JP2005007240A - Method for cleaning soil and/or groundwater contaminated with hexavalent chromium in situ - Google Patents

Method for cleaning soil and/or groundwater contaminated with hexavalent chromium in situ Download PDF

Info

Publication number
JP2005007240A
JP2005007240A JP2003172205A JP2003172205A JP2005007240A JP 2005007240 A JP2005007240 A JP 2005007240A JP 2003172205 A JP2003172205 A JP 2003172205A JP 2003172205 A JP2003172205 A JP 2003172205A JP 2005007240 A JP2005007240 A JP 2005007240A
Authority
JP
Japan
Prior art keywords
injection
aqueous solution
hexavalent chromium
soil
solution containing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003172205A
Other languages
Japanese (ja)
Other versions
JP4342222B2 (en
Inventor
Yasunobu Tsubota
康信 坪田
Osamu Takatsuki
修 高月
Sadato Murai
貞人 村井
Akio Kawazoe
陽生 川添
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hazama Ando Corp
Original Assignee
Hazama Gumi Ltd
Hazama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hazama Gumi Ltd, Hazama Corp filed Critical Hazama Gumi Ltd
Priority to JP2003172205A priority Critical patent/JP4342222B2/en
Publication of JP2005007240A publication Critical patent/JP2005007240A/en
Application granted granted Critical
Publication of JP4342222B2 publication Critical patent/JP4342222B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09CRECLAMATION OF CONTAMINATED SOIL
    • B09C1/00Reclamation of contaminated soil
    • B09C1/002Reclamation of contaminated soil involving in-situ ground water treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09CRECLAMATION OF CONTAMINATED SOIL
    • B09C1/00Reclamation of contaminated soil
    • B09C1/08Reclamation of contaminated soil chemically
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09CRECLAMATION OF CONTAMINATED SOIL
    • B09C2101/00In situ

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for efficiently cleaning soil and/or groundwater contaminated with hexavalent chromium in situ without digging or stirring. <P>SOLUTION: In the method for cleaning the soil and/or groundwater contaminated with hexavalent chromium in situ, an aqueous solution containing an agent capable of reducing hexavalent chromium is injected directly into the soil and/or groundwater contaminated with hexavalent chromium by means of a super multi-point injection method. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、六価クロムにより汚染された土壌又は地下水を無害化する汚染土壌及び/又は地下水の原位置浄化方法に関する。
【0002】
【従来の技術】
例えば、クロム鉱を、ソーダ灰、石灰石と共にばい焼し、染料や酸化剤となる重クロム酸ソーダを製造した場合、有害な六価クロムを含むクローム鉱滓が副生する。このような有害な鉱滓は、以前は処理することなく埋め立て地に投棄されていた。このような投棄された鉱滓は、土壌を汚染するだけでなく、最終的には河川や地下水を汚染し、これが飲料水の原水となることがあり、問題となる。
【0003】
またこのような重クロム酸ソーダを製造する工場が移転した後の、その跡地利用の際土壌汚染が表面化することも屡々ある。
【0004】
六価クロムで汚染された土壌は、従来から硫酸第一鉄又は塩化鉄(一般に粉末状で)を加えて撹拌することにより六価クロムを三価クロムに還元することにより無害化処理が行われている。前記埋め立て地に投棄された六価クロムを処理する方法としては、例えば特開昭52−49977号公報には、六価クロムを含むクローム鉱滓が投棄されたその埋め立て地に、アルカリ性でも還元作用を示す硫酸第一鉄等の還元剤と、中和剤を混合したセメント系の固結剤とを、別々に高圧で噴射し、これらを良好に混合すると共に、六価クロムを無害な三価クロムに還元し、且つ固結させて、以後クロムの溶出を完全に防止する方法が記載されている。
【0005】
また、六価クロムで汚染された地下水についても、通常、その地下水を地上に揚水し、そして揚水された汚染水を、地上プラントで硫酸第一鉄等と混合し、沈殿除去される。
【0006】
従って、これまで上記のようなセメント系の固結剤を用いないで、六価クロムで汚染された土壌の浄化処理を行う場合も、掘削して、硫酸第一鉄等を粉末又は溶液で添加し撹拌することにより主として行われており、汚染土壌をそれを撹拌することなく直接浄化処理を行う、簡易で効率的な原位置浄化処理は行われていない。
【0007】
【特許文献1】
特開昭52−49977号公報
【0008】
【発明が解決しようとする課題】
従って、本発明の目的は、六価クロムで汚染された土壌及び/又は地下水を、掘削或いは撹拌することなく、効率よく原位置で浄化処理する方法を提供することにある。
【0009】
上記目的を実現するために、本発明者等は、原位置での浄化処理について種々検討を行った。即ち、硫酸第一鉄水溶液を、一般的な注入工法、例えば単管ロッド法、ダブルパッカー法により、六価クロムで汚染された土壌に注入し、その注入の様子を観察した。単管ロッド法では、硫酸第一鉄水溶液の注入自体が困難で、ほとんど地上に吹き上がる傾向にあった。また、ダブルバッカー法では、注入圧が大きいため、注入された硫酸第一鉄水溶液が土壌、特に地盤中を均一に拡散せずに、地盤中で硫酸第一鉄水溶液と六価クロムとが反応してフロックを形成することから、透水性が悪化し、未浄化の部分が残るとの問題があることが明らかとなった。
【0010】
【課題を解決するための手段】
本発明者は、上記六価クロム汚染土壌の効率の良い原位置浄化方法を実現するために、鋭意検討を重ねたところ、本発明に到達したものである。
【0011】
即ち、本発明は、六価クロムで汚染された土壌及び/又は地下水に、六価クロムを還元可能な薬剤を含む水溶液を超多点注入工法により直接注入することを特徴とする六価クロムで汚染された土壌の原位置浄化方法にある。
【0012】
本発明で用いられる上記超多点注入工法は、構造物の基板となる地盤の改良や、砂質土壌の液状化防止等に使用されている(例、特開平11−81296号公報、特開2000−45259号公報、特開2002−363967号公報参照)。この方法は、グラウドや超微粒子セメント等の溶液を低圧で浸透注入することができ、再注入が容易であり、さらに同時に多数の箇所から注入が可能であることから、本発明者等が六価クロムで汚染された土壌又は地下水の浄化に適しているのではないかと考え、検討を行ったところ、本発明に到達したものである。
【0013】
上記本発明の浄化方法において、六価クロムを還元可能な薬剤を含む水溶液が、2価の鉄イオンを含む水溶液であることが好ましい。一般に浄化効率が良好である。2価の鉄イオンを含む水溶液が、硫酸第一鉄又は塩化第一鉄の水溶液であることが好ましい。これらの濃度は一般に0.5〜30質量%、特に5〜20質量%の水溶液であることが好ましい。
【0014】
超多点注入工法で使用される注入するための注入管は、水平方向平面において、1〜5m間隔、特に2〜3m間隔で設けられていることが好ましい。また、注入するための注入管は、垂直方向に0.3〜1.5m間隔で吐出口を有することが好ましい。また各注入管に設けられる吐出口の数は、一般に1〜100個、好ましくは10〜60個である。
【0015】
上記注入管に設けられた吐出口からの薬剤を含む水溶液の注入を、隣接する吐出口が交互となるように吐出することにより行われることが好ましい。また各吐出口からの注入量は、0.1〜4L(リットル)/分、特に0.2〜1L/分が好ましい。また注入圧1.0〜3.0kg/cmが好ましい。
【0016】
上記注入管は吐出口と同数の異なる長さの注入細管の束であることが好ましい。さらに注入管が、芯管とその周囲に設けられた吐出口と同数の異なる長さの注入細管から成ることが好ましい。
【0017】
【発明の実施の形態】
本発明の浄化方法は、六価クロムで汚染された土壌及び/又は地下水を掘削或いは撹拌することなく原位置で直接浄化しようとするものであり、汚染された土壌に、六価クロムを還元可能な薬剤を含む水溶液を超多点注入工法により直接注入することにより、基本的に行われる。
【0018】
本発明の浄化方法は、例えば以下のように行うことができる。
【0019】
図1には、本発明の浄化方法を実施するために使用される超多点注入装置の一例が示されている。
【0020】
本発明の浄化方法は、例えば、図1に示すように、吐出口4を多数有する注入管1が、六価クロムで汚染された土壌(例、砂質土)15に挿入され、この注入管1に、六価クロムを還元可能な薬剤を含む水溶液が送り込まれ、吐出口4から土壌内に注入されることにより行われる。
【0021】
そして、上記注入管1の土壌内への設置及び薬剤溶液の給送、注入は、圧送通路16を介し、それぞれ検知箱8に収められた圧力検知器と流量検知器により圧送通路の各々の圧力、流量、検知がなされ、検知管8における各圧力、流量のデータは電気信号でコントローラー10に送られて注入管を構成する各注入細管3の注入が管理された状態で行われる。
【0022】
これらの注入細管3は特開平11−21296号公報に開示されている様に、多連装重連のユニットポンプ12にも接続されて六価クロムを還元可能な薬剤を含む水溶液用タンク13内の薬剤溶液14を、圧送通路16を介して圧送して所定の地盤15中に挿入された各注入管1の注入細管3の各長さ方向に位置をずらして設けた吐出口4から当該土壌15中に均一に薬剤溶液14を低圧浸透して一挙に広大なエリアの地盤15中に立体的に注入することができるようにされている。
【0023】
本発明で使用される注入管としては、例えば図1に示すように注入細管を多数束ねたものを挙げることできる。図2に示すような、芯管2と注入細管3とからなるものでも良く、多数の吐出口を有し、低圧で薬剤溶液を吐出することができ、その吐出量等を制御できるものであればよい。
【0024】
図2の注入管1は、その中央には金属製又は硬質合成樹脂製の芯管2と、この芯管2の周囲に図2に示す様に、所定数の注入細管3が所定のバンド、或いは、接着剤等を介して全周囲に環設されている。
【0025】
上記注入管1は吐出口と同数の注入細管3の束であることが好ましい。例えば、図1に示すように、端に最も長い注入細管を配置し、これに平行に徐々に長さの短い注入細管を配置したものか、或いは中心に最も長い注入細管を配置し、その周囲に徐々に長さの短い注入細管を配置したものが好ましい。注入細管の寸法は、直径は、0.6〜0.8cmが好ましく、長さは一般に1〜80m、1〜50mが好ましい。
【0026】
汚染土壌に対して、上記超多点注入工法で使用される注入管1が、後述する事前調査の結果を基に、必要な本数設置し、浄化処理が行われる。
【0027】
上記注入管1は、水平方向平面において、1〜5m間隔、特に2〜3m間隔で設けられることが好ましい。また、注入管1は、垂直方向に0.3〜1.5m間隔で吐出口4を有することが好ましい。注入管1は、一般に、注入細管よりなるものであり、注入細管には吐出口は1個のみ有するので、吐出口の数だけ注入細管が必要となる。
【0028】
また各注入管に設けられる吐出口の数(一般に注入細管の数)は、一般に1〜100個、好ましくは1〜60個である。上記注入管に設けられた吐出口は、薬剤溶液が均一に注入できるよう適宜設定される。例えば中心に最も長い注入管を設置し、その周囲に徐々に長さの短い注入細管を放置し、吐出口が束の外側にあるようにされていることが好ましい。また各吐出口からの注入量は、0.1〜4L(リットル)/分、特に0.2〜1L/分が好ましい。また注入圧1.0〜3.0kg/cmが好ましい。
【0029】
注入管の配置を決定するために事前調査が行われる。そのための調査孔としては、例えば図3に示すように、六価クロムで汚染された土壌mに設けられた注入口(注入管の位置)から、例えば半径(r)1m、2m、3mの位置に、例えば、土壌の汚染を確認するための調査孔(AB2,AC2,BC2)、地下水汚染を確認するための調査孔(A1,A2,A3、C1,C2,C3)、地下水汚染を確認するための調査孔および土壌の汚染を確認するための調査孔(他の全ての記号、B1,B2,B3・・・)を設置する。そして、これにより汚染の程度の事前調査を行い、注入管の配置(本数、間隔等)を決定する。この配置すべき位置に図1に示すような注入管(一般に複数)を設け、六価クロムを還元可能な薬剤を含む水溶液を六価クロム汚染地域に超多点注入工法により直接注入して、浄化処理が行われる。
【0030】
超多点注入工法による薬剤溶液の注入方法としては、例えば高さ方向で1個おきの吐出口から同時に交互に薬剤溶液を吐出し、またこれを各注入口についても同様に行う方法;或いは高さ方向でいくつかのグループに分けられた吐出口から同時に分けられたグループの数だけ交互に薬剤溶液を吐出し、またこれを各注入口についても同様に行う方法等を挙げることができる。
【0031】
本発明で使用される六価クロムを還元可能な薬剤を含む水溶液は、2価の鉄イオンを含む水溶液(例、硫酸第一鉄の水溶液)であり、水溶液を低圧で浸透注入する超多点注入工法を利用して、効率よく注入できることは驚くべきことである。土壌浄化に超多点注入工法を利用することにより、同時に複数箇所から超低圧で注入し、各箇所の注入圧力、注入量を経時的に管理することができ信頼性の高い浸透注入が可能となったことは画期的であると言える。即ち、本発明の方法により、六価クロムで汚染された土壌(地盤、砂質層等)に、薬剤溶液が均等、均一に注入することができ、六価クロムの還元処理を効率よく行うことができる。
【0032】
本発明の方法に使用される六価クロムを還元可能な薬剤を含む水溶液としては、2価の鉄イオンを含む水溶液が好ましい。このような2価の鉄イオンを含む水溶液は、一般に硫酸第一鉄又は塩化第一鉄の水溶液である。
【0033】
2価の鉄イオンを含む水溶液は、硫酸第一鉄(無水塩として)又は塩化第一鉄として0.5〜20質量%、特に5〜20質量%の水溶液であることが好ましい。
【0034】
本発明で使用される硫酸第一鉄としては、硫酸第一鉄の1水塩、4水塩、5水塩、7水塩が一般的で、特に硫酸第一鉄の7水塩が好ましい。六価クロムとの反応を円滑に行うことができる。
【0035】
本発明の六価クロムを還元可能な薬剤を含む水溶液は、所望により金属ハロゲン化物又は金属ハロゲン化物及び親水性樹脂を添加して、混合することにより得られるものでもよい。その際混合に用いる水としては、還元性電解水(pH=7〜13が好ましい)を用いることが好ましい。また前述の酸化防止剤を前記範囲内にてさらに使用しても良い。
【0036】
前記金属ハロゲン化物は、NaCl、KCl、MgCl、CaCl等を挙げることができ、特にNaClが好ましい。
【0037】
前記親水性樹脂の例としては、スクロース等の二糖類、スクロース誘導体(例、スクロース高級脂肪酸エステル)、グルコース等の単糖類、アルギン酸;プルラン、PVA(ポリビニルアルコール)、CMC(カルボキシルメチルセルロース)、ポリアクリルアミド、グアガム、メチルセルロース、ヒドロキシエチルセルロース等の水溶性樹脂を挙げることができる。プルラン(水溶液にした際の粘度が低く特に好ましい)、ヒドロキシエチルセルロース、スクロース、グルコース、PVAが好ましい。親水性樹脂として生分解性ポリマーを用いると二次的な環境汚染に対して特に有効である。
【0038】
さらに前記無機炭酸塩又は炭酸塩系鉱物の例としては、炭酸カルシウム、沈降性炭酸カルシウム、炭酸マグネシウム、珊瑚化石石灰岩、石灰岩、ドロマイトを挙げることができ、特に沈降性炭酸カルシウムが好ましい。
【0039】
また酸化防止剤として、好ましくはアスコルビン酸を、例えば0.1〜0.5質量%(全体に対して)使用しても良い。
【0040】
本発明は、以上のように六価クロムで汚染された土壌に薬剤溶液を注入管より吐出する方法について述べてきたが、他の汚染源で汚染された土壌に浄化剤としての薬剤溶液を吐出する場合にも同様に利用することができ、例えば有機ハロゲン化物で汚染した土壌に、炭酸水を吐出する際にも本発明の方法を利用することができる。
【0041】
【実施例】
[実施例1]
(1)事前調査
六価クロムで汚染された土壌に、図3で示すように、注入口及び調査孔を設置した。即ち、六価クロムで汚染された土壌に設けられた注入口(注入管の位置)から半径(r)1m、2m、3mの位置に、土壌の汚染を確認するための調査孔(AB2,AC2,BC2)、地下水汚染を確認するための調査孔(A1,A2,A3、C1,C2,C3)、地下水汚染を確認するための調査孔および土壌の汚染を確認するための調査孔(他の全ての記号、B1,B2・・・・)を設置した。
【0042】
尚、土壌の汚染を確認するための調査孔(AB2,AC2,BC2)は、下記の125m注入に達した後設置し、調査を行った。
【0043】
(2)浄化実験(注入)
注入口として、注入細管を15本束ねたもので、深さ7.5mから21.5mまで1.0mおきに吐出口が位置するように配置したものを使用した。深度7.5m、10.5m、13.5m、16.5m、19.5mのグループ、深度8.5m、11.5m、14.5m、17.5m、20.5mのグループ及び深度9.5m、12.5m、15.5m、18.5m、21.5mのグループの3つのグループに分け、この順で交互に注入を行った。
【0044】
1)上記の注入方法で、8月27日から、硫酸第一鉄0.6質量%水溶液を注入し、8/28までに10.5m注入、9/9までに70.5m注入、9/13までに85m注入した。
【0045】
2)9/24まで11日間放置し、9/25より、濃度を上げた硫酸第一鉄5質量%水溶液を注入し、9/27までに、1)の8/27からの合計注入量で95m注入、10/1までに105m注入、10/8までに115m注入、10/19までに125m注入、10/26までに135m注入した。
【0046】
上記注入試験において、硫酸第一鉄0.6質量%水溶液で85m注入し、11日間放置した後、再注入を行った。この再注入は濃度を上げた5質量%水溶液で行ったが、最後までフロック等の影響もなく注入することができた。
【0047】
3)上記注入による地下水の六価クロム汚染状況の各地点における変化を表1に示す。データの数値はCr6+の濃度(mg/L)を示す。Cr6+の濃度は公定法に従い求めた。
【0048】
【表1】

Figure 2005007240
【0049】
また上記地下水の六価クロム汚染状況(5質量%水溶液注入時における)の1m、2m、3mの各地点におけるCr6+の濃度の平均値を示すグラフを図4に示す。
【0050】
[上記試験及びその結果(表1及び図4)の考察]
硫酸第一鉄0.6質量%水溶液で85m(硫酸第一鉄510kg)注入した時点では、地下水のCr6+の濃度は減少しているが、環境基準値(0.05mg/L)以下にはなっていない。これは硫酸第一鉄の絶対量が足りなかったためと考えられるので、再注入は濃度を上げた5質量%水溶液で行った。その結果、10m(硫酸第一鉄500kg)注入した段階で2mの範囲まで基準値以下にすることができた。
【0051】
一方、浸透範囲についても、5質量%水溶液を10m注入した段階で2mの範囲まで浸透していると言える。
【0052】
4)上記注入による土壌における六価クロム汚染状況の各地点の変化を表2に示す。データの数値はCr6+の濃度(mg/L)を示す。
【0053】
【表2】
Figure 2005007240
【0054】
注入試験を行った土壌は、表2に示すように、深度7m〜10mが透水係数3.0×10−6>の粘土層、深度10m〜15mが透水係数2.2×10−4の砂質層、深度15m〜17mが透水係数3.0×10−6>のシルト層、そして深度17m〜22mが透水係数2.9×10−3の砂質層であった。注入試験は、前記のように深度7.5m〜21.5mにおいて行った。
【0055】
[上記試験及びその結果(表2)の考察]
注入試験において、5質量%水溶液を40m注入した段階で調査ボーリングを行い(AB2、AC2、BC2)調査した結果、表2に示したように、深さ14mより深い深度において、2mの範囲まで浄化されていると言える(14m以下では、初期値のCr6+の濃度が0のところが多いが、通常注入により上部の汚染が広がるので、注入後にCr6+の濃度が0となることは浄化されていることを意味すると考えられる)。
【0056】
また、14mより深い深度の砂質層においては、半径2mまでは環境基準値以下になっているが、半径3mにおいては、ほとんど濃度の低下は認められなかった。粘土層については、上記に比べてやや劣った浄化効果が得られた。
【0057】
【発明の効果】
本発明の方法を用いることにより、六価クロムで汚染された土壌及び/又は地下水を、掘削或いは撹拌することなく、効率よく原位置で浄化処理を行うことができる。即ち、本発明の方法は、硫酸第一鉄水溶液等の薬剤溶液を土壌中に超多点注入工法により注入することによって、薬剤溶液を土壌中に均一に拡散させることができ、これにより土壌中でフロックの形成等の影響もなく六価クロムと硫酸第一鉄水溶液との反応を可能にし、汚染土壌を浄化することができる。
【0058】
また本発明の方法は、再注入が容易であり、さらに同時に多数の箇所から注入が可能であることから、六価クロムで汚染された広範囲の土壌又は地下水の浄化に好適である。さらに、煩雑な掘削作業、撹拌作業が必要なく、簡便に六価クロム汚染土壌を効率よく浄化することができる。
【図面の簡単な説明】
【図1】図1は、本発明の浄化方法を実施するために使用される超多点注入装置の一例である。
【図2】図2は、別の注入管の例である。
【図3】図3は、六価クロムで汚染された土壌mに設けられた注入口、土壌、地下水の汚染を確認するための調査孔の配置の一例を示す図である。
【図4】図4は、実施例における硫酸第一鉄5質量%水溶液により浄化処理した地下水の六価クロム汚染状況の1m、2m、3mの各地点におけるCr6+の濃度の平均値を示すグラフである。
【符号の説明】
1 注入管
2 芯管
3 注入細管
4 吐出口
8 検知箱
10 コントローラー
12 ユニットポンプ
13 薬剤を含む水溶液用タンク
14 薬剤溶液
15 汚染された土壌
16 圧送通路[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for in-situ purification of contaminated soil and / or groundwater that detoxifies soil or groundwater contaminated with hexavalent chromium.
[0002]
[Prior art]
For example, when chromium ore is roasted together with soda ash and limestone to produce sodium dichromate that becomes a dye or an oxidizing agent, a chromium ore containing harmful hexavalent chromium is by-produced. Such harmful mines were previously dumped in landfills without processing. Such dumped mine not only pollutes the soil, but also ultimately pollutes rivers and groundwater, which can be raw water for drinking, which is a problem.
[0003]
In addition, after the factory that manufactures such sodium dichromate has moved, soil contamination often comes to the surface when the site is used.
[0004]
Conventionally, soil contaminated with hexavalent chromium has been detoxified by adding ferrous sulfate or iron chloride (generally in powder form) and stirring to reduce hexavalent chromium to trivalent chromium. ing. As a method for treating the hexavalent chromium dumped in the landfill, for example, Japanese Patent Laid-Open No. 52-49977 discloses that the landfill where the chromium slag containing hexavalent chromium has been dumped has an alkaline reduction effect. The reducing agent such as ferrous sulfate and the cement-type caking agent mixed with the neutralizing agent are separately injected at high pressure, and these are mixed well, and hexavalent chromium is harmless with trivalent chromium. In the following, a method for completely preventing elution of chromium by reduction and solidification is described.
[0005]
In addition, groundwater contaminated with hexavalent chromium is usually removed by precipitation by pumping the groundwater to the ground and mixing the pumped contaminated water with ferrous sulfate or the like at the ground plant.
[0006]
Therefore, drilling and adding ferrous sulfate etc. as a powder or solution even when performing purification treatment of soil contaminated with hexavalent chromium without using a cement-based caking agent as described above However, the simple and efficient in-situ purification process that directly purifies the contaminated soil without stirring it is not performed.
[0007]
[Patent Document 1]
Japanese Patent Laid-Open No. 52-49977
[Problems to be solved by the invention]
Accordingly, an object of the present invention is to provide a method for efficiently purifying in situ soil and / or groundwater contaminated with hexavalent chromium without excavating or stirring.
[0009]
In order to achieve the above object, the present inventors have made various studies on in-situ purification treatment. That is, an aqueous ferrous sulfate solution was injected into soil contaminated with hexavalent chromium by a general injection method such as a single tube rod method or a double packer method, and the state of the injection was observed. In the single tube rod method, it was difficult to inject the ferrous sulfate aqueous solution itself, and it almost tended to blow up to the ground. In addition, in the double backer method, since the injection pressure is large, the injected ferrous sulfate aqueous solution does not diffuse uniformly in the soil, especially the ground, and the ferrous sulfate aqueous solution and hexavalent chromium react in the ground. From the formation of flocs, it became clear that there was a problem that water permeability deteriorated and unpurified portions remained.
[0010]
[Means for Solving the Problems]
The present inventor has reached the present invention as a result of intensive studies in order to realize an efficient in-situ purification method of the hexavalent chromium-contaminated soil.
[0011]
That is, the present invention is a hexavalent chromium characterized by directly injecting an aqueous solution containing a chemical capable of reducing hexavalent chromium into soil and / or groundwater contaminated with hexavalent chromium by a super multi-point injection method. In-situ purification method for contaminated soil.
[0012]
The super multi-point injection method used in the present invention is used for improving the ground serving as the substrate of the structure, preventing liquefaction of sandy soil, etc. (eg, Japanese Patent Laid-Open No. 11-81296, Japanese Patent Laid-Open No. 2000-45259 and JP-A-2002-363967). In this method, a solution such as a grud or ultrafine cement can be infused and injected at a low pressure, it is easy to re-inject, and at the same time, it can be injected from many places. The present invention has been reached as a result of a study considering that it is suitable for the purification of soil or groundwater contaminated with chromium.
[0013]
In the purification method of the present invention, the aqueous solution containing a drug capable of reducing hexavalent chromium is preferably an aqueous solution containing divalent iron ions. In general, the purification efficiency is good. The aqueous solution containing divalent iron ions is preferably an aqueous solution of ferrous sulfate or ferrous chloride. These concentrations are generally 0.5 to 30% by mass, and particularly preferably 5 to 20% by mass.
[0014]
It is preferable that the injection pipes for injection used in the super multi-point injection method are provided at intervals of 1 to 5 m, particularly at intervals of 2 to 3 m on the horizontal plane. Moreover, it is preferable that the injection tube for injecting has discharge ports at intervals of 0.3 to 1.5 m in the vertical direction. The number of discharge ports provided in each injection tube is generally 1 to 100, preferably 10 to 60.
[0015]
It is preferable that the injection of the aqueous solution containing the drug from the discharge port provided in the injection tube is performed by discharging the adjacent discharge ports alternately. Further, the injection amount from each discharge port is preferably 0.1 to 4 L (liter) / min, particularly preferably 0.2 to 1 L / min. An injection pressure of 1.0 to 3.0 kg / cm is preferable.
[0016]
The injection tube is preferably a bundle of injection capillaries having the same number of different lengths as the discharge ports. Furthermore, it is preferable that the injection tube is composed of injection capillaries having the same number of different lengths as the core tube and the discharge ports provided around the core tube.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
The purification method of the present invention is intended to directly purify soil and / or groundwater contaminated with hexavalent chromium in situ without excavating or stirring, and hexavalent chromium can be reduced to the contaminated soil. This is basically done by directly injecting an aqueous solution containing various chemicals by the super multi-point injection method.
[0018]
The purification method of the present invention can be performed, for example, as follows.
[0019]
FIG. 1 shows an example of a super multi-point injection device used for carrying out the purification method of the present invention.
[0020]
In the purification method of the present invention, for example, as shown in FIG. 1, an injection tube 1 having a large number of discharge ports 4 is inserted into soil (eg, sandy soil) 15 contaminated with hexavalent chromium, and this injection tube 1 is performed by feeding an aqueous solution containing a chemical capable of reducing hexavalent chromium into the soil through the discharge port 4.
[0021]
Then, the installation of the injection tube 1 in the soil and the supply and injection of the drug solution are carried out via the pressure passage 16 and the pressure in the pressure passage by the pressure detector and the flow rate detector respectively housed in the detection box 8. The flow rate and the detection are performed, and the data of each pressure and flow rate in the detection tube 8 are sent to the controller 10 by an electric signal, and the injection of each injection capillary 3 constituting the injection tube is controlled.
[0022]
These injection capillaries 3 are also connected to a unit pump 12 of a multi-stacked multiple series, as disclosed in Japanese Patent Application Laid-Open No. 11-21296, in an aqueous solution tank 13 containing a chemical capable of reducing hexavalent chromium. The soil 15 is discharged from the discharge port 4 provided by shifting the position of the drug solution 14 in the length direction of the injection thin tubes 3 of the injection tubes 1 that are pumped through the pumping passage 16 and inserted into the predetermined ground 15. The drug solution 14 can be uniformly introduced into the ground 15 in a vast area at a stroke by uniformly penetrating the drug solution 14 at a low pressure.
[0023]
As an injection tube used in the present invention, for example, as shown in FIG. As shown in FIG. 2, it may be composed of the core tube 2 and the injection thin tube 3, and it has a large number of discharge ports, can discharge the drug solution at a low pressure, and can control the discharge amount and the like. That's fine.
[0024]
The injection tube 1 in FIG. 2 has a core tube 2 made of metal or hard synthetic resin at the center thereof, and a predetermined number of injection thin tubes 3 around the core tube 2 as shown in FIG. Alternatively, it is provided around the entire periphery via an adhesive or the like.
[0025]
The injection tube 1 is preferably a bundle of the same number of injection thin tubes 3 as the discharge ports. For example, as shown in FIG. 1, the longest injection tubule is arranged at the end, and an injection tubule having a gradually shorter length is arranged in parallel with this, or the longest injection tubule is arranged at the center, and its periphery It is preferable that an injection tubule with a gradually shorter length is disposed at the end. The diameter of the injection capillary is preferably 0.6 to 0.8 cm, and the length is generally preferably 1 to 80 m and 1 to 50 m.
[0026]
A necessary number of injection pipes 1 used in the super multi-point injection method are installed on the contaminated soil based on the result of a preliminary survey described later, and a purification process is performed.
[0027]
The injection tube 1 is preferably provided at intervals of 1 to 5 m, particularly at intervals of 2 to 3 m on the horizontal plane. Moreover, it is preferable that the injection tube 1 has the discharge ports 4 at intervals of 0.3 to 1.5 m in the vertical direction. The injection tube 1 is generally composed of an injection capillary, and since the injection capillary has only one discharge port, the number of injection tubes necessary for the number of discharge ports is required.
[0028]
The number of discharge ports (generally the number of injection tubules) provided in each injection tube is generally 1 to 100, preferably 1 to 60. The discharge port provided in the injection tube is appropriately set so that the drug solution can be uniformly injected. For example, it is preferable that the longest injection tube is installed at the center, and the short injection tube is gradually left around the periphery so that the discharge port is located outside the bundle. Further, the injection amount from each discharge port is preferably 0.1 to 4 L (liter) / min, particularly preferably 0.2 to 1 L / min. An injection pressure of 1.0 to 3.0 kg / cm is preferable.
[0029]
A preliminary survey is performed to determine the placement of the injection tube. For example, as shown in FIG. 3, for example, as shown in FIG. 3, from the injection port (position of the injection pipe) provided in the soil m contaminated with hexavalent chromium, the positions of radius (r) 1 m, 2 m, 3 m are provided. For example, survey holes (AB2, AC2, BC2) for confirming soil contamination, survey holes (A1, A2, A3, C1, C2, C3) for confirming groundwater contamination, and groundwater contamination are confirmed. Survey holes for investigation and survey holes for confirming soil contamination (all other symbols, B1, B2, B3...) Are installed. Then, a pre-investigation of the degree of contamination is performed in this way, and the arrangement (number, interval, etc.) of the injection tube is determined. An injection tube (generally a plurality) as shown in FIG. 1 is provided at a position to be arranged, and an aqueous solution containing a drug capable of reducing hexavalent chromium is directly injected into a hexavalent chromium-contaminated area by a super multi-point injection method. A purification process is performed.
[0030]
As a method of injecting a drug solution by the super multi-point injection method, for example, a drug solution is alternately discharged from every other outlet in the height direction, and this is similarly applied to each inlet; Examples include a method in which the drug solution is alternately discharged from the discharge ports divided into several groups in the vertical direction by the number of groups divided at the same time, and this is similarly performed for each injection port.
[0031]
The aqueous solution containing an agent capable of reducing hexavalent chromium used in the present invention is an aqueous solution containing divalent iron ions (eg, ferrous sulfate aqueous solution), and the aqueous solution is penetrating and injected at low pressure. It is surprising that the injection method can be used for efficient injection. By using the super multi-point injection method for soil purification, it is possible to inject from multiple locations at ultra-low pressure at the same time, and to control the injection pressure and injection volume at each location over time, enabling highly reliable osmotic injection. It can be said that it became a breakthrough. That is, by the method of the present invention, the chemical solution can be uniformly and uniformly injected into the soil (ground, sandy layer, etc.) contaminated with hexavalent chromium, and the reduction treatment of hexavalent chromium can be performed efficiently. Can do.
[0032]
The aqueous solution containing the agent capable of reducing hexavalent chromium used in the method of the present invention is preferably an aqueous solution containing divalent iron ions. Such an aqueous solution containing divalent iron ions is generally an aqueous solution of ferrous sulfate or ferrous chloride.
[0033]
The aqueous solution containing divalent iron ions is preferably 0.5 to 20% by mass, particularly 5 to 20% by mass as ferrous sulfate (as anhydrous salt) or ferrous chloride.
[0034]
As the ferrous sulfate used in the present invention, ferrous sulfate monohydrate, tetrahydrate, pentahydrate and heptahydrate are common, and ferrous sulfate heptahydrate is particularly preferable. Reaction with hexavalent chromium can be carried out smoothly.
[0035]
The aqueous solution containing an agent capable of reducing hexavalent chromium of the present invention may be obtained by adding and mixing a metal halide or a metal halide and a hydrophilic resin as desired. In this case, it is preferable to use reducing electrolyzed water (preferably pH = 7 to 13) as water used for mixing. Moreover, you may further use the above-mentioned antioxidant within the said range.
[0036]
Examples of the metal halide include NaCl, KCl, MgCl 2 and CaCl 2 , and NaCl is particularly preferable.
[0037]
Examples of the hydrophilic resin include disaccharides such as sucrose, sucrose derivatives (eg, sucrose higher fatty acid ester), monosaccharides such as glucose, alginic acid; pullulan, PVA (polyvinyl alcohol), CMC (carboxyl methylcellulose), polyacrylamide And water-soluble resins such as guar gum, methylcellulose, and hydroxyethylcellulose. Pullulan (particularly preferred because of its low viscosity when made into an aqueous solution), hydroxyethyl cellulose, sucrose, glucose, and PVA are preferred. Using a biodegradable polymer as the hydrophilic resin is particularly effective against secondary environmental pollution.
[0038]
Furthermore, examples of the inorganic carbonate or carbonate-based mineral include calcium carbonate, precipitated calcium carbonate, magnesium carbonate, fossil limestone, limestone, and dolomite, and precipitated calcium carbonate is particularly preferable.
[0039]
As an antioxidant, preferably ascorbic acid may be used, for example, 0.1 to 0.5% by mass (based on the whole).
[0040]
Although the present invention has been described with respect to the method of discharging the drug solution from the injection tube to the soil contaminated with hexavalent chromium as described above, the drug solution as a cleaning agent is discharged to the soil contaminated with other contamination sources. The method of the present invention can also be used when discharging carbonated water to soil contaminated with an organic halide, for example.
[0041]
【Example】
[Example 1]
(1) Preliminary survey As shown in Fig. 3, an inlet and a survey hole were installed in soil contaminated with hexavalent chromium. That is, survey holes (AB2, AC2) for confirming soil contamination are located at a radius (r) of 1 m, 2 m, and 3 m from the inlet (position of the injection pipe) provided in the soil contaminated with hexavalent chromium. BC2), survey holes for confirming groundwater contamination (A1, A2, A3, C1, C2, C3), survey holes for confirming groundwater contamination, and survey holes for confirming soil contamination (others All symbols, B1, B2,.
[0042]
Incidentally, investigations hole (AB2, AC2, BC2) for checking the contamination of soil, placed after reaching 125m 3 injection below, were investigated.
[0043]
(2) Purification experiment (injection)
As the injection port, 15 injection capillaries were bundled and arranged so that the discharge ports were positioned at intervals of 1.0 m from a depth of 7.5 m to 21.5 m. Depth 7.5m, 10.5m, 13.5m, 16.5m, 19.5m group, Depth 8.5m, 11.5m, 14.5m, 17.5m, 20.5m group and Depth 9.5m The injection was divided into three groups of 12.5 m, 15.5 m, 18.5 m, and 21.5 m, and injection was performed alternately in this order.
[0044]
1) By the above injection method, from August 27, a ferrous sulfate 0.6 mass% aqueous solution was injected, 10.5 m 3 injection by 8/28, 70.5 m 3 injection by 9/9, 85 m 3 was injected by 9/13.
[0045]
2) Leave for 11 days until 9/24, and inject a 5% by weight aqueous solution of ferrous sulfate with a concentration increased from 9/25. By 9/27, the total injection amount from 8/27 in 1) 95 m 3 injection, 105m 3 injected to 10/1, 115m 3 injected to 10/8, 125m 3 injected to 10/19, was 135m 3 injected to 10/26.
[0046]
In the above injection test, 85 m 3 was injected with a 0.6% by mass aqueous solution of ferrous sulfate, and after standing for 11 days, re-injection was performed. This re-injection was carried out with a 5% by weight aqueous solution having an increased concentration, but it could be injected without any influence of floc or the like until the end.
[0047]
3) Table 1 shows the changes in the groundwater hexavalent chromium contamination caused by the above injection at each point. The numerical value of the data indicates the Cr 6+ concentration (mg / L). The concentration of Cr 6+ was determined according to the official method.
[0048]
[Table 1]
Figure 2005007240
[0049]
Moreover, the graph which shows the average value of the density | concentration of Cr6 + in each point of 1m, 2m, and 3m of the hexavalent chromium contamination condition (at the time of 5 mass% aqueous solution injection | pouring) of the said groundwater is shown in FIG.
[0050]
[Discussion of the above test and its results (Table 1 and FIG. 4)]
At the time when 85 m 3 (iron ferrous sulfate 510 kg) was injected with a 0.6 mass% aqueous solution of ferrous sulfate, the concentration of Cr 6+ in groundwater decreased, but it was below the environmental standard value (0.05 mg / L). It is not. This is thought to be because the absolute amount of ferrous sulfate was insufficient, so re-injection was performed with a 5% by mass aqueous solution with an increased concentration. As a result, at the stage of injection of 10 m 3 (ferrous sulfate 500 kg), it was possible to make it below the reference value up to a range of 2 m.
[0051]
On the other hand, the penetration range can be said to have penetrated to a range of 2 m at the stage when 10 m 3 of a 5 mass% aqueous solution was injected.
[0052]
4) Table 2 shows the change in each point of the hexavalent chromium contamination status in the soil by the above injection. The numerical value of the data indicates the Cr 6+ concentration (mg / L).
[0053]
[Table 2]
Figure 2005007240
[0054]
As shown in Table 2, the soil subjected to the injection test was a clay layer having a permeability coefficient of 3.0 × 10 −6 > with a depth of 7 m to 10 m, and a sand having a permeability coefficient of 2.2 × 10 −4 with a depth of 10 m to 15 m. The layer was a silt layer having a permeability coefficient of 3.0 × 10 −6 > with a depth of 15 to 17 m, and a sandy layer having a permeability coefficient of 2.9 × 10 −3 with a depth of 17 to 22 m. The injection test was performed at a depth of 7.5 m to 21.5 m as described above.
[0055]
[Discussion of the above test and its results (Table 2)]
In the injection test, the survey boring was performed at the stage where 40 m 3 of 5% by mass aqueous solution was injected (AB2, AC2, BC2). As a result, as shown in Table 2, up to a range of 2 m at a depth deeper than 14 m. It said to be purified (in 14m or less, the concentration of Cr 6+ in the initial value is large at the 0, since the normal injection upper contamination spreading, the concentration of Cr 6+ after injection is 0 is purified Is considered to mean).
[0056]
Further, in the sandy layer having a depth deeper than 14 m, the concentration was below the environmental standard value up to a radius of 2 m, but almost no decrease in density was observed at a radius of 3 m. For the clay layer, a purification effect slightly inferior to the above was obtained.
[0057]
【The invention's effect】
By using the method of the present invention, the soil and / or groundwater contaminated with hexavalent chromium can be efficiently purified in situ without excavation or stirring. That is, according to the method of the present invention, a drug solution such as ferrous sulfate aqueous solution can be uniformly diffused in the soil by injecting the drug solution into the soil by the super multi-point injection method. Therefore, the reaction between hexavalent chromium and an aqueous ferrous sulfate solution is possible without the influence of floc formation and the contaminated soil can be purified.
[0058]
In addition, the method of the present invention is suitable for purification of a wide range of soil or groundwater contaminated with hexavalent chromium because reinjection is easy and infusion can be performed from many places at the same time. Furthermore, complicated excavation work and agitation work are not required, and hexavalent chromium-contaminated soil can be purified easily and efficiently.
[Brief description of the drawings]
FIG. 1 is an example of a super multi-point injection apparatus used for carrying out the purification method of the present invention.
FIG. 2 is an example of another injection tube.
FIG. 3 is a diagram showing an example of arrangement of survey holes for confirming contamination of an inlet, soil, and groundwater provided in soil m contaminated with hexavalent chromium.
FIG. 4 is a graph showing the average value of Cr 6+ concentration at each point of 1 m, 2 m, and 3 m in the state of hexavalent chromium contamination of groundwater purified with a 5 mass% aqueous solution of ferrous sulfate in Examples. It is.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Injection pipe 2 Core pipe 3 Injection thin tube 4 Discharge port 8 Detection box 10 Controller 12 Unit pump 13 Tank for aqueous solution containing medicine 14 Chemical solution 15 Contaminated soil 16 Pressure passage

Claims (10)

六価クロムで汚染された土壌及び/又は地下水に、六価クロムを還元可能な薬剤を含む水溶液を、超多点注入工法により直接注入することを特徴とする六価クロムで汚染された土壌の原位置浄化方法。An aqueous solution containing a chemical capable of reducing hexavalent chromium is directly injected into the soil and / or groundwater contaminated with hexavalent chromium by a super multi-point injection method. In-situ purification method. 六価クロムを還元可能な薬剤を含む水溶液が、2価の鉄イオンを含む水溶液である請求項1に記載の浄化方法。The purification method according to claim 1, wherein the aqueous solution containing a chemical capable of reducing hexavalent chromium is an aqueous solution containing divalent iron ions. 2価の鉄イオンを含む水溶液が、硫酸第一鉄又は塩化第一鉄の水溶液である請求項2に記載の浄化方法。The purification method according to claim 2, wherein the aqueous solution containing divalent iron ions is an aqueous solution of ferrous sulfate or ferrous chloride. 2価の鉄イオンを含む水溶液が、硫酸第一鉄又は塩化第一鉄の5〜15質量%水溶液である請求項2又は3に記載の浄化方法。The purification method according to claim 2 or 3, wherein the aqueous solution containing divalent iron ions is a 5 to 15 mass% aqueous solution of ferrous sulfate or ferrous chloride. 薬剤を含む水溶液を注入するための注入管が、水平方向平面において、1〜5m間隔で設けられている請求項1〜4のいずれかに記載の浄化方法。The purification method according to any one of claims 1 to 4, wherein an injection tube for injecting an aqueous solution containing a drug is provided at intervals of 1 to 5 m on a horizontal plane. 薬剤を含む水溶液を注入するための注入管が、垂直方向に0.3〜1.5m間隔で吐出口を有する請求項5に記載の浄化方法。The purification method according to claim 5, wherein the injection tube for injecting the aqueous solution containing the drug has discharge ports at intervals of 0.3 to 1.5 m in the vertical direction. 注入管に設けられた吐出口の数が、10〜100個である請求項6に記載の浄化方法。The purification method according to claim 6, wherein the number of discharge ports provided in the injection tube is 10 to 100. 注入管が、吐出口と同数の異なる長さの注入細管の束である請求項5〜7のいずれか記載の浄化方法。The purification method according to any one of claims 5 to 7, wherein the injection tube is a bundle of injection thin tubes having the same number of different lengths as the discharge ports. 注入管が、芯管とその周囲に設けられた吐出口と同数の異なる長さの注入細管からなる請求項5〜7のいずれか記載の浄化方法。The purification method according to any one of claims 5 to 7, wherein the injection tube is composed of an injection capillary having the same number of different lengths as the core tube and the discharge ports provided around the core tube. 注入管に設けられた吐出口からの薬剤を含む水溶液の注入を、隣接する吐出口が交互となるようにに吐出することにより行う請求項6〜9のいずれかに記載の浄化方法。The purification method according to any one of claims 6 to 9, wherein the injection of the aqueous solution containing the drug from the discharge port provided in the injection tube is performed by discharging the adjacent discharge ports alternately.
JP2003172205A 2003-06-17 2003-06-17 In-situ purification method of soil and / or groundwater contaminated with hexavalent chromium Expired - Lifetime JP4342222B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003172205A JP4342222B2 (en) 2003-06-17 2003-06-17 In-situ purification method of soil and / or groundwater contaminated with hexavalent chromium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003172205A JP4342222B2 (en) 2003-06-17 2003-06-17 In-situ purification method of soil and / or groundwater contaminated with hexavalent chromium

Publications (2)

Publication Number Publication Date
JP2005007240A true JP2005007240A (en) 2005-01-13
JP4342222B2 JP4342222B2 (en) 2009-10-14

Family

ID=34096427

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003172205A Expired - Lifetime JP4342222B2 (en) 2003-06-17 2003-06-17 In-situ purification method of soil and / or groundwater contaminated with hexavalent chromium

Country Status (1)

Country Link
JP (1) JP4342222B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007190478A (en) * 2006-01-18 2007-08-02 Toho Gas Co Ltd Sparging well, soil treatment system, and soil treatment method
CN101816829A (en) * 2010-04-09 2010-09-01 河南金谷环保工程设备有限公司 Chromium residue detoxifying process
JP4784879B1 (en) * 2011-03-14 2011-10-05 株式会社タムラ Cremation residue ash detoxification method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007190478A (en) * 2006-01-18 2007-08-02 Toho Gas Co Ltd Sparging well, soil treatment system, and soil treatment method
JP4726635B2 (en) * 2006-01-18 2011-07-20 東邦瓦斯株式会社 Sparging well and soil purification system
CN101816829A (en) * 2010-04-09 2010-09-01 河南金谷环保工程设备有限公司 Chromium residue detoxifying process
JP4784879B1 (en) * 2011-03-14 2011-10-05 株式会社タムラ Cremation residue ash detoxification method

Also Published As

Publication number Publication date
JP4342222B2 (en) 2009-10-14

Similar Documents

Publication Publication Date Title
CA3025709C (en) In-situ injection of soil and groundwater - high pressure rotary jet grouting in-situ remediation system and method
TW293056B (en)
CN106914482A (en) The in-situ remediation system of contaminated soil and underground water
CN106623389A (en) Remediation method for cyanide contaminated soil
CN102774965A (en) In-situ repair system for treating pollution of underground water
CN110479747B (en) Method and system for removing ammonia nitrogen pollution of soil in-situ leaching rare earth mining area
CN107159698B (en) Method for in-situ remediation of heavy metal contaminated soil by three-dimensional well leaching combined stabilization
EP1361002A2 (en) Method and apparatus for purifying a layer of contaminated soil
CN104131594B (en) Double well processing method is filled in-drawn water to underground water pollution
JP2005002659A (en) Groundwater circulation system in excavation of ground, and construction method for measure against groundwater in excavation of ground
CN212954583U (en) System for repairing hexavalent chromium polluted groundwater
JP4342222B2 (en) In-situ purification method of soil and / or groundwater contaminated with hexavalent chromium
JP2002143828A (en) Countermeasure method for cleaning of soil and soil cleaning system
JP2008188478A (en) Method and system for purifying polluted soil
CN211284065U (en) Get rid of normal position circulation well cluster repair system of heavy metal and organic pollutant in groundwater
CN115125404B (en) System and method for collecting ion type rare earth ore in-situ leaching field leakage liquid
JP3975239B2 (en) Contaminated groundwater purification method and apparatus
CN202688099U (en) In-situ repair system for underground water pollution treatment
KR101653806B1 (en) System for treating a riverbank filtration on situ by using an inclined injection pipe
JP2002370084A (en) Polluted soil regeneration method
JP2001232344A (en) Method for forming sand layer in contaminated soil and treating method of contaminated soil
JP5208599B2 (en) Purification of groundwater containing nitrate nitrogen
JP2004223491A (en) Method for purifying soil
JP3897553B2 (en) Construction method of underground purification wall
JP4670029B2 (en) Soil purification method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060330

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080327

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080521

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090609

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090707

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120717

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4342222

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150717

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150717

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term