JP2005008965A - Method for operating copper smelting furnace - Google Patents

Method for operating copper smelting furnace Download PDF

Info

Publication number
JP2005008965A
JP2005008965A JP2003175698A JP2003175698A JP2005008965A JP 2005008965 A JP2005008965 A JP 2005008965A JP 2003175698 A JP2003175698 A JP 2003175698A JP 2003175698 A JP2003175698 A JP 2003175698A JP 2005008965 A JP2005008965 A JP 2005008965A
Authority
JP
Japan
Prior art keywords
smelting furnace
copper smelting
mass
slag
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003175698A
Other languages
Japanese (ja)
Other versions
JP4096825B2 (en
Inventor
Mitsumasa Hoshi
光政 星
Yuushiro Hirai
祐史郎 平井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Mining Holdings Inc
Eneos Corp
Original Assignee
Nippon Mining and Metals Co Ltd
Nippon Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining and Metals Co Ltd, Nippon Mining Co Ltd filed Critical Nippon Mining and Metals Co Ltd
Priority to JP2003175698A priority Critical patent/JP4096825B2/en
Publication of JP2005008965A publication Critical patent/JP2005008965A/en
Application granted granted Critical
Publication of JP4096825B2 publication Critical patent/JP4096825B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for operating a copper smelting furnace having ≥0.5 m total thickness of a slag layer and a matte layer by which a wider range of buildup can be efficiently melted. <P>SOLUTION: In the copper smelting furnace, the total thickness of the slag layer and the matte layer is made to ≥0.5 m. In the method for operating the copper smelting furnace, metal grains having 2 to 30 mm grain size and containing 50 to 95 mass% metallic Fe and 1 to 5 mass% C are poured onto a slag surface from above the slag surface toward the buildup mainly made up of Fe<SB>3</SB>O<SB>4</SB>and formed on the furnace bottom to efficiently melt and remove the buildup having Fe<SB>3</SB>O<SB>4</SB>as main component and formed on the furnace bottom. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【産業上の利用分野】
本発明は、非鉄金属製錬に用いられる銅製錬炉で、ビルドアップを溶解する技術に関するものである。
【0002】
【従来の技術】
銅製錬炉では、一般的に硫化物精鉱を酸化し、銅等の有価金属を濃縮したマットと、鉄分が酸素と反応したFeOとSiOが造カン反応して生成するスラグが融体として得られ、保持容器内でセットリングすることで、これらを比重差で分離する。
【0003】
この酸化反応では、原料中の鉄の酸化が進行し、一部のFeはFeOからFeに過剰に酸化される。このFeは融点が高いため、保持容器内底部に達すると固化し、図3に示すように、ビルドアップを生じる。ビルドアップが増大すると、保持容器内の有効容積を減少させるばかりでなく、保持容器内での溶体流れを乱し、保持容器内でのマットとスラグの比重分離を阻害することが知られている。
【0004】
従来、保持容器内底部のFeを主成分とするビルドアップは、還元剤として銑鉄のブロック(概型 280mmL×80mmW×50mmH 重量約5kgのインゴット)を保持容器内上部から投入し底部まで沈降、Feを銑鉄で還元して、減少させる手段が一般的であった。
【0005】
しかし、
1)この方法では、インゴット投入口直下のビルドアップが溶解されるのみで、投入口直下から1m離れた部分のビルドアップを溶解することは、不可能であった。
広範囲のビルドアップを溶解するためには、多数の投入口を設ける必要があるが、設けた場合には、投入口からのSOガスを含んだ高温ガスの漏洩、投入口付近の機械的強度の低下の問題があった。
【0006】
2)この方法では、重量2〜5kgのインゴットを運搬、投入する必要があるが、機械化が困難であり、人力運搬・投入が一般的である。しかし、この作業は、炉内温度約1300℃の製錬炉付近の作業であり、作業環境が劣悪であった。
【0007】
【発明が解決しようとする課題】
本発明は、スラグ層とマット層の合計が0.5m以上の銅製錬炉において、より広範囲のビルドアップを効率的に溶解する銅製錬炉の操業方法を提供することを目的とするものである。
【0008】
【課題を解決するための手段】
そこで、以下の発明を提案する。
(1)スラグ層とマット層の合計が0.5m以上の銅製錬炉において、粒径2〜30mmであって、メタリックFe50〜95mass%、C 1〜5mass%含む金属粒を、スラグ湯面の上方から、炉底に形成されているFeを主成分とするビルドアップに向けて、スラグ湯面上に投入することにより、炉底に形成されているFeを主成分とするビルドアップを効率的に溶解除去する銅製錬炉の操業方法。
(2)上記(1)記載の金属粒を毎秒0.15g/cm以上で、スラグ湯面の上方から投入する銅製錬炉の操業方法。
(3)上記(1)〜(2)記載の金属粒のCu品位が35mass%以下である銅製錬炉の操業方法。
(4)上記(1)〜(3)記載の金属粒が、一般廃棄物あるいは、産業廃棄物を溶融還元処理して得られる銅を含む金属鉄である銅製錬炉の操業方法。
【0009】
以下、本発明の構成を詳しく説明する。
本発明において、対象とする炉は、スラグ層とマット層の合計が0.5m以上の銅製錬炉である。例えば、自溶炉法における自溶炉、または、錬カン炉等である。
上記の層が0.5mより薄いと、金属粒の上記の層内での拡散に支障があり、溶解されるビルドアップの範囲が狭まるためである。
【0010】
使用される金属粒は、粒径2〜30mmが好ましい。この粒形であれば、反応性・拡散性が良く、また、運搬・投入の機械化を容易にするために必要な条件である。
【0011】
また組成は、メタリックFe50〜95mass%、C 1〜5mass%含む物である。この範囲の組成であれば、反応性に優れているためである。また、ここで炭素を必須としているのは、炭素が入ることにより鉄合金の融点が下がり、銅製錬炉での反応性が高まるからである。
Cu等有価物が含まれる物であれば、有価物の回収に繋がり、更に好適である。しかし、Cu品位が35mass%以下であることが望ましい。35mass%以上となると、鉄成分、炭素成分が減少し、ビルドアップへの還元効果が弱まるためである。より好ましくは、20mass%以下のものである。これは、ビルドアップへの還元効果を高めるためである。
【0012】
以上の組成を有する金属粒としては、例えば一般廃棄物あるいは、産業廃棄物を溶融還元処理して得られる銅を含む金属鉄等がある。より具体的には、「一般ゴミ直接溶融化・資源プラント」から発生した金属粒であって、例えば、炭素、銅を含む鉄粒(メタリックFe:約75mass%、C :約2.5mass%、Cu:約3.5mass%)である。
これらは、安価であるばかりでなく、銅の回収効果をもたらすからである。
【0013】
金属粒は、スラグ湯面の上方から、毎秒0.15g/cm以上でスラグ湯面上に投入させることが必要である。粒径2〜30mmの金属粒を炉底に到達させ、Feを主成分とするビルドアップを効率的に溶解するために必要な条件である。
【0014】
また、1投入口あたりの投入時間は5秒〜20分、投入間隔は10分〜1時間であることが望ましい。必要量以上の金属粒の投入は、却って炉底を損傷するおそれがあるからである。通常投入口は、2〜5箇所有することが望ましい。ビルドアップを形成する部所が、広がっており、該当の部所に的確に金属粒が、当たり、反応することが望ましいためである。
【0015】
【作用】
本発明により、銅製錬炉炉底に形成されているFeを主成分とするビルドアップを
効率的に溶解することが可能となり、保持容器内の有効容積を維持し、保持容器内での溶体流れを安定させ、マットとスラグの比重分離を効率的に行うことが可能となる。
【0016】
【実施例】
本実施例は、レンガ内径10m 湯深1.5m ビルドアップ厚さ平均700mm
スラグ層表面から天井レンガ下端距離1.2mの 銅製錬スラグCu 1.3mass%、Fe 45mass%、Fe 10mass%、SiO 29mass%をセットリングしCuを回収する銅製錬におけるスラグ処理用電気炉で実施した。
【0017】
ビルドアップの溶解状況は、図2に示すように、レンガ内面から中央部へ2mの距離のA点、A点から中央部へ更に1mの距離B点のビルドアップを、鉄棒(ステイールロッド)を装入し、天井からビルドアップ上端までの距離を測定し確認した。
【0018】
A点より、粒径2〜30mm 組成 メタリックFe75mass%、C 2.5mass%、Cu 3.5mass%の 「一般ゴミ直接溶融化・資源プラント」から発生した金属粒を、毎秒400〜700gの速度で一回あたり5kgの投入を、15分毎に行った。1時間あたり平均20kgの投入を、2日間継続した。
前述したステイールロッドにより測定したビルドアップ高さを表1に示す。投入開始時点の高さを基準0として、50mm単位で測定した。−はビルドアップの溶解を意味する。
【0019】
【表1】

Figure 2005008965
4〜8時間の遅れはあるものの、銑鉄粒投入地点A点と水平距離で1m離れたB点においても、ほぼ同様のビルドアップの溶解が確認された。
【0020】
【比較例】
本比較例は、実施例と同じ、レンガ内径10m 湯深1.5m ビルドアップ厚さ平均700mm、スラグ層表面から天井レンガ下端距離1.2mの 銅製錬スラグCu 1.3mass%、Fe45mass%、Fe 10mass%、SiO 29mass%をセットリングし、Cuを回収する銅製錬用電気炉で実施した。ビルドアップ溶解状況の測定も、実施例と同様に行った。
【0021】
A点より、形状約50mm×100mm×15mm、組成 メタリックFe93mass%、C 4mass%の1個あたり重量 約5kgの銑鉄インゴットを、15分毎に1個投入した。1時間あたり平均20kgの投入を、2日間継続した。
前述したステイールロッドにより測定したビルドアップ高さを表2に示す。投入開始時点の高さを基準0として、50mm単位で測定した。−はビルドアップの溶解を意味する。
【表2】
Figure 2005008965
ビルドアップ溶解は、A点では、実施例とほぼ同様の速度で進んだが、B点では、実施例では48時間後に250mmのビルドアップ溶解を確認できたが、比較例では50mmの溶解に止まった。
【0022】
【発明の効果】
本発明を実施することにより、以下の効果を有する。
(1)広範囲のビルドアップを効率よく溶解除去することができる。
(2)金属粒の粒径、かさ比重、投入速度等を適切な条件とすれば、ビルドアップ溶解作業を機械化でき、また、投入地点から例えば1m離れた地点のビルドアップをも効率的に溶解除去できる。
(3)ビルドアップ溶解に際しての作業環境の悪化を防止できる。
【図面の簡単な説明】
【図1】本発明の一態様であり、錬カン炉でのビルドアップ部の溶解状況を示す。
【図2】本発明の実施例であるビルドアップ溶解状況測定の様子を示す。
【図3】従来技術の一態様を示す。[0001]
[Industrial application fields]
The present invention relates to a technique for melting a buildup in a copper smelting furnace used for nonferrous metal smelting.
[0002]
[Prior art]
In a copper smelting furnace, generally, a slag produced by oxidation reaction of FeO and SiO 2 in which iron is reacted with oxygen is formed as a melt by oxidizing a sulfide concentrate and concentrating valuable metals such as copper. They are obtained and settling in a holding container to separate them by specific gravity difference.
[0003]
In this oxidation reaction, oxidation of iron in the raw material proceeds, and a part of Fe is excessively oxidized from FeO to Fe 3 O 4 . Since this Fe 3 O 4 has a high melting point, it solidifies when it reaches the bottom of the holding container, and build-up occurs as shown in FIG. It is known that an increase in buildup not only reduces the effective volume in the holding container but also disturbs the solution flow in the holding container and inhibits the specific gravity separation of the mat and slag in the holding container. .
[0004]
Conventionally, the build-up consisting mainly of Fe 3 O 4 in the bottom part of the holding container is made by adding a pig iron block (general type 280 mmL × 80 mmW × 50 mmH weight ingot of about 5 kg) as a reducing agent from the top inside the holding container to the bottom. A means for reducing precipitation and reducing Fe 3 O 4 with pig iron is common.
[0005]
But,
1) With this method, only the buildup directly under the ingot inlet was dissolved, and it was impossible to dissolve the buildup at a portion 1 m away from directly under the inlet.
In order to dissolve a wide range of buildups, it is necessary to provide a large number of inlets. However, if provided, leakage of high-temperature gas containing SO 2 gas from the inlets and mechanical strength near the inlets There was a problem of lowering.
[0006]
2) In this method, it is necessary to transport and throw ingots having a weight of 2 to 5 kg. However, mechanization is difficult, and manual feeding and throwing are common. However, this work is a work near the smelting furnace having a furnace temperature of about 1300 ° C., and the working environment was poor.
[0007]
[Problems to be solved by the invention]
An object of the present invention is to provide a method for operating a copper smelting furnace that efficiently dissolves a wider range of buildup in a copper smelting furnace in which the sum of the slag layer and the mat layer is 0.5 m or more. .
[0008]
[Means for Solving the Problems]
Therefore, the following invention is proposed.
(1) In a copper smelting furnace in which the sum of the slag layer and the mat layer is 0.5 m or more, metal particles having a particle size of 2 to 30 mm and containing metallic Fe of 50 to 95 mass% and C of 1 to 5 mass% From above, the Fe 3 O 4 formed on the bottom of the furnace is added to the slag hot water surface toward the build-up including Fe 3 O 4 formed on the furnace bottom as the main component. A method for operating a copper smelting furnace that efficiently dissolves and removes buildup.
(2) A method for operating a copper smelting furnace in which the metal particles described in (1) are introduced at a rate of 0.15 g / cm 2 or more per second from above the slag hot water surface.
(3) A method for operating a copper smelting furnace, wherein the Cu quality of the metal grains described in the above (1) to (2) is 35 mass% or less.
(4) A method for operating a copper smelting furnace in which the metal particles described in the above (1) to (3) are metallic iron containing copper obtained by melting and reducing general waste or industrial waste.
[0009]
Hereinafter, the configuration of the present invention will be described in detail.
In the present invention, the target furnace is a copper smelting furnace in which the total of the slag layer and the mat layer is 0.5 m or more. For example, a flash smelting furnace in a flash smelting furnace method or a smelting furnace.
This is because if the layer is thinner than 0.5 m, the diffusion of the metal particles in the layer is hindered and the range of build-up to be dissolved is narrowed.
[0010]
The metal particles used preferably have a particle size of 2 to 30 mm. With this particle shape, the reactivity and diffusibility are good, and it is a necessary condition for facilitating the mechanization of transportation and charging.
[0011]
Moreover, a composition is a thing containing metallic Fe50-95 mass% and C1-5 mass%. This is because the composition within this range is excellent in reactivity. The reason why carbon is essential here is that the melting point of the iron alloy is lowered and the reactivity in the copper smelting furnace is increased when carbon enters.
A thing containing valuables, such as Cu, will lead to recovery of valuables, and is more suitable. However, it is desirable that the Cu quality is 35 mass% or less. This is because when it is 35 mass% or more, the iron component and the carbon component are reduced, and the reduction effect to build-up is weakened. More preferably, it is 20 mass% or less. This is to increase the reduction effect to build-up.
[0012]
Examples of the metal particles having the above composition include metallic iron containing copper obtained by melting and reducing general waste or industrial waste. More specifically, metal particles generated from "general waste direct melting / resource plant", for example, iron particles containing carbon and copper (metallic Fe: about 75 mass%, C: about 2.5 mass%, Cu: about 3.5 mass%).
This is because they are not only inexpensive, but also provide a copper recovery effect.
[0013]
It is necessary that the metal particles be introduced onto the slag hot water surface from above the slag hot water surface at a rate of 0.15 g / cm 2 or more per second. This is a necessary condition for allowing metal particles having a particle diameter of 2 to 30 mm to reach the furnace bottom and efficiently dissolving the buildup mainly composed of Fe 3 O 4 .
[0014]
Further, it is desirable that the charging time per charging port is 5 seconds to 20 minutes, and the charging interval is 10 minutes to 1 hour. This is because if more than the required amount of metal particles is added, the bottom of the furnace may be damaged. Usually, it is desirable to have 2 to 5 input ports. This is because the parts forming the build-up are spreading, and it is desirable that the metal particles hit the corresponding parts accurately and react.
[0015]
[Action]
According to the present invention, it is possible to efficiently dissolve the buildup mainly composed of Fe 3 O 4 formed at the bottom of the copper smelting furnace, maintaining the effective volume in the holding container, It is possible to stabilize the melt flow and efficiently separate the specific gravity of the mat and slag.
[0016]
【Example】
In this example, the brick inner diameter is 10 m, the bath depth is 1.5 m, and the build-up thickness average is 700 mm
Copper smelting slag Cu 1.3 mass% of the ceiling brick bottom distance 1.2m from the slag layer surface, Fe 45mass%, Fe 3 O 4 10mass%, a slag treatment in the copper smelting to recover the SiO 2 29mass% settling was Cu Conducted in an electric furnace.
[0017]
As shown in Fig. 2, the build-up is dissolved at a point A at a distance of 2 m from the inner surface of the brick to the center and a point B at a distance of 1 m from the point A to the center. And measured the distance from the ceiling to the top of the buildup.
[0018]
From point A, the particle size is 2-30mm. Metallic Fe 75mass%, C 2.5mass%, Cu 3.5mass% of metal particles generated from "general waste direct melting and resource plant" at a rate of 400-700g per second. A 5 kg charge was made every 15 minutes. An average of 20 kg input per hour was continued for 2 days.
Table 1 shows the build-up height measured by the above-mentioned stale rod. The height at the start of charging was set to 0 as a reference, and measurement was performed in units of 50 mm. -Means buildup dissolution.
[0019]
[Table 1]
Figure 2005008965
Although there was a delay of 4 to 8 hours, almost the same build-up dissolution was confirmed at point B, which is 1 m away from the point A of the pig iron grain injection point.
[0020]
[Comparative example]
This comparative example is the same as the example, brick inner diameter 10 m, hot water depth 1.5 m, build-up thickness average 700 mm, slag Cu bottom surface distance 1.2 m from the slag layer surface Cu smelting Cu 1.3 mass%, Fe45 mass%, Fe 3 O 4 10 mass% and SiO 2 29 mass% were set and implemented in an electric furnace for copper smelting to recover Cu. The measurement of the build-up dissolution status was also performed in the same manner as in the example.
[0021]
From point A, a pig iron ingot having a weight of about 5 kg per piece having a shape of about 50 mm × 100 mm × 15 mm, a composition of metallic Fe93 mass%, and C 4 mass% was introduced every 15 minutes. An average of 20 kg input per hour was continued for 2 days.
Table 2 shows the build-up height measured with the above-mentioned stale rod. The height at the start of charging was set to 0 as a reference, and measurement was performed in units of 50 mm. -Means buildup dissolution.
[Table 2]
Figure 2005008965
The build-up dissolution proceeded at almost the same speed as the example at the point A, but at the point B, the build-up dissolution of 250 mm was confirmed after 48 hours in the example, but the dissolution was stopped at 50 mm in the comparative example. .
[0022]
【The invention's effect】
By implementing the present invention, the following effects are obtained.
(1) A wide range of buildups can be efficiently dissolved and removed.
(2) Build-up melting work can be mechanized if the particle size, bulk specific gravity, charging speed, etc. of the metal particles are set to appropriate conditions, and build-up at a point 1 m away from the charging point can be efficiently dissolved. Can be removed.
(3) It is possible to prevent the work environment from deteriorating during buildup dissolution.
[Brief description of the drawings]
FIG. 1 is an aspect of the present invention and shows a melting state of a buildup portion in a smelting furnace.
FIG. 2 shows a state of measurement of a build-up dissolution condition that is an example of the present invention.
FIG. 3 illustrates one aspect of the prior art.

Claims (4)

スラグ層とマット層の合計が0.5m以上の銅製錬炉において、粒径2〜30mmであって、メタリックFe50〜95mass%、C 1〜5mass%含む金属粒を、スラグ湯面の上方から、炉底に形成されているFeを主成分とする炉底堆積物(以下ビルドアップと称す。)に向けて、スラグ湯面上に投入することにより、炉底に形成されているFeを主成分とするビルドアップを効率的に溶解除去することを特徴とする銅製錬炉の操業方法。In the copper smelting furnace in which the total of the slag layer and the mat layer is 0.5 m or more, the metal particles having a particle size of 2 to 30 mm and containing metallic Fe of 50 to 95 mass% and C of 1 to 5 mass% from above the slag hot water surface, The Fe formed on the bottom of the furnace is poured onto the slag surface toward the bottom deposit (hereinafter referred to as build-up) mainly composed of Fe 3 O 4 formed on the bottom of the furnace. A method for operating a copper smelting furnace, which efficiently dissolves and removes a buildup containing 3 O 4 as a main component. 請求項1記載の金属粒を毎秒0.15g/cm以上で、スラグ湯面の上方から投入することを特徴とする銅製錬炉の操業方法。A method for operating a copper smelting furnace, wherein the metal particles according to claim 1 are introduced at a rate of 0.15 g / cm 2 or more per second from above the slag hot water surface. 請求項1 ̄2記載の金属粒のCu品位が35mass%以下であることを特徴とする銅製錬炉の操業方法。A method for operating a copper smelting furnace, wherein the Cu quality of the metal grains according to claim 1 is 35 mass% or less. 請求項1〜3記載の金属粒が、一般廃棄物あるいは、産業廃棄物を溶融還元処理して得られる銅を含む金属鉄であることを特徴とする銅製錬炉の操業方法。4. The method for operating a copper smelting furnace, wherein the metal particles according to claim 1 are metal waste containing copper obtained by melting and reducing general waste or industrial waste.
JP2003175698A 2003-06-20 2003-06-20 Operation method of copper smelting furnace Expired - Lifetime JP4096825B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003175698A JP4096825B2 (en) 2003-06-20 2003-06-20 Operation method of copper smelting furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003175698A JP4096825B2 (en) 2003-06-20 2003-06-20 Operation method of copper smelting furnace

Publications (2)

Publication Number Publication Date
JP2005008965A true JP2005008965A (en) 2005-01-13
JP4096825B2 JP4096825B2 (en) 2008-06-04

Family

ID=34098763

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003175698A Expired - Lifetime JP4096825B2 (en) 2003-06-20 2003-06-20 Operation method of copper smelting furnace

Country Status (1)

Country Link
JP (1) JP4096825B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009293054A (en) * 2008-06-02 2009-12-17 Pan Pacific Copper Co Ltd Method for smelting copper
JP2012211381A (en) * 2011-03-23 2012-11-01 Jx Nippon Mining & Metals Corp Method for removing deposit on furnace bottom in iron and tin-containing copper treatment furnace
US11499781B2 (en) 2017-08-23 2022-11-15 Pan Pacific Copper Co., Ltd. Concentrate burner of copper smelting furnace and operation method of copper smelting furnace
US11603578B2 (en) 2016-02-29 2023-03-14 Pan Pacific Copper Co., Ltd. Operation method of copper smelting furnace

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009293054A (en) * 2008-06-02 2009-12-17 Pan Pacific Copper Co Ltd Method for smelting copper
JP2012211381A (en) * 2011-03-23 2012-11-01 Jx Nippon Mining & Metals Corp Method for removing deposit on furnace bottom in iron and tin-containing copper treatment furnace
US11603578B2 (en) 2016-02-29 2023-03-14 Pan Pacific Copper Co., Ltd. Operation method of copper smelting furnace
US11499781B2 (en) 2017-08-23 2022-11-15 Pan Pacific Copper Co., Ltd. Concentrate burner of copper smelting furnace and operation method of copper smelting furnace

Also Published As

Publication number Publication date
JP4096825B2 (en) 2008-06-04

Similar Documents

Publication Publication Date Title
TWI398528B (en) Recovery of residues containing copper and other valuable metals
Khojiev et al. Depletion of Slag from Almalyk Copper Plant with Aluminum Containing Waste
JP5772339B2 (en) Reuse method of slag in ladle
CA1082005A (en) Alloy for rare earth treatment of molten metals
JP6816777B2 (en) Slag forming suppression method and converter refining method
JP4096825B2 (en) Operation method of copper smelting furnace
JPH1192837A (en) Refinement of copper alloy
JP6516264B2 (en) Method of treating copper smelting slag
CN114134356A (en) Zinc alloy production process
JP6183753B2 (en) Ferronickel smelting slag
JP2016191120A (en) Non-ferrous smelting slag treatment method
WO2015109416A1 (en) Product based on recycled aluminium, used in smelters in the mining industry
JP3969522B2 (en) Operation method of copper smelting furnace
JP5749546B2 (en) Method for removing bottom deposits of iron and tin-containing copper processing furnaces
RU2150523C1 (en) Method of aluminothermic refining of dust-like zinc dross fraction
CN218192451U (en) Production device of high-purity oxygen-free copper ingot blank
RU2296173C2 (en) Method of reprocessing of the tungsten concentrates
JP2778854B2 (en) Melting method of aluminum alloy
RU2124059C1 (en) Processing copper-containing wastes by pyrometallurgical method
JP4111126B2 (en) Dob treatment method for non-ferrous smelting furnace
RU2186133C1 (en) Method of processing lead cakes issued from zinc production
CN104789809B (en) Flux for amorphous alloy and smelting method for amorphous alloy
JP2003231927A (en) Method for smelting molten aluminum alloy
Singh et al. Aluminum-Lithium Alloys: Chapter 6. Melting and Casting of Aluminum–Lithium Alloys
SU595409A1 (en) Method of electric furnace depleting of moltentin slags

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050811

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051018

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060221

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060403

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20060512

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060510

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20071128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080303

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4096825

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120321

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120321

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130321

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130321

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140321

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term