JP2005005923A - Ultrasonic transmitter - Google Patents

Ultrasonic transmitter Download PDF

Info

Publication number
JP2005005923A
JP2005005923A JP2003165865A JP2003165865A JP2005005923A JP 2005005923 A JP2005005923 A JP 2005005923A JP 2003165865 A JP2003165865 A JP 2003165865A JP 2003165865 A JP2003165865 A JP 2003165865A JP 2005005923 A JP2005005923 A JP 2005005923A
Authority
JP
Japan
Prior art keywords
acoustic
concave lens
wavelength
ultrasonic
transmitter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003165865A
Other languages
Japanese (ja)
Other versions
JP3909307B2 (en
Inventor
Takashi Azuma
隆 東
Shinichiro Umemura
晋一郎 梅村
Jun Kubota
純 窪田
Kazunari Ishida
一成 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Healthcare Manufacturing Ltd
Original Assignee
Hitachi Ltd
Hitachi Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Medical Corp filed Critical Hitachi Ltd
Priority to JP2003165865A priority Critical patent/JP3909307B2/en
Publication of JP2005005923A publication Critical patent/JP2005005923A/en
Application granted granted Critical
Publication of JP3909307B2 publication Critical patent/JP3909307B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an ultrasonic transmitter which is improved in transmission efficiency. <P>SOLUTION: The ultrasonic transmitter has a structure composed of a plurality of piezoelectric vibrators 1 arranged in a one-dimensional manner and an acoustic concave lens 3 stacked up on the vibrators 1, and the thinnest part of the acoustic concave lens is shorter than the wavelength of signals driving the piezoelectric vibrators and having the maximum frequency inside the acoustic concave lens. An acoustic layer 4 has an acoustic impedance intermediate between an acoustic impedance possessed by the acoustic concave lens and an average acoustic impedance possessed by a work as an object of testing, and is half or below as thick as the wavelength of the signals having the maximum frequency. The layer is laminated on the transmission surface of the acoustic concave lens 3. Electrodes 2-1 and 2-2 for driving the piezoelectric vibrators 1 are provided on both the sides of the piezoelectric vibrators 1. Lamb waves can be restrained from occurring in the acoustic concave lens and the piezoelectric vibrators. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、超音波を被検体内の治療部位又は画像化対象部位に照射する超音波送波器に関する。
【0002】
【従来の技術】
超音波送波器の送波面に垂直な方向に沿った焦点位置の制御をフェーズドアレイで実現する方法は、従来例をあげるまでもなく周知である。音響凹レンズも周知である(例えば、非特許文献1、200頁、Fig3.3.10)。音響凹レンズからの伝送効率を高めるための整合層も周知である(例えば、特許文献1)。
【0003】
【非特許文献1】
G.S.Kino著“Acoustic Waves (devices, imaging, & analog signal processing)”(Prentice−Hall,1987),pp.200
【特許文献1】
特開2002−153483号公報
【0004】
【発明が解決しようとする課題】
以下の明細書の説明では、駆動電圧に対する焦点での音響エネルギー密度(単位面積あたりの音響エネルギー)を「送波効率」として定義する。
【0005】
焦点位置が可変な超音波送波器を使用して、超音波の送波の制御を小型の装置構成で行なう場合、方位方向(超音波の送波面に沿った方向)での焦点位置の制御を、超音波送波器と所望の焦点の相対位置を動かすことで行ない、深さ方向(超音波の送波面に垂直な方向)での焦点位置の制御をフェーズドアレイで行ない、可変焦点を達成できる。この場合、短冊状の微小幅の圧電振動素子をその幅方向(長軸方向)に並べ、各圧電振動素子から焦点位置までの距離によって定まる遅延時間又は位相で各圧電振動素子を制御することで、超音波送波器から焦点までの距離を制御する。この圧電振動子素子の長さ方向(短軸方向)には音響レンズを被せて短軸方向でも超音波を収束させ、短軸方向での超音波の収束を図ることが出来る。このような短軸方向で音響レンズを用いる超音波送波器は、同心円状のアニュラアレイを用いる場合に比べ、肋間から撮像を行なう場合や、直腸や膣などに入れ、その内部から超音波を送波する必要がある場合など、超音波の二次元の送波開口のうち片側の幅が制限された条件下での送波に適している。このような理由で一般的に短軸方向の口径は長軸方向の口径より小さいため、短軸方向での超音波の収束がゆるく、短軸方向で使用される音響レンズで定まる焦域は、焦点を可変としたい範囲をなるべくカバーするように構成される。
【0006】
医用超音波探触子のように、使い勝手の観点から小型であることが望ましい場合や、経直腸や腹腔鏡用などの超音波送波器のように、被検体内に挿入する方向に垂直な面上での断面積を出来る限り小さくしたい場合や、レンズも含めてアレイ化したい場合など、音響凹レンズの厚みを薄くした場合、設計通りの焦点位置に超音波が収束しない、また、幾何光学に基づいた予想よりもサイドローブが大きく送波効率が良くないという課題があった。
【0007】
また、圧電振動子と凹レンズから構成され、かつ、凹レンズの最も薄い部分、即ち、凹面の中心線部分の厚みが圧電振動子を駆動する信号の中心周波数における凹レンズ内での波長以下の超音波送波器において、サイドローブが大きい、また超音波パワーの焦点への収束度が低いという課題があった。
【0008】
本発明の目的は、送波効率を向上させた超音波送波器を提供することにある。
【0009】
【課題を解決するための手段】
本発明の超音波送波器は、1次元に配列した複数の圧電振動子に音響凹レンズを積層した構造を有し、音響凹レンズの最も薄い部分の厚みが、複数の圧電振動子を駆動する信号の周波数成分のうち最大周波数における音響凹レンズ内での波長以下である超音波送波器において、音響凹レンズの音響インピーダンスと被検体の平均的な音響インピーダンスとの間の値の音響インピーダンスをもち、上記最大周波数での波長の2分の1以下の厚さをもつ音響層を音響凹レンズの送波面に積層することに特徴がある。上記音響層の厚みは、上記最大周波数での波長の5分の1から、3分の1の間の値をもち、上記音響層の音響インピーダンスが、圧電振動子の音響インピーダンスと被検体の音響インピーダンスの幾何平均の半分乃至2倍の間の値をもつ。
【0010】
本発明の超音波送波器は、1次元に配列した複数の圧電振動子に音響凹レンズを積層した超音波送波器において、複数の圧電振動子の音響凹レンズと反対側に圧電振動子の駆動周波数での波長の半分の周期で、金属と高分子の層を交互に積層した膜を積層することに特徴がある。
【0011】
【発明の実施の形態】
図1は、本発明の実施例の超音波送波器の構成を説明する図であり、図1(A)は斜視図、図1(B)は断面図である。超音波送波器は、短冊状の複数の圧電振動子1に音響凹レンズ3が積層され、音響凹レンズ3の最も薄い部分、即ち、音響凹レンズ3の凹面の中心線部分の厚みが圧電振動子1を駆動する信号の中心周波数における音響凹レンズ3内での波長以下であり、音響凹レンズ3の音響インピーダンスと被検体の平均的な音響インピーダンスとの間の音響インピーダンスを持ち、かつ、厚さが上記の中心周波数での波長の2分の1以下である音響層4を音響凹レンズ3の送波面に積層されている。圧電振動子1の両面に、圧電振動子を駆動させるための電極2−1、2−2が構成されている。
【0012】
図1に示す構成により、圧電振動子1及び音響凹レンズ3内でのLamb波などの不要なモードの励起を避けることが可能となる。上記の音響層4の厚さは、上記の中心周波数での波長の4分の1前後であることが最も望ましく、かつ、音響インピーダンスは、凹レンズ材料の音響インピーダンスと被検体の音響インピーダンスの幾何平均に近いことが望ましい。
【0013】
本発明の実施例では、Lamb波の原因となる送波器内の音響エネルギーの「こもり」を減らすために、高分子材料からなる音響層4を音響凹レンズ3の送波面に積層しているが、以下の説明では、この音響層4を、その機能からLamb波抑制層4と呼ぶことにする。
【0014】
図2は、本発明の実施例において、超音波送波器からのビームパターンの計算(シミュレーション)結果を示す図である。図2では超音波の送波を、角度(横軸)を0°の位置で行なった時の短軸方向での超音波の角度分布し表わす、ビームパターンを示している。図2(A)は、Lamb波抑制層を使用しない場合における計算結果を示す図であり、図2(B)は、Lamb波抑制層を使用する場合における計算結果を示す図である。
【0015】
ビームパターンの計算は圧電性を考慮した波動方程式を時間領域有限差分法にて行い、単純な縦波の効果だけでなく、横波の効果も計算に含めた。計算シミュレーションの条件は後述する図3の説明で行なう。
【0016】
図2(A)に示すように、角度0度の位置の超音波ビーム(中心ビーム)の左右に、最大で中心ビームに比べ−7dBの大きさをもつサイドローブが出現していることが解る。サイドローブは、超音波送波器を超音波撮像用に用いる場合には、信号対雑音比の低下、さらには偽像を生む原因となる。超音波送波器を加熱凝固治療に用いるには、サイドローブは、治療焦点以外の部位における温度上昇の原因、もしくは、エネルギーが集中しないことによって、振動子に投入したエネルギーに対して、焦点位置において十分な音圧を得ることが出来ないことにつながる。
【0017】
図2(A)と同じ焦点面でのビームパターンの計算結果を示す、図2(B)では、サイドローブが大きく減少していることがわかる。この例では、Lamb波抑制層を使用しない構成では、図2(A)の横軸が±20度前後の位置に−7dB程度でサイドローブが出現していたが、Lamb波抑制層を使用する構成では、図2(B)の横軸が±30度前後の位置で−23dBのサイドローブが最大となっている。このように、Lamb波抑制層の使用により、サイドローブのピーク値で比べて16dBの改善が見られた。このLamb波抑制層は、特許文献1に記載の伝送効率を高めるための音響整合層とは異なるものである。Lamb波抑制層は、音響凹レンズ3が薄く、Lamb波の影響が無視できない場合に非常有効に作用する機能をもっている。
【0018】
図3は、本発明の実施例において、超音波送波器から送波される音圧分布の計算(シミュレーション)結果を示す図である。図3(A)は計算のモデルを示す図である。図3(B)はLamb波抑制層を使用しない場合の計算結果を示す図、図3(C)はLamb波抑制層を使用する場合の計算結果を示す図である。図3(B)、図3(C)は、駆動を始めてからある時間経過した瞬間の音圧分布を正負で二値化して表示した図であり、黒の部分は音圧が正の領域を示し、白の部分は音圧が負の領域を示している。
【0019】
図3(A)において、PZT(チタンジルコン酸鉛)からなる振動子(図1の圧電振動子1)に、アルミニウムからなる凹レンズ(図1の音響凹レンズ3)を積層した構造をもっている。音響凹レンズの曲率は60mmで最も薄い部分の厚みは0.5mmである。Lamb波抑制層質(図1を参照)は、音響インピーダンス8MRay、厚さが振動子の駆動周波数である3.5MHzでの波長の4分の1となるように設計される高分子を含む膜である。実際に送波器を使用する条件に近くするために、振動子(図1の圧電振動子1)の背面は空気であり、凹レンズ(図1の音響凹レンズ3)の前面が水である条件で音圧分布の計算を行なった。なお、ハウジングは音圧分布の計算に含めていない。
【0020】
図3(B)に示す結果から明らかなように、圧電振動子及び音響凹レンズ内に送波する超音波の進行方向と直交する方向に沿った音圧が一定でない、即ち、超音波送波器が送波面に沿った方向に同位相で駆動されていないことがわかった。つまり、Lamb波などの縦波と横波が結合した振動が複雑に励起され、その結果、超音波送波器の送波面が同位相で駆動されないため、幾何光学的なレンズとしての振る舞いをせずに、大きなサイドローブが生じる。また、その帰結として送波効率も悪い。図3(B)に示すように、超音波送波器から水中に送波される波面は乱れている。
【0021】
図3(C)に示す結果から明らかなように、図3(B)に示す結果に比較すると、超音波送波器の送波面に沿った音圧の分布が一様になるように改善されていることがわかる。図3(C)に示すように、圧電振動子及び音響凹レンズ内で音圧の位相は同じである。また、超音波送波器から水中に送波される波面がほぼ同心円状になっており、図3(B)に示す波面の乱れも大きく解消していることがわかる。
【0022】
以下、Lamb波抑制層4の効果を、従来用いられてきた音響凹レンズ3が厚い場合と比較して議論を行なう。
【0023】
図4は、本発明の実施例において、送波効率の凹レンズ(音響凹レンズ3)の厚みに対する依存性を示す、シミュレーション結果を示す図である。シミュレーションの条件は、図2、図3に係わる条件と同じである。図4の横軸は、音響凹レンズ3の最も薄い部分、即ち、音響凹レンズ3の中心部分の厚みを示し、駆動周波数での音響凹レンズ3の縦波の波長に対する相対値として示している。図4の縦軸は、送波効率=(焦点における音響エネルギー密度)/(全体の音響エネルギー)を示し、Lamb波抑制層なしの場合には、音響凹レンズ厚みが波長の4分の1の場合に対する相対値として示す。
【0024】
Lamb波抑制層4が無い場合は、音響凹レンズ3の厚みを増大させていくに従い、焦点での音響エネルギーが大きくなっている。これは従来用いられてきた音響レンズの条件に近くなるほど、送波効率が良くなっていることを示している。これは厚みを増すほど、Lamb波の波長が長くなりその影響が小さくなることによって裏付けられる。Lamb波の波長が、圧電振動子素子1の長さ方向(短軸方向)の長さより長くなれば、超音波送波器の送波面に沿った位相の乱れが無くなるからである。一方、Lamb波抑制層4を使用する場合は、音響凹レンズ3の厚みが波長の4分の1でも、Lamb波抑制層無しで音響凹レンズ3の厚みが波長の4倍の時より送波効率が良い。これによって、同じ送波効率で比較して、従来よりも一桁以上薄い音響凹レンズを使用することが可能になった。
【0025】
図5は、本発明の実施例において、送波効率のLamb波抑制層4の厚みに対する依存性を示す、シミュレーションによる結果を示す図である。シミュレーションの条件は、図2、図3に係わる条件と同じであり、音響凹レンズ3の厚みは波長の4分の1の条件を用いている。図5の縦軸は、送波効率=(焦点における音響エネルギー密度)/(全体の音響エネルギー)を示している。図5の横軸は、Lamb波抑制層4の厚さを示し、圧電振動子1を駆動する信号の周波数成分のうち最大周波数での波長に対する相対値として示している。図5の厚み0の点は、抑制層が無い場合を示している。
【0026】
図5に示す結果から、上記の最大周波数での波長の4分の1の厚みが最適であり、波長の5分の1から、波長の3分の1程度までが実用上は使用可能な範囲であると考えられる。ここでは、実用上問題ない範囲として、最適値に比べ、音圧で90%、音響エネルギーで80%に低下する範囲を想定している。
【0027】
図6は、本発明の実施例において、送波効率のLamb波抑制層4の音響インピーダンスに対する依存性を示す、シミュレーション結果を示す図である。シミュレーションの条件は、図2、図3に係わる条件と同じであり、音響凹レンズ3の厚みは波長の4分の1の条件を用いている。図6の縦軸は、送波効率=(焦点における音響エネルギー密度)/(全体の音響エネルギー)を相対値で示している。図6の横軸は、Lamb波抑制層4の音響インピーダンス(MRay)を示す。図6に参考のために示す、音響インピーダンス=1.5MRay(水と同じ値)、及び、音響インピーダンス=17MRay(アルミニウムと同じ値)の点は、Lamb波抑制層4が無い場合に等価である。
【0028】
図6に示す結果から、音響インピーダンスは音響凹レンズ3の音響インピーダンスと水の音響インピーダンスの幾何平均が最適であるが、3MRay〜1MRay程度まで、即ち、幾何平均の半分から2倍程度までと比較的広い範囲で実用上は使用可能であると考えられる。
【0029】
図7は、本発明の実施例において、超音波送波器からの送波音場の実測結果を示す図であり、実際に製作した超音波送波器からの音場をシュリーレン法で測定した結果である。図7では、シュリーレン法による測定結果のうち、超音波送波器の超音波の送波ビームの中心軸上での測定強度を示している。図7で、縦軸は音圧(dB)、横軸は超音波送波器の送波面からの距離(mm)を示す。シュリーレン法による測定強度は、光路に沿った音圧の積分値の2乗に比例する値である。図7から明らかなように、音圧が最大である位置の前後−3dBの幅を比較すると、Lamb波抑制層4が無い場合(点線)では45mmであるのに対し、Lamb波抑制層4がある場合(実線)には20mmと、深さ方向にもビームが絞れており、Lamb波を抑制した効果が効いていることが実験的にも確認されている。
【0030】
図8は、本発明の実施例において、圧電振動子の背面に周波数選択反射熱輸送層5を用いた超音波送波器の断面図である。図8に示す周波数選択反射熱輸送層5、ハウジング6を除いた構成は、先述の図1の構成と同じである。周波数選択熱輸送層5は、金属と高分子材料を複数層交互に周期的に積層したもので、良く知られたBragg反射の条件(2dsinθ=λ、dは上記の複数層の厚さの周期で、λは駆動中心周波数での波長である)を用いて、特定の周波数(この場合は治療用超音波の周波数)を反射するように構成される。θは(90度−入射角)であるが、平板振動子の条件では、ほぼ90度と考えてよいので、Bragg反射の条件は2d=λと記述出来る。周波数選択熱輸送層5の周期構造のうち片方の材料を金属とすることで、背面が空気の場合に比べ熱伝導を効率よく行ない、かつ、全体が金属の場合に比べて、超音波の反射率を高く保つことが出来、送波効率を高く保つことが出来る。また、背面が空気であると、ハウジング6に水漏れが起きたときに、送波効率が安定しなくなるが、背面が固体で固められていれば、フェールセーフ機構として水漏れが起きても安定して機能させることが可能となる。周波数選択熱輸送層5は、周波数選択性反射膜兼冷却膜として作用する。
【0031】
別の実施形態では、以下に述べる非円筒面の音響凹レンズを用いることも好ましい。Lamb波抑制層によって、焦点位置の厳密な制御が可能になると、音響レンズの凹面の曲率の最適化による、焦点深度の最適化が有意義なものとなる。先述したように、長軸方向で電子可変フォーカスを行い、短軸方向では音響凹レンズによって固定フォーカスする場合、固定フォーカスの焦点深度は、電子可変フォーカスで用いる焦点範囲の全域をカバーすることが望ましい。これは口径対焦点距離によるが、単純な円弧を用いるのみでは、短軸方向での固定フォーカスによる焦点深度が狭すぎる場合もある。短軸方向の位置によって焦点距離を異ならせ、即ち、音響レンズの凹面の曲率を連続的に変えた、非円筒面形状をもつ音響レンズを用いることで焦点深度を拡大することが可能となる。Lamb波制御層の利用によって、音響凹レンズのビームが設計通りになるようになると、このような凹レンズのビーム最適化も有効な方法となる。
【0032】
本発明の超音波送波器は、超音波加熱凝固治療のように、送波効率が問題となる場合に有効である。これは送波効率が悪いと、超音波送波器の発熱が無視できず、その発熱が外部に流れる可能性があること、発熱によって駆動中に圧電振動子が劣化することが問題となるからである。また別の実施形態では、高周波の撮像用探触子のように、音響レンズ内での超音波の減衰が画像の感度低下につながる場合の解決策ともなる。
【0033】
本発明によれば、音響凹レンズ及び圧電振動子内でのLamb波を抑制することにより、焦点以外への不要な超音波の送波を抑えることが可能になり、また、送波器内での発熱を抑えることが可能になり、超音波送波器全体での送波効率を向上することが可能になった。
【0034】
本発明は、上記した特定の実施の形態に限定されるものでなく、その技術思想の範囲を逸脱しない範囲で様々な変形が可能である。
【0035】
【発明の効果】
本発明によれば、送波効率を向上させた超音波送波器を提供できる。
【図面の簡単な説明】
【図1】本発明の実施例の超音波送波器の構成を説明する図。
【図2】本発明の実施例において、超音波送波器からのビームパターンの計算結果を示し、(A)はLamb波抑制層を使用しない場合の結果、(B)はLamb波抑制層を使用する場合の結果を示す図。
【図3】本発明の実施例において、超音波送波器から送波される音圧分布の計算結果を示す図であり、(A)は計算のモデルを示し、(B)はLamb波抑制層を使用しない場合の結果、(C)はLamb波抑制層を使用する場合の結果を示す図。
【図4】本発明の実施例において、送波効率の音響凹レンズの厚みに対する依存性を示す図。
【図5】本発明の実施例において、送波効率のLamb波抑制層の厚みに対する依存性を示す図。
【図6】本発明の実施例において、送波効率のLamb波抑制層の音響インピーダンスに対する依存性を示す図。
【図7】本発明の実施例において、超音波送波器からの送波音場の実測結果を示す図。
【図8】本発明の実施例において、背面に周波数選択性反射膜兼冷却膜付の超音波送波器の構成を示す断面図。
【符号の説明】
1…圧電振動子、2−1、2−2…電極、3…音響凹レンズ、4…音響層(Lamb波抑制層)、5…周波数選択性反射膜、6…ハウジング。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an ultrasonic transmitter that irradiates a treatment site or an imaging target site in a subject with ultrasonic waves.
[0002]
[Prior art]
A method of realizing the control of the focal position along the direction perpendicular to the transmission surface of the ultrasonic transmitter with a phased array is well known, without mentioning a conventional example. An acoustic concave lens is also well known (for example, Non-Patent Document 1, page 200, FIG. 3.3.10). A matching layer for increasing the transmission efficiency from the acoustic concave lens is also well known (for example, Patent Document 1).
[0003]
[Non-Patent Document 1]
G. S. Kino, "Acoustic Waves (devices, imaging, & analog signal processing)" (Prentice-Hall, 1987), pp. 200
[Patent Document 1]
Japanese Patent Laid-Open No. 2002-153383
[Problems to be solved by the invention]
In the following description, the acoustic energy density at the focal point with respect to the driving voltage (acoustic energy per unit area) is defined as “wave transmission efficiency”.
[0005]
When using an ultrasonic transmitter with a variable focal position to control the transmission of ultrasonic waves in a compact device configuration, control the focal position in the azimuth direction (the direction along the ultrasonic wave transmission surface). Is achieved by moving the relative position of the ultrasonic transmitter and the desired focal point, and controlling the focal position in the depth direction (perpendicular to the ultrasonic wave transmission surface) with a phased array, achieving variable focus. it can. In this case, by arranging strip-shaped piezoelectric transducer elements with a very small width in the width direction (long axis direction), each piezoelectric transducer element is controlled with a delay time or phase determined by the distance from each piezoelectric transducer element to the focal position. Control the distance from the ultrasonic transmitter to the focal point. An acoustic lens is placed in the length direction (short axis direction) of the piezoelectric vibrator element so that the ultrasonic waves can be converged in the short axis direction, and the ultrasonic waves can be converged in the short axis direction. Compared to the case of using a concentric annular array, an ultrasonic transmitter that uses an acoustic lens in the short axis direction is more suitable for imaging from the intercostal space, or in the rectum or vagina. This is suitable for transmission under conditions where the width of one side of the two-dimensional transmission aperture of ultrasonic waves is limited, such as when transmission is necessary. For this reason, since the aperture in the minor axis direction is generally smaller than the aperture in the major axis direction, the convergence of the ultrasonic wave in the minor axis direction is loose, and the focal range determined by the acoustic lens used in the minor axis direction is It is configured to cover as much as possible the range in which the focus can be made variable.
[0006]
When it is desirable to be small in terms of usability, such as a medical ultrasound probe, or perpendicular to the direction of insertion into the subject, such as an ultrasound transmitter for transrectal or laparoscopic When the thickness of the acoustic concave lens is reduced, such as when the cross-sectional area on the surface is to be as small as possible, or when including an array of lenses, the ultrasonic wave does not converge to the designed focal position. There was a problem that the side lobe was larger than the expected prediction and the transmission efficiency was not good.
[0007]
In addition, it is composed of a piezoelectric vibrator and a concave lens, and the thickness of the thinnest part of the concave lens, that is, the thickness of the center line part of the concave surface, is less than the wavelength in the concave lens at the center frequency of the signal driving the piezoelectric vibrator. In the waver, there are problems that the side lobe is large and the degree of convergence of the ultrasonic power to the focal point is low.
[0008]
An object of the present invention is to provide an ultrasonic wave transmitter with improved wave transmission efficiency.
[0009]
[Means for Solving the Problems]
The ultrasonic transmitter of the present invention has a structure in which an acoustic concave lens is laminated on a plurality of piezoelectric vibrators arranged in one dimension, and the thickness of the thinnest part of the acoustic concave lens is a signal for driving the piezoelectric vibrators. In the ultrasonic wave transmitter that is equal to or less than the wavelength within the acoustic concave lens at the maximum frequency among the frequency components of the above, having an acoustic impedance of a value between the acoustic impedance of the acoustic concave lens and the average acoustic impedance of the subject, It is characterized in that an acoustic layer having a thickness of half or less of the wavelength at the maximum frequency is laminated on the transmission surface of the acoustic concave lens. The thickness of the acoustic layer has a value between one-fifth and one-third of the wavelength at the maximum frequency, and the acoustic impedance of the acoustic layer is the acoustic impedance of the piezoelectric vibrator and the acoustic of the subject. It has a value between half and twice the geometric mean of impedance.
[0010]
The ultrasonic wave transmitter according to the present invention is an ultrasonic wave transmitter in which an acoustic concave lens is laminated on a plurality of piezoelectric vibrators arranged in one dimension, and the piezoelectric vibrator is driven on the side opposite to the acoustic concave lens of the plural piezoelectric vibrators. It is characterized by laminating films in which metal and polymer layers are alternately laminated with a period of half the wavelength at the frequency.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
1A and 1B are diagrams for explaining the configuration of an ultrasonic transmitter according to an embodiment of the present invention. FIG. 1A is a perspective view and FIG. 1B is a cross-sectional view. In the ultrasonic transmitter, the acoustic concave lens 3 is laminated on a plurality of strip-shaped piezoelectric vibrators 1, and the thickness of the thinnest part of the acoustic concave lens 3, that is, the center line part of the concave surface of the acoustic concave lens 3 is the piezoelectric vibrator 1. Is equal to or less than the wavelength within the acoustic concave lens 3 at the center frequency of the signal for driving the acoustic lens, has an acoustic impedance between the acoustic impedance of the acoustic concave lens 3 and the average acoustic impedance of the subject, and has a thickness of the above An acoustic layer 4 having a half or less of the wavelength at the center frequency is laminated on the transmission surface of the acoustic concave lens 3. Electrodes 2-1 and 2-2 for driving the piezoelectric vibrator are formed on both surfaces of the piezoelectric vibrator 1.
[0012]
The configuration shown in FIG. 1 makes it possible to avoid excitation of unnecessary modes such as Lamb waves in the piezoelectric vibrator 1 and the acoustic concave lens 3. The thickness of the acoustic layer 4 is most preferably about one-fourth of the wavelength at the center frequency, and the acoustic impedance is a geometric average of the acoustic impedance of the concave lens material and the acoustic impedance of the subject. It is desirable to be close to.
[0013]
In the embodiment of the present invention, the acoustic layer 4 made of a polymer material is laminated on the transmission surface of the acoustic concave lens 3 in order to reduce the “cuttering” of acoustic energy in the transmitter that causes Lamb waves. In the following description, the acoustic layer 4 is referred to as a Lamb wave suppression layer 4 because of its function.
[0014]
FIG. 2 is a diagram showing a calculation (simulation) result of a beam pattern from the ultrasonic transmitter in the embodiment of the present invention. FIG. 2 shows a beam pattern representing the angular distribution of ultrasonic waves in the minor axis direction when ultrasonic waves are transmitted at an angle (horizontal axis) of 0 °. FIG. 2A is a diagram illustrating a calculation result when the Lamb wave suppression layer is not used, and FIG. 2B is a diagram illustrating a calculation result when the Lamb wave suppression layer is used.
[0015]
The beam pattern was calculated by the time-domain finite difference method using a wave equation considering piezoelectricity, and included not only a simple longitudinal wave effect but also a transverse wave effect. The conditions for the calculation simulation will be described with reference to FIG.
[0016]
As shown in FIG. 2A, it can be seen that side lobes having a maximum size of −7 dB as compared with the central beam appear on the left and right sides of the ultrasonic beam (center beam) at the angle of 0 degrees. . The side lobe causes a decrease in the signal-to-noise ratio and further causes a false image when the ultrasonic transmitter is used for ultrasonic imaging. In order to use an ultrasonic wave transmitter for heat coagulation treatment, the side lobe has a focal position relative to the energy applied to the transducer due to the cause of temperature rise in the part other than the treatment focus or energy concentration. In this case, sufficient sound pressure cannot be obtained.
[0017]
In FIG. 2B, which shows the calculation result of the beam pattern at the same focal plane as in FIG. 2A, it can be seen that the side lobe is greatly reduced. In this example, in the configuration in which the Lamb wave suppression layer is not used, side lobes appear at about −7 dB at a position where the horizontal axis in FIG. 2A is around ± 20 degrees, but the Lamb wave suppression layer is used. In the configuration, the side lobe of −23 dB is maximum at a position where the horizontal axis in FIG. 2B is around ± 30 degrees. Thus, the use of the Lamb wave suppression layer showed an improvement of 16 dB compared with the peak value of the side lobe. This Lamb wave suppression layer is different from the acoustic matching layer described in Patent Document 1 for enhancing the transmission efficiency. The Lamb wave suppression layer has a function that works very effectively when the acoustic concave lens 3 is thin and the influence of the Lamb wave cannot be ignored.
[0018]
FIG. 3 is a diagram showing the calculation (simulation) result of the sound pressure distribution transmitted from the ultrasonic transmitter in the embodiment of the present invention. FIG. 3A shows a calculation model. FIG. 3B is a diagram illustrating a calculation result when the Lamb wave suppression layer is not used, and FIG. 3C is a diagram illustrating a calculation result when the Lamb wave suppression layer is used. 3 (B) and 3 (C) are diagrams in which the sound pressure distribution at the moment when a certain period of time has elapsed since the start of driving is binarized with positive and negative values, and the black portion indicates a region where the sound pressure is positive. The white portion indicates a region where the sound pressure is negative.
[0019]
In FIG. 3A, a concave lens made of aluminum (acoustic concave lens 3 in FIG. 1) is laminated on a vibrator made of PZT (lead titanium zirconate) (piezoelectric vibrator 1 in FIG. 1). The curvature of the acoustic concave lens is 60 mm, and the thickness of the thinnest part is 0.5 mm. The Lamb wave suppression layer quality (see FIG. 1) is a film containing a polymer designed to have an acoustic impedance of 8 MRay and a thickness that is a quarter of the wavelength at 3.5 MHz that is the driving frequency of the vibrator. It is. In order to approach the conditions for actually using the transmitter, the back surface of the vibrator (piezoelectric vibrator 1 in FIG. 1) is air, and the front face of the concave lens (acoustic concave lens 3 in FIG. 1) is water. The sound pressure distribution was calculated. The housing is not included in the calculation of the sound pressure distribution.
[0020]
As is apparent from the result shown in FIG. 3B, the sound pressure along the direction orthogonal to the traveling direction of the ultrasonic wave transmitted into the piezoelectric vibrator and the acoustic concave lens is not constant, that is, the ultrasonic wave transmitter. Are not driven in phase in the direction along the transmission surface. In other words, vibrations that combine longitudinal and transverse waves such as Lamb waves are complexly excited, and as a result, the transmission surface of the ultrasonic transmitter is not driven in the same phase, so that it does not behave as a geometric optical lens. Large side lobes are generated. As a result, the transmission efficiency is also poor. As shown in FIG. 3 (B), the wavefront transmitted from the ultrasonic transmitter into the water is disturbed.
[0021]
As apparent from the result shown in FIG. 3C, the distribution of the sound pressure along the transmission surface of the ultrasonic transmitter is improved to be uniform as compared with the result shown in FIG. You can see that As shown in FIG. 3C, the phase of the sound pressure is the same in the piezoelectric vibrator and the acoustic concave lens. In addition, it can be seen that the wavefront transmitted from the ultrasonic transmitter into the water is substantially concentric, and the wavefront disturbance shown in FIG.
[0022]
Hereinafter, the effect of the Lamb wave suppression layer 4 will be discussed in comparison with the case where the conventionally used acoustic concave lens 3 is thick.
[0023]
FIG. 4 is a diagram showing a simulation result showing the dependence of the transmission efficiency on the thickness of the concave lens (acoustic concave lens 3) in the embodiment of the present invention. The conditions for the simulation are the same as those for FIGS. The horizontal axis of FIG. 4 shows the thickness of the thinnest portion of the acoustic concave lens 3, that is, the thickness of the central portion of the acoustic concave lens 3, and shows the relative value with respect to the wavelength of the longitudinal wave of the acoustic concave lens 3 at the driving frequency. The vertical axis of FIG. 4 indicates transmission efficiency = (acoustic energy density at the focal point) / (total acoustic energy), and in the case of no Lamb wave suppression layer, the thickness of the acoustic concave lens is ¼ of the wavelength. It is shown as a relative value to.
[0024]
When there is no Lamb wave suppression layer 4, the acoustic energy at the focal point increases as the thickness of the acoustic concave lens 3 increases. This indicates that the closer to the condition of the acoustic lens conventionally used, the better the transmission efficiency. This is supported by increasing the thickness of the Lamb wave and increasing its influence as the thickness increases. This is because if the wavelength of the Lamb wave is longer than the length of the piezoelectric vibrator element 1 in the length direction (short axis direction), phase disturbance along the transmission surface of the ultrasonic wave transmitter is eliminated. On the other hand, when the Lamb wave suppression layer 4 is used, even if the thickness of the acoustic concave lens 3 is ¼ of the wavelength, the transmission efficiency is higher than when the thickness of the acoustic concave lens 3 is four times the wavelength without the Lamb wave suppression layer. good. This makes it possible to use an acoustic concave lens that is an order of magnitude thinner than the conventional lens compared with the same transmission efficiency.
[0025]
FIG. 5 is a diagram showing the result of simulation showing the dependence of the transmission efficiency on the thickness of the Lamb wave suppression layer 4 in the example of the present invention. The conditions of the simulation are the same as the conditions related to FIGS. 2 and 3, and the thickness of the acoustic concave lens 3 is a quarter of the wavelength. The vertical axis in FIG. 5 indicates transmission efficiency = (acoustic energy density at the focal point) / (total acoustic energy). The horizontal axis of FIG. 5 shows the thickness of the Lamb wave suppression layer 4 and is shown as a relative value to the wavelength at the maximum frequency among the frequency components of the signal that drives the piezoelectric vibrator 1. The point of thickness 0 in FIG. 5 indicates a case where there is no suppression layer.
[0026]
From the results shown in FIG. 5, the thickness of the quarter of the wavelength at the above-mentioned maximum frequency is optimal, and the practical use range is from one-fifth of the wavelength to about one-third of the wavelength. It is thought that. Here, a range in which the sound pressure is reduced to 90% and the acoustic energy is reduced to 80% as compared with the optimum value is assumed as a practically acceptable range.
[0027]
FIG. 6 is a diagram showing a simulation result showing the dependence of the transmission efficiency on the acoustic impedance of the Lamb wave suppression layer 4 in the example of the present invention. The conditions of the simulation are the same as the conditions related to FIGS. 2 and 3, and the thickness of the acoustic concave lens 3 is a quarter of the wavelength. The vertical axis in FIG. 6 shows the transmission efficiency = (acoustic energy density at the focal point) / (total acoustic energy) as a relative value. The horizontal axis of FIG. 6 shows the acoustic impedance (MRay) of the Lamb wave suppression layer 4. The points of acoustic impedance = 1.5 MRay (same value as water) and acoustic impedance = 17 MRay (same value as aluminum) shown for reference in FIG. 6 are equivalent to the case where there is no Lamb wave suppression layer 4. .
[0028]
From the results shown in FIG. 6, the acoustic impedance is optimally the geometric mean of the acoustic impedance of the acoustic concave lens 3 and the acoustic impedance of water, but from 3 MRay to 1 MRay, that is, from about half to twice the geometric mean. It is considered that it can be used practically in a wide range.
[0029]
FIG. 7 is a diagram showing an actual measurement result of a transmitted sound field from an ultrasonic transmitter in an embodiment of the present invention, and a result of measuring a sound field from an actually manufactured ultrasonic transmitter by the Schlieren method. It is. In FIG. 7, the measurement intensity | strength on the central axis of the ultrasonic transmission beam of an ultrasonic transmitter is shown among the measurement results by the schlieren method. In FIG. 7, the vertical axis represents the sound pressure (dB), and the horizontal axis represents the distance (mm) from the transmission surface of the ultrasonic transmitter. The measured intensity by the Schlieren method is a value proportional to the square of the integral value of the sound pressure along the optical path. As is clear from FIG. 7, when comparing the width of 3 dB before and after the position where the sound pressure is maximum, the Lamb wave suppression layer 4 is 45 mm when there is no Lamb wave suppression layer 4 (dotted line). In some cases (solid line), the beam is focused in the depth direction of 20 mm, and it has been experimentally confirmed that the effect of suppressing the Lamb wave is effective.
[0030]
FIG. 8 is a cross-sectional view of an ultrasonic transmitter using the frequency selective reflection heat transport layer 5 on the back surface of the piezoelectric vibrator in the embodiment of the present invention. The configuration excluding the frequency selective reflection heat transport layer 5 and the housing 6 shown in FIG. 8 is the same as the configuration of FIG. The frequency selective heat transport layer 5 is formed by periodically laminating a plurality of layers of metal and polymer material, and the well-known Bragg reflection condition (2 d sin θ = λ, d is the period of the thickness of the above-mentioned plurality of layers. Λ is the wavelength at the drive center frequency), and is configured to reflect a specific frequency (in this case, the frequency of the therapeutic ultrasound). Although θ is (90 degrees−incident angle), the condition of Bragg reflection can be described as 2d = λ because it can be considered to be almost 90 degrees under the condition of the flat plate vibrator. By using one of the periodic structures of the frequency selective heat transport layer 5 as a metal, heat conduction is performed more efficiently than when the back surface is air, and the reflection of ultrasonic waves is higher than when the whole is metal. The rate can be kept high, and the transmission efficiency can be kept high. In addition, if the back surface is air, the transmission efficiency will not be stable when water leakage occurs in the housing 6, but if the back surface is solidified, it is stable even if water leakage occurs as a fail-safe mechanism. Can be made to function. The frequency selective heat transport layer 5 acts as a frequency selective reflection film / cooling film.
[0031]
In another embodiment, it is also preferable to use a non-cylindrical acoustic concave lens described below. When the Lamb wave suppression layer enables precise control of the focal position, optimization of the focal depth by optimizing the curvature of the concave surface of the acoustic lens becomes significant. As described above, when electronic variable focus is performed in the long axis direction and fixed focus is performed by the acoustic concave lens in the short axis direction, it is desirable that the focal depth of the fixed focus covers the entire focus range used in the electronic variable focus. Although this depends on the aperture diameter vs. focal length, the depth of focus due to fixed focus in the minor axis direction may be too narrow if only a simple arc is used. By using an acoustic lens having a non-cylindrical surface shape in which the focal length varies depending on the position in the minor axis direction, that is, the curvature of the concave surface of the acoustic lens is continuously changed, the depth of focus can be expanded. When the beam of the acoustic concave lens becomes as designed by using the Lamb wave control layer, such beam optimization of the concave lens is also an effective method.
[0032]
The ultrasonic wave transmitter of the present invention is effective when the wave transmission efficiency becomes a problem as in the ultrasonic heat coagulation treatment. This is because if the wave transmission efficiency is poor, the heat generated by the ultrasonic transmitter cannot be ignored, the heat generated may flow to the outside, and the piezoelectric vibrator may deteriorate during driving due to the heat generated. It is. In another embodiment, as in the case of a high-frequency imaging probe, this is also a solution for the case where attenuation of ultrasonic waves in the acoustic lens leads to a decrease in image sensitivity.
[0033]
According to the present invention, by suppressing the Lamb wave in the acoustic concave lens and the piezoelectric vibrator, it is possible to suppress the transmission of unnecessary ultrasonic waves to other than the focal point, and in the transmitter Heat generation can be suppressed and the transmission efficiency of the entire ultrasonic transmitter can be improved.
[0034]
The present invention is not limited to the specific embodiments described above, and various modifications can be made without departing from the scope of the technical idea.
[0035]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the ultrasonic transmitter which improved the transmission efficiency can be provided.
[Brief description of the drawings]
FIG. 1 is a diagram illustrating a configuration of an ultrasonic transmitter according to an embodiment of the present invention.
FIGS. 2A and 2B show calculation results of a beam pattern from an ultrasonic transmitter in an embodiment of the present invention, FIG. 2A shows a result when a Lamb wave suppression layer is not used, and FIG. 2B shows a Lamb wave suppression layer. The figure which shows the result in the case of using.
FIGS. 3A and 3B are diagrams showing calculation results of a sound pressure distribution transmitted from an ultrasonic transmitter in an embodiment of the present invention, where FIG. 3A shows a calculation model, and FIG. 3B shows Lamb wave suppression; The result when not using a layer, (C) is a figure which shows the result when using a Lamb wave suppression layer.
FIG. 4 is a graph showing the dependence of the transmission efficiency on the thickness of the acoustic concave lens in the embodiment of the present invention.
FIG. 5 is a graph showing the dependence of the transmission efficiency on the thickness of the Lamb wave suppression layer in the example of the present invention.
FIG. 6 is a graph showing the dependence of the transmission efficiency on the acoustic impedance of the Lamb wave suppression layer in the embodiment of the present invention.
FIG. 7 is a diagram showing an actual measurement result of a transmitted sound field from an ultrasonic transmitter in the embodiment of the present invention.
FIG. 8 is a cross-sectional view showing the configuration of an ultrasonic wave transmitter with a frequency selective reflection film and cooling film on the back surface in an embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Piezoelectric vibrator, 2-1, 2-2 ... Electrode, 3 ... Acoustic concave lens, 4 ... Acoustic layer (Lamb wave suppression layer), 5 ... Frequency selective reflection film, 6 ... Housing.

Claims (4)

1次元に配列した複数の圧電振動子に音響凹レンズを積層した構造を有し、前記音響凹レンズの最も薄い部分の厚みが、前記複数の圧電振動子を駆動する信号の周波数成分のうち最大周波数における前記音響凹レンズ内での波長以下である超音波波送波器において、前記音響凹レンズの音響インピーダンスと被検体の平均的な音響インピーダンスとの間の値の音響インピーダンスをもち、前記最大周波数での波長の2分の1以下の厚さをもつ音響層を前記音響凹レンズの送波面に積層することを特徴とする超音波送波器。A structure in which an acoustic concave lens is laminated on a plurality of piezoelectric vibrators arranged one-dimensionally, and the thickness of the thinnest portion of the acoustic concave lens is a maximum frequency among frequency components of a signal for driving the plurality of piezoelectric vibrators. In the ultrasonic wave transmitter having a wavelength equal to or less than the wavelength in the acoustic concave lens, the wavelength at the maximum frequency has an acoustic impedance with a value between the acoustic impedance of the acoustic concave lens and the average acoustic impedance of the subject. An ultrasonic wave transmitter characterized by laminating an acoustic layer having a thickness equal to or less than one-half of the acoustic wave transmission surface of the acoustic concave lens. 請求項1に記載の超音波送波器において、前記音響層の厚みが、前記最大周波数での波長の5分の1から、3分の1の間の値をもつことを特徴とする超音波送波器。2. The ultrasonic wave transmitter according to claim 1, wherein the thickness of the acoustic layer has a value between one-fifth and one-third of a wavelength at the maximum frequency. Transmitter. 請求項1に記載の超音波送波器において、前記音響層の音響インピーダンスが、前記圧電振動子の音響インピーダンスと前記被検体の音響インピーダンスの幾何平均の半分乃至2倍の間の値をもつことを特徴とする超音波送波器。2. The ultrasonic transmitter according to claim 1, wherein the acoustic impedance of the acoustic layer has a value between half and twice the geometric mean of the acoustic impedance of the piezoelectric vibrator and the acoustic impedance of the subject. Ultrasonic transmitter characterized by. 1次元に配列した複数の圧電振動子に音響凹レンズを積層した超音波送波器において、前記複数の圧電振動子の前記音響凹レンズと反対側に前記圧電振動子の駆動周波数での波長の半分の周期で、金属と高分子の層を交互に積層した膜を積層することを特徴とする超音波送波器。In the ultrasonic transmitter in which an acoustic concave lens is stacked on a plurality of piezoelectric vibrators arranged in one dimension, the half of the wavelength at the driving frequency of the piezoelectric vibrator is opposite to the acoustic concave lens of the plurality of piezoelectric vibrators. An ultrasonic wave transmitter characterized by laminating a film in which metal and polymer layers are alternately laminated in a cycle.
JP2003165865A 2003-06-11 2003-06-11 Ultrasonic transmitter Expired - Fee Related JP3909307B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003165865A JP3909307B2 (en) 2003-06-11 2003-06-11 Ultrasonic transmitter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003165865A JP3909307B2 (en) 2003-06-11 2003-06-11 Ultrasonic transmitter

Publications (2)

Publication Number Publication Date
JP2005005923A true JP2005005923A (en) 2005-01-06
JP3909307B2 JP3909307B2 (en) 2007-04-25

Family

ID=34092175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003165865A Expired - Fee Related JP3909307B2 (en) 2003-06-11 2003-06-11 Ultrasonic transmitter

Country Status (1)

Country Link
JP (1) JP3909307B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006320512A (en) * 2005-05-18 2006-11-30 Olympus Medical Systems Corp Ultrasonic transducer
CN103344706A (en) * 2013-06-26 2013-10-09 哈尔滨工业大学 Design method for linear array phased array probe
CN111112037A (en) * 2020-01-20 2020-05-08 重庆医科大学 Lens type multi-frequency focusing ultrasonic transducer, transduction system and method for determining axial length of acoustic focal region of lens type multi-frequency focusing ultrasonic transducer
CN114054328A (en) * 2021-10-22 2022-02-18 天津大学 Short-focus ultrasonic transducer with adjustable focus and focus calculation algorithm thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006320512A (en) * 2005-05-18 2006-11-30 Olympus Medical Systems Corp Ultrasonic transducer
CN103344706A (en) * 2013-06-26 2013-10-09 哈尔滨工业大学 Design method for linear array phased array probe
CN111112037A (en) * 2020-01-20 2020-05-08 重庆医科大学 Lens type multi-frequency focusing ultrasonic transducer, transduction system and method for determining axial length of acoustic focal region of lens type multi-frequency focusing ultrasonic transducer
CN114054328A (en) * 2021-10-22 2022-02-18 天津大学 Short-focus ultrasonic transducer with adjustable focus and focus calculation algorithm thereof
CN114054328B (en) * 2021-10-22 2023-03-14 天津大学 Short-focus ultrasonic transducer with adjustable focus and focus calculation algorithm thereof

Also Published As

Publication number Publication date
JP3909307B2 (en) 2007-04-25

Similar Documents

Publication Publication Date Title
US7393325B2 (en) Method and system for ultrasound treatment with a multi-directional transducer
US20180317950A1 (en) Ultrasonic transducer assembly
US6554826B1 (en) Electro-dynamic phased array lens for controlling acoustic wave propagation
US9289188B2 (en) Ultrasonic transducer
US6974417B2 (en) Ultrasound transducer array
US9445211B2 (en) Methods for manufacturing high intensity ultrasound transducers
CA2849493C (en) Ultrasound transducer and method for making the same
Azuma et al. Dual-frequency ultrasound imaging and therapeutic bilaminar array using frequency selective isolation layer
WO2008028373A1 (en) Resonance ultrasonic transducer
KR101269459B1 (en) Ultrasound probe and manufacturing method thereof
US5081995A (en) Ultrasonic nondiffracting transducer
JP3909307B2 (en) Ultrasonic transmitter
Lethiecq et al. Piezoelectric transducer design for medical diagnosis and NDE
JP2006505318A (en) Elevation beam width control apparatus and method for imaging
US10134973B2 (en) Ultrasonic transducer and manufacture method thereof
KR101927635B1 (en) Focusing ultrasonic transducer to applying shadow FZP mask and method for controlling the focusing ultrasonic transducer
Lin et al. First experimental implementation of a bandwidth enhancement pulse compression technique on an ultrasound array imaging system
Chilibon Ultrasound transducer for medical therapy
US20230033799A1 (en) Systems and methods for controlling directional properties of ultrasound transducers via biphasic actuation
JPH07184296A (en) Ultrasonic wave probe
JP2002152890A (en) Ultrasonic wave probe
Saillant Focused ultrasonic projector
Olbrish et al. Physical apodization of ultrasonic arrays
Otsu et al. Effects of leaky Lamb-like wave propagation in single-element high intensity focused ultrasound transducer by vibration analysis
JPWO2005034576A1 (en) Ultrasonic transducer and ultrasonic therapy device using the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050607

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050802

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060628

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060628

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070122

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100126

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110126

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110126

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120126

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130126

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees