JP2005003429A - Extraction plate - Google Patents

Extraction plate Download PDF

Info

Publication number
JP2005003429A
JP2005003429A JP2003165025A JP2003165025A JP2005003429A JP 2005003429 A JP2005003429 A JP 2005003429A JP 2003165025 A JP2003165025 A JP 2003165025A JP 2003165025 A JP2003165025 A JP 2003165025A JP 2005003429 A JP2005003429 A JP 2005003429A
Authority
JP
Japan
Prior art keywords
extraction plate
extraction
target substance
visible
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003165025A
Other languages
Japanese (ja)
Inventor
Tsuneaki Maeda
恒昭 前田
Tatsuro Nakagama
達朗 中釜
Toshiyuki Hobo
敏行 保母
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2003165025A priority Critical patent/JP2005003429A/en
Publication of JP2005003429A publication Critical patent/JP2005003429A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an extraction plate capable of concentrating/refining a liquid component to be measured by a simple operation without using a low-molecular organic solvent, reducing a change in the concentration of the concentrated component to be measured, easy to handle and transport or keep, also easy to produce and friendly to enveronment, and a cell-free visible/ultraviolet spectrophotometer equipped with the mounting region of the extraction plate to which a substance to be measured is distributed. <P>SOLUTION: The extraction plate comprises a high-molecular extraction solvent carried by a substrate transmitting light of a visible/ultraviolet region. The cell-free visible/ultraviolet spectreophotometer using the extraction plate is also disclosed. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、有機溶媒を使用することなく、対象物質を簡便な方法で抽出することが可能な環境に優しい抽出プレート及び該抽出プレートを利用した可視・紫外光分光光度計に関する。
【0002】
【従来の技術】
一般に、試料溶液中からそれに含まれる対象物質を取り出しこれを分析する方法として、溶媒抽出法と、対象物質の吸光度や蛍光度などの光学的スペクトルを分析測定する分光光度法を組み合わせた方法が広く用いられている。
溶媒抽出法は、たとえば、例えば水相にある脂溶性成分を低分子有機溶媒を用いて、有機溶媒相に移行させる態様に代表されるように、対象物質を含む試料溶液から、より溶解度が高い抽出溶媒を用いて、試料溶液に含まれる対象物質を抽出溶媒相に移送・分配するものである。
【0003】
しかしながら、この溶媒抽出法は、分析試料の前処理操作として多用されているものの、例えばヘキサン、ジクロロメタン、四塩化炭素、クロロホルム、メタノール、アセトニトリルなどの低分子有機溶媒を使用するため、環境への放出により多大な汚染を生じる上、廃液処理に際しても有害な物質を再生成することも懸念されている。
【0004】
一方、吸光度測定、蛍光測定などの分光測定装置は、装置が単純なこと、測定操作が簡便なことから環境汚染物質あるいは生体関連物質などの定性、定量などに広く用いられている。
【0005】
しかし、これらの物質の多くは極低濃度で存在し、かつ測定対象物質以外の夾雑成分が多く存在するために、実際の分光測定では前処理として濃縮、精製操作が必須となる。この試料の濃縮、精製法としては、例えば前記した抽出溶媒法を用い、測定対象物質を試料溶液からヘキサン、ジクロロメタン、酢酸エチルなどの有機溶媒中へ分配させた後に溶媒を揮発して濃縮する方法、あるいは試料溶液から測定対象成分をシリカゲルあるいはシリカゲルに様々な官能基で修飾した固相に吸着あるいは分配させ、有機溶媒を用いて脱離させた後、溶媒を揮発して濃縮する方法などを用いる必要があった(非特許文献1:SPE,SPME法)。
【0006】
また、実際の分光測定においては、測定対象試料は有機溶媒中に存在するためにハンドリング、運搬あるいは保存などに密閉容器の使用を余儀なくされるため、溶媒の揮発による容器内圧力の増加から爆発や溶液の漏出などが起こることがあり、またこれらを防止するためには特殊な容器や容器の冷却などが必要であった。また、実験者が有機溶媒に暴露することによる健康障害も懸念される上、種々多量の環境試料あるいは生体試料から測定対象物質の濃縮、精製を行うには大量の有機溶媒を使用しなければならず、この結果、大量の廃液を排出することになり、廃液の処理過程における化学物質の環境中への放出も懸念される。この放出を防止するためには高いコストが必要となる。また、従来の濃縮、精製過程は煩雑であり、再現性のある測定結果を得るためには実験者の熟練を必要とするといった難点があった。
【0007】
特に、可視・紫外分光分析法では、特定な低分子有機抽出溶媒を用いる必要があり、しかも測定対象試料は低分子有機溶媒中に存在するために、これを運搬あるいは保存するための密閉容器を用いなければならず、更には、該有機抽出溶媒を揮発させた後に得られる濃縮された測定対象物質の吸光度などの光学的性質を測定するには、これを収納する試料セルが必要であり、そのためにコスト増加を招き、またセルの洗浄工程などの煩雑な工程を要するといった、多くの問題があった。
【0008】
【非特許文献1】Application of Solid Phase Microextraction, Janusz Pawliszyn 編, The Royal Society of Chemistry, 1999, pp3−21,
【0009】
【発明が解決しようとする課題】
本発明は、上記のような従来技術の実情に鑑みなされたものであって、その第1の目的は、低分子有機溶媒を使用することなく簡便な操作で測定対象物質の濃縮・精製を行うことができ、しかも濃縮された測定対象物質の濃度変化が小さく、かつハンドリング、運搬あるいは保存が容易であり、更にはその作製も容易で、環境に優しい、抽出プレートを提供することにあり、第2の目的は、該抽出プレートに測定対象物質が保持された抽出プレートを提供することにあり、第3の目的は、測定対象物質が保持された抽出プレートを利用してなる分光光度計特にセルレス可視・紫外分光光度計を提供することを目的とする。
【0010】
【課題を解決するための手段】
本発明者は、従来から溶媒抽出法で用いられている低分子有機溶媒に代えて、光学的に透明な基板上に測定対象物質を抽出し得る高分子溶液を担持してなる抽出プレートを測定対象物質を含む試料溶液に浸漬すると、液−液分配の法則により測定対象物質を高分子溶液側に効果的に抽出でき、しかも該抽出においては濃縮も同時に行なわれているので、直ちに光学的な分析操作に移すことができることを知見し本発明を完成するに至った。
すなわち、本発明によれば、以下の発明が提供される。
(1)可視・紫外領域の光を透過する基板上に、対象物質を抽出する機能を有する高分子溶液を担持してなる抽出プレート。
(2)基板が、測定対象物質の吸収波長に対して吸収を有しないことを特徴とする上記(1)に記載の抽出プレート。
(3)高分子溶液が、基板に対して物理的、化学的に均一な膜状に担持可能であり、水溶液に浸漬したときに脱離せずにその形態を維持できることを特徴とする上記(1)又は(2)に記載の抽出プレート。
(4)対象物質が高分子溶液に分配された上記(1)乃至(3)何れかに記載の抽出プレート。
(5)上記(4)に記載の抽出プレートの装着部位を備えた分光光度度計。
(6)分光光度計が、セルレス可視・紫外分光光度計である上記(5)に記載の分光光度計。
(7)対象物質を含む溶液に上記(1)乃至(3)何れかに記載の抽出プレートを接触させ、対象物質を該抽出プレートに分配することを特徴とする対象物質の抽出方法。
(8)上記(7)に記載の抽出方法で得られる、対象物質が分配された抽出プレートに、可視・紫外光を照射し、該対象物質の光学的スペクトルを測定することを特徴とする対象物質の光学的分析方法。
【0011】
【発明の実施の態様】
本発明の抽出プレートは、可視・紫外領域の光を透過する基板上に、対象物質を抽出する機能を有する高分子溶液を担持したものである。基板上に安定に担持するには化学結合なども利用する。
【0012】
可視・紫外領域の光を透過する基板としては、可視光又は紫外線領域の光を吸収せず、これらの光を透過するものであれば特に制限はない。このような基板としては、たとえば、ガラス板、石英板などの無機性基板、シリコン板、ポリエステル板などの有機性基板などが挙げられる。
基板の厚みも特に制限はないが、光の透過性、機械的強度、取り扱いのし易さなどの観点からみて、通常0.1〜3.0mm、好ましくは0.5〜1.5mmである。
また、基板の形状にも特に制限はなく、板状、管状、棒状等の種々の形状が採られる。
【0013】
高分子溶液としては、基板に対して物理的、化学的に均一な膜状に担持可能であり、水溶液に浸漬したときに脱離せずにその形態を維持できるもので、測定対象物質を選択的に抽出でき、かつ分光光度法に付した場合に対象物質のスペクトルと区別できるものであれば特に制限はなく、ガスクロマトグラフィー(GC)で固定相液相として用いられる高分子化合物などを用いればよい。
このような高分子化合物としては、ポリエステル類、ポリグリコール類などの含酸素系高分子、ポリアミド類、ポリアミン類等の含窒素系高分子、メチルシリコン、メチルビニルシリコン、メチルフェニルシリコン、メチルフェニルビニルシリコン等の含珪素系高分子などを挙げることができる。本発明で好ましく使用される高分子溶液は、シリコン系の高分子化合物であり、更に好ましくは、基板との高密着性を発現させる官能基を有するシリコン系の高分子化合物である。
【0014】
本発明で抽出可能な物質は、上記高分子溶液に分配されるものであれば特に制限されず、たとえば、脂肪族化合物、芳香族化合物、脂溶性色素、界面活性剤などが挙げられる。抽出補助剤を添加すれば、金属イオン、無機イオンなどの抽出なども可能である。
【0015】
本発明の抽出プレートは、上記基板の片面あるいは両面に高分子溶液を塗布、浸漬などの適宜付着手段により担持させればよい。すなわち、ポリジメチルシロキサンあるいはその誘導体などの高分子化合物を少量の揮発性有機溶媒に溶解し、ガラス板あるいは石英板などの基板上に滴下後、自然乾燥等により溶媒を揮発させて、高分子溶液を基板に担持させればよい。この場合、高分子溶液をより安定に基板に担持させ、その抽出効果を高め、測定対象物質を選択的に濃縮し、夾雑物の混入を防止するために結合剤などを使用することが好ましい。結合剤としては、高分子溶液の測定対象物質に対する抽出効果(分配効果)を阻害しないもので、分光感度に影響を与えないものであれば何れのものも使用できる。このような結合剤としては例えばガスクロマトグラフィー(GC)や液体クロマトグラフィー(LC)などで用いられるスペーサー(リンカー)を用いればよい。具体的には基板表面のシラノール基と反応するクロロシリル基、アルコキシルシリル基などを有し、かつ高分子溶液と結合するためのヒドロシリル基、アミノ基あるいはエステル基などの反応性官能基を有するシリル化剤などが挙げられる。これらのシリル化剤により基板を処理し、ヒドロシリル化反応、アミド結合の形成あるいはエステル化反応などにより高分子液体を化学結合させる。また、シリル化剤により予め処理した基板上で高分子液体を重合させることも可能である。本発明で好ましく使用される結合剤は、基板表面をクロロアルキルシランにより処理した後、基板上で重合させてアルキルシリコンポリマー層を形成するものである。また、このような結合剤で基板に化学結合させた後、さらにポリマーを加えて溶媒の量増加することも有効である。
【0016】
本発明に係る、可視・紫外領域の光を透過する基板上に高分子溶液を担持してなる抽出プレートは、抽出時に生じる有機溶媒からなる廃液がほとんどない、新しい概念の抽出プレートであり、たとえば、このものを、測定対象物質を含む試料溶液に浸漬すると、液−液分配の法則により、測定対象物質を高分子溶液側に効果的に抽出することが可能である。しかも抽出後は濃縮も同時に行なわれているので、直ちに光学的な分析操作に移すことができる。
すなわち、本発明においては、従来法とは異なり、有機溶媒を用いる必要がないので、環境汚染の問題が回避されると共に測定対象物質を含む有機溶媒を運搬あるいは保存するための密封容器が不要化される。また、従来の可視・紫外線分光光度計においては、その分析に当たり、抽出有機溶媒を揮発させた後に得られる濃縮された測定対象物質を収納するための試料セルが必要であるが、本願発明の抽出プレートはそのようなセルを用いることなく、単に可視・紫外分光光度計の試料室等に装着するだけで、測定対象物質の光学的なスペクトルを簡単に分析することができるので、現在汎用されている分光光度計をそのままあるいはこれに若干の改変を加えるだけ、セルレス可視・紫外光分光光度計を作製することが可能となる。
【0017】
つぎに、本願発明の抽出プレートを用いた測定対象物質の抽出操作及びそれに引き続く測定対象物質の光学分析操作の代表例を図面を用いて説明する。
図1は、抽出操作の説明図であり、1は容器、2は測定対象物質を含む試料溶液、3は測定対象物質、4は抽出プレート、4−1は基板、4−2は高分子溶液、5は対象物質が高分子溶液に分配された抽出プレートである。図2は分光光度計の概念図であり、6は分光光度計、7は光源部、8はモノクロメータ、9は抽出プレート装着部、10は検出器である。
抽出プレート4を用いて測定対象物質3を抽出するには、試料溶液2が収納された容器1に抽出プレート4を挿入し、適宜攪拌しながら、一定時間、抽出操作を行う。抽出操作後、測定対象物質3が高分子溶液4−2に分配された抽出プレート5を取り出す。
この抽出プレート5を用いてそれに含まれる測定対象物質の光学的性質を分析するには、これを図2に示される分光光度計6の抽出プレート装着部9に装着し、光源部7から可視・紫外光を照射し、モノクロメータ8によりこれを適宜分光した後、抽出プレート5に透過させ、測定対象物質の吸光度などの光学的性質を検出器10により測定すればよい。
なお、分光光度計の構成は上記のものに限定されず、たとえば、モノクロメーターの代わりに簡易な光学フィルターを用いてもよいし、ポリクロメーターとダイオードアレイ検出器の組み合わせを用いてもよい。後者のものを用いると、多波長同時検出が行えるメリットがある。
【0018】
【実施例】
以下、本発明を実施例により更に詳細に説明する。
実施例1
[抽出プレートの作製]
アミノプロピルメチルシロキサン(APMS)−ジメチルシロキサン(DMS)コポリマー(APMSモル含有率6〜7%, 分子量4,000〜5,000)をジクロロメタンに溶解した高分子溶液を、ガラス板(幅12mm, 長さ38mm)の中央部に滴下した。溶媒を自然乾燥により揮発させ、直径10mmの円盤状に高分子溶液を塗布した。塗布した高分子の重量は約3mgであり、その比重(0.98g/ml)から換算すると、高分子膜(液相)の膜厚は約4μmと算出された。
【0019】
[抽出操作及び分析操作]
モデル試料として極少量のp−フェニル−アゾ−フェノールを水に溶解させ、試料溶液とした。この試料溶液の一部を10mm角のガラスセルにとり、吸収スペクトルの測定を行ったところ、最大吸収波長は360nmであり、この波長における吸光度は約0.11であった。
一方、前記抽出プレートをそのまま図2に示されるような光学光度計に装着し、吸収スペクトルの測定を行ったところ、300nmから600nmの範囲では0.03以下の吸光度であり、360nmにおいては吸収が認められなかった。
次に、試料溶液を円柱状のガラス瓶(内容積20ml)に15.5mlとり、前記抽出プレートがすべて溶液中に浸漬するように設置した後、試料溶液を静かに撹はんした。 一定時間濃縮操作を行った後、抽出プレートを取り出して付着した試料溶液を除去した後、この抽出プレートの高分子膜の360nmにおける吸光度を図2に示されるような光学光度計を用いて測定した。
その結果、40分間、抽出操作を行った後の高分子膜の吸光度は約0.26となった。この値は、試料溶液の吸光度(光路長10mm)の約2.4倍であった。高分子膜の膜厚(4μm)から換算すると、単位光路長あたりの濃縮率は、約6,000倍と推定された。さらに20分濃縮操作を行っても高分子膜の吸光度はほとんど変化しなかったことから、40分の濃縮操作でモデル試料は試料溶液と液相間で分配平衡に達したものと推定された。
このことから、本発明に係る抽出プレートは測定対象物質を低分子有機溶媒を用いることなく効率的に抽出することができ、また、抽出後に取り出される対象物質が高分子溶液に分配された抽出プレートをそのまま分光光度計に装着するだけでその分析操作を行うことが可能であることが分かる。
【0020】
【発明の効果】
(1)本発明の抽出プレートを用いれば、簡便な操作で測定対象物質の濃縮、精製を行うことができ、また、液相が揮発しないためにプレート上に濃縮された測定対象物質の濃度は変化しにくく、ハンドリング、運搬あるいは保存が容易であり、さらに、濃縮、精製操作においては低分子有機溶媒を全く使用しないことから、実験者だけではなく、環境にも優しい方法である。また、本発明の抽出プレートは特殊な材料を必要とせず、かつ容易に作製することができることから、安価に大量生産することが可能である。
(2)また、従来の可視・紫外線分光光度計においては、その分析に当たり、抽出有機溶媒を揮発させた後に得られる濃縮された測定対象物質を収納するための試料セルが必要であるが、本発明の抽出プレートによれば、そのようなセルを用いることなく、これを、可視・紫外線分光光度計の試料室等に装着するだけで、測定対象物質の光学的なスペクトルを簡単に分析することができるので、現在汎用されている分光光度計をそのままあるいはこれに若干の改変を加えるだけ、セルレス可視・紫外光分光光度計の作製が可能となる。
【図面の簡単な説明】
【図1】本発明の抽出プレートを用いた抽出操作の説明図。
【図2】本発明の抽出プレートを利用した可視・紫外光光度計の説明図。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an environment-friendly extraction plate capable of extracting a target substance by a simple method without using an organic solvent, and a visible / ultraviolet spectrophotometer using the extraction plate.
[0002]
[Prior art]
In general, as a method for extracting a target substance contained in a sample solution and analyzing it, a method combining a solvent extraction method and a spectrophotometric method for analyzing and measuring an optical spectrum such as absorbance or fluorescence of the target substance is widely used. It is used.
The solvent extraction method has higher solubility from a sample solution containing a target substance, as represented by, for example, a mode in which a fat-soluble component in an aqueous phase is transferred to an organic solvent phase using a low molecular organic solvent, for example. The target substance contained in the sample solution is transferred and distributed to the extraction solvent phase using the extraction solvent.
[0003]
However, although this solvent extraction method is widely used as a pretreatment operation for analytical samples, it uses a low-molecular organic solvent such as hexane, dichloromethane, carbon tetrachloride, chloroform, methanol, acetonitrile, etc. As a result, there is a concern that harmful substances will be regenerated during waste liquid treatment.
[0004]
On the other hand, spectroscopic measurement devices such as absorbance measurement and fluorescence measurement are widely used for qualitative and quantitative determination of environmental pollutants and biological materials because of their simplicity and simple measurement operation.
[0005]
However, since many of these substances exist at extremely low concentrations and there are many contaminant components other than the measurement target substance, concentration and purification operations are essential as pretreatment in actual spectroscopic measurement. As a method for concentrating and purifying the sample, for example, the extraction solvent method described above is used, and the substance to be measured is distributed from the sample solution into an organic solvent such as hexane, dichloromethane or ethyl acetate, and then the solvent is volatilized and concentrated. Alternatively, the measurement target component from the sample solution is adsorbed or distributed on silica gel or a solid phase modified with various functional groups on silica gel, desorbed using an organic solvent, and then concentrated by volatilizing the solvent. There was a need (Non-patent document 1: SPE, SPME method).
[0006]
In actual spectroscopic measurement, since the sample to be measured exists in an organic solvent, it is necessary to use a sealed container for handling, transportation or storage. In some cases, leakage of the solution may occur, and in order to prevent such leakage, a special container or cooling of the container is necessary. In addition, there are concerns about health problems caused by exposure of the experimenter to organic solvents, and a large amount of organic solvent must be used to concentrate and purify the substance to be measured from various quantities of environmental or biological samples. As a result, a large amount of waste liquid is discharged, and there is a concern that chemical substances may be released into the environment during the waste liquid treatment process. High costs are required to prevent this release. Further, the conventional concentration and purification process is complicated, and there is a problem that skill of an experimenter is required to obtain reproducible measurement results.
[0007]
In particular, in the visible / ultraviolet spectroscopic analysis method, it is necessary to use a specific low-molecular organic extraction solvent, and the sample to be measured exists in the low-molecular organic solvent. Therefore, a sealed container for transporting or storing the sample is required. Furthermore, in order to measure optical properties such as absorbance of the concentrated measurement target substance obtained after volatilizing the organic extraction solvent, a sample cell for storing it is necessary. For this reason, there are many problems such as an increase in cost and a complicated process such as a cell cleaning process.
[0008]
[Non-Patent Document 1] Application of Solid Phase Microextraction, edited by Janusz Pawristyn, The Royal Society of Chemistry, 1999, pp 3-21,
[0009]
[Problems to be solved by the invention]
The present invention has been made in view of the actual situation of the prior art as described above, and a first object thereof is to concentrate and purify a measurement target substance by a simple operation without using a low molecular organic solvent. In addition, an object of the present invention is to provide an extraction plate that can be concentrated, has a small concentration change in the substance to be measured, is easy to handle, transport or store, and is easy to produce and environmentally friendly. The second object is to provide an extraction plate in which the substance to be measured is held on the extraction plate, and the third object is to use a spectrophotometer, particularly a cell-less, which uses the extraction plate in which the substance to be measured is held. An object is to provide a visible / ultraviolet spectrophotometer.
[0010]
[Means for Solving the Problems]
The present inventor measured an extraction plate carrying a polymer solution capable of extracting a substance to be measured on an optically transparent substrate instead of the low molecular organic solvent conventionally used in the solvent extraction method. When immersed in a sample solution containing the target substance, the substance to be measured can be effectively extracted to the polymer solution side according to the law of liquid-liquid distribution, and the concentration is simultaneously performed in the extraction. The present invention has been completed by finding out that it can be transferred to an analysis operation.
That is, according to the present invention, the following inventions are provided.
(1) An extraction plate formed by supporting a polymer solution having a function of extracting a target substance on a substrate that transmits light in the visible / ultraviolet region.
(2) The extraction plate as described in (1) above, wherein the substrate does not absorb the absorption wavelength of the substance to be measured.
(3) The above-mentioned (1), wherein the polymer solution can be supported in a physically and chemically uniform film on the substrate and can maintain its form without being detached when immersed in an aqueous solution. ) Or (2).
(4) The extraction plate according to any one of (1) to (3), wherein the target substance is distributed in a polymer solution.
(5) A spectrophotometer provided with the extraction plate mounting portion according to (4).
(6) The spectrophotometer according to (5), wherein the spectrophotometer is a cellless visible / ultraviolet spectrophotometer.
(7) A method for extracting a target substance, comprising bringing the extraction plate according to any one of (1) to (3) above into contact with a solution containing the target substance, and distributing the target substance to the extraction plate.
(8) An object obtained by irradiating an extraction plate obtained by the extraction method according to (7) above, on which the target substance is distributed, with visible / ultraviolet light and measuring an optical spectrum of the target substance Method for optical analysis of substances.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
The extraction plate of the present invention carries a polymer solution having a function of extracting a target substance on a substrate that transmits light in the visible / ultraviolet region. A chemical bond or the like is also used for stable support on the substrate.
[0012]
The substrate that transmits light in the visible / ultraviolet region is not particularly limited as long as it does not absorb visible light or light in the ultraviolet region and transmits such light. Examples of such a substrate include inorganic substrates such as a glass plate and a quartz plate, and organic substrates such as a silicon plate and a polyester plate.
The thickness of the substrate is not particularly limited, but is usually from 0.1 to 3.0 mm, preferably from 0.5 to 1.5 mm, from the viewpoint of light transmittance, mechanical strength, ease of handling, and the like. .
Further, the shape of the substrate is not particularly limited, and various shapes such as a plate shape, a tubular shape, and a rod shape are adopted.
[0013]
A polymer solution can be supported on a substrate in a physically and chemically uniform film, and can maintain its form without being detached when immersed in an aqueous solution. There is no particular limitation as long as it can be extracted and can be distinguished from the spectrum of the target substance when subjected to spectrophotometry, and if a polymer compound used as a stationary phase liquid phase in gas chromatography (GC) is used. Good.
Examples of such a polymer compound include oxygen-containing polymers such as polyesters and polyglycols, nitrogen-containing polymers such as polyamides and polyamines, methyl silicon, methyl vinyl silicon, methyl phenyl silicon, and methyl phenyl vinyl. Examples thereof include silicon-containing polymers such as silicon. The polymer solution preferably used in the present invention is a silicon-based polymer compound, and more preferably a silicon-based polymer compound having a functional group that exhibits high adhesion to the substrate.
[0014]
The substance that can be extracted in the present invention is not particularly limited as long as it can be distributed to the polymer solution, and examples thereof include aliphatic compounds, aromatic compounds, fat-soluble dyes, and surfactants. If an extraction aid is added, extraction of metal ions, inorganic ions and the like is also possible.
[0015]
The extraction plate of the present invention may be supported by an appropriate attachment means such as applying or dipping a polymer solution on one side or both sides of the substrate. That is, a polymer compound such as polydimethylsiloxane or a derivative thereof is dissolved in a small amount of a volatile organic solvent, dropped onto a substrate such as a glass plate or a quartz plate, and then the solvent is volatilized by natural drying or the like to obtain a polymer solution. May be carried on the substrate. In this case, it is preferable to use a binder or the like to support the polymer solution more stably on the substrate, enhance the extraction effect, selectively concentrate the substance to be measured, and prevent contamination. Any binder can be used as long as it does not inhibit the extraction effect (distribution effect) of the polymer solution on the measurement target substance and does not affect the spectral sensitivity. As such a binder, for example, a spacer (linker) used in gas chromatography (GC), liquid chromatography (LC) or the like may be used. Specifically, silylation having a chlorosilyl group, alkoxylsilyl group, etc. that reacts with a silanol group on the substrate surface, and a reactive functional group such as a hydrosilyl group, an amino group, or an ester group for bonding to a polymer solution Agents and the like. The substrate is treated with these silylating agents, and the polymer liquid is chemically bonded by hydrosilylation reaction, amide bond formation or esterification reaction. It is also possible to polymerize a polymer liquid on a substrate previously treated with a silylating agent. The binder preferably used in the present invention is one in which the substrate surface is treated with chloroalkylsilane and then polymerized on the substrate to form an alkylsilicon polymer layer. It is also effective to increase the amount of solvent by adding a polymer after chemically bonding to the substrate with such a binder.
[0016]
The extraction plate according to the present invention, in which a polymer solution is supported on a substrate that transmits light in the visible / ultraviolet region, is a new concept extraction plate that has almost no waste liquid composed of an organic solvent generated during extraction. When this material is immersed in a sample solution containing the substance to be measured, the substance to be measured can be effectively extracted to the polymer solution side according to the law of liquid-liquid distribution. Moreover, since concentration is also performed after extraction, it can be immediately transferred to an optical analysis operation.
That is, in the present invention, unlike the conventional method, it is not necessary to use an organic solvent, so that the problem of environmental pollution is avoided and a sealed container for transporting or storing the organic solvent containing the measurement target substance is not required. Is done. In addition, in the conventional visible / ultraviolet spectrophotometer, a sample cell for storing the concentrated measurement target substance obtained after volatilizing the extraction organic solvent is necessary for the analysis. Without using such a cell, the plate can be easily analyzed for the optical spectrum of the substance to be measured simply by mounting it in the sample chamber of a visible / ultraviolet spectrophotometer. It is possible to produce a cellless visible / ultraviolet spectrophotometer as it is or with a slight modification.
[0017]
Next, a representative example of the extraction operation of the measurement target substance using the extraction plate of the present invention and the subsequent optical analysis operation of the measurement target substance will be described with reference to the drawings.
FIG. 1 is an explanatory diagram of an extraction operation, wherein 1 is a container, 2 is a sample solution containing a measurement target substance, 3 is a measurement target substance, 4 is an extraction plate, 4-1 is a substrate, and 4-2 is a polymer solution. Reference numeral 5 denotes an extraction plate in which the target substance is distributed in the polymer solution. FIG. 2 is a conceptual diagram of a spectrophotometer, 6 is a spectrophotometer, 7 is a light source unit, 8 is a monochromator, 9 is an extraction plate mounting unit, and 10 is a detector.
In order to extract the substance 3 to be measured using the extraction plate 4, the extraction plate 4 is inserted into the container 1 in which the sample solution 2 is stored, and an extraction operation is performed for a predetermined time while stirring appropriately. After the extraction operation, the extraction plate 5 in which the measurement target substance 3 is distributed in the polymer solution 4-2 is taken out.
In order to analyze the optical properties of the measurement target substance contained in the extraction plate 5, it is mounted on the extraction plate mounting portion 9 of the spectrophotometer 6 shown in FIG. After irradiating with ultraviolet light, the monochromator 8 appropriately splits it, and then transmits it through the extraction plate 5 to measure the optical properties such as the absorbance of the substance to be measured by the detector 10.
The configuration of the spectrophotometer is not limited to the above, and for example, a simple optical filter may be used instead of the monochromator, or a combination of a polychromator and a diode array detector may be used. When the latter is used, there is an advantage that multi-wavelength simultaneous detection can be performed.
[0018]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples.
Example 1
[Preparation of extraction plate]
A polymer solution prepared by dissolving aminopropylmethylsiloxane (APMS) -dimethylsiloxane (DMS) copolymer (APMS molar content 6 to 7%, molecular weight 4,000 to 5,000) in dichloromethane was added to a glass plate (width 12 mm, long And 38 mm). The solvent was volatilized by natural drying, and the polymer solution was applied in a disk shape having a diameter of 10 mm. The weight of the applied polymer was about 3 mg. When converted from the specific gravity (0.98 g / ml), the film thickness of the polymer film (liquid phase) was calculated to be about 4 μm.
[0019]
[Extraction and analysis operations]
As a model sample, a very small amount of p-phenyl-azo-phenol was dissolved in water to obtain a sample solution. A portion of this sample solution was taken in a 10 mm square glass cell and the absorption spectrum was measured. As a result, the maximum absorption wavelength was 360 nm, and the absorbance at this wavelength was about 0.11.
On the other hand, when the extraction plate was directly attached to an optical photometer as shown in FIG. 2 and the absorption spectrum was measured, the absorbance was 0.03 or less in the range of 300 nm to 600 nm, and the absorption was observed at 360 nm. I was not able to admit.
Next, 15.5 ml of the sample solution was placed in a cylindrical glass bottle (internal volume 20 ml), and the sample plate was placed so that all the extraction plates were immersed in the solution, and then the sample solution was gently stirred. After performing the concentration operation for a certain period of time, the extraction plate was taken out and the adhering sample solution was removed, and then the absorbance at 360 nm of the polymer film of this extraction plate was measured using an optical photometer as shown in FIG. .
As a result, the absorbance of the polymer film after the extraction operation for 40 minutes was about 0.26. This value was about 2.4 times the absorbance (optical path length 10 mm) of the sample solution. When converted from the film thickness (4 μm) of the polymer film, the concentration rate per unit optical path length was estimated to be about 6,000 times. Further, the absorbance of the polymer membrane hardly changed even when the concentration operation was performed for 20 minutes. Therefore, it was estimated that the model sample reached the distribution equilibrium between the sample solution and the liquid phase after the concentration operation for 40 minutes.
Therefore, the extraction plate according to the present invention can efficiently extract the measurement target substance without using a low-molecular organic solvent, and the extraction plate in which the target substance taken out after the extraction is distributed to the polymer solution It can be seen that the analysis operation can be carried out simply by attaching to the spectrophotometer.
[0020]
【The invention's effect】
(1) If the extraction plate of the present invention is used, the measurement target substance can be concentrated and purified by a simple operation, and since the liquid phase does not volatilize, the concentration of the measurement target substance concentrated on the plate is It is difficult to change, is easy to handle, transport or store. Further, since it does not use any low molecular organic solvent in the concentration and purification operations, it is not only an experimenter but also an environmentally friendly method. In addition, the extraction plate of the present invention does not require a special material and can be easily manufactured, so that it can be mass-produced at low cost.
(2) In addition, in the conventional visible / ultraviolet spectrophotometer, a sample cell for storing the concentrated measurement target substance obtained after volatilizing the extracted organic solvent is necessary for the analysis. According to the extraction plate of the invention, it is possible to easily analyze the optical spectrum of the substance to be measured by simply mounting it in the sample chamber of a visible / ultraviolet spectrophotometer without using such a cell. Therefore, a cellless visible / ultraviolet light spectrophotometer can be produced by using a spectrophotometer currently widely used as it is or by making a slight modification to it.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of an extraction operation using an extraction plate of the present invention.
FIG. 2 is an explanatory view of a visible / ultraviolet photometer using the extraction plate of the present invention.

Claims (8)

可視・紫外領域の光を透過する基板上に、対象物質を抽出する機能を有する高分子溶液を担持してなる抽出プレート。An extraction plate formed by supporting a polymer solution having a function of extracting a target substance on a substrate that transmits light in the visible / ultraviolet region. 基板が、測定対象物質の吸収波長に対して吸収を有しないことを特徴とする請求項1に記載の抽出プレート。The extraction plate according to claim 1, wherein the substrate has no absorption with respect to the absorption wavelength of the substance to be measured. 高分子溶液が、基板に対して物理的、化学的に均一な膜状に担持可能であり、水溶液に浸漬したときに脱離せずにその形態を維持できることを特徴とする請求項1又は2に記載の抽出プレート。3. The polymer solution according to claim 1 or 2, wherein the polymer solution can be supported on the substrate in a physically and chemically uniform film shape and can maintain its form without being detached when immersed in an aqueous solution. The extraction plate as described. 対象物質が高分子溶液に分配された請求項1乃至3何れかに記載の抽出プレート。The extraction plate according to any one of claims 1 to 3, wherein the target substance is distributed in a polymer solution. 請求項4に記載の抽出プレートの装着部位を備えてなる分光光度度計。A spectrophotometer comprising the extraction plate mounting portion according to claim 4. 分光光度計が、セルレス可視・紫外分光光度計である請求項5に記載の分光光度計。6. The spectrophotometer according to claim 5, wherein the spectrophotometer is a cellless visible / ultraviolet spectrophotometer. 対象物質を含む溶液に請求項1乃至3何れかに記載の抽出プレートを接触させ、対象物質を該抽出プレートに分配することを特徴とする対象物質の抽出方法。A method for extracting a target substance, comprising bringing the extraction plate according to claim 1 into contact with a solution containing the target substance, and distributing the target substance to the extraction plate. 請求項7に記載の抽出方法で得られる対象物質が分配された抽出プレートに、可視・紫外光を照射し、該対象物質の光学的スペクトルを測定することを特徴とする対象物質の光学的分析方法。An optical analysis of a target substance characterized by irradiating the extraction plate obtained by the extraction method according to claim 7 with visible / ultraviolet light and measuring an optical spectrum of the target substance. Method.
JP2003165025A 2003-06-10 2003-06-10 Extraction plate Pending JP2005003429A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003165025A JP2005003429A (en) 2003-06-10 2003-06-10 Extraction plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003165025A JP2005003429A (en) 2003-06-10 2003-06-10 Extraction plate

Publications (1)

Publication Number Publication Date
JP2005003429A true JP2005003429A (en) 2005-01-06

Family

ID=34091641

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003165025A Pending JP2005003429A (en) 2003-06-10 2003-06-10 Extraction plate

Country Status (1)

Country Link
JP (1) JP2005003429A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107561027A (en) * 2017-07-11 2018-01-09 武汉华星光电半导体显示技术有限公司 In PI films in NMP content detection devices and PI films NMP contents detection method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107561027A (en) * 2017-07-11 2018-01-09 武汉华星光电半导体显示技术有限公司 In PI films in NMP content detection devices and PI films NMP contents detection method

Similar Documents

Publication Publication Date Title
Sarafraz-Yazdi et al. Determination of non-steroidal anti-inflammatory drugs in urine by hollow-fiber liquid membrane-protected solid-phase microextraction based on sol–gel fiber coating
Albert et al. High-speed fluorescence detection of explosives-like vapors
Atar et al. A sensitive molecular imprinted surface plasmon resonance nanosensor for selective determination of trace triclosan in wastewater
Muldoon et al. Molecularly imprinted solid phase extraction of atrazine from beef liver extracts
Suriyanarayanan et al. Chemosensors based on molecularly imprinted polymers
Kahan et al. Photolysis of polycyclic aromatic hydrocarbons on water and ice surfaces
He et al. Surface-enhanced Raman scattering: A structure-specific detection method for capillary electrophoresis
EP2499484B1 (en) Material and method for trapping, detecting and quantifying aromatic heterocyclic compounds and others
EP2300539B1 (en) Nanoporous detectors of monocyclic aromatic compounds
Butterfield et al. Extraction of volatile PAHs from air by use of solid cyclodextrin
Dunbar et al. Investigation of free base, Mg, Sn, and Zn substituted porphyrin LB films as gas sensors for organic analytes
Sun et al. Continuous in situ portable SERS analysis of pollutants in water and air by a highly sensitive gold nanoparticle-decorated PVDF substrate
CN105277526A (en) Surface-enhanced Raman scattering substrate material, preparation method and application thereof
Doroodmand et al. Selective removal of formaldehyde based on Hantzsch reaction using acetylacetone/ammonia-modified mixed matrix absorbent as a novel absorber
Li et al. Pulsed excitation source multiplexed fluorometry for the simultaneous measurement of multiple analytes. Continuous measurement of atmospheric hydrogen peroxide and methyl hydroperoxide
Hill et al. Investigation of the adsorption of gaseous aromatic compounds at surfaces coated with heptakis (6-thio-6-deoxy)-β-cyclodextrin by surface-enhanced Raman scattering
JP2005003429A (en) Extraction plate
Calvo-Muñoz et al. Chemical sensors of monocyclic aromatic hydrocarbons based on sol–gel materials: kinetics of trapping of the pollutants and sensitivity of the sensor
Yang et al. Purge-and-trap ATR/IR spectroscopic method for the detection of semivolatile aromatic compounds in soils
JP4517079B2 (en) Slab optical waveguide spectral chemical sensor
EP3151003B1 (en) Device and method for extracting aromatic-ring compounds contained in a liquid sample
Sneshkoff et al. An improved molecularly imprinted polymer film for recognition of amino acids
EP2440908A1 (en) Device and method for determining the concentration of a compound in an aqueous or gaseous phase
EP3045907A1 (en) Material for detecting phenol compounds and uses thereof
FR2939893A1 (en) LEAD ASSAY

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061219

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070424