JP2005006138A - Reflection type optical communication system utilizing polarized wave, and station and user terminal used therefor - Google Patents

Reflection type optical communication system utilizing polarized wave, and station and user terminal used therefor Download PDF

Info

Publication number
JP2005006138A
JP2005006138A JP2003168750A JP2003168750A JP2005006138A JP 2005006138 A JP2005006138 A JP 2005006138A JP 2003168750 A JP2003168750 A JP 2003168750A JP 2003168750 A JP2003168750 A JP 2003168750A JP 2005006138 A JP2005006138 A JP 2005006138A
Authority
JP
Japan
Prior art keywords
optical signal
optical
signal
downstream
upstream
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003168750A
Other languages
Japanese (ja)
Inventor
Toshio Ito
敏夫 伊藤
Rieko Satou
里江子 佐藤
Yasuhiro Suzuki
安弘 鈴木
Hiroshi Toba
弘 鳥羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2003168750A priority Critical patent/JP2005006138A/en
Publication of JP2005006138A publication Critical patent/JP2005006138A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a reflection type optical communication system utilizing polarized waves, and a station and a user terminal used therefor, capable of carrying out transmission and reception of optical signals with high quality by suppressing the effect of the Rayleigh scattering caused between the uplink and downlink optical signals. <P>SOLUTION: The station K transmits a continuous light Pc and a downlink optical signal Pd to the user terminal U via an optical fiber 104. In this case, the polarization direction of the continuous light Pc is differentiated from that of the downlink optical signal Pd. A downlink optical signal receiver 107 of the user terminal U receives the downlink optical signal Pd. Further, an optical limiter amplifier 114 decreases the extinction ratio of the downlink optical signal Pd. A reflection type optical modulator 106 modulates the continuous light Pc to generate an active uplink optical signal Pu1 and modulates the downlink optical signal Pd the extinction ratio of which is decreased to generate a standby uplink optical signal Pu2. The two optical signals Pu1, Pu2 are transmitted to the station K wherein an uplink optical signal receiver 108 receives the signals. Even if the polarization direction of either of the uplink optical signals Pu1, Pu2 is coincident with that of the down link optical signals Pc, Pd and the waveform is disturbed by the Rayleigh scattering, the polarization direction of the other of the uplink optical signals Pu1, Pu2 is not coincident with the polarization direction of the downlink optical signals Pc, Pd, thereby enabling excellent signal transmission. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は光ファイバを伝搬する高速光通信、光交換、光情報処理等の光伝送システムに適用され、特に1本の光ファイバを上り・下りの双方向で使用する反射型の光通信システムに適用して有効な技術である。
【0002】
【従来の技術】
IT技術の発展に伴う伝送容量の増加に伴い、光ファイバの伝送帯域を有効に利用することが重要になっている。伝送帯域を有効に利用するシステムとして、反射型光通信システムがある。
【0003】
本願発明者は、効率よく上り光信号を送ることができると共に、上り光信号の符合誤り率の改善をはかることができる反射型光通信システムを開発した。
【0004】
ここで本願発明者が最近開発した反射型光通信システムについて説明する。
【0005】
[第1の例]
図6は本願発明者が最近開発した反射型光通信システムの第1の例を示す。同図に示すように、局Kとユーザ端末Uとは1本の光ファイバ104により接続されている。局Kには、連続光源101と下り光信号送信器102と光カプラ103と上り光信号受信器108が備えられている。ユーザ端末Uには、光カプラ105と反射型光変調器106と下り光信号受信器107と光リミッタアンプ114が備えられている。なお、反射型光変調器106は、例えば反射型光増幅器を用いて構成されており、「上り光信号送信器」として機能するものである。
【0006】
光リミッタアンプ114は、光カプラ105と反射型光変調器106との間に接続されている。この光リミッタアンプ114は、通過する光の入力光強度が弱いときには利得が大きくなり、通過する光の入力光強度が強いときには利得が小さくなる半導体光増幅器で構成している。このような半導体光増幅器としては、非特許文献1等に記載されている半導体光増幅器がある。
【0007】
このようなリミッタ特性(増幅特性)を有する光リミッタアンプ114を用いることによって、光リミッタアンプ114を通過する光信号は、光強度の弱い「0」の部分の利得が大きく、「1」の部分の利得が小さくなる。このため、光リミッタアンプ114を通過した光信号は、「1」部分と「0」部分とのレベル差が小さくなって平坦になってくる。このような光リミッタアンプ114を用いることが本システムのポイントの1つとなっている。
【0008】
局K側では、連続光源101で発生した連続光Pcと、下り光信号送信器102で発生した下り光信号Pdとを、時分割方式で送出している。しかも、下り光信号Pdの消光比を3〜5dBと、あえて悪い値に設定している。このように、下り光信号Pdの消光比を悪い値に設定していることが、本システムのポイントの1つとなっている。
【0009】
ユーザ端末U側の反射型光変調器106では、連続光Pcを受光すると、この連続光Pcを第1の電気信号で変調して正規上り光信号Pu1を生成し、この正規上り光信号Pu1を送り返す。また反射型光変調器106は、光リミッタアンプ114を通過して消光比が1〜3dBと小さくなっている下り光信号Pdを受光すると、この下り光信号Pdを第2の電気信号で変調して予備上り光信号Pu2を生成し、この予備上り光信号Pu2を送り返す。
【0010】
この反射型光通信システムでは、局K側におかれた連続光源101から連続光Pcを送り、ユーザ端末Uはこの連続光Pcを変調のうえで正規上り光信号Pu1として送り返す構成になっている。このため連続光Pcは連続光源101→光カプラ103→光ファイバ104→光カプラ105→光リミッタアンプ114→反射型光変調器106と進んだところで反射型光変調器106によって第1の電気信号により変調されて正規上り光信号Pu1となり、反射型光変調器106の端面で反射される。連続光Pcを変調してなる正規上り光信号Pu1は、光リミッタアンプ114→光カプラ105→光ファイバ104→光カプラ103→上り光信号受信器108と戻ってくる。
【0011】
また、下り光信号Pdは、下り光信号送信器102→光カプラ103→光ファイバ104→光カプラ105→下り光信号受信器107と進み、ユーザ端末Uの下り光信号受信器107によって受信される。ビットレートは上り光信号Pu,下り光信号Pdとも100Mbit/s〜1Gbit/s程度である。
【0012】
ここで大事なのは、前述したように、下り光信号送信器102から送出した下り光信号Pdの消光比を、3〜5dB程度と悪い値に設定していることである。但し、下り光信号Pdは伝送距離が短いため伝搬損失の影響が小さく、下り光信号受信器107にて受信した下り光信号Pdの消光比が悪くても、下り光信号Pdの信号状態判定をする際に問題が生じることはない。
【0013】
また下り光信号Pdは下り光信号受信器107で受信される他、光カプラ105にて分岐され、光リミッタアンプ114を通して反射型光変調器106に送られる。送られてきた下り光信号Pdは、消光比が3〜5dBと悪くなっているため、光リミッタアンプ114を通過した後の下り光信号Pdは、光強度の弱い「0」の部分の利得が大きくなるとともに、「1」の部分の利得が小さくなり、その消光比は1〜2dB程度と更に小さくなる。このように消光比が極めて小さくなった下り光信号Pdは、反射型光変調器106において、第2の電気信号で変調され、予備上り光信号Pu2となる。この予備上り光信号Pu2は、光リミッタアンプ114→光カプラ105→光ファイバ104→光カプラ103→上り光信号受信器108と戻ってくる。
【0014】
このように、連続光Pcを変調した正規上り光信号Pu1のみならず、消光比を小さくした下り光信号Pdを変調した予備上り光信号Pu2をも、上り光信号として送り返すことができる。つまり、従来では下り光信号Pdを送り返してはいたが、上り光信号として送り返すことはしていなかったが、本システムでは、この下り光信号Pdをも上り光信号として利用することができるようになったため、効率よく信号(上り光信号)を送ることができるようになった。
【0015】
この反射型光通信システムの波形を図7に示す。
図7(a)は下り(局→ユーザ端末)の波形であり、下り光信号Pdと連続光Pcが時分割で送信されている。ここで大事なのは下り光信号Pdの消光比が3〜5dB程度と悪い値に設定していることである。下り光信号Pdは伝送距離が短いために伝搬損失の影響が小さく、消光比が悪くとも問題は生じない。
【0016】
図7(b)は光リミッタアンプ114を通過して反射型光変調器106に向かう連続光Pc及び下り光信号Pdの波形である。前述したように、光リミッタアンプ114は入力光強度が弱いときには利得が大きく、入力光強度が強いときには利得の小さな半導体増幅器であるため、光強度の弱い「0」の部分の利得が大きく、「1」の部分の利得が小さくなる。この結果、光リミットアンプ114を通過した後の下り光信号Pdの消光比は、1〜2dB程度と小さくなる。
【0017】
図7(c)は、上り光信号の波形である。ここで重要なことは連続光部分を変調してなる正規上り光信号Pu1だけでなく、下り光信号部分を変調してなる予備上り光信号Pu2をも、上り光信号とすることができることである。つまり、下り光信号部分も新たに変調が可能な点である。これは、従来では使用していなかった部分(下り光信号部分)も、上り光信号として使用することになるため、効率よく上り光信号を送ることができることを意味する。
【0018】
[第2の例]
次に本願発明者が最近開発した第2の例を説明する。第2の例では、図6のシステム構成を用いるが、ユーザ端末U側において、連続光部分を変調した正規上り光信号Pu1と、下り光信号部分を変調した予備上り光信号Pu2に同一の信号を振り付ける。つまり正規上り光信号Pu1を生成するために連続光Pcを変調する第1の電気信号の信号内容(信号情報)と、予備上り光信号Pu2を生成するために下り光信号Pd(消光比が小さくなっている下り光信号Pd)を変調する第2の電気信号の信号内容(信号情報)を等しくしている。これにより、反射型光変調器106から送出される正規上り光信号Pu1と予備上り光信号Pu2との信号内容が等しくなる。
【0019】
局K側では、この2つの信号(正規上り光信号Pu1と予備上り光信号Pu2)を受信し、両者を比較する。ここで予備上り光信号Pu2と正規上り光信号Pu1が一致する場合には、信号は正しいと判定することができる。両者が一致しない場合には誤り訂正を試みるか、ユーザ端末U側に再送を要求する。
この方式により、上り信号の符号誤り率を改善することができる。
【0020】
[第3の例]
次に本願発明者が最近開発した第3の例を、図8を参照しつつ説明する。図8において、109は下り光信号送信器兼連続光源、110は光カプラ、111は光ファイバ、112は下り光信号受信器兼反射型光変調器、113は上り光信号受信器である。
【0021】
図8において、局K側の下り光信号送信器兼連続光源109は、連続光Pcと、消光比を3〜5dB程度に下げた下り光信号Pdとを時分割で送信可能である。ユーザ端末U側の下り光信号受信器兼反射型光変調器112は、下り光信号Pdの受信と、連続光Pcの変調と下り光信号Pdの変調を時分割で行うことができ、変調して生成した正規上り光信号Pu1と予備上り光信号Pu2を時分割して送出することができる。
【0022】
下り光信号送信器兼連続光源109は、例えば直接変調型のDFBレーザであり、連続光Pcを送信するときにはDC電流を、下り信号を送信するときには変調電流を注入する。
【0023】
また下り光信号受信器兼反射型光変調112は、例えば非特許文献2に示す反射型の半導体増幅器を用い、受信時には逆バイアスを印加して受光電流をモニタし、送信時には正バイアスの変調電流を注入する。
【0024】
さらには下り光信号受信器兼反射型光変調器112にかける正バイアスの変調電流を最適に設計することで、非特許文献3に示すように、下り光信号受信器兼反射型光変調器112に、光リミッタアンプとしての機能も持たせることが可能である。つまり、下り光信号受信器兼反射型光変調器112を、下り光信号受信器兼反射型光変調器兼光リミッタアンプとして機能させることができる。
【0025】
図8の構成となっている反射型光通信システムにおいても、図7に示すように、連続光Pcを第1の電気信号で変調して正規上り光信号Pu1を生成し、この正規上り光信号Pu1を送り返し、また消光比を小さくした下り光信号Pdを第2の電気信号で変調して予備上り光信号Pu2を生成し、この予備上り光信号Pu2を送り返すことで、上り光信号の符号誤り率の改善をはかることができる。
【0026】
【非特許文献1】
Y.Shibata, Y.Yamada, K.Habara, and N.Yoshimoto, ”Semiconductor laser diode optical amplifiers/gates in photonic packet switching”, Journal of Lightwave Technology, vol.16, no.12, pp.2228−2235,1998
【非特許文献2】
M.Okayasu, Y.Suzuki, N.Yoshimoto, R.Iga, H.Sugiura, and J.Yoshida, ”Bi−directional transmission experiment using a semiconductor optical amplifier transceiver mudule for WDM−PON and WDM−LAN applications”, Broadband Access and Technology, D.W.Faulker and A.L.Harmer(Eds.),IOS Press, 1999, pp.278−283, IOS Press, ISBN 4 274 90296 X C3055 、オーム社
【非特許文献3】
H.Takesue and T.Sugie, ”Data rewrite of wavelength channel using saturated SOA modulator for WDM metro/access networks with centralized light sources”, 28th European Conference on Optical, ECOC2002, September 8−12, 2002, Copenhagen, Denmark
【0027】
【発明が解決しようとする課題】
しかしながら、図6〜図8を基に説明した、本願発明者が最近開発した反射型光通信システムには、さらに改良すべき点があった。
【0028】
すなわち、両方向を伝送する光信号が光ファイバ104,111で引き起こす干渉である。一般に双方(上りと下り)の光信号の偏光方向が異なる場合には、図9に示すように、きれいな、すなわち光信号の0レベル,1レベルともに変動しないような波形を受信することができる。通常、受信をするためには0レベルと1レベルのほぼ中間点に閾値301を設け、閾値301を超えれば1、閾値301を下回っていれば0と判定する。
【0029】
しかしながら双方(上りと下り)の光信号の偏光方向が一致した場合には、いずれか一方の光信号の一部が光ファイバのレイリー散乱によって反射され、その反射光と他方の光信号が干渉することで受信波形が乱れるようになる。この干渉の影響は特に1レベルに顕著で、図10に示すように、1レベルが太くなるように見える。その結果、閾値401によりレベル検出を行う際に、1レベルが0と判定されやすくなる問題があった。
【0030】
したがって先に説明した、図6,図8に示す反射型光通信のシステムでは局Kからユーザ端末Uに向かう下り光信号Pd、連続光Pcの偏光方向が同一で、かつ、ユーザ端末Uから局Kに向かう予備上り光信号Pu2、正規上り光信号Pu1の偏光方向が同一であるので、上り光信号のどちらか一方が干渉により乱れてしまうと、他方も乱れてしまう欠点があった。
【0031】
このように、反射型光通信システムにおいては、光ファイバを伝搬する上りと下りの光信号の偏光状態が一致したときに干渉が起こり、受信波形が劣化する問題があった。
【0032】
本発明は、上記従来技術に鑑み、受信波形の劣化を防止して良質な光信号の送受信が可能な反射型偏波利用光通信システムならびにこれに用いる局及びユーザ端末を提供することを目的とする。
【0033】
【課題を解決するための手段】
上記課題を解決する本発明の反射型偏波利用光通信システムの構成は、局とユーザ端末とが光ファイバで接続され、
前記局は、連続光と下り光信号を時分割方式で前記ユーザ端末に送出すると共に、前記ユーザ端末から送出された上り光信号を受信し、
前記ユーザ端末は、前記局から送出された下り光信号を受信すると共に、受信した連続光を変調して生成してなる上り光信号を前記局に送り返す反射型光通信システムにおいて、
前記局では、偏光方向を異ならせて前記連続光と前記下り光信号を前記ユーザ端末に送出し、
前記ユーザ端末では、受信した連続光を第1の電気信号により変調して生成してなる正規上り光信号を前記局に送り返すのみならず、受信した下り光信号の消光比を減少させ消光比が減少した下り光信号を第2の電気信号により変調して生成してなる予備上り光信号を前記局に送り返すことを特徴とする。
このとき、前記ユーザ端末で用いる第1の電気信号と第2の電気信号の信号内容が同一であり、
前記局は、受信した正規上り光信号と予備上り光信号の信号内容が一致した時に信号内容が正しいと判定したり、
前記局は、消光比が3〜5dBとなっている下り光信号を送出することを特徴とする。
【0034】
また本発明の反射型偏波利用光通信システムに用いる局は、連続光を送出する連続光源と、下り光信号を送出する下り光信号送信器と、上り光信号である正規上り光信号と予備上り光信号を受信する上り光信号受信器とを有しており、
しかも前記連続光源から送出する連続光と前記下り光信号送信器から送出する下り光信号の偏光方向を異ならせていることを特徴とする。
このとき、この局は、連続光を送出する連続光源と、下り光信号を送出する下り光信号送信器と、上り光信号である正規上り光信号と予備上り光信号を受信する上り光信号受信器と、偏波コントローラとを有しており、
しかも前記連続光源から送出する連続光と前記下り光信号送信器から送出する下り光信号の偏光方向を異ならせており、
更に、前記偏波コントローラは、前記連続光源から送出された連続光と前記下り光信号送信器から送出された下り光信号との偏光方向を制御してから局外に送出したり、
または、上り光信号受信器で受信した正規上り光信号と予備上り光信号の信号内容が一致するまで、前記偏波コントローラにより連続光と下り光信号との偏光方向を制御することを特徴とする。
【0035】
また本発明の反射型偏波利用光通信システムに用いる局は、下り光信号と連続光を時分割方式で送出する下り光信号送信器兼連続光源と、上り光信号である正規上り光信号と予備上り光信号を受信する上り光信号受信器と、偏波光スイッチとを有しており、
前記偏波光スイッチは、下り光信号送信器兼連続光源から送出された下り光信号と連続光の偏光方向を異ならせるように偏光方向を切り換えることを特徴とする。
このとき、この局は、下り光信号と連続光を時分割方式で送出する下り光信号送信器兼連続光源と、上り光信号である正規上り光信号と予備上り光信号を受信する上り光信号受信器と、偏波光スイッチと、偏波コントローラとを有しており、
前記偏波光スイッチは、下り光信号送信器兼連続光源から送出された下り光信号と連続光の偏光方向を異ならせるように偏光方向を切り換え、
更に、前記偏波コントローラは、前記偏波光スイッチから送出された連続光と下り光信号との偏光方向を制御してから局外に送出したり、
また上り光信号受信器で受信した正規上り光信号と予備上り光信号の信号内容が一致するまで、前記偏波コントローラにより連続光と下り光信号との偏光方向を制御することを特徴とする。
【0036】
また本発明の反射型偏波利用光通信システムに用いるユーザ端末は、下り光信号を受信する下り光信号受信器と、受信した下り光信号の消光比を減少させる光リミッタアンプと、受信した連続光を第1の電気信号により変調して正規上り光信号を生成して前記局に送り返すと共に前記光リミッタアンプを通過したことにより消光比が減少した下り光信号を第2の電気信号により変調して予備上り光信号を生成して前記局に送り返す反射型光変調器とを有することを特徴とする。
このとき、このユーザ端末は、下り光信号を受信すると共に、受信した連続光を第1の電気信号により変調して正規上り光信号を生成して前記局に送り返すと共に受信した下り光信号を第2の電気信号により変調して予備上り光信号を生成して前記局に送り返す下り光信号受信器兼反射型光変調器を有していたり、
このユーザ端末は、下り光信号を受信すると共に、受信した下り光信号の消光比を減少させ、更に受信した連続光を第1の電気信号により変調して正規上り光信号を生成して前記局に送り返すと共に消光比を減少させた下り光信号を第2の電気信号により変調して予備上り光信号を生成して前記局に送り返す下り光信号受信器兼反射型光変調器兼光リミッタアンプを有することを特徴とする。
【0037】
【発明の実施の形態】
以下に本発明の実施の形態を図面に基づき詳細に説明する。本実施の形態に係る反射型偏波利用光通信システムは、図6や図8に示した、先に開発した反射型光通信システムを改良したものであるので、先に開発した反射型光通信システムと同一機能を果たす部分には、同一符合を付し、重複する説明は省略する。
【0038】
[第1の実施の形態]
図1は本発明の第1の実施の形態に係る反射型偏波利用光通信システムを示す。第1の実施の形態は、図6に示す反射型光通信システムを改良したものである。第1の実施の形態では、局Kに偏波保持光カプラ1001を備え、連続光源101と偏波保持光カプラ1001を偏波保持光ファイバF1により接続し、下り光信号送信器102と偏波保持光カプラ1001を偏波保持光ファイバF2により接続している。連続光源101から出力される連続光Pcと、下り光信号送信器102から出力される下り光信号Pdは、時分割方式により送出されるようになっており、しかも、本実施の形態では、連続光Pcと下り光信号Pdの偏光方向をずらしている(例えば偏光方向を30〜45度ずらしている)。このように、連続光Pcと下り光信号Pdの偏光方向をずらしている(偏光方向を異ならせている)ことが、本システムの最大のポイントになっている。なお、他の部分の構成は図6に示すものと同様になっている。
【0039】
連続光源101から出力された連続光Pcは、消光比が1〜3dBと小さくなっており、この連続光Pcは、偏波保持光ファイバF1→偏波保持光カプラ1001→光カプラ103→光ファイバ104→光カプラ105→光リミッタアンプ114→反射型光変調器106と進んだところで反射型光変調器106によって第1の電気信号により変調されて正規上り光信号Pu1となり、反射型光変調器106の端面で反射される。連続光Pcを変調してなる正規上り光信号Pu1は、光リミッタアンプ114→光カプラ105→光ファイバ104→光カプラ103→上り光信号受信器108と戻ってくる。
【0040】
また、下り光信号Pdは、下り光信号送信器102→偏波保持光ファイバF2→偏波保持光カプラ1001→光カプラ103→光ファイバ104→光カプラ105→下り光信号受信器107と進み、ユーザ端末Uの下り光信号受信器107によって受信される。
【0041】
また下り光信号Pdは下り光信号受信器107で受信される他、光カプラ105にて分岐され、光リミッタアンプ114を通して反射型光変調器106に送られる。送られてきた下り光信号Pdは、消光比が3〜5dBと悪くなっているため、光リミッタアンプ114を通過した後の下り光信号Pdは、光強度の弱い「0」の部分の利得が大きくなるとともに、「1」の部分の利得が小さくなり、その消光比は1〜2dB程度と更に小さくなる。このように消光比が極めて小さくなった下り光信号Pdは、反射型光変調器106において、第2の電気信号で変調され、予備上り光信号Pu2となる。この予備上り光信号Pu2は、光リミッタアンプ114→光カプラ105→光ファイバ104→光カプラ103→上り光信号受信器108と戻ってくる。
【0042】
このように、連続光Pcを変調した正規上り光信号Pu1のみならず、消光比を小さくした下り光信号Pdを変調した予備上り光信号Pu2をも、上り光信号として送り返すことができる。つまり、本システムでは、この下り光信号Pdをも上り光信号として利用することができるようになったため、効率よく信号(上り光信号)を送ることができるようになった。
【0043】
この場合、ビットレートは上り光信号Pu1,Pu2、下り光信号Pdとも100Mbit/s〜1Gbit/s程度である。
【0044】
また、ユーザ端末U側において、連続光部分を変調した正規上り光信号Pu1と、下り光信号部分を変調した予備上り光信号Pu2に同一の信号を振り付けるようにしてもよい。つまり正規上り光信号Pu1を生成するために連続光Pcを変調する第1の電気信号の信号内容(信号情報)と、予備上り光信号Pu2を生成するために下り光信号Pd(消光比が小さくなっている下り光信号Pd)を変調する第2の電気信号の信号内容(信号情報)を等しくしてもよい。このようにすると、反射型光変調器106から送出される正規上り光信号Pu1と予備上り光信号Pu2との信号内容が等しくなる。
【0045】
このとき局K側の上り光信号受信器108では、この2つの信号(正規上り光信号Pu1と予備上り光信号Pu2)を受信し、両者を比較する。ここで予備上り光信号Pu2と正規上り光信号Pu1が一致する場合には、信号は正しいと判定することができる。両者が一致しない場合には誤り訂正を試みるか、ユーザ端末U側に再送を要求する。
この方式により、上り信号の符号誤り率を改善することができる。
【0046】
前述したように本実施の形態では、連続光Pcと下り光信号Pdの偏光方向を、例えば30〜45度ずらしているため、連続光Pcを変調してなる正規上り光信号Pu1と、消光比を小さくした下り光信号Pdを変調してなる予備上り光信号Pu2との偏光方向も、同様にずれることになる。
【0047】
このようにすることで、上り光信号の一方(例えば予備上り光信号Pu2)の偏光方向が、下りの連続光Pcまたは下り光信号Pdの偏光方向と完全に一致し、波形が乱れた場合でも、上り光信号の他方(例えば正規上り光信号Pu1)の偏光方向は、下りの連続光Pcまたは下り光信号Pdの偏光方向からずれることになる。その結果、レイリー散乱による波形の劣化を防ぐことが可能になる。
【0048】
なお図1に示す反射型光通信システムにおける信号波形は、図7(a)(b)(c)に示すものと同じである。
【0049】
[第2の実施の形態]
図2は本発明の第2の実施の形態に係る反射型偏波利用光通信システムを示す。第2の実施の形態は、図8に示す反射型光通信システムを改良したものである。第2の実施の形態では、局Kにおいて、下り光信号送信器兼連続光源109と光カプラ110との間に偏波光スイッチ1002を備えている。この偏波光スイッチ1002としては、参考文献1に示す、偏波光スイッチを用いる。なお、他の部分の構成は図8に示すものと同様になっている。
【0050】
参考文献1:R.C.Alferness and L.L.Buhl, ”Waveguide electro−optic polarization trasformer”, Applied Physic Letters, vol.38, pp.665,1981またはM.A.Santoro and C.D.Poole, ”Polarization scrambling using a short piece of high−birefringence optical fiber and a multifrequency laser diode”, Journal of lightwave technology, vol.12, no.2, pp.288−293, 1994
【0051】
局K側の下り光信号送信器兼連続光源109は、連続光Pcと、消光比を3〜5dB程度に下げた下り光信号Pdとを時分割で送信可能である。ユーザ端末U側の下り光信号受信器兼反射型光変調器112は、下り光信号Pdの受信と、連続光Pcの変調と下り光信号Pdの変調を時分割で行うことができ、変調して生成した正規上り光信号Pu1と予備上り光信号Pu2を時分割して送出することができる。
【0052】
また下り光信号受信器兼反射型光変調器112は、反射型の半導体増幅器を用い、受信時には逆バイアスを印加して受光電流をモニタし、送信時には正バイアスの変調電流を注入する。さらには下り光信号受信器兼反射型光変調器112にかける正バイアスの変調電流を最適に設計することで、下り光信号受信器兼反射型光変調器112に、光リミッタアンプとしての機能も持たせることが可能である。つまり、下り光信号受信器兼反射型光変調器112を、下り光信号受信器兼反射型光変調器兼光リミッタアンプとして機能させることができる。
【0053】
偏波光スイッチ1002は、下り光信号送信器兼連続光源109から時分割方式で出力される連続光Pcが通過する際の偏光方向と、下り光信号送信器兼連続光源109から時分割方式で出力される下り光信号Pdが通過する際の偏光方向を切り換える。このため、偏波光スイッチ1002を通過してきた、連続光Pcと下り光信号Pdとの偏光方向が30〜40度ずれる。
【0054】
このように局Kから送出される連続光Pcと下り光信号Pdとの偏光方向が30〜40度ずれているため、図1に示す第1の実施の形態と同様に、上り光信号の一方(例えば予備上り光信号Pu2)の偏光方向が、下りの連続光Pcまたは下り光信号Pdの偏光方向と完全に一致し、波形が乱れた場合でも、上り光信号の他方(例えば正規上り光信号Pu1)の偏光方向は、下りの連続光Pcまたは下り光信号Pdの偏光方向からずれることになる。その結果、レイリー散乱による波形の劣化を防ぐことが可能になる。
【0055】
[第3の実施の形態]
図3は本発明の第3の実施の形態に係る反射型偏波利用光通信システムを示す。第3の実施の形態は、図1に示す第1の実施の形態に、更に偏波コントローラ1003を備えたものである。偏波コントローラ1003は、偏波保持光カプラ1001と光カプラ103との間に備えられている。連続光Pcと下り光信号Pdは偏波コントローラ1003を通過してから局外に向かって送出されるようになっており、しかも、偏波コントローラ1003は、連続光Pcと下り光信号Pdの偏波状態(偏光方向)を制御することができる。
【0056】
本実施の形態では、ユーザ端末U側において、連続光部分を変調した正規上り光信号Pu1と、下り光信号部分を変調した予備上り光信号Pu2に同一の信号を振り付けるようにしている。そして、局K側の上り光信号受信器108では、この2つの信号(正規上り光信号Pu1と予備上り光信号Pu2)を受信し、両者を比較する。ここで予備上り光信号Pu2と正規上り光信号Pu1が一致する場合には、信号は正しいと判定することができる。両者が一致しない場合には、両者の信号状態が一致するまで、偏波コントローラ1003により、連続光Pcと下り光信号Pdの偏波状態(偏光方向)を制御していく。このようにすることにより、誤りのない良質な光信号の送受信が可能になる。
【0057】
[第4の実施の形態]
図4は本発明の第4の実施の形態に係る反射型偏波利用光通信システムを示す。第4の実施の形態は、図2に示す第2の実施の形態に、更に偏波コントローラ1004を備えたものである。偏波コントローラ1004は、偏波光スイッチ1002と光カプラ110との間に備えられている。連続光Pcと下り光信号Pdは偏波コントローラ1004を通過してから局外に向かって送出されるようになっており、しかも、偏波コントローラ1004は、連続光Pcと下り光信号Pdの偏波状態(偏光方向)を制御することができる。
【0058】
本実施の形態では、ユーザ端末U側において、連続光部分を変調した正規上り光信号Pu1と、下り光信号部分を変調した予備上り光信号Pu2に同一の信号を振り付けるようにしている。そして、局K側の上り光信号受信器108では、この2つの信号(正規上り光信号Pu1と予備上り光信号Pu2)を受信し、両者を比較する。ここで予備上り光信号Pu2と正規上り光信号Pu1が一致する場合には、信号は正しいと判定することができる。両者が一致しない場合には、両者の信号状態が一致するまで、偏波コントローラ1004により、連続光Pcと下り光信号Pdの偏波状態(偏光方向)を制御していく。このようにすることにより、誤りのない良質な光信号の送受信が可能になる。
【0059】
[変形例]
なお、図3及び図4に示す実施の形態では、偏波コントローラ1003,1004を設けたが、偏波コントローラ1003,1004の代わりに、光遅延線を設け、正規上り光信号Pu1と予備上り光信号Pu2の受信結果が一致するまで、光遅延線により下り光信号の位相制御をして、連続光Pcと下り光信号Pdの偏波状態(偏光方向)を制御していくようにしてもよい。
【0060】
また、偏波コントローラ1003,1004を設ける代わりに、図3における下り光信号送信器102や、図4における下り光信号送信器兼連続光源109の電気信号入力部分に電気遅延回路を設け、その遅延量を制御することでも同様な効果を得ることができる。
【0061】
ここで参考のために、偏波コントローラ1003または偏波コントローラ1004を制御する制御回路について、図5を基に説明する。この制御回路を使用するときには、正規上り光信号Pu1と予備上り光信号Pu2の前に、それぞれプリアンブルパターン信号(10〜16ビットの固定パターン信号)を付与しておく。なお、正規上り光信号Pu1に付与するプリアンブルパターン信号と、予備上り光信号Pu2に付与するプリアンブルパターン信号は、同じパターン信号である。また、この例では、正規上り光信号Pu1と予備上り光信号Pu2に同一の信号を振り付けているものとする。
【0062】
図5に示すように、光カプラ103(または110)にて分岐した正規上り光信号Pu1と予備上り光信号Pu2は光ファイバ501により伝送され、上り光信号受信器108(または113)内に備えられた受光器502にて受光される。
受光器502は、正規上り光信号Pu1を電気信号に変換した正規上り信号Eu1(プリアンブルパターン信号に相当する電気信号も含む)を出力すると共に、予備上り光信号Pu2を電気信号に変換した予備上り信号Eu2(プリアンブルパターン信号に相当する電気信号も含む)を出力する。
【0063】
プリアンブル検出回路503は、電気信号となっているプリアンブルパターン信号を検出する。高速スイッチ504は、プリアンブル検出回路503がプリアンブルパターン信号を検出する毎にスイッチングを行う。このため、正規上り信号Eu1と予備上り信号Eu2のうちの一方の信号がラインL1に出力され、他方の信号がラインL2に出力される。
【0064】
プリアンブル検出回路505では、ラインL1を通る上り信号に付与されているプリアンブルパターン信号を検出し、プリアンブル検出回路506ではラインL2を通る上り信号に付与されているプリアンブルパターンを検出する。一致比較回路507は、プリアンブル検出回路505,506の検出結果をAND演算し、パワーモニタ508はAND演算結果の平均出力パワーを検出する。位相回路調節回路509は、平均出力パワーが最大となるように、ラインL1に介装された位相回路510の位相状態を調整する。このような位相調整をすることにより、一致比較回路511には、位相状態が一致した正規上り信号Eu1と予備上り信号Eu2が入力される。
【0065】
一致比較回路511では、位相状態が一致した正規上り信号Eu1と予備上り信号Eu2をAND演算し、パワーモニタ512では、このAND演算結果の平均出力パワーを検出する。偏波コントローラ調節回路513は、この平均出力パワーが最大となるように、偏波コントローラ1003(または1004)の偏波状態(偏光方向)を調節する。
【0066】
かくして、偏波コントローラ1003(1004)による、連続光Pcと下り光信号Pdに対する偏光方向の制御を調整することにより、誤りのない良好な光信号の送受信が可能になる。
【0067】
また、ラインL1側から受信結果(位相状態及び信号情報が一致している正規上り信号Eu1と予備上り信号Eu2のうちの一方の信号)を出力する。
【0068】
【発明の効果】
以上説明したように、本発明の反射型偏波利用光通信システムならびにこれに用いる局及びユーザ端末では、下り光信号の消光比を減少させ消光比が減少した下り光信号を第2の電気信号で変調して予備上り光信号を生成し、この予備上り光信号を、ユーザ端末から局に送り返すようにした。このため、連続光を第1の電気信号で変調してなる正規上り光信号と、消光比が減少した下り光信号を第2の電気信号で変調してなる予備上り光信号を、上り光信号として使用することができるので、効率よく上り光信号を送ることができる。
しかも、連続光と下り光信号の偏光方向を異ならせているため、上りと下りの光信号の干渉であるレイリー散乱により、上り光信号(正規上り光信号と予備上り光信号)の一方の波形が劣化しても、他方の上り光信号の波形劣化を防ぐことができるため、良質な光信号の送受信が可能となった。
【0069】
更に、第1の電気信号と第2の電気信号の信号状態を同じにし、ユーザ端末において、正規上り光信号と予備上り光信号とを比較することにより、上り光信号の符号誤り率の改善をはかることができる。
また、正規上り光信号と予備上り光信号の信号内容が一致するまで、連続光と下り光信号の偏光方向の制御をすることにより、更に良質な光信号の送受信が可能となった。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態に係る反射型偏波利用光通信システムを示す構成図。
【図2】本発明の第2の実施の形態に係る反射型偏波利用光通信システムを示す構成図。
【図3】本発明の第3の実施の形態に係る反射型偏波利用光通信システムを示す構成図。
【図4】本発明の第4の実施の形態に係る反射型偏波利用光通信システムを示す構成図。
【図5】偏波コントローラを制御する制御回路の一例を示す回路図。
【図6】本願発明者が最近開発した反射型光通信システムを示す構成図。
【図7】反射型光通信システムにおける光信号の信号波形を示す特性図。
【図8】本願発明者が最近開発した反射型光通信システムの他の例を示す構成図。
【図9】反射型光通信システムにおいて、レイリー散乱による波形劣化がない場合の信号波形図。
【図10】反射型光通信システムにおいて、レイリー散乱による波形劣化が生じた場合の信号波形図。
【符合の説明】
101 連続光源
102 下り光信号送信器
103 光カプラ
104 光ファイバ
105 光カプラ
106 反射型光変調器
107 下り光信号受信器
108 上り光信号受信器
109 下り光信号送信器兼連続光源
110 光カプラ
111 光ファイバ
112 下り光信号受信器兼反射型光変調器
113 上り光信号受信器
1001 偏波保持光カプラ
1002 偏波光スイッチ
1003,1004 偏波コントローラ
K 局
U ユーザ端末
Pc 連続光
Pd 下り光信号
Pu 上り光信号
Pu1 正規上り光信号
Pu2 予備上り光信号
Eu1 正規の上り信号
Eu2 予備上り信号
[0001]
BACKGROUND OF THE INVENTION
The present invention is applied to an optical transmission system such as high-speed optical communication propagating through an optical fiber, optical switching, and optical information processing, and more particularly to a reflection-type optical communication system that uses one optical fiber in both upstream and downstream directions. It is an effective technology to apply.
[0002]
[Prior art]
As the transmission capacity increases with the development of IT technology, it is important to effectively use the transmission band of the optical fiber. There is a reflection type optical communication system as a system that effectively uses a transmission band.
[0003]
The inventor of the present application has developed a reflection type optical communication system that can efficiently transmit an upstream optical signal and can improve the code error rate of the upstream optical signal.
[0004]
Here, a reflection type optical communication system recently developed by the present inventor will be described.
[0005]
[First example]
FIG. 6 shows a first example of a reflective optical communication system recently developed by the present inventors. As shown in the figure, the station K and the user terminal U are connected by a single optical fiber 104. The station K includes a continuous light source 101, a downstream optical signal transmitter 102, an optical coupler 103, and an upstream optical signal receiver 108. The user terminal U includes an optical coupler 105, a reflective optical modulator 106, a downstream optical signal receiver 107, and an optical limiter amplifier 114. The reflection type optical modulator 106 is configured using, for example, a reflection type optical amplifier, and functions as an “upstream optical signal transmitter”.
[0006]
The optical limiter amplifier 114 is connected between the optical coupler 105 and the reflective optical modulator 106. The optical limiter amplifier 114 is formed of a semiconductor optical amplifier that has a large gain when the input light intensity of the passing light is low and has a small gain when the input light intensity of the passing light is strong. As such a semiconductor optical amplifier, there is a semiconductor optical amplifier described in Non-Patent Document 1 or the like.
[0007]
By using the optical limiter amplifier 114 having such a limiter characteristic (amplification characteristic), the optical signal passing through the optical limiter amplifier 114 has a large gain at the “0” portion where the light intensity is weak, and the “1” portion. The gain becomes smaller. For this reason, the optical signal that has passed through the optical limiter amplifier 114 becomes flat as the level difference between the “1” portion and the “0” portion becomes small. The use of such an optical limiter amplifier 114 is one of the points of this system.
[0008]
On the station K side, the continuous light Pc generated by the continuous light source 101 and the downstream optical signal Pd generated by the downstream optical signal transmitter 102 are transmitted in a time division manner. Moreover, the extinction ratio of the downstream optical signal Pd is set to a bad value of 3 to 5 dB. Thus, setting the extinction ratio of the downstream optical signal Pd to a bad value is one of the points of this system.
[0009]
When the reflection type optical modulator 106 on the user terminal U side receives the continuous light Pc, the continuous light Pc is modulated with the first electric signal to generate the normal upstream optical signal Pu1, and the normal upstream optical signal Pu1 is generated. Send back. Further, when the reflection type optical modulator 106 receives the downstream optical signal Pd having passed through the optical limiter amplifier 114 and has an extinction ratio as small as 1 to 3 dB, it modulates the downstream optical signal Pd with the second electrical signal. Thus, the backup upstream optical signal Pu2 is generated, and this backup upstream optical signal Pu2 is sent back.
[0010]
In this reflection type optical communication system, continuous light Pc is sent from a continuous light source 101 placed on the station K side, and the user terminal U is configured to send back this modulated continuous light Pc as a regular upstream optical signal Pu1. . For this reason, the continuous light Pc is generated by the first electrical signal by the reflection type light modulator 106 when the continuous light source 101 → the optical coupler 103 → the optical fiber 104 → the optical coupler 105 → the optical limiter amplifier 114 → the reflection type optical modulator 106. Modulated to be a regular upstream optical signal Pu 1 and reflected by the end face of the reflective optical modulator 106. The regular upstream optical signal Pu1 obtained by modulating the continuous light Pc returns as the optical limiter amplifier 114 → the optical coupler 105 → the optical fiber 104 → the optical coupler 103 → the upstream optical signal receiver 108.
[0011]
The downstream optical signal Pd proceeds in the downstream optical signal transmitter 102 → the optical coupler 103 → the optical fiber 104 → the optical coupler 105 → the downstream optical signal receiver 107 and is received by the downstream optical signal receiver 107 of the user terminal U. . The bit rate of both the upstream optical signal Pu and downstream optical signal Pd is about 100 Mbit / s to 1 Gbit / s.
[0012]
What is important here is that, as described above, the extinction ratio of the downstream optical signal Pd transmitted from the downstream optical signal transmitter 102 is set to a bad value of about 3 to 5 dB. However, since the downstream optical signal Pd has a short transmission distance, the influence of the propagation loss is small. Even if the downstream optical signal Pd received by the downstream optical signal receiver 107 has a low extinction ratio, the signal state determination of the downstream optical signal Pd is performed. There will be no problems in doing so.
[0013]
The downstream optical signal Pd is received by the downstream optical signal receiver 107, branched by the optical coupler 105, and sent to the reflective optical modulator 106 through the optical limiter amplifier 114. Since the downstream optical signal Pd transmitted has a bad extinction ratio of 3 to 5 dB, the downstream optical signal Pd after passing through the optical limiter amplifier 114 has a gain of “0” where the light intensity is weak. As the value increases, the gain of the portion “1” decreases, and the extinction ratio further decreases to about 1 to 2 dB. The downstream optical signal Pd having such an extremely low extinction ratio is modulated by the second electrical signal in the reflection type optical modulator 106 to become the preliminary upstream optical signal Pu2. This spare upstream optical signal Pu2 returns as follows: optical limiter amplifier 114 → optical coupler 105 → optical fiber 104 → optical coupler 103 → upstream optical signal receiver 108.
[0014]
As described above, not only the regular upstream optical signal Pu1 obtained by modulating the continuous light Pc but also the backup upstream optical signal Pu2 obtained by modulating the downstream optical signal Pd having a reduced extinction ratio can be sent back as the upstream optical signal. That is, although the downstream optical signal Pd has been sent back in the past, it has not been sent back as an upstream optical signal. However, in this system, the downstream optical signal Pd can also be used as an upstream optical signal. Therefore, the signal (upstream optical signal) can be sent efficiently.
[0015]
The waveform of this reflective optical communication system is shown in FIG.
FIG. 7A shows the waveform of the downlink (station → user terminal), and the downlink optical signal Pd and the continuous light Pc are transmitted in a time division manner. What is important here is that the extinction ratio of the downstream optical signal Pd is set to a bad value of about 3 to 5 dB. Since the downstream optical signal Pd has a short transmission distance, the influence of the propagation loss is small, and no problem occurs even if the extinction ratio is low.
[0016]
FIG. 7B shows the waveforms of the continuous light Pc and the downstream optical signal Pd that pass through the optical limiter amplifier 114 and travel toward the reflective optical modulator 106. As described above, since the optical limiter amplifier 114 is a semiconductor amplifier having a large gain when the input light intensity is low and a small gain when the input light intensity is strong, the gain of the “0” portion having a low light intensity is large. The gain of the “1” portion is reduced. As a result, the extinction ratio of the downstream optical signal Pd after passing through the optical limit amplifier 114 is as small as about 1 to 2 dB.
[0017]
FIG. 7C shows the waveform of the upstream optical signal. What is important here is that not only the regular upstream optical signal Pu1 obtained by modulating the continuous optical part but also the backup upstream optical signal Pu2 obtained by modulating the downstream optical signal part can be used as the upstream optical signal. . That is, the downstream optical signal portion can be newly modulated. This means that a portion that has not been used in the past (downlink optical signal portion) is also used as an upstream optical signal, so that the upstream optical signal can be efficiently transmitted.
[0018]
[Second example]
Next, a second example recently developed by the present inventor will be described. In the second example, the system configuration of FIG. 6 is used, but on the user terminal U side, the same signal as the normal upstream optical signal Pu1 that modulates the continuous optical portion and the backup upstream optical signal Pu2 that modulates the downstream optical signal portion. Choreograph. That is, the signal content (signal information) of the first electric signal that modulates the continuous light Pc to generate the normal upstream optical signal Pu1, and the downstream optical signal Pd (the extinction ratio is small) to generate the backup upstream optical signal Pu2. The signal content (signal information) of the second electric signal for modulating the downstream optical signal Pd) is made equal. As a result, the signal contents of the regular upstream optical signal Pu1 and the backup upstream optical signal Pu2 transmitted from the reflective optical modulator 106 become equal.
[0019]
On the station K side, these two signals (regular upstream optical signal Pu1 and backup upstream optical signal Pu2) are received and compared. Here, if the backup upstream optical signal Pu2 and the regular upstream optical signal Pu1 match, it can be determined that the signal is correct. If the two do not match, an error correction is attempted, or retransmission is requested to the user terminal U side.
This scheme can improve the code error rate of the uplink signal.
[0020]
[Third example]
Next, a third example recently developed by the present inventor will be described with reference to FIG. In FIG. 8, 109 is a downstream optical signal transmitter / continuous light source, 110 is an optical coupler, 111 is an optical fiber, 112 is a downstream optical signal receiver / reflection type optical modulator, and 113 is an upstream optical signal receiver.
[0021]
In FIG. 8, the downstream optical signal transmitter / continuous light source 109 on the station K side can transmit the continuous light Pc and the downstream optical signal Pd with the extinction ratio lowered to about 3 to 5 dB in a time division manner. The downstream optical signal receiver / reflective optical modulator 112 on the user terminal U side can perform time-division reception of downstream optical signal Pd, modulation of continuous light Pc, and downstream optical signal Pd. The normal upstream optical signal Pu1 and the backup upstream optical signal Pu2 generated in this manner can be transmitted in a time-sharing manner.
[0022]
The downstream optical signal transmitter / continuous light source 109 is, for example, a direct modulation type DFB laser, and injects a DC current when transmitting the continuous light Pc, and a modulation current when transmitting the downstream signal.
[0023]
The downstream optical signal receiver / reflective optical modulator 112 uses, for example, a reflective semiconductor amplifier shown in Non-Patent Document 2, applies a reverse bias during reception to monitor the received light current, and transmits a positive bias modulation current during transmission. Inject.
[0024]
Furthermore, by optimizing the positive bias modulation current applied to the downstream optical signal receiver / reflective optical modulator 112, as shown in Non-Patent Document 3, the downstream optical signal receiver / reflective optical modulator 112 is designed. It is also possible to provide a function as an optical limiter amplifier. That is, the downstream optical signal receiver / reflection optical modulator 112 can function as a downstream optical signal receiver / reflection optical modulator / optical limiter amplifier.
[0025]
Also in the reflection type optical communication system configured as shown in FIG. 8, as shown in FIG. 7, the normal upstream optical signal Pu1 is generated by modulating the continuous light Pc with the first electrical signal. By sending back Pu1 and modulating the downstream optical signal Pd with a reduced extinction ratio with the second electrical signal to generate the backup upstream optical signal Pu2, and sending back the backup upstream optical signal Pu2, the code error of the upstream optical signal The rate can be improved.
[0026]
[Non-Patent Document 1]
Y. Shibata, Y. et al. Yamada, K .; Habara, and N.H. Yoshimoto, “Semiconductor laser diode optical amplifiers / gates in photonic packet switching”, Journal of Lightwave Technology. 16, no. 12, pp. 2228-2235, 1998
[Non-Patent Document 2]
M.M. Okayasu, Y. et al. Suzuki, N .; Yoshimoto, R.A. Iga, H .; Sugiura, and J.A. Yosida, “Bi-directional transmission experiential using a semi-conductor, amplifier transducer mud for WDM-PON and WDM-LAN applications.” W. Faulker and A.M. L. Harmer (Eds.), IOS Press, 1999, pp. 278-283, IOS Press, ISBN 4 274 90296 X C3055, Ohm Corporation [Non-Patent Document 3]
H. Takesue and T. Sugie, "Data rewrite of wavelength channel using saturated SOA modulator for WDM metro / access networks with centralized light sources", 28th European Conference on Optical, ECOC2002, September 8-12, 2002, Copenhagen, Denmark
[0027]
[Problems to be solved by the invention]
However, the reflection type optical communication system recently developed by the present inventor described based on FIGS. 6 to 8 has a further point to be improved.
[0028]
That is, the interference caused in the optical fibers 104 and 111 by the optical signal transmitted in both directions. In general, when the polarization directions of both (upstream and downstream) optical signals are different, as shown in FIG. 9, it is possible to receive a clean waveform, that is, a waveform in which neither the 0 level nor the 1 level of the optical signal fluctuates. Usually, in order to receive data, a threshold value 301 is provided at an approximately halfway point between the 0 level and the 1 level.
[0029]
However, when the polarization directions of both (upstream and downstream) optical signals coincide, a part of either optical signal is reflected by Rayleigh scattering of the optical fiber, and the reflected light interferes with the other optical signal. As a result, the received waveform is disturbed. The influence of this interference is particularly noticeable at level 1, and as shown in FIG. 10, it appears that level 1 becomes thicker. As a result, when level detection is performed using the threshold 401, there is a problem that one level is easily determined to be zero.
[0030]
Accordingly, in the reflection type optical communication system shown in FIGS. 6 and 8, the polarization direction of the downstream optical signal Pd and the continuous light Pc from the station K to the user terminal U are the same, and the user terminal U to the station Since the polarization directions of the spare upstream optical signal Pu2 and the regular upstream optical signal Pu1 heading for K are the same, there is a drawback that if one of the upstream optical signals is disturbed by interference, the other is also disturbed.
[0031]
As described above, in the reflection type optical communication system, there is a problem that interference occurs when the polarization states of the upstream and downstream optical signals propagating through the optical fiber coincide with each other, and the received waveform deteriorates.
[0032]
The present invention has been made in view of the above prior art, and an object of the present invention is to provide a reflection polarization optical communication system capable of transmitting and receiving a high-quality optical signal by preventing deterioration of a received waveform, and a station and a user terminal used therefor To do.
[0033]
[Means for Solving the Problems]
The configuration of the reflection polarization polarization optical communication system of the present invention that solves the above problem is that the station and the user terminal are connected by an optical fiber,
The station transmits continuous light and downstream optical signals to the user terminal in a time division manner, and receives upstream optical signals transmitted from the user terminal,
In the reflective optical communication system, the user terminal receives a downstream optical signal transmitted from the station, and sends back an upstream optical signal generated by modulating the received continuous light to the station.
The station transmits the continuous light and the downstream optical signal to the user terminal with different polarization directions,
In the user terminal, not only the regular upstream optical signal generated by modulating the received continuous light with the first electric signal is sent back to the station, but also the extinction ratio of the received downstream optical signal is decreased to reduce the extinction ratio. A spare upstream optical signal generated by modulating the reduced downstream optical signal with the second electrical signal is sent back to the station.
At this time, the signal contents of the first electric signal and the second electric signal used in the user terminal are the same,
The station determines that the signal content is correct when the signal content of the received regular upstream optical signal and the backup upstream optical signal match,
The station transmits a downstream optical signal having an extinction ratio of 3 to 5 dB.
[0034]
The station used in the reflection polarization optical communication system of the present invention includes a continuous light source that transmits continuous light, a downstream optical signal transmitter that transmits downstream optical signals, a regular upstream optical signal that is an upstream optical signal, and a standby optical signal. An upstream optical signal receiver for receiving the upstream optical signal,
In addition, the polarization directions of the continuous light transmitted from the continuous light source and the downstream optical signal transmitted from the downstream optical signal transmitter are different.
At this time, this station receives a continuous light source that transmits continuous light, a downstream optical signal transmitter that transmits downstream optical signals, and an upstream optical signal reception that receives regular upstream optical signals and backup upstream optical signals that are upstream optical signals. And a polarization controller,
Moreover, the polarization direction of the continuous light transmitted from the continuous light source and the downstream optical signal transmitted from the downstream optical signal transmitter are different,
Further, the polarization controller controls the polarization direction of the continuous light transmitted from the continuous light source and the downstream optical signal transmitted from the downstream optical signal transmitter, and then transmits it outside the station.
Alternatively, the polarization direction of the continuous light and the downstream optical signal is controlled by the polarization controller until the signal contents of the regular upstream optical signal and the backup upstream optical signal received by the upstream optical signal receiver match. .
[0035]
The station used in the reflective polarization-based optical communication system of the present invention includes a downstream optical signal transmitter / continuous light source that transmits a downstream optical signal and continuous light in a time division manner, and a regular upstream optical signal that is an upstream optical signal. An upstream optical signal receiver that receives the preliminary upstream optical signal, and a polarization optical switch;
The polarization optical switch switches the polarization direction so that the polarization direction of the downstream optical signal transmitted from the downstream optical signal transmitter / continuous light source is different from that of the continuous light.
At this time, this station transmits a downstream optical signal and continuous light in a time division manner and a downstream optical signal transmitter / continuous light source, and an upstream optical signal that receives an upstream optical signal, a regular upstream optical signal and a backup upstream optical signal. A receiver, a polarization optical switch, and a polarization controller;
The polarization optical switch switches the polarization direction so that the downstream light signal transmitted from the downstream optical signal transmitter and continuous light source is different from the polarization direction of the continuous light,
Further, the polarization controller controls the polarization direction of the continuous light and the downstream optical signal sent from the polarization optical switch and then sends it out of the station.
Further, the polarization direction of the continuous light and the downstream optical signal is controlled by the polarization controller until the signal contents of the regular upstream optical signal and the backup upstream optical signal received by the upstream optical signal receiver match.
[0036]
Further, the user terminal used in the reflective polarization-based optical communication system of the present invention includes a downstream optical signal receiver that receives a downstream optical signal, an optical limiter amplifier that decreases the extinction ratio of the received downstream optical signal, and the received continuous The optical signal is modulated by the first electrical signal to generate a normal upstream optical signal, which is sent back to the station, and the downstream optical signal whose extinction ratio is reduced by passing through the optical limiter amplifier is modulated by the second electrical signal. And a reflection type optical modulator that generates a spare upstream optical signal and sends it back to the station.
At this time, the user terminal receives the downstream optical signal, modulates the received continuous light with the first electrical signal, generates a normal upstream optical signal, sends it back to the station, and receives the received downstream optical signal. A downstream optical signal receiver and a reflective optical modulator that modulates the electrical signal of 2 to generate a preliminary upstream optical signal and send it back to the station;
The user terminal receives the downstream optical signal, reduces the extinction ratio of the received downstream optical signal, further modulates the received continuous light with the first electric signal to generate a normal upstream optical signal, and And a downstream optical signal receiver / reflective optical modulator / optical limiter amplifier, which generates a backup upstream optical signal by modulating the downstream optical signal having a reduced extinction ratio with a second electrical signal and returns it to the station. It is characterized by that.
[0037]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below in detail with reference to the drawings. Since the reflection type polarization optical communication system according to the present embodiment is an improvement of the reflection type optical communication system previously developed as shown in FIG. 6 and FIG. Portions that perform the same functions as the system are given the same reference numerals, and redundant descriptions are omitted.
[0038]
[First Embodiment]
FIG. 1 shows a reflection-type polarization optical communication system according to a first embodiment of the present invention. In the first embodiment, the reflection type optical communication system shown in FIG. 6 is improved. In the first embodiment, a polarization maintaining optical coupler 1001 is provided in the station K, the continuous light source 101 and the polarization maintaining optical coupler 1001 are connected by the polarization maintaining optical fiber F1, and the downstream optical signal transmitter 102 and the polarization are connected. The holding optical coupler 1001 is connected by a polarization holding optical fiber F2. The continuous light Pc output from the continuous light source 101 and the downstream optical signal Pd output from the downstream optical signal transmitter 102 are transmitted by a time division method, and in this embodiment, continuous light Pc is transmitted continuously. The polarization directions of the light Pc and the downstream optical signal Pd are shifted (for example, the polarization direction is shifted by 30 to 45 degrees). Thus, shifting the polarization directions of the continuous light Pc and the downstream light signal Pd (changing the polarization directions) is the greatest point of this system. The configuration of other parts is the same as that shown in FIG.
[0039]
The continuous light Pc output from the continuous light source 101 has a small extinction ratio of 1 to 3 dB. This continuous light Pc is a polarization maintaining optical fiber F1 → a polarization maintaining optical coupler 1001 → an optical coupler 103 → an optical fiber. 104 → Optical coupler 105 → Optical limiter amplifier 114 → Reflective optical modulator 106 In the process, the reflective optical modulator 106 modulates with the first electric signal to become the normal upstream optical signal Pu1, and the reflective optical modulator 106 Reflected at the end face of The regular upstream optical signal Pu1 obtained by modulating the continuous light Pc returns as the optical limiter amplifier 114 → the optical coupler 105 → the optical fiber 104 → the optical coupler 103 → the upstream optical signal receiver 108.
[0040]
Further, the downstream optical signal Pd proceeds in the order of downstream optical signal transmitter 102 → polarization maintaining optical fiber F2 → polarization maintaining optical coupler 1001 → optical coupler 103 → optical fiber 104 → optical coupler 105 → downstream optical signal receiver 107, Received by the downstream optical signal receiver 107 of the user terminal U.
[0041]
The downstream optical signal Pd is received by the downstream optical signal receiver 107, branched by the optical coupler 105, and sent to the reflective optical modulator 106 through the optical limiter amplifier 114. Since the downstream optical signal Pd transmitted has a bad extinction ratio of 3 to 5 dB, the downstream optical signal Pd after passing through the optical limiter amplifier 114 has a gain of “0” where the light intensity is weak. As the value increases, the gain of the portion “1” decreases, and the extinction ratio further decreases to about 1 to 2 dB. The downstream optical signal Pd having such an extremely low extinction ratio is modulated by the second electrical signal in the reflection type optical modulator 106 to become the preliminary upstream optical signal Pu2. This spare upstream optical signal Pu2 returns as follows: optical limiter amplifier 114 → optical coupler 105 → optical fiber 104 → optical coupler 103 → upstream optical signal receiver 108.
[0042]
As described above, not only the regular upstream optical signal Pu1 obtained by modulating the continuous light Pc but also the backup upstream optical signal Pu2 obtained by modulating the downstream optical signal Pd having a reduced extinction ratio can be sent back as the upstream optical signal. That is, in this system, since this downstream optical signal Pd can be used as an upstream optical signal, a signal (upstream optical signal) can be efficiently transmitted.
[0043]
In this case, the bit rate is about 100 Mbit / s to 1 Gbit / s for both the upstream optical signals Pu1 and Pu2 and the downstream optical signal Pd.
[0044]
Further, on the user terminal U side, the same signal may be assigned to the normal upstream optical signal Pu1 that modulates the continuous optical portion and the backup upstream optical signal Pu2 that modulates the downstream optical signal portion. That is, the signal content (signal information) of the first electric signal that modulates the continuous light Pc to generate the normal upstream optical signal Pu1, and the downstream optical signal Pd (the extinction ratio is small) to generate the backup upstream optical signal Pu2. The signal content (signal information) of the second electric signal that modulates the downstream optical signal Pd) may be equalized. In this way, the signal contents of the regular upstream optical signal Pu1 and the backup upstream optical signal Pu2 transmitted from the reflective optical modulator 106 are equal.
[0045]
At this time, the upstream optical signal receiver 108 on the station K side receives these two signals (regular upstream optical signal Pu1 and backup upstream optical signal Pu2) and compares them. Here, if the backup upstream optical signal Pu2 and the regular upstream optical signal Pu1 match, it can be determined that the signal is correct. If the two do not match, an error correction is attempted, or retransmission is requested to the user terminal U side.
This scheme can improve the code error rate of the uplink signal.
[0046]
As described above, in the present embodiment, the polarization directions of the continuous light Pc and the downstream light signal Pd are shifted by, for example, 30 to 45 degrees, so that the normal upstream light signal Pu1 obtained by modulating the continuous light Pc and the extinction ratio Similarly, the polarization direction of the backup upstream optical signal Pu2 obtained by modulating the downstream optical signal Pd having a smaller value is also shifted.
[0047]
In this way, even when the polarization direction of one of the upstream optical signals (for example, the backup upstream optical signal Pu2) completely coincides with the polarization direction of the downstream continuous light Pc or the downstream optical signal Pd, and the waveform is disturbed. The polarization direction of the other upstream optical signal (for example, the regular upstream optical signal Pu1) is deviated from the polarization direction of the downstream continuous light Pc or the downstream optical signal Pd. As a result, it is possible to prevent waveform degradation due to Rayleigh scattering.
[0048]
The signal waveforms in the reflective optical communication system shown in FIG. 1 are the same as those shown in FIGS. 7 (a), (b), and (c).
[0049]
[Second Embodiment]
FIG. 2 shows a reflection-type polarized light optical communication system according to the second embodiment of the present invention. In the second embodiment, the reflection type optical communication system shown in FIG. 8 is improved. In the second embodiment, the station K includes the polarization optical switch 1002 between the downstream optical signal transmitter / continuous light source 109 and the optical coupler 110. As the polarization optical switch 1002, a polarization optical switch shown in Reference Document 1 is used. The configuration of other parts is the same as that shown in FIG.
[0050]
Reference 1: R.A. C. Alfness and L.L. L. Buhl, “Waveguide electro-optical polarization transformer”, Applied Physic Letters, vol. 38, pp. 665, 1981 or M.M. A. Santoro and C.M. D. Poole, “Polarization scrambling using a short piece of high-birefringence optical fibre and a multifrequency diol fow.” 12, no. 2, pp. 288-293, 1994
[0051]
The downstream optical signal transmitter / continuous light source 109 on the station K side can transmit the continuous light Pc and the downstream optical signal Pd with the extinction ratio lowered to about 3 to 5 dB in a time division manner. The downstream optical signal receiver / reflective optical modulator 112 on the user terminal U side can perform time-division reception of downstream optical signal Pd, modulation of continuous light Pc, and downstream optical signal Pd. The normal upstream optical signal Pu1 and the backup upstream optical signal Pu2 generated in this manner can be transmitted in a time-sharing manner.
[0052]
The downstream optical signal receiver / reflective optical modulator 112 uses a reflective semiconductor amplifier, applies a reverse bias during reception to monitor the received light current, and injects a positive bias modulation current during transmission. Furthermore, by optimizing the positive bias modulation current applied to the downstream optical signal receiver / reflective optical modulator 112, the downstream optical signal receiver / reflective optical modulator 112 can also function as an optical limiter amplifier. It is possible to have it. That is, the downstream optical signal receiver / reflection optical modulator 112 can function as a downstream optical signal receiver / reflection optical modulator / optical limiter amplifier.
[0053]
The polarization optical switch 1002 outputs the polarization direction when the continuous light Pc output from the downstream optical signal transmitter / continuous light source 109 in a time division manner passes, and outputs from the downstream optical signal transmitter / continuous light source 109 in a time division manner. The polarization direction when the transmitted downstream optical signal Pd passes is switched. For this reason, the polarization directions of the continuous light Pc and the downstream optical signal Pd that have passed through the polarization optical switch 1002 are shifted by 30 to 40 degrees.
[0054]
As described above, since the polarization directions of the continuous light Pc transmitted from the station K and the downstream optical signal Pd are shifted by 30 to 40 degrees, one of the upstream optical signals is similar to the first embodiment shown in FIG. Even if the polarization direction of (for example, the preliminary upstream optical signal Pu2) completely coincides with the polarization direction of the downstream continuous light Pc or the downstream optical signal Pd and the waveform is disturbed, the other of the upstream optical signals (for example, the regular upstream optical signal) The polarization direction of Pu1) deviates from the polarization direction of the downstream continuous light Pc or the downstream optical signal Pd. As a result, it is possible to prevent waveform degradation due to Rayleigh scattering.
[0055]
[Third Embodiment]
FIG. 3 shows a reflection-type polarized wave optical communication system according to the third embodiment of the present invention. In the third embodiment, a polarization controller 1003 is further provided in the first embodiment shown in FIG. The polarization controller 1003 is provided between the polarization maintaining optical coupler 1001 and the optical coupler 103. The continuous light Pc and the downstream optical signal Pd are transmitted to the outside of the station after passing through the polarization controller 1003. In addition, the polarization controller 1003 detects the polarization of the continuous light Pc and the downstream optical signal Pd. The wave state (polarization direction) can be controlled.
[0056]
In the present embodiment, on the user terminal U side, the same signal is assigned to the normal upstream optical signal Pu1 that modulates the continuous optical portion and the backup upstream optical signal Pu2 that modulates the downstream optical signal portion. Then, the upstream optical signal receiver 108 on the station K side receives these two signals (regular upstream optical signal Pu1 and backup upstream optical signal Pu2) and compares them. Here, if the backup upstream optical signal Pu2 and the regular upstream optical signal Pu1 match, it can be determined that the signal is correct. If the two do not match, the polarization controller 1003 controls the polarization state (polarization direction) of the continuous light Pc and the downstream optical signal Pd until the two signal states match. By doing so, it is possible to transmit and receive high-quality optical signals without errors.
[0057]
[Fourth Embodiment]
FIG. 4 shows a reflection polarization type optical communication system according to the fourth embodiment of the present invention. In the fourth embodiment, a polarization controller 1004 is further provided in the second embodiment shown in FIG. The polarization controller 1004 is provided between the polarization optical switch 1002 and the optical coupler 110. The continuous light Pc and the downstream optical signal Pd are transmitted to the outside of the station after passing through the polarization controller 1004. In addition, the polarization controller 1004 detects the polarization of the continuous light Pc and the downstream optical signal Pd. The wave state (polarization direction) can be controlled.
[0058]
In the present embodiment, on the user terminal U side, the same signal is assigned to the normal upstream optical signal Pu1 that modulates the continuous optical portion and the backup upstream optical signal Pu2 that modulates the downstream optical signal portion. Then, the upstream optical signal receiver 108 on the station K side receives these two signals (regular upstream optical signal Pu1 and backup upstream optical signal Pu2) and compares them. Here, if the backup upstream optical signal Pu2 and the regular upstream optical signal Pu1 match, it can be determined that the signal is correct. If the two do not match, the polarization controller 1004 controls the polarization state (polarization direction) of the continuous light Pc and the downstream optical signal Pd until the two signal states match. By doing so, it is possible to transmit and receive high-quality optical signals without errors.
[0059]
[Modification]
In the embodiment shown in FIGS. 3 and 4, the polarization controllers 1003 and 1004 are provided. However, instead of the polarization controllers 1003 and 1004, an optical delay line is provided, and the normal upstream optical signal Pu1 and the spare upstream light are provided. Until the reception results of the signal Pu2 match, the phase of the downstream optical signal may be controlled by the optical delay line to control the polarization state (polarization direction) of the continuous light Pc and the downstream optical signal Pd. .
[0060]
Further, instead of providing the polarization controllers 1003 and 1004, an electrical delay circuit is provided at the electrical signal input portion of the downstream optical signal transmitter 102 in FIG. 3 or the downstream optical signal transmitter / continuous light source 109 in FIG. A similar effect can be obtained by controlling the amount.
[0061]
For reference, a control circuit for controlling the polarization controller 1003 or the polarization controller 1004 will be described with reference to FIG. When this control circuit is used, a preamble pattern signal (10 to 16-bit fixed pattern signal) is given before the regular upstream optical signal Pu1 and the backup upstream optical signal Pu2. Note that the preamble pattern signal applied to the regular upstream optical signal Pu1 and the preamble pattern signal applied to the backup upstream optical signal Pu2 are the same pattern signal. In this example, it is assumed that the same signal is assigned to the regular upstream optical signal Pu1 and the backup upstream optical signal Pu2.
[0062]
As shown in FIG. 5, the regular upstream optical signal Pu1 and the backup upstream optical signal Pu2 branched by the optical coupler 103 (or 110) are transmitted through the optical fiber 501, and are provided in the upstream optical signal receiver 108 (or 113). The received light is received by the received light receiver 502.
The light receiver 502 outputs a regular upstream signal Eu1 (including an electrical signal corresponding to a preamble pattern signal) obtained by converting the regular upstream optical signal Pu1 into an electrical signal, and a preliminary upstream signal obtained by converting the spare upstream optical signal Pu2 into an electrical signal. A signal Eu2 (including an electrical signal corresponding to the preamble pattern signal) is output.
[0063]
The preamble detection circuit 503 detects a preamble pattern signal that is an electrical signal. The high speed switch 504 performs switching each time the preamble detection circuit 503 detects a preamble pattern signal. For this reason, one of the regular upstream signal Eu1 and the backup upstream signal Eu2 is output to the line L1, and the other signal is output to the line L2.
[0064]
The preamble detection circuit 505 detects a preamble pattern signal attached to the upstream signal passing through the line L1, and the preamble detection circuit 506 detects a preamble pattern attached to the upstream signal passing through the line L2. The coincidence comparison circuit 507 performs an AND operation on the detection results of the preamble detection circuits 505 and 506, and the power monitor 508 detects an average output power of the AND operation result. The phase circuit adjustment circuit 509 adjusts the phase state of the phase circuit 510 interposed in the line L1 so that the average output power becomes maximum. As a result of such phase adjustment, the coincidence comparison circuit 511 receives the normal upstream signal Eu1 and the spare upstream signal Eu2 whose phase states are identical.
[0065]
The coincidence comparison circuit 511 performs an AND operation on the normal upstream signal Eu1 and the spare upstream signal Eu2 whose phase states coincide with each other, and the power monitor 512 detects the average output power of the AND operation result. The polarization controller adjustment circuit 513 adjusts the polarization state (polarization direction) of the polarization controller 1003 (or 1004) so that the average output power is maximized.
[0066]
Thus, by adjusting the polarization direction control for the continuous light Pc and the downstream optical signal Pd by the polarization controller 1003 (1004), it is possible to transmit and receive a good optical signal without error.
[0067]
Further, the reception result (one signal of the normal uplink signal Eu1 and the backup signal Eu2 having the same phase state and signal information) is output from the line L1 side.
[0068]
【The invention's effect】
As described above, in the reflection-type polarization-use optical communication system of the present invention and the station and user terminal used therefor, the downstream optical signal whose extinction ratio is reduced by reducing the extinction ratio of the downstream optical signal is used as the second electrical signal. The spare upstream optical signal is generated by modulating the optical upstream and the spare upstream optical signal is sent back from the user terminal to the station. For this reason, a normal upstream optical signal obtained by modulating continuous light with the first electrical signal, and a backup upstream optical signal obtained by modulating the downstream optical signal having a reduced extinction ratio with the second electrical signal are designated as upstream optical signals. Therefore, an upstream optical signal can be efficiently transmitted.
In addition, since the polarization directions of the continuous light and the downstream optical signal are different, one waveform of the upstream optical signal (regular upstream optical signal and backup upstream optical signal) is caused by Rayleigh scattering, which is interference between the upstream and downstream optical signals. Even if the signal quality deteriorates, the waveform of the other upstream optical signal can be prevented from being deteriorated, so that a high-quality optical signal can be transmitted and received.
[0069]
Further, the signal state of the first electrical signal and the second electrical signal are made the same, and the normal upstream optical signal and the backup upstream optical signal are compared in the user terminal, thereby improving the code error rate of the upstream optical signal. Can measure.
Further, by controlling the polarization directions of the continuous light and the downstream optical signal until the signal contents of the regular upstream optical signal and the backup upstream optical signal match, it becomes possible to transmit and receive a higher quality optical signal.
[Brief description of the drawings]
FIG. 1 is a configuration diagram showing a reflection polarization type optical communication system according to a first embodiment of the present invention.
FIG. 2 is a configuration diagram showing a reflection polarization type optical communication system according to a second embodiment of the present invention.
FIG. 3 is a block diagram showing a reflection polarization type optical communication system according to a third embodiment of the present invention.
FIG. 4 is a configuration diagram showing a reflection polarization type optical communication system according to a fourth embodiment of the present invention.
FIG. 5 is a circuit diagram showing an example of a control circuit that controls a polarization controller;
FIG. 6 is a block diagram showing a reflection type optical communication system recently developed by the inventor of the present application.
FIG. 7 is a characteristic diagram showing a signal waveform of an optical signal in a reflection type optical communication system.
FIG. 8 is a block diagram showing another example of a reflective optical communication system recently developed by the inventors of the present application.
FIG. 9 is a signal waveform diagram when there is no waveform deterioration due to Rayleigh scattering in a reflective optical communication system.
FIG. 10 is a signal waveform diagram when waveform deterioration occurs due to Rayleigh scattering in a reflective optical communication system.
[Explanation of sign]
DESCRIPTION OF SYMBOLS 101 Continuous light source 102 Downstream optical signal transmitter 103 Optical coupler 104 Optical fiber 105 Optical coupler 106 Reflective optical modulator 107 Downstream optical signal receiver 108 Upstream optical signal receiver 109 Downstream optical signal transmitter and continuous light source 110 Optical coupler 111 Light Fiber 112 Downstream optical signal receiver / reflection type optical modulator 113 Upstream optical signal receiver 1001 Polarization maintaining optical coupler 1002 Polarization optical switch 1003, 1004 Polarization controller K Station U User terminal Pc Continuous light Pd Downstream optical signal Pu Upstream light Signal Pu1 Regular upstream optical signal Pu2 Backup upstream optical signal Eu1 Regular upstream signal Eu2 Backup upstream signal

Claims (12)

局とユーザ端末とが光ファイバで接続され、
前記局は、連続光と下り光信号を時分割方式で前記ユーザ端末に送出すると共に、前記ユーザ端末から送出された上り光信号を受信し、
前記ユーザ端末は、前記局から送出された下り光信号を受信すると共に、受信した連続光を変調して生成してなる上り光信号を前記局に送り返す反射型光通信システムにおいて、
前記局では、偏光方向を異ならせて前記連続光と前記下り光信号を前記ユーザ端末に送出し、
前記ユーザ端末では、受信した連続光を第1の電気信号により変調して生成してなる正規上り光信号を前記局に送り返すのみならず、受信した下り光信号の消光比を減少させ消光比が減少した下り光信号を第2の電気信号により変調して生成してなる予備上り光信号を前記局に送り返すことを特徴とする反射型偏波利用光通信システム。
Station and user terminal are connected by optical fiber,
The station transmits continuous light and downstream optical signals to the user terminal in a time division manner, and receives upstream optical signals transmitted from the user terminal,
In the reflective optical communication system, the user terminal receives a downstream optical signal transmitted from the station, and sends back an upstream optical signal generated by modulating the received continuous light to the station.
The station transmits the continuous light and the downstream optical signal to the user terminal with different polarization directions,
In the user terminal, not only the regular upstream optical signal generated by modulating the received continuous light with the first electric signal is sent back to the station, but also the extinction ratio of the received downstream optical signal is decreased to reduce the extinction ratio. A reflection-type polarized light optical communication system, wherein a spare upstream optical signal generated by modulating a reduced downstream optical signal with a second electrical signal is sent back to the station.
請求項1において、
前記ユーザ端末で用いる第1の電気信号と第2の電気信号の信号内容が同一であり、
前記局は、受信した正規上り光信号と予備上り光信号の信号内容が一致した時に信号内容が正しいと判定することを特徴とする反射型偏波利用光通信システム。
In claim 1,
The signal contents of the first electric signal and the second electric signal used in the user terminal are the same,
The reflection-type polarization-based optical communication system, wherein the station determines that the signal content is correct when the received regular upstream optical signal and the backup upstream optical signal match.
請求項1または請求項2のいずれか1項において、
前記局は、消光比が3〜5dBとなっている下り光信号を送出することを特徴とする反射型偏波利用光通信システム。
In any one of Claim 1 or Claim 2,
The reflection-type polarized wave optical communication system, wherein the station transmits a downstream optical signal having an extinction ratio of 3 to 5 dB.
請求項1乃至請求項3のいずれか1項の反射型偏波利用光通信システムに用いる局であって、
この局は、連続光を送出する連続光源と、下り光信号を送出する下り光信号送信器と、上り光信号である正規上り光信号と予備上り光信号を受信する上り光信号受信器とを有しており、
しかも前記連続光源から送出する連続光と前記下り光信号送信器から送出する下り光信号の偏光方向を異ならせていることを特徴とする反射型偏波利用光通信システムの局。
A station used in the reflection-type polarized light optical communication system according to any one of claims 1 to 3,
This station includes a continuous light source that transmits continuous light, a downstream optical signal transmitter that transmits downstream optical signals, and an upstream optical signal receiver that receives normal upstream optical signals and standby upstream optical signals that are upstream optical signals. Have
In addition, the polarization-polarized optical communication system station is characterized in that the polarization directions of the continuous light transmitted from the continuous light source and the downstream optical signal transmitted from the downstream optical signal transmitter are different.
請求項1乃至請求項3のいずれか1項の反射型偏波利用光通信システムに用いる局であって、
この局は、連続光を送出する連続光源と、下り光信号を送出する下り光信号送信器と、上り光信号である正規上り光信号と予備上り光信号を受信する上り光信号受信器と、偏波コントローラとを有しており、
しかも前記連続光源から送出する連続光と前記下り光信号送信器から送出する下り光信号の偏光方向を異ならせており、
更に、前記偏波コントローラは、前記連続光源から送出された連続光と前記下り光信号送信器から送出された下り光信号との偏光方向を制御してから局外に送出することを特徴とする反射型偏波利用光通信システムの局。
A station used in the reflection-type polarized light optical communication system according to any one of claims 1 to 3,
The station includes a continuous light source that transmits continuous light, a downstream optical signal transmitter that transmits downstream optical signals, an upstream optical signal receiver that receives normal upstream optical signals and backup upstream optical signals that are upstream optical signals, A polarization controller,
Moreover, the polarization direction of the continuous light transmitted from the continuous light source and the downstream optical signal transmitted from the downstream optical signal transmitter are different,
Furthermore, the polarization controller controls the polarization direction of the continuous light transmitted from the continuous light source and the downstream optical signal transmitted from the downstream optical signal transmitter, and then transmits the polarization outside the station. A station for reflection-type polarized optical communication systems.
請求項5において、
上り光信号受信器で受信した正規上り光信号と予備上り光信号の信号内容が一致するまで、前記偏波コントローラにより連続光と下り光信号との偏光方向を制御することを特徴とする反射型偏波利用光通信システムの局。
In claim 5,
A reflection type wherein the polarization controller controls the polarization directions of the continuous light and the downstream optical signal until the signal contents of the regular upstream optical signal and the backup upstream optical signal received by the upstream optical signal receiver match. Station for polarization-based optical communication systems.
請求項1乃至請求項3のいずれか1項の反射型偏波利用光通信システムに用いる局であって、
この局は、下り光信号と連続光を時分割方式で送出する下り光信号送信器兼連続光源と、上り光信号である正規上り光信号と予備上り光信号を受信する上り光信号受信器と、偏波光スイッチとを有しており、
前記偏波光スイッチは、下り光信号送信器兼連続光源から送出された下り光信号と連続光の偏光方向を異ならせるように偏光方向を切り換えることを特徴とする反射型偏波利用光通信システムの局。
A station used in the reflection-type polarized light optical communication system according to any one of claims 1 to 3,
This station includes a downstream optical signal transmitter and continuous light source that transmits downstream optical signals and continuous light in a time division manner, an upstream optical signal receiver that receives normal upstream optical signals and standby upstream optical signals that are upstream optical signals, and A polarization optical switch,
The polarization optical switch switches the polarization direction so that the downstream light signal transmitted from the downstream optical signal transmitter / continuous light source and the polarization direction of the continuous light are different from each other. Bureau.
請求項1乃至請求項3のいずれか1項の反射型偏波利用光通信システムに用いる局であって、
この局は、下り光信号と連続光を時分割方式で送出する下り光信号送信器兼連続光源と、上り光信号である正規上り光信号と予備上り光信号を受信する上り光信号受信器と、偏波光スイッチと、偏波コントローラとを有しており、
前記偏波光スイッチは、下り光信号送信器兼連続光源から送出された下り光信号と連続光の偏光方向を異ならせるように偏光方向を切り換え、
更に、前記偏波コントローラは、前記偏波光スイッチから送出された連続光と下り光信号との偏光方向を制御してから局外に送出することを特徴とする反射型偏波利用光通信システムの局。
A station used in the reflection-type polarized light optical communication system according to any one of claims 1 to 3,
This station includes a downstream optical signal transmitter and continuous light source that transmits downstream optical signals and continuous light in a time division manner, an upstream optical signal receiver that receives normal upstream optical signals and standby upstream optical signals that are upstream optical signals, and A polarization optical switch and a polarization controller,
The polarization optical switch switches the polarization direction so that the downstream light signal transmitted from the downstream optical signal transmitter and continuous light source is different from the polarization direction of the continuous light,
Further, the polarization controller controls the polarization direction of the continuous light and the downstream optical signal transmitted from the polarization optical switch, and then transmits the polarization light outside the station. Bureau.
請求項8において、
上り光信号受信器で受信した正規上り光信号と予備上り光信号の信号内容が一致するまで、前記偏波コントローラにより連続光と下り光信号との偏光方向を制御することを特徴とする反射型偏波利用光通信システムの局。
In claim 8,
A reflection type wherein the polarization controller controls the polarization directions of the continuous light and the downstream optical signal until the signal contents of the regular upstream optical signal and the backup upstream optical signal received by the upstream optical signal receiver match. Station for polarization-based optical communication systems.
請求項1乃至請求項3のいずれか1項の反射型偏波利用光通信システムに用いるユーザ端末であって、
このユーザ端末は、下り光信号を受信する下り光信号受信器と、受信した下り光信号の消光比を減少させる光リミッタアンプと、受信した連続光を第1の電気信号により変調して正規上り光信号を生成して前記局に送り返すと共に前記光リミッタアンプを通過したことにより消光比が減少した下り光信号を第2の電気信号により変調して予備上り光信号を生成して前記局に送り返す反射型光変調器とを有することを特徴とする反射型偏波利用光通信システムのユーザ端末。
A user terminal for use in the reflection-type polarized light optical communication system according to any one of claims 1 to 3,
The user terminal includes a downstream optical signal receiver that receives a downstream optical signal, an optical limiter amplifier that reduces an extinction ratio of the received downstream optical signal, and a regular upstream by modulating the received continuous light with a first electrical signal. An optical signal is generated and sent back to the station, and a downstream optical signal whose extinction ratio is reduced by passing through the optical limiter amplifier is modulated by a second electrical signal to generate a preliminary upstream optical signal and sent back to the station. A user terminal of a reflection polarization type optical communication system, comprising: a reflection type optical modulator.
請求項1乃至請求項3のいずれか1項の反射型偏波利用光通信システムに用いるユーザ端末であって、
このユーザ端末は、下り光信号を受信すると共に、受信した連続光を第1の電気信号により変調して正規上り光信号を生成して前記局に送り返すと共に受信した下り光信号を第2の電気信号により変調して予備上り光信号を生成して前記局に送り返す下り光信号受信器兼反射型光変調器を有することを特徴とする反射型偏波利用光通信システムのユーザ端末。
A user terminal for use in the reflection-type polarized light optical communication system according to any one of claims 1 to 3,
The user terminal receives the downstream optical signal, modulates the received continuous light with the first electrical signal, generates a normal upstream optical signal, sends it back to the station, and transmits the received downstream optical signal to the second electrical signal. A user terminal of a reflection-type polarization optical communication system, comprising a downstream optical signal receiver / reflective optical modulator that modulates a signal to generate a preliminary upstream optical signal and sends it back to the station.
請求項1乃至請求項3のいずれか1項の反射型偏波利用光通信システムに用いるユーザ端末であって、
このユーザ端末は、下り光信号を受信すると共に、受信した下り光信号の消光比を減少させ、更に受信した連続光を第1の電気信号により変調して正規上り光信号を生成して前記局に送り返すと共に消光比を減少させた下り光信号を第2の電気信号により変調して予備上り光信号を生成して前記局に送り返す下り光信号受信器兼反射型光変調器兼光リミッタアンプを有することを特徴とする反射型偏波利用光通信システムのユーザ端末。
A user terminal for use in the reflection-type polarized light optical communication system according to any one of claims 1 to 3,
The user terminal receives the downstream optical signal, reduces the extinction ratio of the received downstream optical signal, further modulates the received continuous light with the first electric signal to generate a normal upstream optical signal, and And a downstream optical signal receiver / reflective optical modulator / optical limiter amplifier, which generates a backup upstream optical signal by modulating the downstream optical signal having a reduced extinction ratio with a second electrical signal and returns it to the station. A user terminal of a reflection polarization type optical communication system.
JP2003168750A 2003-06-13 2003-06-13 Reflection type optical communication system utilizing polarized wave, and station and user terminal used therefor Withdrawn JP2005006138A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003168750A JP2005006138A (en) 2003-06-13 2003-06-13 Reflection type optical communication system utilizing polarized wave, and station and user terminal used therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003168750A JP2005006138A (en) 2003-06-13 2003-06-13 Reflection type optical communication system utilizing polarized wave, and station and user terminal used therefor

Publications (1)

Publication Number Publication Date
JP2005006138A true JP2005006138A (en) 2005-01-06

Family

ID=34094097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003168750A Withdrawn JP2005006138A (en) 2003-06-13 2003-06-13 Reflection type optical communication system utilizing polarized wave, and station and user terminal used therefor

Country Status (1)

Country Link
JP (1) JP2005006138A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015504280A (en) * 2012-01-08 2015-02-05 オプティウェイ リミテッド Optical dispersion antenna system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015504280A (en) * 2012-01-08 2015-02-05 オプティウェイ リミテッド Optical dispersion antenna system

Similar Documents

Publication Publication Date Title
US6407845B2 (en) Optical transmitter and optical transmission system
US5737110A (en) Optical communication system using dark soliton lightwave
US8364038B2 (en) Polarization multiplexed optical transmitter and method for controlling polarization multiplexed optical signal
US7006769B1 (en) Method for optical fiber communication, and device and system for use in carrying out the method
US7869719B2 (en) Method and system for automatic feedback control for fine tuning a delay interferometer
US6650846B1 (en) Optical transmitter and optical transmission system
US7292793B2 (en) Synchronous amplitude modulation for improved performance of optical transmission systems
EP0963065B1 (en) Control signal superimposing system with Raman amplifier
US7865082B2 (en) Optical receiver and controlling method thereof, and optical transmission system
US20070297804A1 (en) High-speed dispersion compensation control apparatus
US20090162059A1 (en) Wavelength division multiplexing transmission system
JP4973362B2 (en) Optical receiver and control method thereof
US6404527B1 (en) Method and apparatus for transmitting a response signal from an optical repeater to a terminal requesting status information
US20090297165A1 (en) Optical transmitting apparatus and optical communication system
JP2005006138A (en) Reflection type optical communication system utilizing polarized wave, and station and user terminal used therefor
US6671466B1 (en) Distortion compensation in optically amplified lightwave communication systems
US6728490B1 (en) Optical transmitter, optical receiver, optical transmission system, and optical transmission method
JP2006211308A (en) Optical communication method, optical communication system, and optical communication apparatus used for the same
US6377377B1 (en) Apparatus and method for reducing phase modulated gain fluctuations in optical communications systems and networks
US7224907B2 (en) Duobinary optical transmission apparatus
JP2005006136A (en) Reflection type optical communication system, and station and user terminal used therefor
JP2001127707A (en) Light signal transmission system
JP3238061B2 (en) Optical pulse modulator
US20020097470A1 (en) Process for improving the signal quality of optical signals, transmission system and modulator
US20020060822A1 (en) Method of improving the signal quality of optical signals, transmission system and also a modulator

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060905