nails or screw nails and an adhesive in combination.
In addition to the method of attaching the structural plywood 7 having a thickness of 18 mm to 28 mm to the frame 6 as described above, the method of manufacturing the load-bearing wall panel 5 can be applied to the structural plywood 7 having a thickness of 18 mm to 28 mm. There is also a method of attaching a wood core material using a screw nail or a screw nail and an adhesive.
[0012]
Transport the load-bearing wall panel 5 to the construction site.
[0013]
Hereinafter, an embodiment of architecture will be described.
In a wooden frame construction method, the method of fastening the base 2, pillar, and horizontal member 4 with hardware is the method of fastening hardware with the frame construction method (metal construction method) using a joint hardware and the conventional frame construction method. There is a way to secure hardware to the building.
In the case of a building of a frame construction method (metal construction method) using a joint hardware, the hardware is firmly fixed by a conventional method. This construction method is suitable for using the load-bearing wall panel 5 because the hardware is hidden in the pillar and the horizontal member 4.
In addition, in the case of a conventional frame structure building, the hardware is consolidated by a conventional method.
[0014]
As shown in FIG. 1, on the first floor, after performing the floor assembly in which the upper surface of the draw 3 and the upper surface of the base 2 have the same horizontal structure, the floor assembly including the entire upper surface of the base 2 is provided with a thickness of 18 mm to 28 mm. The structural plywood 7 is attached with wood screws as a base material.
[0015]
Next, as shown in FIG. 1, a pillar is erected, a horizontal member 4 is assembled, and a load-bearing wall panel 5 is inserted into a wall portion on the outer periphery of the building and a wall portion that requires structural strength within the building. Temporarily fasten. In the case of a shaft construction method (metal construction method) using a joint hardware, the hardware is firmly fixed at the stage of the framework. The span between the pillars of the wall portion to which the load bearing wall panel 5 is attached is within four scales. The reason for setting the span within four is to lighten the load-bearing wall panel 5 and ensure work safety. However, the span between the pillars on both sides of the opening is not limited to four scales.
As for the wall part with the opening part, the pillar is set up on both sides of the opening part as before, the horizontal member 4 is assembled, the lintel and the window stand are attached, and the right and left wall parts of the opening part and the upper and lower wall parts of the opening part Put the load-bearing wall panel 5 temporarily.
Work procedure is to stand a pillar, put a load-bearing wall panel 5 between the pillars, assemble a horizontal member 4 and temporarily hold the load-bearing wall panel 5, stand a pillar, assemble a horizontal member 4 and wall There are a method of temporarily holding the load-bearing wall panel 5 and a method of temporarily holding the pillar and putting the load-bearing wall panel 5 into the wall portion while assembling the horizontal member 4 and temporarily holding the load-bearing wall panel.
[0016]
Next, as shown in FIG. 1, the construction work from the second floor to the top floor is performed in accordance with the construction work on the first floor except for the floor.
From the second floor to the top floor, the upper and lower girder and girder tops and the girder, and the girder upper surface are arranged in the same horizontal plane. A 28 mm structural plywood 7 is attached as a base material with wood screws.
[0017]
Next, as shown in FIG. 1, in the back of the hut, the upper surface of the girder and the upper surface of the girders form a floor assembly having the same horizontal structure, and a structural plywood 7 having a thickness of 18 mm to 28 mm is attached to the floor assembly with wood screws. To do.
[0018]
Next, the hardware of the entire building is tightened, and the load-bearing wall panel 5 of the entire building is attached safely using a screw nail or a wood screw in terms of structural strength. However, in the case of a shaft construction method (metal construction method) using a joint hardware, it is not necessary to solidify the hardware because the hardware is already solidified at the stage of the shaft assembly.
There is also a method of fastening hardware and attaching the load-bearing wall panel 5 for each floor.
[0019]
Next, the load-bearing wall panel 5 on the outer periphery of the building is provided with a heat insulating material in a frame 6 on the outdoor side, a waterproof sheet is put on the outside of the frame 6, a torso and an outer wall are attached, and a frame 6 on the indoor side. Attach the plaster board to the. In addition, when the heat insulation effect is insufficient, a heat insulating material is also put in the frame 6 on the indoor side.
Further, the load-bearing wall panel 5 inside the building is attached with plaster boards on both sides of the frame 6.
[0020]
【The invention's effect】
Since the present invention is configured as described above, by increasing the thickness of the structural plywood, the structural plywood itself exerts a large proof strength against a horizontal load, suppresses deformation, reduces shaking, and is a hexahedron. The monocoque structure allows the building to receive external forces in all directions such as earthquakes and typhoons.
In addition, the present invention is suitable for a three-story wooden frame construction because of its excellent seismic structure. If height restrictions are eased in the future, four-story and five-story wooden houses will be used. Needs arise and can meet those needs.
[Brief description of the drawings]
[Fig. 1] A longitudinal cross-sectional view of a wooden frame construction method building of the present invention [Fig. 2] Part drawing before production of a load-bearing wall panel with the same thickness as the column diameter [Fig. 3] [Yield strength with the same thickness as the column diameter] Wall panel vertical cross section [Fig. 4] Part drawing before fabrication of load-bearing wall panel with half the thickness of the column [Fig. 5] Load-bearing wall panel vertical cross-section with thickness approximately half of the diameter of the column Explanation of]
DESCRIPTION OF SYMBOLS 1 Foundation 2 Base 3 Large drawing 4 Horizontal member 5 Load-bearing wall panel 6 Frame 7 Structural plywood of thickness 18mm to 28mm

Claims (1)

壁部を厚さ18mmから28mmの構造用合板で構成した耐力壁パネルで形成し、床部を厚さ18mmから28mmの構造用合板で形成し、壁部四面と床部二面を堅結した六面体で構成されていることを特徴とする木造軸組構法建築物の耐震構造。The wall part is made of a load-bearing wall panel made of structural plywood with a thickness of 18 mm to 28 mm, the floor part is made of structural plywood with a thickness of 18 mm to 28 mm, and the four wall parts and the two floor parts are firmly bonded. A seismic structure for wooden frame construction, characterized by hexahedrons.
JP2003174306A 2003-06-19 2003-06-19 Earthquake-proof structure for wooden framework constructed building Pending JP2005009166A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003174306A JP2005009166A (en) 2003-06-19 2003-06-19 Earthquake-proof structure for wooden framework constructed building

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003174306A JP2005009166A (en) 2003-06-19 2003-06-19 Earthquake-proof structure for wooden framework constructed building

Publications (1)

Publication Number Publication Date
JP2005009166A true JP2005009166A (en) 2005-01-13

Family

ID=34097823

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003174306A Pending JP2005009166A (en) 2003-06-19 2003-06-19 Earthquake-proof structure for wooden framework constructed building

Country Status (1)

Country Link
JP (1) JP2005009166A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7888141B2 (en) 2007-06-19 2011-02-15 Renesas Electronics Corporation Manufacturing method for semiconductor integrated device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7888141B2 (en) 2007-06-19 2011-02-15 Renesas Electronics Corporation Manufacturing method for semiconductor integrated device

Similar Documents

Publication Publication Date Title
JP4270380B2 (en) Seismic reinforcement structure and method for wooden frame houses
JP3849447B2 (en) High-rise building frame structure
JP2013028895A (en) Building of masonry construction
JP2019100057A (en) Construction method of wooded/rc mixed structure building and wooden/rc mixed structure building
JP2005009166A (en) Earthquake-proof structure for wooden framework constructed building
JP5873194B2 (en) Seismic strengthening method and seismic strengthening frame for existing buildings
JP2007308883A (en) Framework structure of wooden building
JP2774058B2 (en) Three-storey unit building
JP3552691B2 (en) Reinforcement structure of wooden building
JP2948716B2 (en) Wooden frame panel structure
JP2003049481A (en) Construction method for wooden house
JP7432273B1 (en) Housing structure and construction method of housing structure
JP2012233374A (en) Seismic reinforcement structure
JPH06136833A (en) Floor panel with ceiling, and room unit equipped with the panel
JP3125056U (en) Seismic structure and seismic reinforcement brackets for framed wall construction buildings
JPH0638961Y2 (en) Three-story prefabricated house
JPH03199550A (en) Proof stress panel for construction and construction frame-work structure
JP2004324309A (en) Woody building
JPH10152890A (en) Building structure of wooden building
JP3146648U (en) Load-bearing wall panels
JP2774059B2 (en) Three-storey unit building
JPH10306614A (en) Base isolation structure of building employing mega-structure and flat slab
JP2001348953A (en) Construction method for wooden building
JP2007085061A (en) Framework structure of wooden building
JP3153357U (en) Three-dimensional truss structure of building using diagonal materials

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20050411

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050419

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050816