JP2005003437A - Radiation thermometer - Google Patents

Radiation thermometer Download PDF

Info

Publication number
JP2005003437A
JP2005003437A JP2003165129A JP2003165129A JP2005003437A JP 2005003437 A JP2005003437 A JP 2005003437A JP 2003165129 A JP2003165129 A JP 2003165129A JP 2003165129 A JP2003165129 A JP 2003165129A JP 2005003437 A JP2005003437 A JP 2005003437A
Authority
JP
Japan
Prior art keywords
measurement
optical path
radiation thermometer
water vapor
color
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003165129A
Other languages
Japanese (ja)
Inventor
Toshifusa Suzuki
利房 鈴木
Akio Nakanishi
亮夫 中西
Tadashi Kobayashi
正 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chino Corp
Original Assignee
Chino Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chino Corp filed Critical Chino Corp
Priority to JP2003165129A priority Critical patent/JP2005003437A/en
Publication of JP2005003437A publication Critical patent/JP2005003437A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Radiation Pyrometers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To perform high-accuracy radiation temperature measurement with excellent stability and responsiveness by reducing fluctuation in indication due to the effect of water vapor in a measurement optical path with respect to a two-color radiation thermometer that is a radiation thermometer for finding the temperature of an object under measurement from a spectral luminance energy ratio between two measurement wavelengths different from each other. <P>SOLUTION: With respect to this two-color radiation thermometer using an In-Ga-As element as an infrared detection element, first and second wavelengths of two measured wavelengths different from each other are set to be 1.1 to 1.3 μm and 1.45 to 1.7 μm, respectively, within a detection wavelength band of the In-Ga-As element. The effect of an absorption band of water vapor in the measurement optical path is thus made slight to reduce the fluctuation in indication. As a result, the effect of the water vapor in the optical path can be removed, making it possible for the two-color thermometer to show a stable indication value even if an optical path length that is measurement distance varies. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、放射測温技術を応用して測定対象の温度を測定する放射温度計のうち、2波長を利用する2色放射温度計に関するものである。
【0002】
【従来の技術】
2色放射温度計は、互いに異なる2個の測定波長における分光輝度エネルギーの比R(T)より測定対象の温度Tを求める放射温度計である。検出素子には、測定温度によりPbS素子、シリコン素子、光電子増倍管が用いられる。低中温域の2色放射温度計の赤外線検出素子としては、PbS素子が一般的である(例えば、「新編温度計測」社団法人計測自動制御学会編 227頁、228頁)。
【0003】
また、近年通信用として開発されているInGaAs素子は、従来の赤外線検出素子に比べ、安定性が高く、応答も100倍以上速く2色放射温度計の赤外線検出素子として優れた特性を有している。
【0004】
【発明が解決しようとする課題】
しかしながら、PbS素子は安定性が劣り、応答速度が遅いという問題点があった。
また、安定性、応答速度に優れるInGaAs素子の検出波長域0.9〜1.7μmには、図2に示すように水蒸気の吸収帯が存在する(例えば、「赤外線工学」近代科学社 61頁)。吸収帯に起因して、2色放射温度計の測定波長によっては大きな測定誤差が生じる。特に、測定距離、すなわち光路長が変動した場合には、測定誤差が顕著となる。例えば、第1の測定波長をλ=1.35μm、第2の測定波長をλ=1.55μmで構成した場合の誤差は以下のようになる。測定対象の温度をTとし、各波長の分光輝度エネルギーの比R(T)は以下の式で表される。
【数1】

Figure 2005003437
Figure 2005003437
式(1)をウィーンの公式で近似すると式(3)となる。
【数2】
Figure 2005003437
Figure 2005003437
【数3】
Figure 2005003437
Figure 2005003437
ここで、α、αは係数で、cは以下で表される物理定数である。
【数4】
Figure 2005003437
Figure 2005003437
cは真空中の光の速度、hはプランクの定数、kはボルツマンの定数である。
式(3)をTで微分して、誤差率を調べると、
【数5】
Figure 2005003437
Figure 2005003437
ただし、nとnは以下である。
【数6】
Figure 2005003437
【数7】
Figure 2005003437
光路中の水蒸気の影響で波長λ=1.35μmのみ、透過率が2%減衰したときの指示誤差ΔTは式(5)より、測定対象温度Tが500℃のとき9℃、700℃のとき14℃と大きな誤差を発生させる。
【0005】
この発明はかかる問題点を解決するためのもので、2色放射温度計における測定光路中の水蒸気の影響による指示変動を低減して、安定性、応答性に優れた高精度の放射測温が可能な2色放射温度計を提供することを目的とする。
【0006】
【課題を解決するための手段】
この発明は、赤外線検出素子にInGaAs素子を用いた2色放射温度計において、InGaAs素子の検出波長域である、0.9〜1.7μm間の水蒸気の吸収帯の影響を僅かにする為に、互いに異なる測定波長の第1の波長λを1.1〜1.3μm、第2の波長λを1.45〜1.7μmとした2色放射温度計である。
【0007】
【発明の実施の形態】
図1はこの発明の実施の形態を示す構成説明図である。測定対象1からの光を集光する対物レンズ2、集光された光を第1の測定波長の検出素子51と第2の測定波長の検出素子52へ分割する波長分割ミラー3、分割された光を第1の測定波長域の1.1〜1.3μmのみを透過させる第1のフィルター41と、分割された光を第2の測定波長域の1.45〜1.7μmのみを透過させる第2のフィルター42と、各検出素子からの信号を増幅するアンプ61,62、増幅されたアナログ信号をデジタル信号へ変換するアナログ/デジタル信号変換器8と、デジタル信号に基づいて所定の演算方法で、各波長の分光輝度エネルギーの比R(T)から、測定対象の温度を演算する演算手段9から構成される。アンプ61,62とアナログ/デジタル信号変換器8の間には、幾つかの入力信号を、各々の入力信号に再生できるような方法で一つの出力信号にするマルチプレクサ7が設けられている。
【0008】
図3は、測定温度500℃、周囲温度26℃、相対湿度50%RHの条件下で、この発明の測定波長と他の測定波長での、光路長(測定距離)に対する指示変動を確認した結果である。この発明の測定波長域である、第1の測定波長を1.1〜1.3μm内の1.2μm、第2の測定波長を1.45〜1.7μm内の1.55μmとした時の指示変動は、光路長を変化させても僅かである。
【0009】
図1の実施の形態では波長分割ミラーにより2つの波長に分割し,所定の測定波長域のみを透過させる2つのフィルターを用いたが、図のように円板10に2つのフィルターを装備して回転させる構成としても良い。円板10はモータ11により矢印方向に回転する。円板10には第1の測定波長域の1.1〜1.3μmのみを透過させる第1のフィルター41と、分割された光を第2の測定波長域の1.45〜1.7μmのみを透過させる第2のフィルター42が設けられる。一つの検出素子51からの信号を増幅するアンプ61、増幅されたアナログ信号をデジタル信号へ変換するアナログ/デジタル信号変換器8と、デジタル信号に基づいて所定の演算方法で、各波長の分光輝度エネルギーの比R(T)から、測定対象の温度を演算する演算手段9から構成される。
【0010】
【発明の効果】
InGaAs赤外線検出素子を使用した2色温度計における、互いに異なる測定波長の第1の波長λを1.1〜1.3μm、第2の波長λを1.45〜1.7μmとしたので、光路中の水蒸気の影響を除去でき、光路長すなわち測定距離が変化した場合でも安定した指示値を示す2色温度計が可能となった。
【図面の簡単な説明】
【図1】この発明の実施の形態を示す構成説明図
【図2】水蒸気の透過率を示す図
【図3】指示変動値の比較グラフ
【図4】この発明の他の実施形態を示す構成説明図
【符号の説明】
1 測定対象
2 対物レンズ
3 波長分割ミラー
41,42 フィルター
51,52 検出素子
61,62 アンプ
7 マルチプレクサ
8 アナログ/デジタル信号変換器
9 演算手段
10 円板
11 モータ[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a two-color radiation thermometer using two wavelengths among radiation thermometers that measure the temperature of an object to be measured by applying a radiation temperature measurement technique.
[0002]
[Prior art]
The two-color radiation thermometer is a radiation thermometer that obtains the temperature T to be measured from the ratio R (T) of spectral luminance energy at two different measurement wavelengths. As the detection element, a PbS element, a silicon element, or a photomultiplier tube is used depending on the measurement temperature. As an infrared detecting element of a two-color radiation thermometer in a low and middle temperature range, a PbS element is generally used (for example, “New Temperature Measurement” edited by Society of Instrument and Control Engineers, pages 227 and 228).
[0003]
Also, InGaAs elements that have been developed for communication in recent years are more stable than conventional infrared detection elements, and have excellent characteristics as infrared detection elements for two-color radiation thermometers, with a response that is more than 100 times faster. Yes.
[0004]
[Problems to be solved by the invention]
However, the PbS element has problems of poor stability and slow response speed.
Further, in the detection wavelength range of 0.9 to 1.7 μm of an InGaAs element having excellent stability and response speed, there is a water vapor absorption band as shown in FIG. 2 (for example, “Infrared Engineering”, Modern Science Co., Ltd., page 61). ). Due to the absorption band, a large measurement error occurs depending on the measurement wavelength of the two-color radiation thermometer. In particular, when the measurement distance, that is, the optical path length fluctuates, the measurement error becomes significant. For example, the error when the first measurement wavelength is λ 1 = 1.35 μm and the second measurement wavelength is λ 2 = 1.55 μm is as follows. Let T be the temperature of the object to be measured, and the ratio R (T) of the spectral luminance energy of each wavelength is expressed by the following equation.
[Expression 1]
Figure 2005003437
Figure 2005003437
When equation (1) is approximated by the Vienna formula, equation (3) is obtained.
[Expression 2]
Figure 2005003437
Figure 2005003437
[Equation 3]
Figure 2005003437
Figure 2005003437
Here, α 1 and α 2 are coefficients, and c 2 is a physical constant expressed as follows.
[Expression 4]
Figure 2005003437
Figure 2005003437
c is the speed of light in vacuum, h is Planck's constant, and k is Boltzmann's constant.
Differentiating equation (3) by T and examining the error rate,
[Equation 5]
Figure 2005003437
Figure 2005003437
However, n 1 and n 2 is as follows.
[Formula 6]
Figure 2005003437
[Expression 7]
Figure 2005003437
The indication error ΔT when the transmittance is attenuated by 2% only by the wavelength λ 1 = 1.35 μm due to the influence of water vapor in the optical path is 9 ° C. and 700 ° C. when the measurement target temperature T is 500 ° C. Sometimes a large error of 14 ° C is generated.
[0005]
The present invention is for solving such problems, and reduces the fluctuation in indication due to the influence of water vapor in the measurement optical path in the two-color radiation thermometer, and the highly accurate radiation temperature measurement with excellent stability and responsiveness is achieved. An object is to provide a possible two-color radiation thermometer.
[0006]
[Means for Solving the Problems]
This invention is for a two-color radiation thermometer using an InGaAs element as an infrared detection element, in order to minimize the influence of the water vapor absorption band between 0.9 and 1.7 μm, which is the detection wavelength range of the InGaAs element. , A two-color radiation thermometer in which the first wavelength λ 1 of different measurement wavelengths is 1.1 to 1.3 μm and the second wavelength λ 2 is 1.45 to 1.7 μm.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is an explanatory diagram showing the configuration of an embodiment of the present invention. The objective lens 2 that condenses the light from the measurement object 1, the wavelength division mirror 3 that divides the collected light into the detection element 51 having the first measurement wavelength and the detection element 52 having the second measurement wavelength. A first filter 41 that transmits light only in the first measurement wavelength range of 1.1 to 1.3 μm, and a split light that transmits only 1.45 to 1.7 μm of the second measurement wavelength range. Second filter 42, amplifiers 61 and 62 for amplifying signals from the respective detection elements, analog / digital signal converter 8 for converting the amplified analog signals into digital signals, and a predetermined calculation method based on the digital signals The calculation means 9 calculates the temperature of the measurement object from the ratio R (T) of the spectral luminance energy of each wavelength. Between the amplifiers 61 and 62 and the analog / digital signal converter 8, there is provided a multiplexer 7 for converting several input signals into one output signal in such a manner that each input signal can be reproduced.
[0008]
FIG. 3 shows the result of confirming the indication variation with respect to the optical path length (measurement distance) at the measurement wavelength of the present invention and other measurement wavelengths under the conditions of a measurement temperature of 500 ° C., an ambient temperature of 26 ° C., and a relative humidity of 50% RH. It is. When the first measurement wavelength is 1.2 μm within 1.1 to 1.3 μm and the second measurement wavelength is 1.55 μm within 1.45 to 1.7 μm, which is the measurement wavelength region of the present invention. The indication fluctuation is slight even if the optical path length is changed.
[0009]
In the embodiment of FIG. 1, two filters that divide into two wavelengths by a wavelength division mirror and transmit only a predetermined measurement wavelength range are used. However, as shown in the figure, the disk 10 is equipped with two filters. It is good also as a structure to rotate. The disk 10 is rotated in the direction of the arrow by the motor 11. The disk 10 has a first filter 41 that transmits only 1.1 to 1.3 μm of the first measurement wavelength range, and only 1.45 to 1.7 μm of the divided light in the second measurement wavelength range. The 2nd filter 42 which permeate | transmits is provided. An amplifier 61 that amplifies a signal from one detection element 51, an analog / digital signal converter 8 that converts the amplified analog signal into a digital signal, and a spectral luminance of each wavelength by a predetermined calculation method based on the digital signal It is comprised from the calculating means 9 which calculates the temperature of a measuring object from energy ratio R (T).
[0010]
【The invention's effect】
In the two-color thermometer using the InGaAs infrared detection element, the first wavelength λ 1 of the different measurement wavelengths is 1.1 to 1.3 μm, and the second wavelength λ 2 is 1.45 to 1.7 μm. Thus, the influence of water vapor in the optical path can be eliminated, and a two-color thermometer showing a stable indicated value even when the optical path length, that is, the measurement distance is changed, can be realized.
[Brief description of the drawings]
FIG. 1 is a diagram illustrating the configuration of an embodiment of the present invention. FIG. 2 is a diagram illustrating a water vapor transmission rate. FIG. 3 is a comparative graph of indicated variation values. Illustration [Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Measurement object 2 Objective lens 3 Wavelength division | segmentation mirror 41, 42 Filter 51, 52 Detection element 61, 62 Amplifier 7 Multiplexer 8 Analog / digital signal converter 9 Calculation means 10 Disc 11 Motor

Claims (1)

赤外線検出素子にInGaAs素子を用いた2色放射温度計において、互いに異なる測定波長の第1の測定波長を1.1〜1.3μm、第2の測定波長を1.45〜1.7μmとしたことを特徴とする2色放射温度計。In a two-color radiation thermometer using an InGaAs element as an infrared detection element, the first measurement wavelength of the different measurement wavelengths is 1.1 to 1.3 μm, and the second measurement wavelength is 1.45 to 1.7 μm. A two-color radiation thermometer characterized by the above.
JP2003165129A 2003-06-10 2003-06-10 Radiation thermometer Pending JP2005003437A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003165129A JP2005003437A (en) 2003-06-10 2003-06-10 Radiation thermometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003165129A JP2005003437A (en) 2003-06-10 2003-06-10 Radiation thermometer

Publications (1)

Publication Number Publication Date
JP2005003437A true JP2005003437A (en) 2005-01-06

Family

ID=34091709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003165129A Pending JP2005003437A (en) 2003-06-10 2003-06-10 Radiation thermometer

Country Status (1)

Country Link
JP (1) JP2005003437A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019023635A (en) * 2017-07-21 2019-02-14 新日鐵住金株式会社 Temperature measuring device, temperature measuring method, and program
US20190178719A1 (en) * 2017-12-08 2019-06-13 Horiba Advanced Techno, Co., Ltd. Radiation thermometer
JP2020128980A (en) * 2019-02-07 2020-08-27 日本製鉄株式会社 Temperature measuring device, temperature measuring method, and program
JP2020128981A (en) * 2019-02-07 2020-08-27 日本製鉄株式会社 Temperature measuring method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019023635A (en) * 2017-07-21 2019-02-14 新日鐵住金株式会社 Temperature measuring device, temperature measuring method, and program
JP7024644B2 (en) 2017-07-21 2022-02-24 日本製鉄株式会社 Temperature measuring device, temperature measuring method and program
US20190178719A1 (en) * 2017-12-08 2019-06-13 Horiba Advanced Techno, Co., Ltd. Radiation thermometer
US11150138B2 (en) * 2017-12-08 2021-10-19 Horiba Advanced Techno, Co., Ltd. Radiation thermometer
JP2020128980A (en) * 2019-02-07 2020-08-27 日本製鉄株式会社 Temperature measuring device, temperature measuring method, and program
JP2020128981A (en) * 2019-02-07 2020-08-27 日本製鉄株式会社 Temperature measuring method

Similar Documents

Publication Publication Date Title
US4222663A (en) Optical pyrometer and technique for temperature measurement
WO2020034558A1 (en) High-precision temperature demodulation method oriented toward distributed fiber raman sensor
JP5947709B2 (en) Spectroscopic analysis method and spectroscopic analysis apparatus
US8144332B2 (en) Temperature measurement apparatus and method
JP2005003437A (en) Radiation thermometer
JPH06105217B2 (en) Spectrometry
RU183716U1 (en) Lidar for remote measurement of atmospheric temperature
JP6574110B2 (en) Gas sensor circuit, gas sensor device, and gas concentration detection method
JP4607923B2 (en) Fiber Bragg grating element reflected light wavelength measurement processing apparatus and processing method
CN113758573A (en) Three-wavelength colorimetric infrared temperature measurement system, method and device based on emissivity iteration
JP3405589B2 (en) Optical fiber type temperature measuring device
RU2410654C1 (en) Method of temperature measurement
JPWO2016174865A1 (en) Spectroscopic module control method
JP5150814B2 (en) Triangulation distance detection circuit
JPH04332835A (en) Corrective processing method of distributed temperature data
JP3293470B2 (en) Radiation thermometer
SU1440157A1 (en) Non-contact method for measuring temperature
Richardson et al. An airborne radiation thermometer
JPS6190024A (en) Radiation thermometer
JPH06307939A (en) Radiation thermometer
JPH1048065A (en) Method and device for brillouin frequency shift distribution measurement
JPS63103939A (en) Infrared moisture meter
RU2219504C2 (en) Actual temperature pyrometer
JP3162831B2 (en) Temperature compensation method for pyroelectric sensor
JP2007198864A (en) Light characteristics measuring device, method, and program, and recording medium

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070904

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071227