JP2005007459A - Method for manufacturing perforated tube - Google Patents

Method for manufacturing perforated tube Download PDF

Info

Publication number
JP2005007459A
JP2005007459A JP2003176726A JP2003176726A JP2005007459A JP 2005007459 A JP2005007459 A JP 2005007459A JP 2003176726 A JP2003176726 A JP 2003176726A JP 2003176726 A JP2003176726 A JP 2003176726A JP 2005007459 A JP2005007459 A JP 2005007459A
Authority
JP
Japan
Prior art keywords
plate
copper
hole tube
strip
protrusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003176726A
Other languages
Japanese (ja)
Other versions
JP4124033B2 (en
Inventor
慶平 ▲冬▼
Kiyouhei Fuyu
Noboru Hagiwara
登 萩原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2003176726A priority Critical patent/JP4124033B2/en
Publication of JP2005007459A publication Critical patent/JP2005007459A/en
Application granted granted Critical
Publication of JP4124033B2 publication Critical patent/JP4124033B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/40Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/04Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of a perforated tube which is easily manufactured and high in heat exchange efficiency. <P>SOLUTION: The perforated tube 1 is constituted of a first copper line 10 in which a plurality of first projected lines 12 are formed on the under surface of a first plate-shaped body 11 and a second copper line 20 in which a plurality of second projected lines 22 are formed on the upper surface of a second plate-shaped body 21 and a recessed line part 22a is formed on the second projected line 22. The first copper line 10 and the second copper line 20 are easily positioned because the first projected line 12 formed on the first copper line 10 is made into a shape by which they are brought into face contact with the recessed line part 22a formed on the second projected lines 22 of the second copper line 20. Poor joining between the projected line part 12a of the first projected line 12 and the recessed line part 22a is difficult to generate and also bonding strength is strengthened because the plate-shaped bodies 11, 21 are difficult to deform at rolling work by forming the projected lines 12, 22 on the plate-shaped bodies 11, 21. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、各種熱交換器の構成部材や半導体の冷却部材として用いられる多穴管の製造方法に関し、特に、製造が容易で熱交換効率の高い多穴管の製造方法に関する。
【0002】
【従来の技術】
図7は、熱交換器に用いられる第1の従来例の多穴管を示す。この多穴管50は、突条54間に溝部52を有する溝付き板51と、溝部52を覆うように突条54に接合された薄板53とから構成される。突条54は、圧延により所定の高さに形成される。この多穴管50は、溝付き板51と薄板53として、銅、アルミニウム等の熱伝導率の大きな材料を用い、溝付き板51の突条54の頂部54aにロウ材55を塗布しながら溝付き板51と薄板53とを加熱状態でロール等により連続圧接することに基づく複数の管路を有している。この製造方法によれば、薄板53と溝付き板51を組み合わせているので、位置決めが不要であり、多穴管50を容易に製造することができる。
【0003】
図8は、熱交換器に用いられる第2の従来例の多穴管を示す(例えば、特許文献1参照。)。この多穴管60は、アルミニウム、銅合金等の熱伝導率の大きな金属材料からなり、平坦に成形された2つの板状の第1および第2の外壁体62、63と、これらの外壁体62、63の両側縁を連結する弧状に成形された2つの板状の外壁体64、64とから構成される。多穴管60は、第1および第2の外壁体62、63から内側に垂直方向に延在する複数の板状のフィン65からなる複数の熱媒体通路66を管内に有する。フィン65は、一端を第1の外壁体62と一体的に接続した第1のフィン体67と、一端を第2の外壁体63と一体的に接続した第2のフィン体68とから構成される。
【0004】
図9は、接合前の第1および第2のフィン体67、68の自由端部の詳細を示す。第1のフィン体67の第1の自由端縁69の中心部には、突条70が多穴管60の長手方向全長に亘って形成されるとともに、突条70の基部には、第1のフィン体67の長手方向に垂直で第1の外壁体62に平行な第1の突合せ面71が形成される。一方、第2のフィン体68の第2の自由端縁72には、断面を二等辺三角形とする凹溝73が多穴管60の長手方向全長に亘って形成されるとともに、凹溝73の両側に第2のフィン体68の長手方向に垂直で第2の外壁体63に平行な第2の突合せ面74が形成される。
【0005】
図10は、第2の従来例の熱交換器の多穴管60の製造方法を示す。先ず、第1工程において、金属材料の押出成形法により、長手方向に垂直な断面において円形をなす筒状の管状外壁体80を製作する。管状外壁体80は、その1つの直径位置に第1および第2の位置決めマーク81、82が形成され、第1の位置決めマーク81を中心として予め定めた数の第1のフィン体67と、第2の位置決めマーク82の位置を中心として予め定めた数の第2のフィン体68とが所定の間隔を設けて所定の長さに突出形成される。
【0006】
次に、第2工程において、回転軸を互いに平行に配置した一対の成形ローラ(図示せず)の複数組により、管状外壁体80を、第1および第2の位置決めマーク81、82を結ぶ直径方向に押圧変形し、第1および第2のフィン体67、68によりフィン65が形成されるように押圧成形する。すなわち、第1のフィン体67の第1の自由端縁69に形成した断面二等辺三角形の突条70が第2のフィン体68の第2の自由端縁72に形成した断面二等辺三角形の凹溝73に嵌合し、両自由端縁69、72に形成された第1および第2の突合せ面71、74とを一致させる。次いで管状外壁体80の押圧を維持しながら第1および第2のフィン体67、68の第1および第2の自由端縁69、72に塗布乾燥させてあるフラックス中のロウ付け用合金が溶融する温度以上に加熱してロウ付け用合金を溶解した後に冷却し、対向している第1および第2のフィン体67、68の第1および第2の自由端縁69、72をロウ付け固定することにより、所望の多穴管60を得る。この製造方法によれば、第1のフィン体67と第2のフィン体68の接合面積が大きいため、接合部分を介して隣り合う熱媒体通路66が貫通して熱変換効率が悪くなることはない。
【0007】
【特許文献1】
特開平5−164491号公報(図1)
【0008】
【発明が解決しようとする課題】
しかしながら、第1の従来例の多穴管50によれば、薄板53は曲げ剛性が小さいので、ロール加工時に薄板53がカールし、薄板53と溝付き板51の突条54との間隔を均一にすることが困難である。また、薄板53と突条54との間で溶解したロウ材が均一に拡散され難いので、ボイドが生じて接合されない部分が生じ、各管路間が貫通して、管路中の熱媒体の流れが悪くなるため、熱交換効率が低下するという問題がある。また、溝付き板51の突条54を高く形成するほど、圧延回数が増えコストが高くなるという問題がある。
【0009】
第2の従来例の多穴管60によれば、管状外壁体80の所定の位置を加圧し、相対するフィン体67、68の先端を嵌合してフィン65を形成するように押圧成形しなければならないため、それぞれのフィン体67、68の位置合せが容易ではなく製造が困難であるという問題がある。
【0010】
従って、本発明の目的は、製造が容易で熱交換効率の高い多穴管の製造方法を提供することにある。
【0011】
【課題を解決するための手段】
本発明は、上記目的を達成するため、第1の板状体の一つの面に複数の突条部を形成し、前記一つの面に対向する第2の板状体の面の前記複数の凸条部に対向する位置に複数の凹条部を形成し、前記第1の板状体の前記複数の凸条部と前記第2の板状体の前記複数の凹条部とを嵌合させ、前記複数の凸条部と前記複数の凹条部の接触面を接合することを特徴とする多穴管の製造方法を提供する。
この構成によれば、第1および第2の板状体に複数の凸条部および凹条部を形成することにより、曲げ剛性が大きくなり、ロール加工時に第1および第2の板状体がカールすることがなくなる。また、第1の板状体の複数の凸条部と第2の板状体の複数の凹条部とを嵌合させれば、第1および第2の板状体の位置決めができる。
【0012】
【発明の実施の形態】
図1は、本発明の第1の実施の形態に係る多穴管を示す。この多穴管1は、銅、銅合金、アルミニウム等の熱伝導率の大きな材料から形成されるが、本実施の形態では銅を用いる。この多穴管1は、第1の板状体11の下面に所定の間隔に複数の第1の突条12が形成された第1の銅条10と、第2の板状体21の上面に所定の間隔に複数の第2の突条22が形成され、さらに第2の突条22に凹条部22aが形成された第2の銅条20とから構成される。第1および第2の板状体11、21、第1および第2の突条12、22により囲まれた空間は、冷媒を流す熱媒体通路2となる。
【0013】
図2は、第1の銅条10を示す。第1の銅条10に形成された第1の突条12は、その先端に丸みを有する凸条部12aが形成されている。突条12は、隣接する突条12との間に溝部15を有し、溝部15は、第1の銅条10が第2の銅条20と接合されたときに熱媒体通路2を形成するようになっている。また、第1の突条12のピッチは、第2の銅条20の凹条部22aのピッチと同一に形成されている。
【0014】
図3は、第2の銅条20を示す。第2の銅条20に形成された第2の突条22は、第1の銅条10の凸条部12aと係合する凹条部22aが形成され、その凹条部22aは、丸みを帯びた形状としてある。そのため、凸条部12aと凹条部22aとを一致させれば凸条部12aと凹条部22aとが面接触する。第2の突条22間は、第1の銅条10と接合されたときに熱媒体通路2となる溝部25が形成される。
【0015】
次に、多穴管1の製造方法について説明する。第1の銅条10は、所定の形状の溝を設けたロールと平坦な表面を有するロールからなる溝圧延機を用いて銅板を圧延することにより製作される。第2の銅条20は、第1の銅条10と同様に溝圧延機を用いて銅板を圧延することにより製作される。なお、溝部15、25は、切削加工により形成してもよい。まず、第1の銅条10に形成された第1の突条12と第2の銅条20に形成された第2の突条22とを互いに対向するように配置する。次に、第1の突条12あるいは凹条部22aに接合用のロウ材を塗布する。次に、第1の突条12の凸条部12aと第2の突条22の凹条部22aとを一致させながら図示しないロール等で連続的に加圧接合する。この加圧接合時に凸条部12aおよび凹条部22aとの温度がロウ材の融点以上になるように加温することで、ロウ材が溶解して凸条部12aと凹条部22aとの間に回り込むことにより第1および第2の銅条10、20を接合する。このようにして多穴管1が製造される。
【0016】
この第1の実施の形態によれば、以下の効果が得られる。
(イ)第1の銅条10に形成された第1の突条12の凸条部12aと第2の銅条20の第2の突条22に形成された凹条部22aとが嵌合する形状としてあるため、第1の銅条10の凸条部12aと第2の銅条20の凹条部22aとを一致させるだけで、第1および第2の銅条10、20を嵌合させることができる。したがって、第1の銅条10と第2の銅条20との位置決めが容易となる。
(ロ)板状体11、21に突条12、22を形成することにより曲げ剛性が大となって、ロールによる加圧接合時に板状体11、21がカールし難くなるため、凸条部12aと凹条部22aとの接触部分に毛細管効果によりロウ材が行き渡り、接合不良が生じ難くなるとともに、接合面積が増えるので、接合強度も従来のものに比べて強固になる。
(ハ)突条12、22を両方の板状体11、21に設けることにより、一方の板状体にのみ突条を形成したものと比較して突条の高さを高くする必要がなくなるため、ロール加工を容易、かつ、低コストで連続的に行うことができる。
(ニ)ロール加工による溝の形成は、切削加工と比較して低コストで行うことができる。
【0017】
図4は、本発明の第2の実施の形態に係る多穴管を示す。この第2の実施の形態に係る多穴管1は、第1の実施の形態とは第1および第2の凸条12、22の形状が異なる。すなわち、第2の実施の形態の第1および第2の突条12、22が断面矩形状に形成され、凹条部22aも断面矩形状に形成されている。この多穴管1の製造方法は、第1の実施の形態と同様である。
【0018】
この第2の実施の形態によれば、第1の実施の形態と同様に、第1の銅条10と第2の銅条20との位置決めが容易となる。また、第1の実施の形態と同様に板状体11、21に突条12、22を形成したので、ロールによる加圧接合時に板状体11、21がカールし難くなるため、接合不良が生じ難くなるとともに、接合強度も強固になる。
【0019】
図5は、本発明の第3の実施の形態に係る多穴管を示す。この第3の実施の形態に係る多穴管1は、第2の実施に形態とは、第1の突条12の形状が異なる。すなわち、第3の実施の形態の第1の突条12の凸条部12aの両側の突合せ面12cは、第2の突条22の凹条部22aの両側の突合せ面22cに接触するように相補形状を有している。
【0020】
この第3の実施の形態によれば、第2の実施の形態と比較して、第1の突条12と第2の突条22との接触面積が大きくなるため、接合強度が強固になる。また、第1の突条12と第2の突条22との接合長さが長くなるため、接合不良が生じても隣り合う熱媒体通路間で熱媒体が行き来することが困難であり、熱交換効率が悪くなることはない。
【0021】
図6は、本発明の第4の実施の形態に係る多穴管を示す。この第4の実施の形態に係る多穴管1は、第1の実施の形態とは、第1の突条12の形状が異なる。すなわち、第4の実施の形態の第1の突条12は、第2の突条22と同一の形状を有しており、互いの凹条部12b、22aに他方の凸条部12a、22bが係止する構造となっている。
【0022】
この第4の実施の形態によれば、第1〜3の実施の形態の効果に加え、第1および第2の銅条10、20は、同一の形状を有しているため、第1〜3の実施の形態と比較して、同一のロールを用いて形成することができることから、生産性が高くなる。
【0023】
なお、本発明に係る多穴管1は、接合に使用するロウ材や半田の化学成分に関して特に制限がない。すなわち、りん銅ロウ、銀ロウ及び半田のいずれでもよい。また、ロウ材、半田の形状に関しても制限がなく、シート、ペースト及び半田めっきのいずれでもよい。さらに、接合時の加熱温度及び雰囲気に関しても制限がない。さらに、銅条の化学成分、厚み、幅及び溝幅に関しても制限がない。多穴管1の材料としては、純銅および銅合金の他に熱伝導性の良好なアルミニウム等の金属材料であってもよい。また、凹部及び凹部と相補的な突条の形状ならびに突条の頂部の凹部または突起については、台形、逆台形、矩形及び円弧状のいずれでもよい。
【0024】
【実施例】
以下、本発明の実施例について説明する。なお、銅条10、20は、上述したように、所定形状の溝を設けたロールと平坦表面を有するロールからなる溝圧延機を用いて銅板を圧延することにより所定形状の溝部15、25と第1および第2の突条12、22を有する銅条10、20を連続して形成した。
【0025】
下記の実施例において、銅条10、20は、上記の方法で成形したものを用いて銅製の多穴管1を製造した。表1は、実施例1〜4の製造条件を示す。
【表1】

Figure 2005007459
【0026】
<実施例1>
実施例1は、本発明の第1の実施の形態に対応するものであり、第1の板状体11の厚み、第1の突条12の高さ及びピッチがそれぞれ2mm、1mm、2mmの第1の銅条10と、第2の板状体21の厚み、第2の突条22の高さ及びピッチがそれぞれ2mm、1mm、2mmであり、第2の突条22の頂部に深さが0.2mmの凹条部22aを有する第2の銅条20とを用いた。第1の銅条10の溝部15、および第2の銅条20の溝部25をそれぞれ内側にして、りん銅ロウ(B−CuP2)シートを介して、第1の銅条10の第1の突条12が第2の銅条20の第2の突条22の凹条部22aに嵌め込まれるように配置する。次に、これらを850℃に保持したN雰囲気炉中を連続して通過させて加圧することにより接合を行い、図1に示す多穴管1を製造した。
【0027】
<実施例2>
実施例2は、本発明の第2の実施の形態に対応するものであり、第1の板状体11の厚み、第1の突条12の高さ及びピッチがそれぞれ2mm、1mm、2.5mmの第1の銅条10と、第2の板状体21の厚み、第2の突条22の高さ及びピッチがそれぞれ2mm、1.2mm、2.5mmであり、第2の突条22の頂部に深さが0.2mmの凹条部22aを有する第2の銅条20とを用いた。第1の銅条10の溝部15と第2の銅条20の溝部25をそれぞれ内側にして、りん銅ロウ(B−CuP2)シートを介して、第1の銅条10の第1の突条12が第2の銅条20の第2の突条22の頂部の凹条部22aに嵌め込まれるように配置する。次に、これらを850℃に保持したN雰囲気炉中を連続して通過させて加圧することにより接合を行い、図4に示す多穴管1を製造した。
【0028】
<実施例3>
実施例3は、本発明の第3の実施の形態に対応するものであり、第1の板状体11の厚み、第1の突条12の高さ及びピッチがそれぞれ1mm、0.5mm、1.5mm、第1の突条12の先端に高さ0.2mmの突起12aを有する第1の銅条10と、第2の板状体21の厚み、第1の突条22の高さ及びピッチがそれぞれ1mm、0.5mm、1.5mmであり、第2の突条22の頂部に深さ0.2mmの第2の凹条部22aを有する第2の銅条20を用いた。第1の銅条10の溝部15と第2の銅条20の溝部25をそれぞれ内側にして、りん銅ロウ(B−CuP2)シートを介して、第1の銅条10の第1の突条12の頂部の突起12aが第2の銅条20の第2の突条22の頂部の凹条部22aに嵌め込まれるように配置する。次に、これらを850℃に保持したN雰囲気炉中を連続して通過させて加圧することにより接合を行い、図5に示す多穴管1を製造した。
【0029】
<実施例4>
実施例4は、本発明の第4の実施の形態に対応するものであり、第1および第2の板状体11、22の厚み、第1および第2の突条12、22の高さ、及び第1および第2の突条12、22のピッチがそれぞれ2mm、1.1mm、2mmであり、第1および第2の突条12、22の頂部に深さが0.3mmの第1および第2の凹条部12b、22aを有する第1および第2の銅条10、20を用いた。第1の銅条10の溝部15と第2の銅条20の溝部25をそれぞれ内側にして、りん銅ロウ(B−CuP2)シートを介して、第1の銅条10の凸条部12aが第2の銅条20の凹条部22aに嵌め込まれ、第2の銅条20の凸条部22bが第1の銅条10の凹条部12bに嵌め込まれるように配置する。次に、これらを850℃に保持したN雰囲気炉中を連続して通過させて加圧することにより接合を行い、図6に示す多穴管1を連続して製造した。
【0030】
実施例1〜4は、いずれも成形時の位置合わせが容易で、ロール加工時にカールすることなく、良好に接合を行うことができた。
【0031】
【発明の効果】
以上説明したとおり、本発明に係る多穴管の製造方法によれば、第1および第2の板状体に複数の凸条部および凹条部を形成することにより、曲げ剛性が大きくなり、ロール加工時に第1および第2の板状体がカールすることがなくなり、また、第1の板状体の複数の凸条部と第2の板状体の複数の凹条部とを嵌合させれば、第1および第2の板状体の位置決めができるため、製造が容易で熱交換効率の高い多穴管を製造することができる。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態に係る多穴管の要部断面図である。
【図2】本発明の第1の実施の形態に係る第1の銅条の要部断面図である。
【図3】本発明の第1の実施の形態に係る第2の銅条の要部断面図である。
【図4】本発明の第2の実施の形態に係る多穴管の要部断面図である。
【図5】本発明の第3の実施の形態に係る多穴管の要部断面図である。
【図6】本発明の第4の実施の形態に係る多穴管の要部断面図である。
【図7】第1の従来例の多穴管の要部断面図である。
【図8】第2の従来例の多穴管の要部断面図である
【図9】第2の従来例の接合前の第1および第2のフィン体の自由端部の詳細を示す要部断面図である。
【図10】第2の従来例の多穴管の製造方法を示す要部断面図である。
【符号の説明】
1 多穴管
2 熱媒体通路
10 第1の銅条
11 第1の板状体
12 第1の突条
12a 凸条部
12b 凹条部
12c 突合せ面
15、25 溝部
20 第2の銅条
21 第2の板状体
22 第2の突条
22a 凹条部
22b 凸条部
22c 突合せ面
23 凹部
25 溝部
50 多穴管
51 溝付き板
52 溝部
53 薄板
54 突条
54a 頂部
55 ロウ材
60 多穴管
62 第1の外壁体
63 第2の外壁体
64 弧状に成形された外壁体
65 フィン
66 熱媒体通路
67 第1のフィン体
68 第2のフィン体
69 第1の自由端縁
72 第2の自由端縁
70 突条
71 第1の突合せ面
74 第2の突合せ面
73 凹溝
80 管状外壁体
81 第1の位置決めマーク
82 第2の位置決めマーク[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing a multi-hole tube used as a constituent member of various heat exchangers or a semiconductor cooling member, and more particularly to a method for manufacturing a multi-hole tube that is easy to manufacture and has high heat exchange efficiency.
[0002]
[Prior art]
FIG. 7 shows a first conventional multi-hole tube used in a heat exchanger. The multi-hole tube 50 includes a grooved plate 51 having a groove 52 between the protrusions 54 and a thin plate 53 joined to the protrusion 54 so as to cover the groove 52. The protrusion 54 is formed at a predetermined height by rolling. This multi-hole tube 50 uses a material having a high thermal conductivity such as copper or aluminum as the grooved plate 51 and the thin plate 53, and applies the brazing material 55 to the top 54 a of the protrusion 54 of the grooved plate 51. It has a plurality of pipelines based on continuous pressing the attached plate 51 and the thin plate 53 with a roll or the like in a heated state. According to this manufacturing method, since the thin plate 53 and the grooved plate 51 are combined, positioning is unnecessary and the multi-hole tube 50 can be easily manufactured.
[0003]
FIG. 8 shows a second conventional multi-hole tube used in a heat exchanger (see, for example, Patent Document 1). The multi-hole tube 60 is made of a metal material having a high thermal conductivity such as aluminum or copper alloy, and is formed into two plate-like first and second outer wall bodies 62 and 63 which are formed flat, and these outer wall bodies. It comprises two plate-like outer wall bodies 64, 64 formed in an arc shape that connect both side edges of 62, 63. The multi-hole tube 60 has a plurality of heat medium passages 66 formed of a plurality of plate-like fins 65 extending vertically inward from the first and second outer wall bodies 62 and 63 in the tube. The fin 65 includes a first fin body 67 whose one end is integrally connected to the first outer wall body 62, and a second fin body 68 whose one end is integrally connected to the second outer wall body 63. The
[0004]
FIG. 9 shows the details of the free ends of the first and second fin bodies 67, 68 before joining. At the center of the first free end edge 69 of the first fin body 67, a ridge 70 is formed over the entire length in the longitudinal direction of the multi-hole tube 60, and at the base of the ridge 70, the first A first butting surface 71 that is perpendicular to the longitudinal direction of the fin body 67 and parallel to the first outer wall body 62 is formed. On the other hand, in the second free end edge 72 of the second fin body 68, a groove 73 having an isosceles triangle cross section is formed over the entire length of the multi-hole tube 60 in the longitudinal direction. A second butting surface 74 is formed on both sides, which is perpendicular to the longitudinal direction of the second fin body 68 and parallel to the second outer wall body 63.
[0005]
FIG. 10 shows a manufacturing method of the multi-hole tube 60 of the heat exchanger of the second conventional example. First, in the first step, a tubular outer wall body 80 having a circular shape in a cross section perpendicular to the longitudinal direction is manufactured by an extrusion method of a metal material. The tubular outer wall body 80 is formed with first and second positioning marks 81 and 82 at one diameter position thereof, a predetermined number of first fin bodies 67 centering on the first positioning mark 81, and A predetermined number of second fin bodies 68 are formed so as to protrude to a predetermined length with a predetermined interval centered on the position of the two positioning marks 82.
[0006]
Next, in the second step, the diameter connecting the tubular outer wall body 80 to the first and second positioning marks 81 and 82 by a plurality of pairs of a pair of forming rollers (not shown) whose rotation axes are arranged in parallel to each other. The first and second fin bodies 67 and 68 are pressed and deformed so that the fins 65 are formed. That is, an isosceles triangular protrusion 70 formed on the first free end edge 69 of the first fin body 67 has an isosceles triangular section formed on the second free end edge 72 of the second fin body 68. It fits into the concave groove 73 and the first and second butted surfaces 71 and 74 formed on both free end edges 69 and 72 are made to coincide with each other. Next, the brazing alloy in the flux applied and dried on the first and second free edges 69 and 72 of the first and second fin bodies 67 and 68 is melted while maintaining the pressure of the tubular outer wall body 80. The first and second free edges 69 and 72 of the first and second fin bodies 67 and 68 facing each other are cooled and then cooled after the brazing alloy is melted by heating to a temperature above Thus, the desired multi-hole tube 60 is obtained. According to this manufacturing method, since the joining area of the first fin body 67 and the second fin body 68 is large, the adjacent heat medium passage 66 passes through the joining portion and the heat conversion efficiency is deteriorated. Absent.
[0007]
[Patent Document 1]
JP-A-5-164491 (FIG. 1)
[0008]
[Problems to be solved by the invention]
However, according to the multi-hole tube 50 of the first conventional example, since the thin plate 53 has a small bending rigidity, the thin plate 53 curls during roll processing, and the interval between the thin plate 53 and the protrusion 54 of the grooved plate 51 is uniform. It is difficult to make. In addition, since the brazing material melted between the thin plate 53 and the protrusion 54 is difficult to be uniformly diffused, voids are formed and portions that are not joined are formed, and the pipes penetrate between the pipes, and the heat medium in the pipes Since the flow becomes worse, there is a problem that the heat exchange efficiency is lowered. Moreover, there is a problem that the higher the protrusion 54 of the grooved plate 51 is, the higher the number of rolling times and the higher the cost.
[0009]
According to the multi-hole tube 60 of the second conventional example, a predetermined position of the tubular outer wall body 80 is pressurized and press-molded so that the tips of the opposing fin bodies 67 and 68 are fitted to form the fin 65. Therefore, there is a problem that the alignment of the fin bodies 67 and 68 is not easy and is difficult to manufacture.
[0010]
Accordingly, an object of the present invention is to provide a method for manufacturing a multi-hole tube that is easy to manufacture and has high heat exchange efficiency.
[0011]
[Means for Solving the Problems]
In order to achieve the above object, the present invention forms a plurality of protrusions on one surface of the first plate-like body, and the plurality of surfaces of the second plate-like body facing the one surface. A plurality of concave strip portions are formed at positions facing the convex strip portions, and the plurality of convex strip portions of the first plate-like body and the plurality of concave strip portions of the second plate-like body are fitted. And providing a method for manufacturing a multi-hole tube, wherein the contact surfaces of the plurality of ridges and the plurality of ridges are joined.
According to this configuration, by forming a plurality of ridges and recesses on the first and second plate-like bodies, the bending rigidity is increased, and the first and second plate-like bodies are formed during roll processing. No curling. In addition, the first and second plate-like bodies can be positioned by fitting the plurality of convex stripe portions of the first plate-like body and the plurality of concave stripe portions of the second plate-like body.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 shows a multi-hole tube according to a first embodiment of the present invention. The multi-hole tube 1 is formed of a material having a high thermal conductivity such as copper, a copper alloy, or aluminum. In the present embodiment, copper is used. The multi-hole tube 1 includes a first copper strip 10 in which a plurality of first protrusions 12 are formed at a predetermined interval on a lower surface of a first plate-like body 11, and an upper surface of a second plate-like body 21. A plurality of second ridges 22 are formed at predetermined intervals, and the second ridge 22 is further formed with a second copper strip 20 having a recess 22a. A space surrounded by the first and second plate-like bodies 11 and 21 and the first and second protrusions 12 and 22 serves as a heat medium passage 2 through which a refrigerant flows.
[0013]
FIG. 2 shows the first copper strip 10. As for the 1st protrusion 12 formed in the 1st copper strip 10, the convex strip part 12a which has the roundness in the front-end | tip is formed. The ridge 12 has a groove portion 15 between the adjacent ridges 12, and the groove portion 15 forms the heat medium passage 2 when the first copper strip 10 is joined to the second copper strip 20. It is like that. Further, the pitch of the first protrusions 12 is formed to be the same as the pitch of the concave strip portions 22 a of the second copper strip 20.
[0014]
FIG. 3 shows the second copper strip 20. The second protrusion 22 formed on the second copper strip 20 has a concave portion 22a that engages with the convex portion 12a of the first copper strip 10, and the concave portion 22a is rounded. It has a tinged shape. Therefore, if the protruding line part 12a and the recessed line part 22a are made to correspond, the protruding line part 12a and the recessed line part 22a will surface-contact. Between the second protrusions 22, a groove portion 25 is formed which becomes the heat medium passage 2 when joined to the first copper strip 10.
[0015]
Next, a method for manufacturing the multi-hole tube 1 will be described. The 1st copper strip 10 is manufactured by rolling a copper plate using the groove rolling machine which consists of a roll provided with the groove | channel of a predetermined shape, and a roll which has a flat surface. The 2nd copper strip 20 is manufactured by rolling a copper plate using a groove rolling machine similarly to the 1st copper strip 10. In addition, you may form the groove parts 15 and 25 by cutting. First, the 1st protrusion 12 formed in the 1st copper strip 10 and the 2nd protrusion 22 formed in the 2nd copper strip 20 are arrange | positioned so that it may mutually oppose. Next, a joining brazing material is applied to the first ridge 12 or the recess 22a. Next, pressure bonding is continuously performed with a roll or the like (not shown) while the protruding ridges 12a of the first ridges 12 and the concave ridges 22a of the second ridges 22 are matched. By heating so that the temperature of the protrusions 12a and the recesses 22a is equal to or higher than the melting point of the brazing material during the pressure bonding, the brazing material is melted and the protrusions 12a and the recesses 22a The first and second copper strips 10 and 20 are joined by wrapping around. In this way, the multi-hole tube 1 is manufactured.
[0016]
According to the first embodiment, the following effects can be obtained.
(A) The first protrusion 12 formed on the first copper strip 10 and the second protrusion 22a of the second copper strip 20 are engaged with the first protrusion 12a. Therefore, the first and second copper strips 10 and 20 can be fitted by simply matching the convex strip portion 12a of the first copper strip 10 with the concave strip portion 22a of the second copper strip 20. Can be made. Therefore, the first copper strip 10 and the second copper strip 20 can be easily positioned.
(B) By forming the ridges 12 and 22 on the plate-like bodies 11 and 21, the bending rigidity becomes large, and the plate-like bodies 11 and 21 are difficult to curl at the time of pressure bonding with a roll. The brazing material spreads to the contact portion between the 12a and the concave portion 22a due to the capillary effect, and it becomes difficult to cause poor bonding and the bonding area increases, so that the bonding strength becomes stronger than the conventional one.
(C) By providing the ridges 12 and 22 on both plate-like bodies 11 and 21, it is not necessary to increase the height of the ridges compared to the case where the ridges are formed only on one plate-like body. Therefore, roll processing can be easily performed at low cost continuously.
(D) Groove formation by roll processing can be performed at a lower cost than cutting.
[0017]
FIG. 4 shows a multi-hole tube according to a second embodiment of the present invention. The multi-hole tube 1 according to the second embodiment is different from the first embodiment in the shapes of the first and second ridges 12 and 22. That is, the 1st and 2nd protrusions 12 and 22 of 2nd Embodiment are formed in the cross-sectional rectangular shape, and the recessed strip part 22a is also formed in the cross-sectional rectangular shape. The manufacturing method of the multi-hole tube 1 is the same as that of the first embodiment.
[0018]
According to the second embodiment, the positioning of the first copper strip 10 and the second copper strip 20 is facilitated as in the first embodiment. In addition, since the ridges 12 and 22 are formed on the plate-like bodies 11 and 21 as in the first embodiment, the plate-like bodies 11 and 21 are less likely to curl at the time of pressure bonding with a roll. It becomes difficult to occur and the bonding strength is also strengthened.
[0019]
FIG. 5 shows a multi-hole tube according to a third embodiment of the present invention. The multi-hole tube 1 according to the third embodiment is different from the second embodiment in the shape of the first protrusion 12. In other words, the abutting surfaces 12c on both sides of the convex portion 12a of the first ridge 12 of the third embodiment are in contact with the abutting surfaces 22c on both sides of the concave portion 22a of the second ridge 22. It has a complementary shape.
[0020]
According to the third embodiment, compared with the second embodiment, the contact area between the first protrusion 12 and the second protrusion 22 is increased, so that the bonding strength is strengthened. . In addition, since the joining length between the first protrusion 12 and the second protrusion 22 becomes long, it is difficult for the heat medium to go back and forth between the adjacent heat medium passages even if a joint failure occurs. The exchange efficiency does not deteriorate.
[0021]
FIG. 6 shows a multi-hole tube according to a fourth embodiment of the present invention. The multi-hole tube 1 according to the fourth embodiment is different from the first embodiment in the shape of the first protrusion 12. That is, the 1st protrusion 12 of 4th Embodiment has the same shape as the 2nd protrusion 22, and the other protrusion 12a, 22b is mutually on the other recess 12b, 22a. Has a structure to lock.
[0022]
According to the fourth embodiment, in addition to the effects of the first to third embodiments, the first and second copper strips 10 and 20 have the same shape. Compared with the third embodiment, it can be formed using the same roll, so that productivity is increased.
[0023]
The multi-hole tube 1 according to the present invention is not particularly limited with respect to the chemical components of the brazing material and solder used for joining. That is, any of phosphor copper solder, silver solder and solder may be used. Moreover, there is no restriction | limiting also about the shape of a brazing material and solder, Any of a sheet | seat, a paste, and solder plating may be sufficient. Furthermore, there are no restrictions regarding the heating temperature and atmosphere during bonding. Furthermore, there are no restrictions regarding the chemical composition, thickness, width and groove width of the copper strip. The material of the multi-hole tube 1 may be a metal material such as aluminum having good thermal conductivity in addition to pure copper and a copper alloy. Further, the shape of the recess and the protrusion complementary to the recess and the recess or protrusion at the top of the protrusion may be trapezoidal, inverted trapezoidal, rectangular or arcuate.
[0024]
【Example】
Examples of the present invention will be described below. As described above, the copper strips 10 and 20 are formed by rolling a copper plate using a groove rolling machine including a roll provided with a predetermined shape groove and a roll having a flat surface, thereby forming the groove portions 15 and 25 having a predetermined shape. Copper strips 10 and 20 having first and second protrusions 12 and 22 were formed continuously.
[0025]
In the following Examples, the copper strips 10 and 20 produced the copper multi-hole tube 1 using what was shape | molded by said method. Table 1 shows the production conditions of Examples 1 to 4.
[Table 1]
Figure 2005007459
[0026]
<Example 1>
Example 1 corresponds to the first embodiment of the present invention, and the thickness of the first plate 11, the height and pitch of the first protrusions 12 are 2 mm, 1 mm, and 2 mm, respectively. The thickness of the first copper strip 10 and the second plate-like body 21, the height and pitch of the second projection 22 are 2 mm, 1 mm, and 2 mm, respectively, and the depth at the top of the second projection 22 Used the 2nd copper strip 20 which has the concave strip part 22a of 0.2 mm. The first protrusion of the first copper strip 10 with the groove portion 15 of the first copper strip 10 and the groove portion 25 of the second copper strip 20 inside, respectively, via a phosphor copper braze (B-CuP2) sheet. It arrange | positions so that the strip | line 12 may be inserted in the recessed strip part 22a of the 2nd protrusion 22 of the 2nd copper strip 20. As shown in FIG. Next, these were continuously passed through a N 2 atmosphere furnace maintained at 850 ° C. and pressurized to perform bonding, and the multi-hole tube 1 shown in FIG. 1 was manufactured.
[0027]
<Example 2>
Example 2 corresponds to the second embodiment of the present invention, and the thickness of the first plate-like body 11 and the height and pitch of the first protrusion 12 are 2 mm, 1 mm, 2. The thickness of the first copper strip 10 of 5 mm, the second plate-like body 21, the height and pitch of the second projection 22 are 2 mm, 1.2 mm, and 2.5 mm, respectively. The 2nd copper strip 20 which has the concave strip part 22a whose depth is 0.2 mm in the top part of 22 was used. The first protrusion of the first copper strip 10 with the groove portion 15 of the first copper strip 10 and the groove portion 25 of the second copper strip 20 inside each other and a phosphor copper braze (B-CuP2) sheet interposed therebetween. 12 is arrange | positioned so that it may fit in the concave strip part 22a of the top part of the 2nd protrusion 22 of the 2nd copper strip 20. As shown in FIG. Next, these were continuously passed through a N 2 atmosphere furnace maintained at 850 ° C. and pressurized to perform bonding, and the multi-hole tube 1 shown in FIG. 4 was manufactured.
[0028]
<Example 3>
Example 3 corresponds to the third embodiment of the present invention, and the thickness of the first plate 11, the height and pitch of the first protrusion 12 are 1 mm, 0.5 mm, respectively. 1.5 mm, the thickness of the first copper strip 10 having the projection 12 a having a height of 0.2 mm at the tip of the first projection 12, the thickness of the second plate-like body 21, and the height of the first projection 22 In addition, the second copper strip 20 having a pitch of 1 mm, 0.5 mm, and 1.5 mm, respectively, and having a second concave strip portion 22 a having a depth of 0.2 mm on the top of the second projection 22 was used. The first protrusion of the first copper strip 10 with the groove portion 15 of the first copper strip 10 and the groove portion 25 of the second copper strip 20 inside each other and a phosphor copper braze (B-CuP2) sheet interposed therebetween. The twelve top protrusions 12 a are arranged so as to be fitted into the top recesses 22 a of the second protrusions 22 of the second copper strip 20. Next, these were continuously passed through an N 2 atmosphere furnace maintained at 850 ° C. and pressurized to perform bonding, and the multi-hole tube 1 shown in FIG. 5 was manufactured.
[0029]
<Example 4>
Example 4 corresponds to the fourth embodiment of the present invention, and is the thickness of the first and second plate-like bodies 11 and 22 and the height of the first and second protrusions 12 and 22. The first and second protrusions 12 and 22 have pitches of 2 mm, 1.1 mm, and 2 mm, respectively, and the tops of the first and second protrusions 12 and 22 have a depth of 0.3 mm. And the 1st and 2nd copper strips 10 and 20 which have the 2nd concave strip part 12b and 22a were used. With the groove portion 15 of the first copper strip 10 and the groove portion 25 of the second copper strip 20 inside, the protruding strip portion 12a of the first copper strip 10 is formed via a phosphor copper braze (B-CuP2) sheet. The second copper strip 20 is fitted into the concave strip portion 22 a, and the second copper strip 20 is disposed so that the convex strip portion 22 b is fitted into the concave strip portion 12 b of the first copper strip 10. Next, these were continuously passed through a N 2 atmosphere furnace maintained at 850 ° C. and pressurized to perform bonding, and the multi-hole tube 1 shown in FIG. 6 was continuously manufactured.
[0030]
In each of Examples 1 to 4, positioning during molding was easy, and it was possible to perform good bonding without curling during roll processing.
[0031]
【The invention's effect】
As described above, according to the method for manufacturing a multi-hole tube according to the present invention, by forming a plurality of ridges and ridges on the first and second plate-like bodies, the bending rigidity is increased, The first and second plate-shaped bodies are not curled during roll processing, and the plurality of convex strip portions of the first plate-shaped body are fitted to the plurality of concave strip portions of the second plate-shaped body. Then, since the first and second plate-like bodies can be positioned, a multi-hole tube that is easy to manufacture and has high heat exchange efficiency can be manufactured.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a main part of a multi-hole tube according to a first embodiment of the present invention.
FIG. 2 is a cross-sectional view of a main part of a first copper strip according to the first embodiment of the present invention.
FIG. 3 is a cross-sectional view of a main part of a second copper strip according to the first embodiment of the present invention.
FIG. 4 is a cross-sectional view of a main part of a multi-hole tube according to a second embodiment of the present invention.
FIG. 5 is a cross-sectional view of a main part of a multi-hole tube according to a third embodiment of the present invention.
FIG. 6 is a cross-sectional view of a main part of a multi-hole tube according to a fourth embodiment of the present invention.
FIG. 7 is a cross-sectional view of a main part of a multi-hole tube of a first conventional example.
FIG. 8 is a cross-sectional view of a main part of a multi-hole tube of a second conventional example. FIG. 9 is a main part showing details of the free ends of the first and second fin bodies before joining in the second conventional example. FIG.
FIG. 10 is a cross-sectional view of an essential part showing a method for manufacturing a multi-hole tube of a second conventional example.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Multi-hole pipe 2 Heat-medium channel | path 10 1st copper strip 11 1st plate-shaped body 12 1st protrusion 12a Convex strip part 12b Concave strip part 12c Butt | matching surface 15, 25 Groove part 20 2nd copper strip 21 1st 2 plate-like body 22 2nd protrusion 22a Convex part 22b Convex part 22c Abutting surface 23 Concave part 25 Groove part 50 Multi-hole pipe 51 Grooved plate 52 Groove part 53 Thin board 54 Projection 54a Top part 55 Brazing material 60 Multi-hole pipe 62 First outer wall body 63 Second outer wall body 64 Outer wall body 65 formed in an arc shape Fin 66 Heat medium passage 67 First fin body 68 Second fin body 69 First free edge 72 Second free End edge 70 ridge 71 first abutting surface 74 second abutting surface 73 concave groove 80 tubular outer wall body 81 first positioning mark 82 second positioning mark

Claims (4)

第1の板状体の一つの面に複数の凸条部を形成し、
前記一つの面に対向する第2の板状体の面の前記複数の凸条部に対向する位置に複数の凹条部を形成し、
前記第1の板状体の前記複数の凸条部と前記第2の板状体の前記複数の凹条部とを嵌合させ、
前記複数の凸条部と前記複数の凹条部の接触面を接合することを特徴とする多穴管の製造方法。
Forming a plurality of ridges on one surface of the first plate-like body;
Forming a plurality of concave strips at positions facing the plurality of convex strips on the surface of the second plate-like body facing the one surface;
Fitting the plurality of ridges of the first plate-like body and the plurality of depressions of the second plate-like body;
A method of manufacturing a multi-hole tube, wherein contact surfaces of the plurality of ridges and the plurality of ridges are joined.
前記複数の凸条部および前記複数の凹条部の形成は、前記第1および前記第2の板状体を圧延することにより行うことを特徴とする請求項1記載の多穴管の製造方法。2. The method for manufacturing a multi-hole tube according to claim 1, wherein the plurality of protrusions and the plurality of recesses are formed by rolling the first and second plate-like bodies. . 前記接合は、ロウ付けまたは半田付けにより行うことを特徴とする請求項1記載の多穴管の製造方法。The multi-hole tube manufacturing method according to claim 1, wherein the joining is performed by brazing or soldering. 2つの板状体の対向する面に複数の突条を形成するとともに、前記複数の突条の中央に複数の凹条部を形成して前記凹条部の両側に一対の凸条部を形成し、
前記2つの板状体の前記複数の凹条部と前記一対の凸条部の一方の前記凸条部とを嵌合させ、
前記複数の凹条部と前記一方の凸条部との接触面を接合することを特徴とする多穴管の製造方法。
A plurality of protrusions are formed on opposite surfaces of the two plate-like bodies, a plurality of recesses are formed at the center of the plurality of protrusions, and a pair of protrusions are formed on both sides of the recess. And
Fitting the plurality of concave strips of the two plate-like bodies with one of the convex strips of the pair of convex strips;
A method of manufacturing a multi-hole tube, wherein contact surfaces of the plurality of concave strip portions and the one convex strip portion are joined.
JP2003176726A 2003-06-20 2003-06-20 Manufacturing method of multi-hole tube Expired - Fee Related JP4124033B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003176726A JP4124033B2 (en) 2003-06-20 2003-06-20 Manufacturing method of multi-hole tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003176726A JP4124033B2 (en) 2003-06-20 2003-06-20 Manufacturing method of multi-hole tube

Publications (2)

Publication Number Publication Date
JP2005007459A true JP2005007459A (en) 2005-01-13
JP4124033B2 JP4124033B2 (en) 2008-07-23

Family

ID=34099527

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003176726A Expired - Fee Related JP4124033B2 (en) 2003-06-20 2003-06-20 Manufacturing method of multi-hole tube

Country Status (1)

Country Link
JP (1) JP4124033B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007078325A (en) * 2005-09-16 2007-03-29 Hitachi Densen Mekutekku Kk Multihole pipe for heat exchange and its manufacturing method
US7352581B2 (en) 2005-06-30 2008-04-01 Kabushiki Kaisha Toshiba Cooling device and electronic apparatus
US7372697B2 (en) 2005-06-30 2008-05-13 Kabushiki Kaisha Toshiba Cooling device and electronic apparatus
US7486518B2 (en) * 2005-06-30 2009-02-03 Kabushiki Kaisha Toshiba Cooling device and electronic apparatus
JP2009085468A (en) * 2007-09-28 2009-04-23 Mitsubishi Materials Corp Fin tube-type heat exchanger and its manufacturing method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7352581B2 (en) 2005-06-30 2008-04-01 Kabushiki Kaisha Toshiba Cooling device and electronic apparatus
US7372697B2 (en) 2005-06-30 2008-05-13 Kabushiki Kaisha Toshiba Cooling device and electronic apparatus
US7486518B2 (en) * 2005-06-30 2009-02-03 Kabushiki Kaisha Toshiba Cooling device and electronic apparatus
JP2007078325A (en) * 2005-09-16 2007-03-29 Hitachi Densen Mekutekku Kk Multihole pipe for heat exchange and its manufacturing method
JP2009085468A (en) * 2007-09-28 2009-04-23 Mitsubishi Materials Corp Fin tube-type heat exchanger and its manufacturing method

Also Published As

Publication number Publication date
JP4124033B2 (en) 2008-07-23

Similar Documents

Publication Publication Date Title
JPH06281373A (en) Refrigerant flow tube for heat exchanger
JP2007078325A (en) Multihole pipe for heat exchange and its manufacturing method
JP2001041675A (en) Tube for heat exchanger and heat exchanger
JPS6130072Y2 (en)
JPH1089870A (en) Manufacture of heat exchanger and heat exchanger
CN101065633B (en) Tube made of a profile rolled metal product and method of producing the same
JP2002096132A (en) Device for manufacturing refrigerant tube for heat exchanger and manufacturing method therefor
JP4124033B2 (en) Manufacturing method of multi-hole tube
JP2000329488A (en) Flat tube for heat exchanger
JP2936710B2 (en) Tube for flowing heat medium of heat-to-light converter and method of manufacturing the same
JP2002071286A (en) Flat tube for heat exchanger and method for manufacturing the same
JPS6166091A (en) Manufacture of heat exchanger tube material and core by use of such material and core by use of such material
JP2003071532A (en) Method for manufacturing flattened tube and flattened tube manufactured by the same method
JP2001165587A (en) Tube for heat exchanger
JP2007107754A (en) Heat exchanger and its manufacturing method
JPH0420794A (en) Aluminum made heat exchanging tube
JPH1019494A (en) Flat tube for heat exchanger
JP2000234890A (en) Heat exchanger for air-conditioning and manufacture thereof
JP2000161883A (en) Production of heat exchanging medium tube
JP2000213882A (en) Tube for heat exchanger and heat exchanger core
JP4216643B2 (en) Manufacturing method of flat tube for heat exchanger
JPS6167529A (en) Manufacture of heat exchanging pipe provided with inner fin
JPH10288491A (en) Flat tube for heat exchanger and its manufacture
JPH05164491A (en) Heat exchanging tube and manufacture theroe
JPH05253614A (en) Manufacture of heat transfer tube for heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050715

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070619

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071030

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080415

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080428

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110516

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees