JP2005006918A - Radiation imaging apparatus - Google Patents

Radiation imaging apparatus Download PDF

Info

Publication number
JP2005006918A
JP2005006918A JP2003174773A JP2003174773A JP2005006918A JP 2005006918 A JP2005006918 A JP 2005006918A JP 2003174773 A JP2003174773 A JP 2003174773A JP 2003174773 A JP2003174773 A JP 2003174773A JP 2005006918 A JP2005006918 A JP 2005006918A
Authority
JP
Japan
Prior art keywords
image
ray
storage unit
images
specific substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003174773A
Other languages
Japanese (ja)
Other versions
JP4526110B2 (en
JP2005006918A5 (en
Inventor
Ken Ishikawa
謙 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Healthcare Manufacturing Ltd
Original Assignee
Hitachi Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corp filed Critical Hitachi Medical Corp
Priority to JP2003174773A priority Critical patent/JP4526110B2/en
Publication of JP2005006918A publication Critical patent/JP2005006918A/en
Publication of JP2005006918A5 publication Critical patent/JP2005006918A5/ja
Application granted granted Critical
Publication of JP4526110B2 publication Critical patent/JP4526110B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Transforming Light Signals Into Electric Signals (AREA)
  • Studio Devices (AREA)
  • Image Analysis (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Image Processing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a radiation imaging apparatus with which an image where influence of X-ray absorption by a specific substance like a bone is suppressed at high speed without degrading an SN ratio. <P>SOLUTION: This apparatus comprises an image processing part 5 which obtains two kinds of X-ray images of different energy characters from a same subject and images the X-ray absorption by the specific substance in the subject by using the difference of the two kinds of X-ray images. The image processing part 5 is provided with a gradation conversion processing part 521 for controlling the parameter of image processing with respect to the two kinds of X-ray images of different energy characters or a synthetic image obtained by synthesizing them by using an X-ray absorption image made by the specific substance. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明が属する技術分野】
本発明は放射線画像撮像装置に係り、特に同一の被写体から得られたエネルギー特性の異なる2種類のX線画像及びそれらの合成画像の画質向上に寄与できる技術に関する。
【0002】
【従来の技術】
従来、同一の被写体を二つの線質で撮影し、それらの撮影画像に適当な重みを付けて差分を取ることにより、線質による吸収係数の変化の違いを画像化するエネルギーサブトラクション法という撮影法がある。この撮影法は胸部画像から障害陰影である骨像を除いて肺野の結節の存在診断などに用いられている([非特許文献1]参照)。
【0003】
また、2枚のイメージングプレートを使い、その間に線質フィルタを挟むことにより、1回の撮影でエネルギー特性の異なる2種類の画像を得るエネルギーサブトラクション法もある([非特許文献2]参照)。
【0004】
【非特許文献1】
「X線イメージング」、飯沼他著、コロナ社(東京)、2001年、p.36,160)
【非特許文献2】
「医用画像・放射線機器ハンドブック」(2001年)、日本画像医療システム工業会、p.80−81
【0005】
【発明が解決しようとする課題】
しかしながら、上記従来技術のエネルギーサブトラクション法は、二つの画像の違いを画像化しているので、基本的に原画像よりSN比が低下する。SN比低下による画質劣化を防ぐには人体に有害なX線などの放射線被曝を増加させる必要がある場合があり、被検体へのより少ない放射線被曝の検査の要求に応えることが困難であった。
【0006】
また、軟部抽出画像と骨部抽出画像を交互に用いる繰り返し処理があるがその処理には、エッヂ保存平滑化と呼ばれる画素ごとにエッヂ部に属するかの判定処理が含まれ多くの処理時間を要する。このため、迅速にエネルギーサブトラクション法を行いたいというニーズに応えることが困難であった。
【0007】
本発明の目的は、SN比を低下させないで高速に骨のような特定の物質によるX線吸収の影響を抑制した画像を得ることが可能な放射線画像撮像装置を提供することにある。
【0008】
【課題を解決するための手段】
上記目的は、同一の被写体からエネルギー特性の異なる2種類のX線画像を得るX線画像取得手段と、該2種類のX線画像の違いを用いて、被写体中の特定の物質によるX線吸収を画像化する画像処理手段を備えた放射線画像撮像装置において、上記画像処理手段は、上記特定の物質によるX線吸収画像を用いて、上記エネルギー特性の異なる2種類のX線画像またはそれらを合成した合成画像に対する画像処理のパラメータを制御する手段を備えたことを特徴とする放射線画像撮像装置によって達成される。
【0009】
また、上記制御手段は、上記特定の物質によるX線吸収画像を平滑化した画像を用いて、上記エネルギー特性の異なる2種類のX線画像またはそれらの合成画像に対する画像処理のパラメータを制御してもよい。
【0010】
また、上記制御手段は、上記特定の物質によるX線吸収画像を用いて、上記エネルギー特性の異なる2種類のX線画像の合成処理のパラメータを制御してもよい。
【0011】
また、上記制御手段は、上記特定の物質によるX線吸収画像を用いて、上記エネルギー特性の異なる2種類のX線画像またはそれらの合成画像に対する階調変換処理のパラメータを制御してもよい。
【0012】
また、上記制御手段は、上記特定の物質によるX線吸収画像を用いて、上記エネルギー特性の異なる2種類のX線画像またはそれらの合成画像に対する空間フィルタ処理のパラメータを制御してもよい。
【0013】
具体的には、SN比が低下した軟部や骨部抽出画像をそのまま用いるのではなく、原画像やその合成画像に対する画像処理を、画像の各部分が軟部や骨部に含まれる度合いに応じて最適化するように、抽出画像を使って画像処理パラメータの制御を行う。
【0014】
また、画像処理パラメータの局所的変化が新たなノイズ源とならないように、画像処理パラメータ制御に使う抽出画像には平滑化処理を施すことが考えられるが、平滑化の影響はパラメータだけで、画像処理された画像には及ばない。
【0015】
【発明の実施の形態】
本発明の放射線画像撮像装置について図面を参照して説明する。
図1は本発明の放射線画像撮像装置の全体構成のブロック図、図2は図1の画像処理部5のブロック図、図3乃至6は画像処理部5中の重み係数LUT記憶部519の内容を示すグラフである。
【0016】
放射線画像撮像装置は、図1に示すように、X線管1と、X線管1と電気的に接続されるX線高電圧発生器2と、X線管1と被写体を挟んで対向配置されるX線平面検出器3と、X線高電圧発生器2と電気的に接続される撮影制御器4と、X線平面検出器3と電気的に接続される画像処理部5と、画像処理部5と電気的に接続される画像観察装置6と、撮影制御器4と電気的に接続される撮影スイッチ7とを有している。
【0017】
X線管1は被写体にX線を照射する。X線高電圧発生器1はX線管1にX線を発生させるための電源を供給する。X線平面検出器3は被写体を透過したX線を検出し、X線画像に変換して出力する。撮影制御器4は撮影スイッチ7からの信号を受けてX線高電圧発生器2に制御信号を供給する。画像処理部5はX線平面検出器3から出力されたX線画像を診断に供するように画像処理して出力する。画像観察装置6は画像処理部5からの画像処理されたX線画像を表示する。撮影スイッチ7は操作者が所望のタイミングで、X線をX線管1より発生できるように操作入力するものである。
【0018】
次に、画像処理部5は、図2に示すように、X線平面検出器3と電気的に接続される対数変換ルックアップテーブル(LUT)510と、対数変換LUT510と電気的に接続される切換器511と、切換器511と電気的に接続される低エネルギー画像記憶部513及び高エネルギー画像記憶部512と、低エネルギー画像記憶部513及び高エネルギー画像記憶部512と電気的に接続される重み付け差分処理部514と、重み付け差分処理部514と電気的に接続される骨部抽出画像記憶部515と、骨部抽出画像記憶部515と電気的に接続される平滑化処理部516と、平滑化処理部516と電気的に接続される平滑化骨部抽出画像記憶部517と、平滑化骨部抽出画像記憶部517と電気的に接続される重み係数LUT記憶部519と、重み係数LUT記憶部519と電気的に接続される加算平均処理部518と、加算平均処理部518と電気的に接続される合成画像記憶部520と、重み係数LUT記憶部519、合成画像記憶部520、骨部用諧調特性記憶部522及び軟部用諧調特性記憶部523と電気的に接続される階調変換処理部521と、階調変換処理部521と電気的に接続される階調変換合成画像記憶部524と、階調変換合成画像記憶部524と電気的に接続される高域強調空間フィルタ処理部525とを有している。
【0019】
対数変換LUT510は画像信号31を対数変換して出力する。切替器511は高エネルギー画像と低エネルギー画像とを切替える。高エネルギー画像記憶部512は高エネルギー画像を記憶する。低エネルギー画像記憶部513は低エネルギー画像を記憶する。重み付け差分処理部514は高エネルギー画像記憶部512に記憶された高エネルギー画像と、低エネルギー画像記憶部513に記憶された低エネルギー画像との重み付け差分を行い、骨部抽出画像を得る。骨部抽出画像記憶部515は骨部抽出画像を記憶する。平滑化処理部516は骨部抽出画像に平滑処理を行う。平滑化骨部抽出画像記憶部517は平滑処理された骨部抽出画像を記憶する。重み係数LUT記憶部519は加算平均処理部518、階調変換処理部521及び高域強調空間フィルタ525に各種重み付け係数を供給する。加算平均処理部518は重み係数LUT記憶部519により供給される低エネルギー画像重みWL5190と高エネルギー画像重みWH5191に基づき高エネルギー画像記憶部512に記憶された高エネルギー画像と、低エネルギー画像記憶部513に記憶された低エネルギー画像との重み付け加算平均し、合成画像を得る。合成画像記憶部520は加算平均処理部518により得られた合成画像を記憶する。階調変換処理部521は重み係数LUT記憶部519から階調LUT選択重みWG5192、骨部用階調特性記憶部522より骨部用階調特性及び軟部用階調特性記憶部523より軟部用階調特性とが供給され、合成画像記憶部520から読み出された合成画像を階調変換処理する。階調変換合成画像記憶部524は階調変換処理部521により処理された合成画像を記憶する。高域強調空間フィルタ処理部525は、重み係数LUT記憶部519により供給される高域強調係数KF5193に基づき階調変換合成画像記憶部524より読み出された出力画像を高域強調空間フィルタ処理し、処理後画像信号50として画像観察装置6に出力する。
【0020】
次に、放射線画像撮像装置の動作について説明する。
操作者が撮影スイッチ7を押すと、撮影トリガ信号70が撮影制御器4に入力する。撮影制御器4は撮影トリガ信号70の立ち上り後、照射開始信号40をX線高電圧発生器2に出力し、X線高電圧発生器2はそれを受けて、通常「高」状態にある高/低エネルギー切替信号41に従い高圧の管電圧をX線管1に印加し、1回目のX線照射を行う。1回目の照射が終わると、X線平面検出器3は原画像信号30高/低エネルギー切替信号41に従う切替器511を介して高エネルギー画像記憶部512に高エネルギー画像として記憶する。
【0021】
撮影制御器4は1回目の原画像信号31の出力が終わると高/低エネルギー切替信号41を「低」状態に切替えてから2回目の照射開始信号40を出力し、X線高電圧発生器2はそれを受けて、高/低エネルギー切替信号41に従い低圧の管電圧をX線管1に印加し、2回目のX線照射を行う。2回目の照射が終わると、X線平面検出器3は原画像信号30を画像処理装置5に出力し、画像処理装置5は対数変換LUT510による対数変換後、高/低エネルギー切替信号41に従う切替器511を介して低エネルギー画像記憶部513に低エネルギー画像を記憶する。撮影制御器4は2回目の原画像信号30の出力が終わると高/低エネルギー切替信号41を「高」状態に切替える。
【0022】
画像処理装置5は、高エネルギー画像記憶部512に記憶された高エネルギー画像と低エネルギー画像記憶部513に記憶された低エネルギー画像の重み付け差分を重み付け差分処理部514で行うことにより骨部抽出画像を得、骨部抽出画像記憶部515に記憶する。該画像に平滑化処理部516により平滑化処理を施すことにより平滑化骨部抽出画像517を得、これを重み係数LUT記憶部519に入力することにより画像処理パラメータを制御する。
【0023】
即ち、高エネルギー画像と低エネルギー画像を加重平均処理部518により加算平均処理して合成画像520を得るに際し、平滑化骨部抽出画像記憶部517から平滑化骨部抽出画像を同時に読出し、重み係数LUT記憶部519を参照して、画素毎に低エネルギー画像重みWL5190、高エネルギー画像重みWH5191を得て、これを用いて、加算平均
WL・(低エネルギー画像)+WH・(高エネルギー画像)
を行う。ここで、重みWL、WHは図3に示すように骨部のX線吸収が多い所では骨による障害陰影が少ない高エネルギー画像の寄与が大きくなるようにとられている。
【0024】
また、合成画像記憶部520に記憶された合成画像を、階調変換処理部521により階調変換処理し、階調変換合成画像を得るに際し、平滑化骨部抽出画像517も同時に読出し、重み係数LUT記憶部519を参照して、画素毎に階調LUT選択重みWG5192を得て、これを用いて、骨部用階調特性記憶部522に記憶された骨部用階調特性と軟部用階調特性記憶部523に記憶された軟部用階調特性を
合成WG・(骨部用階調特性)+(1−WG)・(軟部用階調特性)
した特性で変換を行う。
【0025】
ここで、重みWGは図4に示すように骨部のX線吸収に応じて、肺野中の肋骨に相当する領域で立上るようにとられており、骨部用階調特性と軟部用階調特性が、それぞれ肋骨領域と肺野領域で図5に示すようにほぼ同じ出力値を出すように設定されているので、肺野領域から肋骨領域への移行で出力値の変化が抑えられ、骨による障害陰影が低減する。
【0026】
更に、階調変換合成画像記憶部524に記憶された階調変換合成画像に高域強調空間フィルタ処理部525により高域強調空間フィルタ処理を施して処理後画像信号50を得るに際し、平滑化骨部抽出画像記憶部517より平滑化骨部抽出画像も同時に読出し、重み係数LUT記憶部519を参照して、画素毎に高域強調係数KF5192を得て、これを用いて強調の程度を制御する。ここで、係数KFは図6に示すように骨部のX線吸収が少なくSN比が高い所で強調の程度を高くするようにしている。
【0027】
本実施形態によれば、軟部用階調特性の肺野領域と骨部用階調特性の肋骨領域がほぼ同じ出力値を出すように設定されているので、肺野領域から肋骨領域への移行で出力値の変化が抑えられ、骨による障害陰影を低減することができる。
【0028】
【発明の効果】
本発明は、SN比を低下させないで高速に骨のような特定の物質によるX線吸収の影響を抑制した画像を得ることが可能な放射線画像撮像装置を提供するという効果を奏する。
【図面の簡単な説明】
【図1】本発明の放射線画像撮像装置の全体構成のブロック図。
【図2】図1の画像処理部5のブロック図。
【図3】画像処理部5中の各種係数LUT516の内容を示すグラフ。
【図4】図3と異なる内容を示すグラフ。
【図5】図3乃至図4と異なる内容を示すグラフ。
【図6】図3乃至図5と異なる内容を示すグラフ。
【符号の説明】
5 画像処理部、
521 階調変換処理部
[0001]
[Technical field to which the invention belongs]
The present invention relates to a radiographic imaging apparatus, and more particularly to a technique that can contribute to improving the image quality of two types of X-ray images obtained from the same subject and having different energy characteristics, and their combined images.
[0002]
[Prior art]
Conventionally, an imaging method called the energy subtraction method that images the same subject with two line qualities, images the difference in absorption coefficient due to the line qualities by weighting the captured images and taking the difference. There is. This imaging method is used for diagnosing the presence of a nodule in the lung field by removing a bone image that is a shadow of an obstacle from a chest image (see [Non-Patent Document 1]).
[0003]
There is also an energy subtraction method that uses two imaging plates and sandwiches a quality filter between them to obtain two types of images with different energy characteristics in one image (see [Non-Patent Document 2]).
[0004]
[Non-Patent Document 1]
“X-ray imaging”, Iinuma et al., Corona (Tokyo), 2001, p. 36,160)
[Non-Patent Document 2]
“Medical Imaging / Radiological Equipment Handbook” (2001), Japan Imaging Medical System Association, p. 80-81
[0005]
[Problems to be solved by the invention]
However, since the energy subtraction method of the above prior art images the difference between the two images, the SN ratio is basically lower than that of the original image. In order to prevent degradation of image quality due to a decrease in the S / N ratio, it may be necessary to increase radiation exposure such as X-rays harmful to the human body, and it is difficult to meet the demand for examination of less radiation exposure to the subject. .
[0006]
In addition, although there is an iterative process that uses the soft part extracted image and the bone part extracted image alternately, the process includes a process for determining whether each pixel belongs to the edge part, which is called edge preservation smoothing, and requires a lot of processing time. . For this reason, it has been difficult to meet the need to quickly perform the energy subtraction method.
[0007]
An object of the present invention is to provide a radiographic imaging apparatus capable of obtaining an image in which the influence of X-ray absorption by a specific substance such as bone is suppressed at high speed without reducing the SN ratio.
[0008]
[Means for Solving the Problems]
The object is to use X-ray image acquisition means for obtaining two types of X-ray images having different energy characteristics from the same subject and X-ray absorption by a specific substance in the subject by using the difference between the two types of X-ray images. In the radiographic imaging apparatus provided with the image processing means for imaging the image, the image processing means uses the X-ray absorption image of the specific substance to synthesize two types of X-ray images having different energy characteristics or a combination thereof. This is achieved by a radiographic imaging apparatus comprising means for controlling image processing parameters for the synthesized image.
[0009]
Further, the control means controls an image processing parameter for two types of X-ray images having different energy characteristics or a composite image thereof using an image obtained by smoothing an X-ray absorption image of the specific substance. Also good.
[0010]
In addition, the control means may control parameters of the synthesis process of two types of X-ray images having different energy characteristics, using an X-ray absorption image of the specific substance.
[0011]
In addition, the control means may control the parameters of gradation conversion processing for two types of X-ray images having different energy characteristics or a composite image thereof using an X-ray absorption image of the specific substance.
[0012]
Further, the control means may control parameters of spatial filter processing for two types of X-ray images having different energy characteristics or a composite image thereof using an X-ray absorption image of the specific substance.
[0013]
Specifically, instead of using the extracted soft part or bone part image with a reduced SN ratio as it is, image processing on the original image or its composite image is performed according to the degree to which each part of the image is included in the soft part or bone part. The image processing parameters are controlled using the extracted image so as to optimize.
[0014]
In order to prevent local changes in image processing parameters from becoming a new noise source, it may be possible to apply a smoothing process to the extracted image used for image processing parameter control. It does not extend to processed images.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
A radiographic imaging device of the present invention will be described with reference to the drawings.
1 is a block diagram of the overall configuration of the radiographic image capturing apparatus of the present invention, FIG. 2 is a block diagram of the image processing unit 5 in FIG. 1, and FIGS. 3 to 6 are the contents of a weighting coefficient LUT storage unit 519 in the image processing unit 5 It is a graph which shows.
[0016]
As shown in FIG. 1, the radiographic image capturing apparatus is disposed so as to face each other with an X-ray tube 1, an X-ray high voltage generator 2 electrically connected to the X-ray tube 1, and the X-ray tube 1 sandwiching a subject. X-ray flat panel detector 3, imaging controller 4 electrically connected to X-ray high voltage generator 2, image processor 5 electrically connected to X-ray flat panel detector 3, and image The image observation apparatus 6 is electrically connected to the processing unit 5, and the photographing switch 7 is electrically connected to the photographing controller 4.
[0017]
The X-ray tube 1 irradiates the subject with X-rays. The X-ray high voltage generator 1 supplies power for generating X-rays in the X-ray tube 1. The X-ray plane detector 3 detects X-rays that have passed through the subject, converts them into X-ray images, and outputs them. The imaging controller 4 receives a signal from the imaging switch 7 and supplies a control signal to the X-ray high voltage generator 2. The image processing unit 5 processes the X-ray image output from the X-ray flat panel detector 3 so as to be used for diagnosis and outputs it. The image observation device 6 displays the image-processed X-ray image from the image processing unit 5. The imaging switch 7 is used to input an operation so that the operator can generate X-rays from the X-ray tube 1 at a desired timing.
[0018]
Next, as shown in FIG. 2, the image processing unit 5 is electrically connected to a logarithmic conversion lookup table (LUT) 510 electrically connected to the X-ray flat panel detector 3 and a logarithmic conversion LUT 510. The switch 511, the low energy image storage unit 513 and the high energy image storage unit 512 electrically connected to the switch 511, and the low energy image storage unit 513 and the high energy image storage unit 512 are electrically connected. A weighted difference processing unit 514, a bone extracted image storage unit 515 electrically connected to the weighted difference processing unit 514, a smoothing processing unit 516 electrically connected to the bone extracted image storage unit 515, and a smoothing The smoothed bone portion extracted image storage unit 517 electrically connected to the smoothing processing unit 516 and the weight coefficient LUT storage unit 5 electrically connected to the smoothed bone portion extracted image storage unit 517 9, an addition average processing unit 518 electrically connected to the weighting factor LUT storage unit 519, a composite image storage unit 520 electrically connected to the addition average processing unit 518, a weighting factor LUT storage unit 519, A gradation conversion processing unit 521 that is electrically connected to the image storage unit 520, the bone gradation characteristic storage unit 522, and the soft gradation characteristic storage unit 523, and a floor that is electrically connected to the gradation conversion processing unit 521. A tone conversion composite image storage unit 524 and a high-frequency emphasis spatial filter processing unit 525 electrically connected to the tone conversion composite image storage unit 524 are included.
[0019]
The logarithmic conversion LUT 510 performs logarithmic conversion on the image signal 31 and outputs it. A switcher 511 switches between a high energy image and a low energy image. The high energy image storage unit 512 stores a high energy image. The low energy image storage unit 513 stores a low energy image. The weighting difference processing unit 514 performs a weighting difference between the high energy image stored in the high energy image storage unit 512 and the low energy image stored in the low energy image storage unit 513 to obtain a bone part extracted image. The bone part extracted image storage unit 515 stores the bone part extracted image. The smoothing processing unit 516 performs a smoothing process on the bone part extracted image. The smoothed bone part extracted image storage unit 517 stores the smoothed bone part extracted image. The weighting coefficient LUT storage unit 519 supplies various weighting coefficients to the addition average processing unit 518, the gradation conversion processing unit 521, and the high frequency emphasis spatial filter 525. The addition average processing unit 518 includes a high energy image stored in the high energy image storage unit 512 based on the low energy image weight WL 5190 and the high energy image weight WH 5191 supplied by the weight coefficient LUT storage unit 519, and the low energy image storage unit 513. Are weighted and averaged with the low energy images stored in the image to obtain a composite image. The composite image storage unit 520 stores the composite image obtained by the addition average processing unit 518. The gradation conversion processing unit 521 includes a gradation LUT selection weight WG5192 from the weighting coefficient LUT storage unit 519, a bone portion gradation characteristic from the bone portion gradation characteristic storage unit 522, and a soft portion gradation characteristic from the soft portion gradation characteristic storage unit 523. Tone characteristics are supplied, and the composite image read from the composite image storage unit 520 is subjected to gradation conversion processing. The tone conversion composite image storage unit 524 stores the composite image processed by the tone conversion processing unit 521. The high frequency emphasis spatial filter processing unit 525 performs high frequency emphasis spatial filter processing on the output image read from the gradation conversion synthesized image storage unit 524 based on the high frequency emphasis coefficient KF5193 supplied from the weighting factor LUT storage unit 519. The processed image signal 50 is output to the image observation device 6.
[0020]
Next, the operation of the radiographic image capturing apparatus will be described.
When the operator presses the shooting switch 7, a shooting trigger signal 70 is input to the shooting controller 4. After the imaging trigger signal 70 rises, the imaging controller 4 outputs an irradiation start signal 40 to the X-ray high voltage generator 2, and the X-ray high voltage generator 2 receives the high signal that is normally in a “high” state. / A high voltage tube voltage is applied to the X-ray tube 1 in accordance with the low energy switching signal 41 to perform the first X-ray irradiation. When the first irradiation is completed, the X-ray flat panel detector 3 stores the original image signal 30 as a high energy image in the high energy image storage unit 512 via the switch 511 according to the high / low energy switching signal 41.
[0021]
When the first output of the original image signal 31 is finished, the imaging controller 4 switches the high / low energy switching signal 41 to the “low” state, and then outputs the second irradiation start signal 40, and the X-ray high voltage generator In response to this, 2 applies a low voltage tube voltage to the X-ray tube 1 in accordance with the high / low energy switching signal 41 to perform the second X-ray irradiation. When the second irradiation is finished, the X-ray flat panel detector 3 outputs the original image signal 30 to the image processing device 5, and the image processing device 5 performs switching according to the high / low energy switching signal 41 after logarithmic conversion by the logarithmic conversion LUT 510. The low energy image is stored in the low energy image storage unit 513 via the device 511. The photographing controller 4 switches the high / low energy switching signal 41 to the “high” state when the output of the second original image signal 30 is completed.
[0022]
The image processing device 5 performs a weighted difference between the high energy image stored in the high energy image storage unit 512 and the low energy image stored in the low energy image storage unit 513 by the weighted difference processing unit 514, thereby extracting the bone part extracted image. And stored in the bone extracted image storage unit 515. The smoothing processing unit 516 performs smoothing processing on the image to obtain a smoothed bone extracted image 517, which is input to the weighting coefficient LUT storage unit 519, thereby controlling image processing parameters.
[0023]
That is, when a high-energy image and a low-energy image are added and averaged by the weighted average processing unit 518 to obtain a composite image 520, the smoothed bone portion extracted image is simultaneously read from the smoothed bone portion extracted image storage unit 517, and the weight coefficient Referring to the LUT storage unit 519, a low energy image weight WL5190 and a high energy image weight WH5191 are obtained for each pixel, and using these, the addition average WL · (low energy image) + WH · (high energy image)
I do. Here, as shown in FIG. 3, the weights WL and WH are set so that the contribution of the high-energy image with less obstacle shadows due to the bone becomes large in the portion where the X-ray absorption of the bone portion is large.
[0024]
In addition, when the composite image stored in the composite image storage unit 520 is subjected to gradation conversion processing by the gradation conversion processing unit 521 and a gradation conversion composite image is obtained, the smoothed bone extracted image 517 is also read at the same time, and the weight coefficient With reference to the LUT storage unit 519, the gradation LUT selection weight WG5192 is obtained for each pixel, and using this, the tone characteristics for the bone part and the soft part floor stored in the tone characteristic storage unit 522 for the bone part are used. The soft part gradation characteristics stored in the tone characteristic storage unit 523 are combined with the combined WG · (bone part gradation characteristic) + (1−WG) · (soft part gradation characteristic).
Conversion is performed with the specified characteristics.
[0025]
Here, the weight WG is set so as to rise in a region corresponding to the rib in the lung field in accordance with the X-ray absorption of the bone as shown in FIG. Since the tonal characteristics are set to give almost the same output value as shown in FIG. 5 in the rib area and lung field, respectively, the change of the output value is suppressed by the transition from the lung field to the rib area, Reduced shadows due to bone.
[0026]
Further, when the tone conversion synthesized image stored in the tone conversion synthesized image storage unit 524 is subjected to the high frequency enhancement spatial filter processing by the high frequency enhancement spatial filter processing unit 525 to obtain the processed image signal 50, the smoothed bone The smoothed bone extracted image is also read from the partial extracted image storage unit 517 at the same time, and the high-frequency enhancement coefficient KF5192 is obtained for each pixel by referring to the weighting coefficient LUT storage unit 519, and the degree of enhancement is controlled using this. . Here, as shown in FIG. 6, the coefficient KF increases the degree of emphasis at a place where the X-ray absorption of the bone part is small and the SN ratio is high.
[0027]
According to the present embodiment, since the lung field area of the soft part tone characteristic and the rib area of the bone part tone characteristic are set to output substantially the same output value, the transition from the lung field area to the rib area is performed. Thus, the change of the output value can be suppressed, and the shading caused by the bone can be reduced.
[0028]
【The invention's effect】
The present invention has an effect of providing a radiographic imaging apparatus capable of obtaining an image in which the influence of X-ray absorption by a specific substance such as bone is suppressed at high speed without reducing the SN ratio.
[Brief description of the drawings]
FIG. 1 is a block diagram of the overall configuration of a radiographic image capturing apparatus according to the present invention.
FIG. 2 is a block diagram of the image processing unit 5 in FIG.
FIG. 3 is a graph showing the contents of various coefficients LUT 516 in the image processing unit 5;
FIG. 4 is a graph showing contents different from FIG. 3;
FIG. 5 is a graph showing contents different from those shown in FIGS. 3 to 4;
6 is a graph showing contents different from those in FIGS. 3 to 5. FIG.
[Explanation of symbols]
5 Image processing unit,
521 gradation conversion processing unit

Claims (5)

同一の被写体からエネルギー特性の異なる2種類のX線画像を得るX線画像取得手段と、該2種類のX線画像の違いを用いて、被写体中の特定の物質によるX線吸収を画像化する画像処理手段を備えた放射線画像撮像装置において、上記画像処理手段は、上記特定の物質によるX線吸収画像を用いて、上記エネルギー特性の異なる2種類のX線画像またはそれらを合成した合成画像に対する画像処理のパラメータを制御する手段を備えたことを特徴とする放射線画像撮像装置。X-ray absorption by a specific substance in a subject is imaged using an X-ray image acquisition unit that obtains two types of X-ray images having different energy characteristics from the same subject and the difference between the two types of X-ray images. In the radiographic imaging apparatus provided with the image processing means, the image processing means uses the X-ray absorption image of the specific substance to the two types of X-ray images having different energy characteristics or a synthesized image obtained by synthesizing them. A radiographic imaging apparatus comprising means for controlling image processing parameters. 上記制御手段は、上記特定の物質によるX線吸収画像を平滑化した画像を用いて、上記エネルギー特性の異なる2種類のX線画像またはそれらの合成画像に対する画像処理のパラメータを制御することを特徴とする請求項1に記載の放射線画像撮像装置。The control means controls an image processing parameter for two types of X-ray images having different energy characteristics or a composite image thereof using an image obtained by smoothing an X-ray absorption image of the specific substance. The radiographic image capturing apparatus according to claim 1. 上記制御手段は、上記特定の物質によるX線吸収画像を用いて、上記エネルギー特性の異なる2種類のX線画像の合成処理のパラメータを制御することを特徴とする請求項1に記載の放射線画像撮像装置。2. The radiographic image according to claim 1, wherein the control unit controls an X-ray absorption image of the specific substance to control a parameter for synthesizing two types of X-ray images having different energy characteristics. Imaging device. 上記制御手段は、上記特定の物質によるX線吸収画像を用いて、上記エネルギー特性の異なる2種類のX線画像またはそれらの合成画像に対する階調変換処理のパラメータを制御することを特徴とする請求項1に記載の放射線画像撮像装置。The control means controls a parameter of gradation conversion processing for two types of X-ray images having different energy characteristics or a composite image thereof using an X-ray absorption image of the specific substance. Item 2. The radiographic imaging device according to Item 1. 上記制御手段は、上記特定の物質によるX線吸収画像を用いて、上記エネルギー特性の異なる2種類のX線画像またはそれらの合成画像に対する空間フィルタ処理のパラメータを制御することを特徴とする請求項1に記載の放射線画像撮像装置。The said control means controls the parameter of the spatial filter process with respect to two types of X-ray images from which the said energy characteristic differs, or those composite images using the X-ray absorption image by the said specific substance. The radiographic imaging apparatus according to 1.
JP2003174773A 2003-06-19 2003-06-19 Radiation imaging device Expired - Fee Related JP4526110B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003174773A JP4526110B2 (en) 2003-06-19 2003-06-19 Radiation imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003174773A JP4526110B2 (en) 2003-06-19 2003-06-19 Radiation imaging device

Publications (3)

Publication Number Publication Date
JP2005006918A true JP2005006918A (en) 2005-01-13
JP2005006918A5 JP2005006918A5 (en) 2006-07-13
JP4526110B2 JP4526110B2 (en) 2010-08-18

Family

ID=34098158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003174773A Expired - Fee Related JP4526110B2 (en) 2003-06-19 2003-06-19 Radiation imaging device

Country Status (1)

Country Link
JP (1) JP4526110B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010050031A1 (en) * 2008-10-30 2010-05-06 株式会社島津製作所 Radiation photographing apparatus
WO2012026597A1 (en) * 2010-08-27 2012-03-01 ソニー株式会社 Image processing apparatus and method
US9456796B2 (en) 2013-08-30 2016-10-04 Samsung Electronics Co., Ltd. X-ray imaging apparatus and method of controlling the same

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0210142A (en) * 1988-06-28 1990-01-12 Matsushita Electric Ind Co Ltd Energy differential image processing method
JPH03212074A (en) * 1990-01-17 1991-09-17 Fuji Photo Film Co Ltd Display method for energy subtraction picture
JPH03263982A (en) * 1989-10-19 1991-11-25 Fuji Photo Film Co Ltd Method and apparatus for displaying energy subtraction picture
JPH05236351A (en) * 1991-12-26 1993-09-10 Fuji Photo Film Co Ltd Energy-subtracted image generating method
JPH0622218A (en) * 1992-06-30 1994-01-28 Fuji Photo Film Co Ltd Energy subtraction image forming method
JPH08336517A (en) * 1995-06-12 1996-12-24 Konica Corp Image processing device
JPH10155115A (en) * 1996-09-25 1998-06-09 Fuji Photo Film Co Ltd Method and device for processing bone image
JP2000060834A (en) * 1998-06-09 2000-02-29 Fuji Photo Film Co Ltd Energy subtraction imaging method
JP2003037778A (en) * 2001-05-08 2003-02-07 Ge Medical Systems Global Technology Co Llc Method and apparatus for automatic determination of tissue cancellation parameter in x-ray dual energy imaging

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0210142A (en) * 1988-06-28 1990-01-12 Matsushita Electric Ind Co Ltd Energy differential image processing method
JPH03263982A (en) * 1989-10-19 1991-11-25 Fuji Photo Film Co Ltd Method and apparatus for displaying energy subtraction picture
JPH03212074A (en) * 1990-01-17 1991-09-17 Fuji Photo Film Co Ltd Display method for energy subtraction picture
JPH05236351A (en) * 1991-12-26 1993-09-10 Fuji Photo Film Co Ltd Energy-subtracted image generating method
JPH0622218A (en) * 1992-06-30 1994-01-28 Fuji Photo Film Co Ltd Energy subtraction image forming method
JPH08336517A (en) * 1995-06-12 1996-12-24 Konica Corp Image processing device
JPH10155115A (en) * 1996-09-25 1998-06-09 Fuji Photo Film Co Ltd Method and device for processing bone image
JP2000060834A (en) * 1998-06-09 2000-02-29 Fuji Photo Film Co Ltd Energy subtraction imaging method
JP2003037778A (en) * 2001-05-08 2003-02-07 Ge Medical Systems Global Technology Co Llc Method and apparatus for automatic determination of tissue cancellation parameter in x-ray dual energy imaging

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010050031A1 (en) * 2008-10-30 2010-05-06 株式会社島津製作所 Radiation photographing apparatus
WO2012026597A1 (en) * 2010-08-27 2012-03-01 ソニー株式会社 Image processing apparatus and method
US9361667B2 (en) 2010-08-27 2016-06-07 Sony Corporation Image processing apparatus and method
US9456796B2 (en) 2013-08-30 2016-10-04 Samsung Electronics Co., Ltd. X-ray imaging apparatus and method of controlling the same

Also Published As

Publication number Publication date
JP4526110B2 (en) 2010-08-18

Similar Documents

Publication Publication Date Title
US10925566B2 (en) X-ray imaging device and X-ray image forming method
KR101486776B1 (en) Method and apparatus of processing image and medical image system employing the same
JP5124363B2 (en) Energy subtraction processing apparatus, method, and program
JPH06292009A (en) Method for processing radiation picture
US10475181B2 (en) Image processing apparatus, image processing method, and image processing program
JP2012518858A (en) Digital image correction method
JP6678541B2 (en) Image processing apparatus, method and program
JP6083990B2 (en) Radiation imaging apparatus, control method thereof, and program
JP7221981B2 (en) Image processing device, image processing method, and image processing program
JP2001243464A (en) Device, system, and method for image processing, and storage medium
US8121372B2 (en) Method for reducing image noise in the context of capturing an image using two different radiation spectra
JP4526110B2 (en) Radiation imaging device
JP2003032547A (en) Apparatus for and method of generating an enhanced contrast information digital image
JPS6340533A (en) X-ray diagnostic apparatus
JP4847041B2 (en) X-ray equipment
JP2011239833A (en) Image processing method and radiographic apparatus using the same
JP2013119040A (en) Medical video processing method and apparatus therefor
JP4709584B2 (en) Ultrasonic diagnostic apparatus, ultrasonic tomographic image generation method, and ultrasonic tomographic image generation program
JP2001178686A (en) Image display method and imaging instrument
KR20160036903A (en) X-ray apparatus and control method for the same
JPH10146334A (en) Ct imaging method and x-ray ct device
JP7309961B2 (en) Systems and methods for imaging a subject
JP2003265452A (en) Processing method for radiograph image sequence and medial radiographic inspection apparatus
JP2009219705A (en) Radiation imaging unit and method of setting up imaging conditions
JP4648658B2 (en) Medical image processing device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060512

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060512

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090422

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090715

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100413

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100506

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100526

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees