【0001】
【発明の属する技術分野】
本発明は、セルロースの誘導体、具体的にはセルロースエーテルの製造における酸素濃度制御方法に関する。
【0002】
【従来の技術】
従来から、セルロースエーテルを製造するには、セルロースパルプを水酸化ナトリウムと反応させてアルカリセルロースを形成させ、次にそのアルカリセルロースをモノクロル酢酸、酸化エチレン、塩化メチル等のエーテル化物とさらに反応させて所望のセルロース誘導体を形成させる方法が行われている。しかしながら、アルカリセルロース及びセルロースエーテルは非常に解重合しやすく、セルロース分子の解重合は低分子の生成物に通じる。分子量の減少は、セルロースエーテルを溶媒に溶かした場合には低粘度の生成物をもたらす。
【0003】
アルカリセルロースの崩壊は反応槽内の酸素との反応によると考えられ、これまで、アルセル化槽又はエーテル化槽への窒素ガスの吹き込みや、ベントシール部への窒素ガスの吹き込み等により、酸素濃度を制御し、溶液粘度を制御しようとする試みが行われてきた。
【0004】
【特許文献1】
特開昭59−56401
【0005】
【発明が解決しようとする課題】
しかしながら、反応槽やベントシール部への単なる窒素ガスの吹き込みは、極端な酸素濃度の減少をもたらしたり、あるいはエアリングラインよりの空気の逆流を招き、槽内の酸素濃度が不安定な条件を形成し酸素濃度の制御が出来なくなり、その結果反応制御や製品の粘度コントロールを精密に行うことが出来ないという不具合があった。従って、例えば、予定された溶液粘度を有するセルロースエーテルが終始一貫、連続的に安定して得られるための酸素濃度の制御方法が強く望まれている。
【0006】
本発明の目的は、バラツキのない制御された溶液粘度を有するセルロースエーテルを製造するための酸素濃度制御方法を提供することにある。
【0007】
【課題を解決するための手段】
本発明の請求項1の発明は、セルロースパルプに水酸化アルカリ金属及びエーテル化剤を反応させてセルロースエーテルを製造する方法において、(イ)不活性ガス導入タイム、(ロ)酸素と不活性ガスからなる混合ガス導入タイム、および(ハ)ガス導入を停止して酸素濃度測定をするタイム、の3種のアクションタイムファクターを制御することを特徴とする密閉反応系における気相部の酸素濃度制御方法であり、請求項2の発明は、該気相部の酸素濃度が変化する密閉系が、セルロースエーテルの製造装置におけるアルセル化槽、エーテル化槽、及び/又は反応槽である請求項1記載の酸素濃度制御方法であり、また、請求項3の発明は、該セルロースエーテルが、カルボキシメチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルメチルセルロース、またはメチルセルロースである請求項1及び2記載の酸素濃度制御方法である。
【0008】
本発明に使用する、水酸化アルカリ金属としては、水酸化ナトリウム、水酸化カリウム等が挙げられる。また、本発明に使用するエーテル化剤としては、酸化エチレン等が挙げられる。
【0009】
本発明の方法について、ヒドロキシエチルセルロースを例として、図1により説明する。図1は本発明の方法を説明するセルロースエーテルの製造装置概念図である。反応槽内には先ず粉砕パルプ、TBA(ターシャルブチルアルコール)水溶液及び苛性ソーダ(NaOH)が供給され、撹拌反応させてアルセル化し、つづいて酸化エチレンを添加しエーテル化反応をさせヒドロキシエチルセルロースが製造される。
【0010】
本発明の方法は前記セルロースエーテル製造時における酸素濃度制御を的確に行う方法である。即ち、本発明によれば、図1の反応槽内に(1)不活性ガス導入系と(2)酸素を含む混合ガス導入系の2つのガスラインを図のように設置し、(3)槽内の酸素濃度測定ラインと連動させてPID方式による酸素濃度の自動制御を行うことにより、反応槽内を常に一定の酸素濃度に保持することが可能となる。ここでPID方式とは、整流器を用いた整流器PID制御を指し、電解セルによって生成される酸素の現在の圧力値である圧力検知信号をシーケンサーに送って制御し、得られた指令値を整流器に送り、この指令値に基いた電流を整流器から前記電解セルに供給して電解量を制御することをいう。
【0011】
換言すれば、図1において、(イ)不活性ガスの導入タイム(ロ)酸素を含む混合ガスの導入タイム(ハ)ガス導入を停止して酸素濃度を測定するタイム、の3つのタイムファクターをシーケンサーに組み込んで制御することにより、反応槽内の酸素濃度が制御可能となる。
【0012】
本発明の酸素制御方法は、また、図1からも分かるように、セルロースエーテル製造装置のアルセル化(アルカリセルロース化)槽、エーテル化槽及び/又は反応槽にも適用できる点に特徴がある。
【0013】
本発明のさらにもう一つの特徴は、本発明の酸素制御方法がセルロースエーテルの製造、例えば、好ましくはカルボキシメチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルメチルセルロースまたはメチルセルロース等の全てのセルロース誘導体に適用できる点にある。
【0014】
本発明の酸素濃度制御方法をセルロースエーテルの製造に用いることにより、セルロースエーテルの溶液粘度の制御が達成される。生成物の粘度をほとんど制御できない従来方法と比較して、本発明によって製造された生成物の溶液粘度は、所望粘度の約7%以内の誤差範囲の再現性で制御できる。本発明の方法により、所望の溶液粘度を有するセルロースエーテルの製造が可能となり、製品粘度規格に適合した製品を歩留まり良く製造することが可能となり、従来のような不要な溶液粘度の品種の製造在庫を持つという無駄が無くなった。
【0015】
【発明の実施の形態】
以下、本発明の実施の形態について図1により説明する。
【0016】
本発明の反応槽内の所定酸素濃度は、生成セルロースエーテルの所望の粘度、使用する原料セルロースパルプの重合度、およびその他の変数に依存する。一般的には、高粘度の生成物が望まれ、反応器のヘッドスペース中の酸素濃度は崩壊を最小限にするため低くされる。
【0017】
本発明の実施にあたり、ヒドロキシエチルセルロースの場合は、先ず酸素ガス濃度を、酸素濃度計により監視しつつ、不活性ガスライン及び一定の酸素ガス濃度を有する混合ガス(例えば空気)ラインより各ガスをアルセル化槽及び/又は反応槽に導入する。その後のガス導入量制御は、前記3つのタイムファクターを組み込んだサンプルPID方式により行う。該反応器内の酸素濃度を一定に保ちつつ、続いて反応器内にパルプ、水酸化ナトリウム、およびターシャルブチルアルコール(TBA)水溶液を添加し、撹拌しながら一定時間アルセル化する。その後、この溶液に酸化エチレン(EO)を添加し、所定温度まで加熱、撹拌反応後冷却する。得られた反応生成物をさらに中和、ろ過、洗浄、乾燥及び粉砕することにより、目的とするヒドロキシエチルセルロースが得られる。カルボキシメチルセルロース(CMC)の場合も同様の方法で、アルセル化後に、モノクロル酢酸又はモノクロル酢酸ナトリウムを加えてエーテル化反応を行う事により、CMCが得られる。
【0018】
以下本発明の実施例をあげて具体的に説明する。
【0019】
【実施例】
粘度規格の異なるA、およびBの2品種のヒドロキシエチルセルロースを以下の手順により製造した。
【0020】
まず、酸素ガス濃度を酸素濃度計にて監視しつつ、窒素ガスおよび酸素濃度を3.5%に調製した窒素と空気との混合ガスの導入を、前記の3つのファクターを組み込んだサンプルPID方式にて行い、気相部の酸素濃度が所定値に常時保たれている5m3の反応器に、所定量に計量した粉砕パルプを入れ、所定量の90wt%ターシャルブチルアルコール(TBA)水溶液、及び水酸化ナトリウム(NaOH)を添加した。この溶液を17〜18℃に保ち、所定時間撹拌しながら反応させた(アルセル化)。次いで、該溶液に所定量の酸化エチレン(EO)を添加し、所定温度まで加熱し、所定時間撹拌反応させ(エーテル化)その後冷却した。得られた反応生成物を中和、固液分離、洗浄、乾燥、粉砕し、粉体のヒドロキシエチルセルロースを得た。
【0021】
前記の方法による前記2種類の製品規格を目標とする製造が、各製品品種毎にそれぞれ条件を変えて30回実施された。
【0022】
得られた製品を2重量%の水溶液とし、25℃においてB型粘度計を用いて粘度を測定した。粘度測定結果、及びそのときの原料仕込み量と反応条件を第1表にまとめた。
【0023】
第1表 ヒドロキシエチルセルロースの製造条件と品質(粘度)−1
【0024】
<比較例1>
実施例において、酸素濃度制御を、反応器へ窒素ガスのみを送り連続PID方式にて行う以外は、前記実施例と同様の条件で、A,B2品種のヒドロキシエチルセルロースの製造をそれぞれ30回実施した。得られた結果を第2表にまとめた。
【0025】
第2表 ヒドロキシエチルセルロースの製造結果−2
【0026】
<比較例2>
同様に、酸素濃度コントロールを、まず反応器内を排気し、次ぎに窒素ガスを充満させ酸素濃度を測定、所定の酸素濃度になるまでこの操作を繰り返した。この後、反応器内に空中酸素を導入することなしに、実施例と同様の条件でA,B2品種の製造をそれぞれ30回実施した。得られた結果を第3表にまとめた。
【0027】
第3表 ヒドロキシエチルセルロースの製造結果−3
【0028】
【発明の効果】
以上説明したように、本発明の酸素濃度制御方法を用いてヒドロキシエチルセルロースを製造することにより所望の溶液粘度を有する製品がバラツキ(標準偏差)も少なく、安定して効率的に得られた。
【図面の簡単な説明】
【図1】本発明の酸素濃度制御方法の実施形態を説明するセルロースエーテルの製造装置概念図。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for controlling oxygen concentration in the production of cellulose derivatives, specifically cellulose ether.
[0002]
[Prior art]
Conventionally, cellulose ether is produced by reacting cellulose pulp with sodium hydroxide to form alkali cellulose, and then further reacting the alkali cellulose with an etherified product such as monochloroacetic acid, ethylene oxide or methyl chloride. A method of forming a desired cellulose derivative has been performed. However, alkali cellulose and cellulose ether are very easy to depolymerize, and depolymerization of cellulose molecules leads to low molecular products. The decrease in molecular weight results in a low viscosity product when the cellulose ether is dissolved in the solvent.
[0003]
The collapse of alkali cellulose is considered to be due to the reaction with oxygen in the reaction tank. Until now, the oxygen concentration has been increased by blowing nitrogen gas into the arserization tank or etherification tank, or blowing nitrogen gas into the vent seal part. Attempts have been made to control the solution viscosity.
[0004]
[Patent Document 1]
JP 59-56401 A
[0005]
[Problems to be solved by the invention]
However, the mere injection of nitrogen gas into the reaction tank or vent seal section may cause an extreme decrease in oxygen concentration or back flow of air from the air ring line, resulting in unstable oxygen concentration in the tank. As a result, the oxygen concentration cannot be controlled, and as a result, the reaction control and the product viscosity control cannot be performed accurately. Therefore, for example, there is a strong demand for a method for controlling the oxygen concentration so that cellulose ether having a predetermined solution viscosity can be obtained consistently and continuously.
[0006]
An object of the present invention is to provide an oxygen concentration control method for producing a cellulose ether having a controlled solution viscosity without variation.
[0007]
[Means for Solving the Problems]
The invention according to claim 1 of the present invention is a method for producing cellulose ether by reacting cellulose pulp with an alkali metal hydroxide and an etherifying agent. (A) Inert gas introduction time, (b) Oxygen and inert gas The oxygen concentration control in the gas phase part in the closed reaction system is characterized by controlling the three kinds of action time factors of the mixed gas introduction time comprising: (c) the time for stopping the gas introduction and measuring the oxygen concentration The invention according to claim 2 is the method according to claim 2, wherein the closed system in which the oxygen concentration in the gas phase part is changed is an arserification tank, an etherification tank, and / or a reaction tank in a cellulose ether production apparatus. Further, the invention according to claim 3 is characterized in that the cellulose ether contains carboxymethyl cellulose, hydroxyethyl cellulose, Shi methylcellulose, or a is claim 1 and 2 the oxygen concentration control method according methylcellulose.
[0008]
Examples of the alkali metal hydroxide used in the present invention include sodium hydroxide and potassium hydroxide. Moreover, ethylene oxide etc. are mentioned as an etherifying agent used for this invention.
[0009]
The method of the present invention will be described with reference to FIG. 1 using hydroxyethyl cellulose as an example. FIG. 1 is a conceptual diagram of a cellulose ether production apparatus for explaining the method of the present invention. First, ground pulp, aqueous TBA (tertiary butyl alcohol) solution and caustic soda (NaOH) are supplied into the reaction tank, and agitation is carried out to produce arselles, followed by addition of ethylene oxide and etherification to produce hydroxyethyl cellulose. The
[0010]
The method of the present invention is a method for accurately controlling the oxygen concentration during the production of the cellulose ether. That is, according to the present invention, two gas lines of (1) an inert gas introduction system and (2) a mixed gas introduction system containing oxygen are installed in the reaction tank of FIG. By automatically controlling the oxygen concentration by the PID method in conjunction with the oxygen concentration measurement line in the tank, it is possible to always keep the inside of the reaction tank at a constant oxygen concentration. Here, the PID method refers to rectifier PID control using a rectifier, sends a pressure detection signal, which is the current pressure value of oxygen generated by the electrolysis cell, to a sequencer, and controls the obtained command value to the rectifier. This means that the amount of electrolysis is controlled by supplying a current based on this command value from the rectifier to the electrolysis cell.
[0011]
In other words, in FIG. 1, three time factors are: (a) introduction time of inert gas (b) introduction time of mixed gas containing oxygen (c) time to stop gas introduction and measure oxygen concentration By incorporating and controlling in the sequencer, the oxygen concentration in the reaction vessel can be controlled.
[0012]
As can be seen from FIG. 1, the oxygen control method of the present invention is also characterized in that it can be applied to an arserification (alkali celluloseification) tank, an etherification tank and / or a reaction tank of a cellulose ether production apparatus.
[0013]
Yet another feature of the present invention is that the oxygen control method of the present invention can be applied to the production of cellulose ethers, for example, preferably all cellulose derivatives such as carboxymethylcellulose, hydroxyethylcellulose, hydroxypropylmethylcellulose or methylcellulose.
[0014]
By using the oxygen concentration control method of the present invention for the production of cellulose ether, the solution viscosity of the cellulose ether can be controlled. Compared to conventional methods where the product viscosity is hardly controllable, the solution viscosity of the product produced according to the present invention can be controlled with a reproducibility within an error range of about 7% of the desired viscosity. According to the method of the present invention, it becomes possible to produce cellulose ether having a desired solution viscosity, it is possible to produce a product that meets the product viscosity standard with high yield, and production stock of varieties having unnecessary solution viscosity as in the past. There is no waste of having.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to FIG.
[0016]
The predetermined oxygen concentration in the reaction vessel of the present invention depends on the desired viscosity of the produced cellulose ether, the degree of polymerization of the raw cellulose pulp used, and other variables. In general, highly viscous products are desired and the oxygen concentration in the reactor headspace is lowered to minimize collapse.
[0017]
In carrying out the present invention, in the case of hydroxyethyl cellulose, first, the oxygen gas concentration is monitored by an oxygen concentration meter, and each gas is alcelled from an inert gas line and a mixed gas (for example, air) line having a constant oxygen gas concentration. It introduce | transduces into a chemical-ized tank and / or a reaction tank. Subsequent gas introduction amount control is performed by the sample PID method incorporating the three time factors. While keeping the oxygen concentration in the reactor constant, pulp, sodium hydroxide, and aqueous solution of tertiary butyl alcohol (TBA) are added to the reactor, and arserized for a certain time with stirring. Thereafter, ethylene oxide (EO) is added to the solution, and the mixture is heated to a predetermined temperature and cooled after a stirring reaction. The resulting reaction product is further neutralized, filtered, washed, dried and pulverized to obtain the desired hydroxyethyl cellulose. In the case of carboxymethyl cellulose (CMC), CMC can be obtained by the same method, followed by etherification by adding monochloroacetic acid or sodium monochloroacetate after arseling.
[0018]
Examples of the present invention will be specifically described below.
[0019]
【Example】
Two types of hydroxyethyl celluloses A and B having different viscosity specifications were produced by the following procedure.
[0020]
First, a sample PID method incorporating the above three factors into the introduction of nitrogen gas and a mixed gas of nitrogen and air adjusted to an oxygen concentration of 3.5% while monitoring the oxygen gas concentration with an oxygen concentration meter In a 5 m 3 reactor in which the oxygen concentration in the gas phase is constantly maintained at a predetermined value, a predetermined amount of pulverized pulp is placed, and a predetermined amount of 90 wt% tertiary butyl alcohol (TBA) aqueous solution, And sodium hydroxide (NaOH) was added. This solution was kept at 17 to 18 ° C. and reacted with stirring for a predetermined time (arselation). Next, a predetermined amount of ethylene oxide (EO) was added to the solution, heated to a predetermined temperature, allowed to react with stirring for a predetermined time (etherification), and then cooled. The obtained reaction product was neutralized, solid-liquid separated, washed, dried and pulverized to obtain powdered hydroxyethyl cellulose.
[0021]
Manufacture targeting the two types of product standards by the above method was performed 30 times with different conditions for each product type.
[0022]
The obtained product was made into a 2% by weight aqueous solution, and the viscosity was measured using a B-type viscometer at 25 ° C. Table 1 summarizes the viscosity measurement results, raw material charge amounts and reaction conditions at that time.
[0023]
TABLE 1 Production conditions and quality (viscosity) -1 of hydroxyethyl cellulose
[0024]
<Comparative Example 1>
In the examples, the production of A and B2 varieties of hydroxyethyl cellulose was carried out 30 times under the same conditions as in the above examples, except that oxygen concentration was controlled by a continuous PID system by sending only nitrogen gas to the reactor. . The results obtained are summarized in Table 2.
[0025]
TABLE 2 Production result of hydroxyethyl cellulose-2
[0026]
<Comparative example 2>
Similarly, in order to control the oxygen concentration, the inside of the reactor was first evacuated and then filled with nitrogen gas to measure the oxygen concentration. This operation was repeated until a predetermined oxygen concentration was reached. Thereafter, production of A and B2 varieties was carried out 30 times each under the same conditions as in the Examples, without introducing air oxygen into the reactor. The results obtained are summarized in Table 3.
[0027]
Table 3. Production results of hydroxyethyl cellulose-3
[0028]
【The invention's effect】
As described above, by producing hydroxyethyl cellulose using the oxygen concentration control method of the present invention, a product having a desired solution viscosity has little variation (standard deviation) and can be obtained stably and efficiently.
[Brief description of the drawings]
FIG. 1 is a conceptual diagram of a cellulose ether production apparatus for explaining an embodiment of the oxygen concentration control method of the present invention.