JP2005003408A - Method for decontaminating radioactive contaminant and its device - Google Patents

Method for decontaminating radioactive contaminant and its device Download PDF

Info

Publication number
JP2005003408A
JP2005003408A JP2003164636A JP2003164636A JP2005003408A JP 2005003408 A JP2005003408 A JP 2005003408A JP 2003164636 A JP2003164636 A JP 2003164636A JP 2003164636 A JP2003164636 A JP 2003164636A JP 2005003408 A JP2005003408 A JP 2005003408A
Authority
JP
Japan
Prior art keywords
decontamination
radioactive
container
fluid
radioactive substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003164636A
Other languages
Japanese (ja)
Other versions
JP4044869B2 (en
Inventor
Masatoshi Okano
正敏 岡野
Hiroshi Murata
寛 村田
Atsunori Kawamoto
敦則 川本
Shozo Yoshitomi
昭三 吉冨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okano Valve Mfg Co Ltd
Original Assignee
Okano Valve Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okano Valve Mfg Co Ltd filed Critical Okano Valve Mfg Co Ltd
Priority to JP2003164636A priority Critical patent/JP4044869B2/en
Publication of JP2005003408A publication Critical patent/JP2005003408A/en
Application granted granted Critical
Publication of JP4044869B2 publication Critical patent/JP4044869B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Cleaning In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for decontaminating radioactive contaminant with simple decontamination work and the structure of a decontamination device and safe and easy disposal of a collected radioactive substance. <P>SOLUTION: A supercritical or liquid-state decontamination fluid is jetted out into a decontamination container 20 to decontaminate the contaminant. The radioactive substance separated from the contaminant is deposited on a container bottom part 25. A decontaminated fluid after the decontamination is turned into a gaseous state by a pressure reducing device 14. The radioactive substance in the decontaminated fluid in a gaseous state is collected by a radioactive substance separator 17. The gaseous decontaminated fluid from which the radioactive substance is collected is pressurized by a compressor 11 into a supercritical or liquid state. In this process, the decontaminated fluid is circulated sequentially through the compressor 11, the decontamination container 20, the reducing device 14, and the substance separator 17. After the decontaminated fluid is circulated for a prescribed period of time, the decontaminated fluid is jetted in a gaseous state together with the radioactive substance deposited out of the decontamination container 20 into a radioactive-substance storage container 60. Further, the gaseous-state decontaminated fluid is discharged out of the storage container 60 into the reducing device 14. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、原子力施設の定検工事などで使用して放射能に汚染された作業用工具類や測定具、あるいは定検工事などで発生する放射能汚染された固体廃棄物を経済的に除染する除染方法、およびこれに用いる除染装置に関する。
【0002】
【従来の技術】
従来、原子力施設の定検工事などで使用して放射性物質に汚染されたスパナ、ペンチ、ハンマーなどの手工具やスケール、ノギス、マイクロメータなどの測定具(以下、両者を併せて作業工具という)は、布やブラシを用いて洗浄液で洗い、その後、ウエスなどで拭き取って除染していた。しかし、これら従来の方法では、放射性物質で汚染された洗浄液やウエスなどの汚染廃棄物が新たに生じるとともに、形状が複雑な作業工具では狭い隙間などに入った放射性物質が完全に除去できないなどという問題があった。また、それらの中には、可能な限り除染しても放射能レベルが原子力施設外へ持ち出せる許容値まで下がらず、やむを得ず固体廃棄物として廃棄するものもあり、経済的にも好ましくない状況であった。
【0003】
パイプ、ポンプ、バルブ、電線などの固体廃棄物は、例えば比較的に単純形状のパイプ類は半割したのちブラスト除染法で処理し、ポンプ、バルブなどの複雑な形状物は化学除染法などで対応していた。ブラスト除染法では比較的簡便に除染できるが、除染対象物が限定されたり、ブラスト時の放射性物質を含む塵埃の空気中への拡散という環境上の問題があった。化学除染法は除染に長時間を要し、油脂類汚染物やペイント物への適用が困難であった。また、溶解後の放射性物質を含む除染溶液の処理に高度の処理技術を必要とし、本来の汚染物に対して汚染された大量の除染溶液を処理しなければならず、汚染物の排出も少なくないなどの問題があった。このために、除染処理費用が増大し、また広い汚染物収納場所を必要としていた。
【0004】
これらの問題を解決する技術として、最近、超臨界または液体二酸化炭素を除染剤とする放射性物質の除染方法が提案されている。この放射性物質の除染方法は、粉末状の放射性物質が付着した被汚染物を超臨界または液体状態の二酸化炭素に接触させる前処理工程と、超臨界または液体状態の二酸化炭素を減圧して超臨界または液体状態の二酸化炭素を気体状態にすることにより放射性物質を被汚染物から分離する工程を含む放射性物質の除染方法において、分離工程で分離した放射性物質に液体状の二酸化炭素を供給して前記放射性物質を洗浄する洗浄工程と、洗浄工程で洗浄された放射性物質と液体状態の二酸化炭素とを含む流体を放射性物質の凝集体と流体とに分離して放射性物質の凝集体を回収する第1回収工程と、第1回収工程で分離した流体を減圧して流体に含まれる液体状態の二酸化炭素を気体状態にして体積を増大させることにより流体に流速を与える減圧工程と、流体を放射性物質の微粒子と気体状態の二酸化炭素とに分離して放射性物質の微粒子を回収する第2回収工程と、第2回収工程で分離した気体状態の二酸化炭素を加圧して超臨界または液体状態の二酸化炭素にする加圧工程とを有するものである(例えば特許文献1参照)。
【0005】
【特許文献1】
特開2002−207097号公報(第2頁、左欄)
【0006】
【発明が解決しようとする課題】
上記従来の除染方法では、放射性物質の凝集体を回収するために、前処理工程、分離工程、洗浄工程および凝集体の回収工程を要するので、除染工程が複雑である。また、除染装置は洗浄装置、固気分離器などのほかに固液分離器を要するので、装置構成も複雑となっている。
【0007】
この発明は、上記問題を解決し、汚染物の除染作業および除染装置の構成が簡単な放射性汚染物の除染方法およびその除染装置を提供することを課題としている。
【0008】
【課題を解決するための手段】
この発明の放射性汚染物の除染方法は、除染流体が二酸化炭素からなり、放射性物質で汚染された汚染物を収納した除染容器に除染流体を供給して汚染物を除染する除染方法において、超臨界または液体状態の除染流体を除染容器内に噴出させて汚染物を除染し、汚染物から分離した放射性物質を容器底部に沈殿させ、除染後の除染流体を減圧装置で気体状態とし、気体状態の除染流体中の放射性物質を放射性物質分離器で捕集し、放射性物質を捕集した気体除染流体を圧縮機で昇圧して超臨界または液体状態とする工程で、除染流体を順次圧縮機、除染容器、減圧装置および放射性物質分離器を循環させ、除染流体を所定時間循環させたのち除染容器から除染流体を気体状態にして前記沈殿した放射性物質とともに放射性物質蓄積容器に噴出させ、さらに気体状態の除染流体を放射性物質蓄積容器から減圧装置に排出する。ここで、放射性物質は、放射性物質自体、または放射性物質が結合または付着した金属、金属酸化物、プラスチックなどの細片もしくは粒子をいう。
【0009】
上記放射性汚染物の除染方法では、超臨界状態の除染流体を順次前記除染容器、減圧装置、放射性物質分離器および圧縮機を連続して循環させるので、前処理、分離、洗浄、凝集体回収の各工程を独立して行う従来の除染方法より除染作業および装置の構成が簡単となる。
【0010】
上記除染方法において、複数のノズルから液体除染流体を汚染物に向かって噴出する、または除染容器内の液体除染流体に超音波を加えるようにしてもよい。これにより、除染容器内での除染が促進され、除染時間が短縮される。また、放射性物質蓄積容器内の放射性物質が所定量に達すると放射性物質を放射性物質回収容器に排出することも可能である。これにより、蓄積した放射性物質を簡便かつ安全に廃棄することができる。さらに、放射性物質が固着するなどして容易に除染できない場合、汚染状況に応じて表面活性剤や蓚酸などの除染補助剤を用いることが好ましい。
【0011】
この発明の放射性汚染の除染装置は、二酸化炭素からなる除染流体を超臨界または液体状態に圧縮する圧縮機と、除染流体を気体状態とする減圧装置と、気体除染流体中の放射性物質を気体除染流体から分離する放射性物質分離器と、放射性物質で汚染された汚染物を収納する除染容器と、前記圧縮機と除染容器とを接続する除染流体供給管と、除染流体供給管に設けられた除染流体供給止め弁と、除染容器と前記減圧装置とを接続する除染流体戻り管と、除染流体戻り管に設けられた除染流体戻り止め弁とを備えた放射性汚染物の除染装置であって、前記除染容器の圧力より低い圧力に保持され、除染容器の底部に沈殿した放射性物質を蓄積する放射性物質蓄積容器と、前記除染容器の底部と放射性物質蓄積容器とを接続する放射性物質排出管と、放射性物質排出管に設けられた放射性物質排出止め弁と、前記放射性物質蓄積容器と前記減圧装置とを接続する気体除染流体排出管と、気体除染流体排出管に設けられた気体除染流体止め弁とからなっている。
【0012】
この放射性汚染物の除染装置では、超臨界状態の除染流体を順次前記除染容器、減圧装置、放射性物質分離器および圧縮機を連続して循環させ、除染することができるので、従来の除染方法より除染作業および装置の構成が簡単となる。
【0013】
上記除染装置において、前記除染容器が垂直方向に延びる竪形であって、汚染物を収納して前記開口部から出し入れ可能なかごを備えた構造としてもよい。かごの側面および下面から除染流体が流入して汚染物全体を同時に除染するので、除染作業時間を大きく短縮することができる。
【0014】
前記除染容器のボデーが円筒状をしており、筒中心軸線に沿って延びる回転ロッドと、駆動ロッドに連結されたかご回転駆動装置とを備え、駆動ロッドが中心部を貫通するようにして複数のかごが積み重ねられるている構造としてもよい。この除染装置によれば、かご回転駆動装置により複数のかごが回転するため、噴出ノズルから噴出する除染流体がかご内に収納された固体廃棄物を、全体から満遍なく除染するため、回転させない場合に比べていっそう除染効果の向上が得られる。
【0015】
前記除染容器が水平方向に延びる横形であって、容器内部に容器一端から他端の前記開口部まで延びるレールを備え、前記かごがこれの底部に設けられた車輪を介してレール上を移動可能である構造としてもよい。
【0016】
上記除染装置において、液体除染流体を汚染物に向かって噴出する複数のノズルが汚染容器の内壁に設けられた構造としてもよい。液体除染流体に超音波を加える超音波発振子が除染容器内に配置された構造としてもよい。さらに、、前記放射性物質蓄積容器内の圧力より低い圧力に保持され、放射線遮蔽された放射性物質回収容器と、放射性物質蓄積容器と放射性物質回収容器とを接続する放射性物質回収管と、放射性物質回収管に設けられた放射性物質回収止め弁とを備えた構造としてもよい。
【0017】
【発明の実施の形態】
図1〜図3は、この発明の第1の実施の形態を示している。図1は除染装置の構成図、図2は除染容器の縦断面図を含む除染装置の模式図、および図3は図2のA方向矢視図ある。この実施の形態では、放射性物質で汚染された手工具または測定具(以下、作業工具という)を除染対象とし、除染された作業工具は、再使用される。
【0018】
除染装置は、主として除染流体処理装置10、除染容器20a、放射性物質蓄積容器60、および放射性物質回収容器70からなっている。
除染流体処理装置10は、圧縮機11、減圧装置14および放射性物質分離器17からなっている。圧縮機11は、除染流体(二酸化炭素)を昇圧して超臨界または液体状態とする。減圧装置14は、除染容器20から送られてきた除染流体を所定圧力に減圧する。超臨界または液体の除染流体は、減圧装置14で気体となる。減圧装置14として、減圧弁、圧力調整弁などが用いられる。放射性物質分離器17はフィルターを備えており、減圧装置14から送られてきた気体除染流体中の微粒の放射性物質をフィルターで捕集し、除染流体から放射性物質を分離する。
【0019】
除染容器20aは、耐圧機能を有する竪形のボデー21aを備えている。ボデー21aは、上部にガスケット31を介してカバー30aがボルト32で締め付けられて、密閉されている。ボデー21aの底部25には、床面に着座するための台座28が止めボルト29で取り付けられている。カバー30aは、上部に吊下げ用のアイボルト33が設けられている。また、ボデー21aの側壁22には、除染流体を注入する注入ボス23および除染流体を排出する戻りボス24が設けられている。注入ボス23には、除染流体供給管43を介して除染流体処理装置10の供給口に接続されている。除染流体供給管43は除染流体注入止め弁37が取り付けられている。戻りボス24は除染流体戻り管44を介して除染流体処理装置10の戻り口15に接続されている。除染流体戻り管44には、除染流体戻り止め弁40が取り付けられている。これにより、除染流体循環ループが形成されている。ボデー21の底部には、放射性物質排出口26が設けられている。
【0020】
ボデー21aの側壁22の内面に、垂直に延びる4本のノズルヘッダー47が周方向に間隔をおいて固定されており、ノズルヘッダー47は注入ボス23に通じている。各ノズルヘッダー47には、噴出ノズル48が設けられている。噴出ノズル48は、噴出(広がり)角が可変となっている。
【0021】
ボデー21aの内部には、フレーム51に金網52または格子を取り付けた環状のかご50が収納されている。かご50には、ロッド54がかご中央部の軸穴53を貫通しており、ロッド下端のつば55がかご底面に引っ掛かるようになっている。ロッド54の上部は、カバー30aの案内穴に34はめ合っている。カバー30aを外した状態で、ロッド54を電気ホイスト(図示しない)などで吊り上げ、下げして、かご50をボデー21aの開口部27から出し入れする。ボデー21aの側壁22には、周方向に間隔をおいて6個の超音波発振器57が埋め込まれており、超音波発振器57の発振子58はボデー21a内部に露出している。
【0022】
放射性物質蓄積容器60は、入口が前記除染容器20aの底部25の放射性物質排出口26に放射性物質排出管63を介して接続されている。放射性物質蓄積容器60内の圧力は、除染容器20a内の圧力より低い圧力に保持されている。放射性物質排出管63には、放射性物質排出止め弁64が設けられている。放射性物質蓄積容器60の頂部の気体室61が気体除染流体排出管66を介して前記減圧装置14に接続されている。放射性物質排出管63に、気体除染流体止め弁67が設けられている。
【0023】
放射性物質回収容器70は放射性物質蓄積容器60の出側に配置されており、放射性物質蓄積容器60と放射性物質回収管71を介して接続されている。放射性物質回収管71には、放射性物質回収止め弁72が設けられている。放射性物質回収容器70は鉛板で囲われており、放射性物質回収容器70から放射能が外部に漏れるのを防いでいる。
【0024】
つぎに、上記のように構成された除染装置による除染方法について説明する。
まず、カバー30を外し、除染容器20a内部からかご50を取り出し、放射性物質で汚染された手工具あるいは測定具などの汚染物をかご50に入れる。電気ホイストなどでかご50を吊り、ボデー21aに挿入する。ついで、ボデー21aにガスケット31をセットし、カバー30aをアイボルト33で吊って蓋をし、ボルト32を締め付けてボデー21aを密閉する。
【0025】
除染装置運転前では、除染流体注入止め弁37などすべての止め弁は、閉止された状態にある。また、除染流体処理装置10は、圧縮機11の出口圧力が二酸化炭素の臨界圧力(7.1MPa、31℃)以上となるように、また減圧装置14は出口圧力が大気圧近くとなるように設定されている。
【0026】
この状態で、除染流体処理装置10の運転を開始し、除染流体注入止め弁37および除染流体戻り止め弁40を開き、除染流体処理装置10の供給口12より超臨界状態の除染流体を送り出す。除染容器20a内の圧力は、除染流体注入止め弁37出口の圧力より低く設定されている。したがって、超臨界除染流体は、除染流体注入止め弁37、注入ボス23およびノズルヘッダー47を経て複数の噴出ノズル48から除染容器20a内に噴出する。除染容器20aは、噴出した超臨界除染流体で充満される。
【0027】
噴出する超臨界除染流体の動圧による衝撃力が放射性物質に与えられ、放射性物質が汚染物から分離される。また、超臨界除染流体の高い浸透性および拡散性により、汚染物の狭隘部に入り込んだ微細な放射性物質が、狭隘部から洗い出される。汚染物から分離された粗い放射性物質および微細な放射性物質は沈降し、除染容器20aの底部25に沈殿する。
【0028】
かご50はフレーム51に金網52または格子を取り付けた構造となっているので、複数の噴出ノズル48より噴出した超臨界除染流体は、かご50内の汚染物全体を満遍なく除染することができる。噴出ノズル48の噴出角は、あらかじめ汚染物の大きさ、形状に応じて調整されているので、除染効果を向上させることができる。また、超臨界または液体除染流体で除染中は、超音波発振器57で除染流体に超音波振動を与える。これにより、除染が促進され、除染時間は短縮される。
【0029】
除染容器20a内の超臨界除染流体は、除染容器20aから前記戻りボス24、除染流体戻り止め弁40および除染流体戻り管44を経て流出し、除染流体処理装置10に戻る。このとき、除染容器20a内で沈殿しなかった微細な放射性物質が、除染流体とともに除染容器20aから流出する。超臨界除染流体は除染容器20aを出た所で臨界圧力以下の液体または気体となり、減圧装置14で大気圧近くに減圧され気体除染流体となる。ついで、気体除染流体は放射性物質分離器17で、微細な放射性物質がフィルター、充填層などにより捕集され、または吸着剤に吸着され、気体除染流体から分離される。ここで捕集される微細な放射性物質は、除染容器20aで沈殿せずに除染容器20aから流出したものである。したがって、すべての放射性物質をフィルターなどで捕集する方法に比べて捕集量はかなり減少するので、放射性物質分離器17で発生する放射性物質の廃棄量およびフィルターなどの洗浄、交換回数は少なくて済む。
【0030】
手工具、測定具などの汚染物が再使用可能な放射能レベルに低下するまで、除染流体処理装置10と除染容器20aとの間で除染流体を循環させる。除染初期では超臨界除染流体を除染容器20aに供給するが、狭隘部に入り込んだ微細な放射性物質が狭隘部から洗い出された後は、液体除染流体を供給してもよい。
【0031】
上記除染工程が終了すると、除染流体注入止め弁37および除染流体戻り止め弁40を閉じ、放射性物質排出止め弁64および気体除染流体排出止め弁67を開く。これにより、除染容器20a内の圧力が低下し、超臨界または液体除染流体は急激に膨張して気体除染流体となり、放射性物質排出止め弁64を通り、放射性物質蓄積容器60に流入する。このとき、汚染物に付着していた放射性物質が気体除染流体の流れにより分離され、分離された放射性物質と除染容器20aの底部25に沈殿していた放射性物質とが気体除染流体とともに放射性物質蓄積容器60に流入する。放射性物質蓄積容器60に流入した気体除染流体は、放射性物質蓄積容器60の頂部の気体室61から気体除染流体排出止め弁67および気体除染流体排出管66を経て除染流体処理装置10に戻る。このとき、除染容器20a内に残留していた微細な放射性物質が気体除染流体とともに除染流体処理装置10に戻り、放射性物質分離器17で捕集される。
【0032】
上記除染工程の繰返しで放射性物質蓄積容器60内の放射性物質蓄積量は増加するが、この蓄積量は放射性物質レベルセンサー69で検出される。蓄積量があらかじめ設定した量に達した場合、放射性物質排出止め弁64および気体除染流体排出止め弁67を閉じ、放射性物質回収止め弁72を徐々に開く。放射性物質蓄積容器60内の圧力は放射性物質回収容器70内の圧力(大気圧)より高いので、放射性物質蓄積容器60内の気体除染流体は、放射性物質回収止め弁72および放射性物質回収管71を通って、放射性物質回収容器70に流入する。放射性物質蓄積容器60内の放射性物質は、気体除染流体の噴出により放射性物質回収容器70内に排出される。放射性物質回収容器70は、所定量の放射性物質が溜まると放射性物質回収管71を外して放射性廃棄物置き場に搬送される。
【0033】
図4および図5はこの発明の第2の実施の形態を示しており、図4は横形の除染容器20の縦断面図を含む除染装置の模式図、および図5は図4のB方向矢視図である。この実施の形態では、放射性物質で汚染された作業工具を除染対象とし、除染された作業工具は、再使用される。以下の実施の形態では、図1〜図3に示す装置、部材と同様のものには同じ参照符号を付け、その詳細な説明は省略する。
【0034】
除染容器20bは、耐圧機能を有する横形のボデー21bおよびこれの開口部を覆うカバー30bを備えている。ボデー21bの内部には、底部25に車輪77が取り付けられたかご50が収納される。水平方向に延びるレール76が、ボデー21bの壁面に固定されている。かご50は、レール76上を移動してボデー21bに挿入され、あるいはボデー21bから引き出される。
【0035】
除染装置による除染方法において、まず除染容器20b内部のかご50を外部に引き出し、汚染された作業工具をかご50に入れる。この状態で車輪77をボデー21b内のレール76に沿わせてかご50をボデー21b内に搬入する。ついで、ボデー21bにガスケット31をセットし、カバー30bをアイボルト33で吊って蓋をし、ボルト24で締結して、ボデー21bを密閉する。この状態で、除染流体処理装置10の供給口12より除染流体を送り出し、除染流体供給管43から除染流体注入止め弁37および注入ボス23を介して、除染流体を密閉されたボデー21bの内部に注入する。以下の洗浄工程は、第1の実施の形態の工程と同じである。
【0036】
図6および図7は、この発明の第3の実施の形態を示すもので、図6は竪形の除染容器の断面図を含む除染装置の模式図、および図7は図6のC方向矢視図である。この実施の形態では、除染対象が固体廃棄物であり、固体廃棄物を貯蔵可能な放射性レベル以下に除染する。固体廃棄物として、例えば定期検査工事で切断されたパイプ、板などがある。
図6および図7において、除染容器20cは、カバー30cで密閉される。竪形のボデー21cの内部には、複数の環状のかご50が積み重ねられて収納されている。ロッド54が積み重ねられたかご50を中央部の軸穴53を貫通しており、ロッド下端のつば55がかご底面に引っ掛かるようになっている。
【0037】
上記除染装置による除染方法について説明すると、まず除染容器20c内部の複数の連結したかご50を外部に出した状態で、固体廃棄物をかご50に入れる。この状態でロッド54でかご50を吊り、ボデー21cに挿入する。つぎにボデー21cにガスケット31をセットし、カバー30cをアイボルト33で吊って蓋をし、ボルト32で密閉する。以下の洗浄工程は、第1の実施の形態の場合と同じである。
【0038】
この除染装置では除染対象が固体廃棄物であり、固体廃棄物は放射性物質を含む流体に長時間接しているため、さびなどが発生し、放射性物質が固着するなどして容易に除染できないものが多い。したがって、除染流体は二酸化炭素単体ではなく、汚染状況に応じて除染補助剤を用いることが好ましい。もちろん、この除染装置を用いて、作業工具などを再使用可能な放射性レベル以下に除染することもできる。
【0039】
図8および図9はこの発明の第4の実施の形態を示すものである。図8は竪形の除染容器に縦断面図を含む除染装置の模式図、および図9は図8のD方向矢視図ある。横断面図である。この実施の形態では、除染対象が汚染物が固体廃棄物である。図6に示す除染装置の除染効果を一層向上するために、除染装置はかご回転駆動装置を備えている。
【0040】
除染容器20dは前記図6に示す除染容器20dの基本構成は同じであるが、複数のかご50を支える回転ロッド80が設けられ、これに駆動ロッド81が連結されている。すなわち、回転ロッド80は回転可能にするため上部をガイドブッシュ82で支持され、下部はブッシュ83で支持された駆動ロッド81を介して、かご回転駆動装置87に連結されている。また、駆動ロッド81は軸受84で回転可能に支持され、除染容器20dからの漏洩をシールリング85で防止している。
【0041】
上記除染装置において、かご回転駆動装置87を駆動することにより、駆動ロッド81を介して回転ロッド80が回転し、それに伴ない回転ロッド80に取り付けられた複数のかご50が回転する。噴出ノズル48から噴出する除染流体がかご内に収納された固体廃棄物全体を満遍なく除染するため、かご50を回転しない場合に比べて更なる除染効果の向上が得られる。なお、除染流体処理装置10の基本構成と除染機能については、図1に示す除染流体処理装置10と同様であるが、装置の容量が大きくなっている。
【0042】
図10および図11はこの発明の第5の実施の形態を示すものである。図10は横形の除染容器の縦断面図を含む除染装置の模式図、および図11は図10のE方向矢視図ある。
図10および図11において、除染装置は耐圧機能を有する横形のボデー21eを備え、このボデー21eはカバー30eが取り付けられている。ボデー21eの内部には、汚染された固体廃棄物を入れる長尺のかご50が収納される。ボデー21eからの挿入・引出しのための車輪77が、かご50の底部に取り付けられている。ボデー21eの側壁22内面に水平方向に延びるレール76が固定されている。
【0043】
上記除染装置において、除染容器20e内部の長尺のかご50を外部に引き出した状態で、固体廃棄物をかご50に入れる。この状態で車輪77をボデー21e内のレール76に沿ってかご50をボデー21e内に搬入する。次にボデー21eにガスケット31をセットし、カバー30eをアイボルト33で吊って蓋をし、ボルト32で密閉する。この状態で、除染流体処理装置10の供給口12から、密閉されたボデー21eの内部に除染流体を注入する。以下の洗浄工程は、除染容器20eの場合と同じである。
【0044】
【発明の効果】
この発明の放射性汚染物の除染方法または装置では、除染作業が簡単となるので作業時間が短縮され、作業者の放射線被ばく量も少なくなる。また、除染装置の構成が簡単となるので、設備費が安くなり、メンテナンスおよび除染作業後の装置自身の除染も容易となる。
【図面の簡単な説明】
【図1】この発明の第1の実施の形態を示すもので、除染装置の構成図である。
【図2】除染容器の縦断面図を含む除染装置の模式図である。
【図3】図2のA方向矢視図ある。
【図4】この発明の第2の実施の形態を示すもので、除染容器の縦断面図を含む除染装置の模式図である。
【図5】図4のB方向矢視図ある。
【図6】この発明の第3の実施の形態を示すもので、 除染容器の縦断面図を含む除染装置の模式図である。
【図7】図6のC方向矢視図ある。
【図8】この発明の第4の実施の形態を示すもので、 除染容器の縦断面図を含む除染装置の模式図である。
【図9】図8のD方向矢視図ある。
【図10】この発明の第5の実施の形態を示すもので、 除染容器の縦断面図を含む除染装置の模式図である。
【図11】図10のE方向矢視図ある。
【符号の説明】
10 除染流体処理装置 11 圧縮機
14 減圧装置 17 放射性物質分離器
20 除染容器 21 ボデー
23 注入ボス 24 戻りボス
25 ボデー底部 26 放射性物質排出口
27 開口部 28 台座
30 カバー 31 ガスケット
32 ボルト 37 除染流体注入止め弁
40 除染流体戻り止め弁 43 除染流体供給管
44 除染流体戻り管 47 ノズルヘッダー
48 噴出ノズル 50 かご
52 かごフレーム 53 金網
57 超音波発振器 58 発振子
60 放射性物質蓄積容器 61 気体室
63 放射性物質排出管 64 放射性物質排出止め弁
66 気体除染流体排出管 67 気体除染流体止め弁
69 放射性物質レベルセンサー 70 放射性物質回収容器
71 放射性物質回収管 72 放射性物質回収止め弁
74 放射線遮蔽板 76 レール
77 車輪 80 回転ロッド
81 駆動ロッド 87 かご回転駆動装置
[0001]
BACKGROUND OF THE INVENTION
This invention economically removes work tools and measuring tools that are contaminated with radioactivity by using regular inspection work at nuclear facilities, or radioactively contaminated solid waste generated by regular inspection work. The present invention relates to a decontamination method for dyeing and a decontamination apparatus used therefor.
[0002]
[Prior art]
Conventionally, hand tools such as spanners, pliers, hammers, etc. that have been contaminated with radioactive materials by using regular inspection work at nuclear facilities, etc., and measuring tools such as scales, calipers, and micrometers (hereinafter referred to as both work tools) Was washed with a cleaning solution using a cloth or brush, and then wiped off with a waste cloth to decontaminate. However, these conventional methods newly generate contaminated wastes such as cleaning liquids and wastes contaminated with radioactive substances, and work tools with complicated shapes cannot completely remove radioactive substances contained in narrow gaps. There was a problem. In addition, some of them are decontaminated as much as possible so that the radioactivity level is not lowered to an allowable value that can be taken out of the nuclear facility, and unavoidably discarded as solid waste. there were.
[0003]
Solid waste such as pipes, pumps, valves, and electric wires is processed by the blast decontamination method after, for example, relatively simple shapes of pipes, and complex debris such as pumps and valves are processed by the chemical decontamination method. Etc. Although the blast decontamination method can be decontaminated relatively easily, there are environmental problems such as the decontamination target being limited and the diffusion of dust containing radioactive substances into the air during blasting. The chemical decontamination method requires a long time for decontamination and is difficult to apply to oily and fat contaminants and paints. In addition, the treatment of the decontamination solution containing the radioactive material after dissolution requires a high level of processing technology, and a large amount of decontamination solution contaminated with the original contamination must be treated. There were many problems. For this reason, the cost of decontamination treatment has increased, and a large contaminant storage place has been required.
[0004]
As a technique for solving these problems, recently, a decontamination method for radioactive substances using supercritical or liquid carbon dioxide as a decontamination agent has been proposed. This decontamination method of radioactive material includes a pretreatment process in which a contaminated material to which powdered radioactive material is attached is brought into contact with supercritical or liquid carbon dioxide, and supercritical or liquid carbon dioxide is depressurized and superconducting. In a radioactive material decontamination method including a step of separating a radioactive substance from a contaminated substance by converting the carbon dioxide in a critical or liquid state into a gaseous state, liquid carbon dioxide is supplied to the radioactive substance separated in the separation step. And cleaning the radioactive material, and separating the fluid containing the radioactive material cleaned in the cleaning step and the liquid carbon dioxide into the radioactive material aggregate and the fluid to collect the radioactive material aggregate. The first recovery step and the fluid separated in the first recovery step are depressurized, and the liquid state carbon dioxide contained in the fluid is changed to a gaseous state to increase the volume, thereby giving the fluid a flow rate. A pressure step, a second recovery step in which the fluid is separated into radioactive fine particles and gaseous carbon dioxide to recover the radioactive fine particles, and the gaseous carbon dioxide separated in the second recovery step is pressurized And a pressurizing step for producing carbon dioxide in a supercritical or liquid state (see, for example, Patent Document 1).
[0005]
[Patent Document 1]
JP 2002-207097 (2nd page, left column)
[0006]
[Problems to be solved by the invention]
In the conventional decontamination method, a pretreatment process, a separation process, a washing process, and an aggregate recovery process are required to recover the aggregates of radioactive substances, so that the decontamination process is complicated. Further, since the decontamination apparatus requires a solid-liquid separator in addition to a cleaning apparatus, a solid-gas separator, etc., the apparatus configuration is also complicated.
[0007]
An object of the present invention is to solve the above-mentioned problems and to provide a decontamination method for radioactive contaminants and a decontamination device with a simple decontamination work and configuration of the decontamination device.
[0008]
[Means for Solving the Problems]
In the method for decontaminating radioactive contaminants according to the present invention, the decontamination fluid is made of carbon dioxide, and the decontamination fluid is supplied to a decontamination container containing the contaminants contaminated with the radioactive material to decontaminate the contaminants. In the decontamination method, a decontamination fluid in a supercritical or liquid state is ejected into the decontamination container to decontaminate the contaminants, and radioactive substances separated from the contaminants are precipitated at the bottom of the container, and the decontamination fluid after decontamination The gas decontamination fluid in a gaseous state is collected with a radioactive material separator, and the gas decontamination fluid that has collected the radioactive material is pressurized with a compressor to be in a supercritical or liquid state. In this process, the decontamination fluid is sequentially circulated through the compressor, the decontamination container, the decompression device and the radioactive substance separator, and after the decontamination fluid is circulated for a predetermined time, the decontamination fluid is changed to a gaseous state from the decontamination container. Injected into the radioactive material storage container together with the precipitated radioactive material Is allowed to further discharge the decontamination fluid in the gas state to the decompressor from the radioactive substance storing container. Here, the radioactive substance refers to a radioactive substance itself, or a strip or particle of metal, metal oxide, plastic or the like to which the radioactive substance is bound or attached.
[0009]
In the above decontamination method for radioactive contaminants, a supercritical decontamination fluid is sequentially circulated through the decontamination container, the decompression device, the radioactive substance separator and the compressor in succession, so that pretreatment, separation, washing, and coagulation are performed. The decontamination work and the configuration of the apparatus are simpler than the conventional decontamination method in which each step of collecting and collecting is performed independently.
[0010]
In the decontamination method, the liquid decontamination fluid may be ejected from a plurality of nozzles toward the contaminant, or ultrasonic waves may be applied to the liquid decontamination fluid in the decontamination container. Thereby, decontamination in a decontamination container is accelerated | stimulated and decontamination time is shortened. Further, when the radioactive substance in the radioactive substance storage container reaches a predetermined amount, the radioactive substance can be discharged into the radioactive substance recovery container. Thereby, the accumulated radioactive substance can be discarded simply and safely. Further, when the radioactive material is fixed and cannot be easily decontaminated, it is preferable to use a decontamination aid such as a surface active agent or oxalic acid depending on the contamination status.
[0011]
A decontamination apparatus for radioactive contamination according to the present invention includes a compressor that compresses a decontamination fluid composed of carbon dioxide into a supercritical or liquid state, a decompression device that converts the decontamination fluid into a gaseous state, and a radioactive material in the gas decontamination fluid. A radioactive substance separator that separates the substance from the gaseous decontamination fluid; a decontamination container that contains contaminants contaminated with the radioactive substance; a decontamination fluid supply pipe that connects the compressor and the decontamination container; A decontamination fluid supply stop valve provided in the decontamination fluid supply pipe, a decontamination fluid return pipe connecting the decontamination container and the decompression device, and a decontamination fluid detent valve provided in the decontamination fluid return pipe; A decontamination apparatus for radioactive contaminants, wherein the decontamination container is stored at a pressure lower than that of the decontamination container and accumulates a radioactive substance precipitated at the bottom of the decontamination container, and the decontamination container Of radioactive material connecting the bottom of the product and the radioactive material storage container A gas, a radioactive substance discharge stop valve provided in the radioactive substance discharge pipe, a gas decontamination fluid discharge pipe connecting the radioactive substance storage container and the decompression device, and a gas provided in the gas decontamination fluid discharge pipe It consists of a decontamination fluid stop valve.
[0012]
In this radioactive contaminant decontamination apparatus, the decontamination fluid in the supercritical state can be continuously decirculated by continuously circulating the decontamination container, the decompression apparatus, the radioactive substance separator and the compressor. The decontamination work and the configuration of the apparatus are simpler than the decontamination method.
[0013]
The decontamination apparatus may have a structure in which the decontamination container has a basket shape extending in a vertical direction, and includes a cage that accommodates contaminants and can be taken in and out from the opening. Since the decontamination fluid flows from the side surface and the lower surface of the car and the entire contaminant is decontaminated at the same time, the decontamination work time can be greatly shortened.
[0014]
The body of the decontamination container has a cylindrical shape, and includes a rotating rod extending along the center axis of the cylinder, and a car rotation driving device connected to the driving rod, so that the driving rod penetrates the center portion. A structure in which a plurality of cars are stacked may be used. According to this decontamination apparatus, since a plurality of cars are rotated by the car rotation driving device, the decontamination fluid ejected from the ejection nozzle is uniformly decontaminated from the entire solid waste stored in the car. The improvement of the decontamination effect is obtained compared with the case of not using it.
[0015]
The decontamination container has a horizontal shape extending in the horizontal direction, and includes a rail extending from one end of the container to the opening at the other end, and the car moves on the rail via a wheel provided at the bottom of the container. It is good also as a structure which is possible.
[0016]
The decontamination apparatus may have a structure in which a plurality of nozzles for ejecting the liquid decontamination fluid toward the contaminants are provided on the inner wall of the contamination container. An ultrasonic oscillator that applies ultrasonic waves to the liquid decontamination fluid may be arranged in a decontamination container. Furthermore, the radioactive substance recovery container that is held at a pressure lower than the pressure in the radioactive substance storage container and is shielded against radiation, the radioactive substance recovery pipe that connects the radioactive substance storage container and the radioactive substance recovery container, and the radioactive substance recovery It is good also as a structure provided with the radioactive substance collection | recovery stop valve provided in the pipe | tube.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
1 to 3 show a first embodiment of the present invention. FIG. 1 is a configuration diagram of the decontamination apparatus, FIG. 2 is a schematic diagram of the decontamination apparatus including a longitudinal sectional view of the decontamination container, and FIG. In this embodiment, a hand tool or a measuring tool (hereinafter referred to as a work tool) contaminated with a radioactive substance is a decontamination target, and the decontaminated work tool is reused.
[0018]
The decontamination apparatus mainly includes a decontamination fluid processing apparatus 10, a decontamination container 20a, a radioactive substance storage container 60, and a radioactive substance collection container 70.
The decontamination fluid processing apparatus 10 includes a compressor 11, a decompression device 14, and a radioactive substance separator 17. The compressor 11 pressurizes the decontamination fluid (carbon dioxide) to a supercritical or liquid state. The decompression device 14 decompresses the decontamination fluid sent from the decontamination container 20 to a predetermined pressure. The supercritical or liquid decontamination fluid becomes a gas in the decompression device 14. As the pressure reducing device 14, a pressure reducing valve, a pressure adjusting valve, or the like is used. The radioactive substance separator 17 includes a filter. The radioactive substance separator 17 collects the fine radioactive substance in the gas decontamination fluid sent from the decompression device 14 by the filter, and separates the radioactive substance from the decontamination fluid.
[0019]
The decontamination container 20a includes a bowl-shaped body 21a having a pressure resistance function. The body 21a is hermetically sealed by a cover 30a being fastened with bolts 32 via a gasket 31 at the top. A pedestal 28 for seating on the floor surface is attached to the bottom 25 of the body 21 a with a set bolt 29. The cover 30a is provided with an eyebolt 33 for suspension at the top. In addition, an injection boss 23 for injecting a decontamination fluid and a return boss 24 for discharging the decontamination fluid are provided on the side wall 22 of the body 21a. The injection boss 23 is connected to a supply port of the decontamination fluid processing apparatus 10 via a decontamination fluid supply pipe 43. A decontamination fluid supply stop valve 37 is attached to the decontamination fluid supply pipe 43. The return boss 24 is connected to the return port 15 of the decontamination fluid processing apparatus 10 via the decontamination fluid return pipe 44. A decontamination fluid detent valve 40 is attached to the decontamination fluid return pipe 44. Thereby, a decontamination fluid circulation loop is formed. A radioactive substance discharge port 26 is provided at the bottom of the body 21.
[0020]
Four nozzle headers 47 extending vertically are fixed to the inner surface of the side wall 22 of the body 21 a at intervals in the circumferential direction, and the nozzle header 47 communicates with the injection boss 23. Each nozzle header 47 is provided with an ejection nozzle 48. The ejection nozzle 48 has a variable ejection (expansion) angle.
[0021]
Inside the body 21a, an annular car 50 in which a metal net 52 or a lattice is attached to a frame 51 is housed. In the car 50, a rod 54 passes through a shaft hole 53 at the center of the car, and a flange 55 at the lower end of the rod is caught on the bottom of the car. The upper portion of the rod 54 is fitted in the guide hole 34 of the cover 30a. With the cover 30a removed, the rod 54 is lifted and lowered by an electric hoist (not shown) or the like, and the car 50 is taken in and out of the opening 27 of the body 21a. Six ultrasonic oscillators 57 are embedded in the side wall 22 of the body 21a at intervals in the circumferential direction, and the oscillator 58 of the ultrasonic oscillator 57 is exposed inside the body 21a.
[0022]
The radioactive substance storage container 60 has an inlet connected to the radioactive substance discharge port 26 at the bottom 25 of the decontamination container 20a via a radioactive substance discharge pipe 63. The pressure in the radioactive substance storage container 60 is maintained at a pressure lower than the pressure in the decontamination container 20a. The radioactive substance discharge pipe 63 is provided with a radioactive substance discharge stop valve 64. A gas chamber 61 at the top of the radioactive substance storage container 60 is connected to the decompression device 14 via a gas decontamination fluid discharge pipe 66. A gas decontamination fluid stop valve 67 is provided in the radioactive substance discharge pipe 63.
[0023]
The radioactive substance collection container 70 is disposed on the exit side of the radioactive substance storage container 60 and is connected to the radioactive substance storage container 60 via a radioactive substance collection pipe 71. The radioactive substance recovery pipe 71 is provided with a radioactive substance recovery stop valve 72. The radioactive substance recovery container 70 is surrounded by a lead plate to prevent leakage of radioactivity from the radioactive substance recovery container 70 to the outside.
[0024]
Next, a decontamination method using the decontamination apparatus configured as described above will be described.
First, the cover 30 is removed, the car 50 is taken out from the inside of the decontamination container 20a, and contaminants such as hand tools or measuring tools contaminated with radioactive substances are put into the car 50. The car 50 is hung with an electric hoist or the like and inserted into the body 21a. Next, the gasket 31 is set on the body 21a, the cover 30a is hung with an eyebolt 33 to cover it, and the bolt 32 is tightened to seal the body 21a.
[0025]
Before the decontamination apparatus is operated, all stop valves such as the decontamination fluid injection stop valve 37 are in a closed state. Further, the decontamination fluid processing apparatus 10 is configured so that the outlet pressure of the compressor 11 is equal to or higher than the critical pressure of carbon dioxide (7.1 MPa, 31 ° C.), and the decompression apparatus 14 is configured so that the outlet pressure is close to atmospheric pressure. Is set to
[0026]
In this state, the operation of the decontamination fluid treatment device 10 is started, the decontamination fluid injection stop valve 37 and the decontamination fluid detent valve 40 are opened, and the supercritical state removal is performed from the supply port 12 of the decontamination fluid treatment device 10. Send out the dye fluid. The pressure in the decontamination container 20a is set lower than the pressure at the outlet of the decontamination fluid injection stop valve 37. Accordingly, the supercritical decontamination fluid is ejected from the plurality of ejection nozzles 48 into the decontamination container 20 a via the decontamination fluid injection stop valve 37, the injection boss 23 and the nozzle header 47. The decontamination container 20a is filled with the ejected supercritical decontamination fluid.
[0027]
The impact force due to the dynamic pressure of the ejected supercritical decontamination fluid is applied to the radioactive material, and the radioactive material is separated from the contaminant. In addition, due to the high permeability and diffusivity of the supercritical decontamination fluid, fine radioactive materials that have entered the narrow part of the contaminant are washed out from the narrow part. Coarse radioactive materials and fine radioactive materials separated from the contaminants settle and settle on the bottom 25 of the decontamination container 20a.
[0028]
Since the car 50 has a structure in which a metal mesh 52 or a lattice is attached to the frame 51, the supercritical decontamination fluid ejected from the plurality of ejection nozzles 48 can uniformly decontaminate the entire contaminants in the car 50. . Since the ejection angle of the ejection nozzle 48 is adjusted in advance according to the size and shape of the contaminant, the decontamination effect can be improved. Further, during the decontamination with the supercritical or liquid decontamination fluid, ultrasonic vibration is applied to the decontamination fluid by the ultrasonic oscillator 57. Thereby, decontamination is accelerated | stimulated and decontamination time is shortened.
[0029]
The supercritical decontamination fluid in the decontamination container 20a flows out from the decontamination container 20a through the return boss 24, the decontamination fluid detent valve 40, and the decontamination fluid return pipe 44, and returns to the decontamination fluid processing apparatus 10. . At this time, the fine radioactive material that has not precipitated in the decontamination container 20a flows out of the decontamination container 20a together with the decontamination fluid. The supercritical decontamination fluid becomes a liquid or gas having a pressure lower than the critical pressure when it leaves the decontamination container 20a, and is depressurized to near atmospheric pressure by the decompression device 14 to become a gas decontamination fluid. Next, the gas decontamination fluid is separated from the gas decontamination fluid by a radioactive substance separator 17 where fine radioactive substances are collected by a filter, a packed bed or the like, or adsorbed by an adsorbent. The fine radioactive material collected here flows out of the decontamination container 20a without being precipitated in the decontamination container 20a. Accordingly, since the amount of collection is considerably reduced compared to the method of collecting all radioactive substances with a filter or the like, the amount of radioactive material generated by the radioactive substance separator 17 and the number of times of cleaning and replacement of the filter are reduced. That's it.
[0030]
The decontamination fluid is circulated between the decontamination fluid processing apparatus 10 and the decontamination container 20a until contaminants such as hand tools and measuring tools are reduced to a reusable radioactivity level. In the initial stage of decontamination, the supercritical decontamination fluid is supplied to the decontamination container 20a. However, the liquid decontamination fluid may be supplied after the fine radioactive material that has entered the narrow portion is washed out from the narrow portion.
[0031]
When the decontamination process is completed, the decontamination fluid injection stop valve 37 and the decontamination fluid return stop valve 40 are closed, and the radioactive substance discharge stop valve 64 and the gas decontamination fluid discharge stop valve 67 are opened. As a result, the pressure in the decontamination container 20a is reduced, and the supercritical or liquid decontamination fluid rapidly expands to become a gas decontamination fluid, flows through the radioactive substance discharge stop valve 64, and flows into the radioactive substance accumulation container 60. . At this time, the radioactive substance adhering to the contaminant is separated by the flow of the gas decontamination fluid, and the separated radioactive substance and the radioactive substance deposited on the bottom 25 of the decontamination container 20a are combined with the gas decontamination fluid. It flows into the radioactive substance storage container 60. The gas decontamination fluid that has flowed into the radioactive substance storage container 60 passes from the gas chamber 61 at the top of the radioactive substance storage container 60 through the gas decontamination fluid discharge stop valve 67 and the gas decontamination fluid discharge pipe 66. Return to. At this time, the fine radioactive substance remaining in the decontamination container 20 a returns to the decontamination fluid processing apparatus 10 together with the gas decontamination fluid and is collected by the radioactive substance separator 17.
[0032]
The radioactive substance accumulation amount in the radioactive substance accumulation container 60 increases as the decontamination process is repeated. This accumulation amount is detected by the radioactive substance level sensor 69. When the accumulated amount reaches a preset amount, the radioactive substance discharge stop valve 64 and the gas decontamination fluid discharge stop valve 67 are closed, and the radioactive substance recovery stop valve 72 is gradually opened. Since the pressure in the radioactive substance storage container 60 is higher than the pressure (atmospheric pressure) in the radioactive substance recovery container 70, the gas decontamination fluid in the radioactive substance storage container 60 is the radioactive substance recovery stop valve 72 and the radioactive substance recovery pipe 71. And flows into the radioactive substance recovery container 70. The radioactive substance in the radioactive substance storage container 60 is discharged into the radioactive substance collection container 70 by the ejection of the gas decontamination fluid. When a predetermined amount of radioactive material accumulates, the radioactive material recovery container 70 is removed from the radioactive material recovery pipe 71 and transferred to the radioactive waste storage site.
[0033]
4 and 5 show a second embodiment of the present invention, FIG. 4 is a schematic view of a decontamination apparatus including a longitudinal sectional view of a horizontal decontamination container 20, and FIG. FIG. In this embodiment, a work tool contaminated with a radioactive substance is a decontamination target, and the decontaminated work tool is reused. In the following embodiments, the same components as those shown in FIGS. 1 to 3 are denoted by the same reference numerals, and detailed description thereof is omitted.
[0034]
The decontamination container 20b includes a horizontal body 21b having a pressure resistance function and a cover 30b covering the opening of the body 21b. A car 50 having a wheel 77 attached to the bottom 25 is housed inside the body 21b. A rail 76 extending in the horizontal direction is fixed to the wall surface of the body 21b. The car 50 moves on the rail 76 and is inserted into the body 21b or pulled out from the body 21b.
[0035]
In the decontamination method using the decontamination apparatus, first, the car 50 inside the decontamination container 20b is pulled out, and the contaminated work tool is put into the car 50. In this state, the wheel 77 is moved along the rail 76 in the body 21b, and the car 50 is carried into the body 21b. Next, the gasket 31 is set on the body 21b, the cover 30b is hung with the eyebolt 33, covered, and fastened with the bolt 24 to seal the body 21b. In this state, the decontamination fluid is sent out from the supply port 12 of the decontamination fluid processing apparatus 10, and the decontamination fluid is sealed from the decontamination fluid supply pipe 43 through the decontamination fluid injection stop valve 37 and the injection boss 23. It is injected into the body 21b. The following cleaning process is the same as the process of the first embodiment.
[0036]
6 and 7 show a third embodiment of the present invention. FIG. 6 is a schematic view of a decontamination apparatus including a cross-sectional view of a bowl-shaped decontamination container, and FIG. FIG. In this embodiment, the decontamination target is solid waste, and the solid waste is decontaminated to a radioactive level that can be stored. Examples of solid waste include pipes and plates cut by regular inspection work.
6 and 7, the decontamination container 20c is sealed with a cover 30c. A plurality of annular cages 50 are stacked and housed inside the bowl-shaped body 21c. A car 50 in which rods 54 are stacked passes through a shaft hole 53 in the center, and a flange 55 at the lower end of the rod is hooked on the bottom of the car.
[0037]
The decontamination method using the decontamination apparatus will be described. First, solid waste is put into the car 50 in a state where a plurality of connected cars 50 inside the decontamination container 20c are taken out. In this state, the car 50 is suspended by the rod 54 and inserted into the body 21c. Next, the gasket 31 is set on the body 21 c, the cover 30 c is hung with the eye bolt 33, covered, and sealed with the bolt 32. The following cleaning process is the same as in the case of the first embodiment.
[0038]
In this decontamination equipment, the decontamination target is solid waste, and since the solid waste is in contact with the fluid containing the radioactive material for a long time, it is easily decontaminated by the occurrence of rust, etc. There are many things that cannot be done. Therefore, the decontamination fluid is not carbon dioxide alone, and it is preferable to use a decontamination aid depending on the contamination status. Of course, this decontamination apparatus can be used to decontaminate work tools and the like to a reusable radioactive level or lower.
[0039]
8 and 9 show a fourth embodiment of the present invention. 8 is a schematic view of a decontamination apparatus including a vertical cross-sectional view in a bowl-shaped decontamination container, and FIG. 9 is a view in the direction of arrow D in FIG. It is a cross-sectional view. In this embodiment, the decontamination target is a solid waste. In order to further improve the decontamination effect of the decontamination apparatus shown in FIG. 6, the decontamination apparatus includes a car rotation driving device.
[0040]
Although the basic configuration of the decontamination container 20d shown in FIG. 6 is the same as that of the decontamination container 20d, a rotation rod 80 for supporting a plurality of cars 50 is provided, and a drive rod 81 is connected thereto. That is, the rotating rod 80 is supported at the upper portion by the guide bush 82 so as to be rotatable, and the lower portion is coupled to the car rotation driving device 87 via the driving rod 81 supported by the bush 83. The drive rod 81 is rotatably supported by a bearing 84, and the seal ring 85 prevents leakage from the decontamination container 20d.
[0041]
In the decontamination apparatus, by driving the car rotation driving device 87, the rotating rod 80 rotates through the driving rod 81, and the plurality of cars 50 attached to the rotating rod 80 are rotated accordingly. Since the decontamination fluid ejected from the ejection nozzle 48 uniformly decontaminates the entire solid waste stored in the car, further improvement of the decontamination effect can be obtained as compared with the case where the car 50 is not rotated. The basic configuration and decontamination function of the decontamination fluid processing apparatus 10 are the same as those of the decontamination fluid processing apparatus 10 shown in FIG. 1, but the capacity of the apparatus is large.
[0042]
10 and 11 show a fifth embodiment of the present invention. FIG. 10 is a schematic view of a decontamination apparatus including a longitudinal sectional view of a horizontal decontamination container, and FIG. 11 is a view taken in the direction of arrow E in FIG.
10 and 11, the decontamination apparatus includes a horizontal body 21e having a pressure resistance function, and a cover 30e is attached to the body 21e. Inside the body 21e, a long car 50 for containing contaminated solid waste is accommodated. A wheel 77 for insertion and withdrawal from the body 21 e is attached to the bottom of the car 50. A rail 76 extending in the horizontal direction is fixed to the inner surface of the side wall 22 of the body 21e.
[0043]
In the decontamination apparatus, solid waste is put into the car 50 in a state where the long car 50 inside the decontamination container 20e is pulled out. In this state, the wheel 50 is carried along the rail 76 in the body 21e and the car 50 is carried into the body 21e. Next, the gasket 31 is set on the body 21 e, the cover 30 e is hung with the eye bolt 33, covered, and sealed with the bolt 32. In this state, the decontamination fluid is injected from the supply port 12 of the decontamination fluid processing apparatus 10 into the sealed body 21e. The following cleaning process is the same as in the case of the decontamination container 20e.
[0044]
【The invention's effect】
In the method or apparatus for decontaminating radioactive contaminants according to the present invention, the decontamination work is simplified, so the work time is shortened and the radiation exposure amount of the worker is reduced. In addition, since the configuration of the decontamination apparatus becomes simple, the equipment cost is reduced, and the decontamination of the apparatus itself after maintenance and decontamination work becomes easy.
[Brief description of the drawings]
FIG. 1 shows a first embodiment of the present invention and is a configuration diagram of a decontamination apparatus.
FIG. 2 is a schematic view of a decontamination apparatus including a longitudinal sectional view of a decontamination container.
FIG. 3 is a view taken in the direction of arrow A in FIG.
FIG. 4 shows a second embodiment of the present invention and is a schematic diagram of a decontamination apparatus including a longitudinal sectional view of a decontamination container.
5 is a view in the direction of arrow B in FIG.
FIG. 6 shows a third embodiment of the present invention and is a schematic view of a decontamination apparatus including a longitudinal sectional view of a decontamination container.
7 is a view in the direction of arrow C in FIG.
FIG. 8 shows a fourth embodiment of the present invention and is a schematic view of a decontamination apparatus including a longitudinal cross-sectional view of a decontamination container.
9 is a view in the direction of arrow D in FIG.
FIG. 10 shows a fifth embodiment of the present invention and is a schematic view of a decontamination apparatus including a longitudinal sectional view of a decontamination container.
11 is a view taken in the direction of arrow E in FIG.
[Explanation of symbols]
10 Decontamination fluid processing device 11 Compressor
14 Pressure reducing device 17 Radioactive material separator
20 Decontamination container 21 Body
23 Injection boss 24 Return boss
25 Body bottom 26 Radioactive material outlet
27 Opening 28 Pedestal
30 Cover 31 Gasket
32 Volt 37 Decontamination fluid injection stop valve
40 Decontamination fluid detent valve 43 Decontamination fluid supply pipe
44 Decontamination fluid return pipe 47 Nozzle header
48 jet nozzle 50 basket
52 Car frame 53 Wire mesh
57 Ultrasonic oscillator 58 Oscillator
60 Radioactive substance storage container 61 Gas chamber
63 Radioactive material discharge pipe 64 Radioactive material discharge stop valve
66 Gas decontamination fluid discharge pipe 67 Gas decontamination fluid stop valve
69 Radioactive material level sensor 70 Radioactive material recovery container
71 Radioactive material recovery pipe 72 Radioactive material recovery stop valve
74 Radiation shielding plate 76 Rail
77 Wheel 80 Rotating rod
81 Drive rod 87 Car rotation drive device

Claims (12)

除染流体が二酸化炭素からなり、放射性物質で汚染された汚染物を収納した除染容器に除染流体を供給して汚染物を除染する除染方法において、超臨界または液体状態の除染流体を除染容器内に噴出させて汚染物を除染し、汚染物から分離した放射性物質を容器底部に沈殿させ、除染後の除染流体を減圧装置で気体状態とし、気体状態の除染流体中の放射性物質を放射性物質分離器で捕集し、放射性物質を捕集した気体除染流体を圧縮機で昇圧して超臨界または液体状態とする工程で、除染流体を順次圧縮機、除染容器、減圧装置および放射性物質分離器を循環させ、除染流体を所定時間循環させたのち除染容器から除染流体を気体状態にして前記沈殿した放射性物質とともに放射性物質蓄積容器に噴出させ、さらに気体状態の除染流体を放射性物質蓄積容器から減圧装置に排出することを特徴とする放射性汚染物の除染方法。Supercritical or liquid decontamination in a decontamination method in which the decontamination fluid is made of carbon dioxide and the decontamination fluid is supplied to a decontamination container containing the contamination contaminated with radioactive substances. The fluid is ejected into the decontamination container to decontaminate the contaminants, the radioactive material separated from the contaminants is precipitated at the bottom of the container, and the decontamination fluid after decontamination is changed to a gaseous state with a decompression device. The radioactive material in the dyeing fluid is collected by the radioactive material separator, and the gas decontamination fluid that collects the radioactive material is pressurized by the compressor to bring it into the supercritical or liquid state. Circulate the decontamination container, the pressure reducing device and the radioactive substance separator, circulate the decontamination fluid for a predetermined time, and then make the decontamination fluid in a gaseous state and eject it together with the precipitated radioactive substance to the radioactive substance storage container And release the gaseous decontamination fluid. Decontamination method of radioactive contaminants, characterized by discharging the decompressor from sexual material accumulating vessel. 複数のノズルから前記除染流体を汚染物に向かって噴出する請求項1記載の放射性汚染物の除染方法。The decontamination method for radioactive contaminants according to claim 1, wherein the decontamination fluid is ejected from a plurality of nozzles toward the contaminant. 前記除染容器内の除染流体に超音波を加える請求項1または請求項2記載の放射性汚染物の除染方法。The method for decontaminating radioactive contaminants according to claim 1 or 2, wherein ultrasonic waves are applied to the decontamination fluid in the decontamination container. 前記放射性物質蓄積容器内の放射性物質が所定量に達すると放射性物質を放射線遮蔽された放射性物質回収容器に排出する請求項1、2または3項記載の放射性汚染物の除染方法。The method for decontaminating radioactive contaminants according to claim 1, 2 or 3, wherein when the radioactive substance in the radioactive substance storage container reaches a predetermined amount, the radioactive substance is discharged into a radioactive substance collection container which is shielded from radiation. 前記除染流体が除染補助剤を含む請求項1〜4のいずれか1項に記載の放射性汚染物の除染方法。The decontamination method for radioactive contaminants according to claim 1, wherein the decontamination fluid contains a decontamination aid. 二酸化炭素からなる除染流体を超臨界または液体状態に圧縮する圧縮機と、除染流体を気体状態とする減圧装置と、気体除染流体中の放射性物質を気体除染流体から分離する放射性物質分離器と、放射性物質で汚染された汚染物を収納する除染容器と、前記圧縮機と除染容器とを接続する除染流体供給管と、除染流体供給管に設けられた除染流体供給止め弁と、除染容器と前記減圧装置とを接続する除染流体戻り管と、除染流体戻り管に設けられた除染流体戻り止め弁とを備えた放射性汚染物の除染装置であって、前記除染容器内の圧力より低い圧力に保持され、除染容器の底部に沈殿した放射性物質を蓄積する放射性物質蓄積容器と、前記除染容器の底部と放射性物質蓄積容器とを接続する放射性物質排出管と、放射性物質排出管に設けられた放射性物質排出止め弁と、前記放射性物質蓄積容器と前記減圧装置とを接続する気体除染流体排出管と、気体除染流体排出管に設けられた気体除染流体止め弁とからなることを特徴とする放射性汚染物の除染装置。A compressor that compresses a decontamination fluid composed of carbon dioxide into a supercritical or liquid state, a decompression device that converts the decontamination fluid into a gas state, and a radioactive material that separates the radioactive material in the gas decontamination fluid from the gas decontamination fluid A separator, a decontamination container that contains contaminants contaminated with radioactive substances, a decontamination fluid supply pipe that connects the compressor and the decontamination container, and a decontamination fluid provided in the decontamination fluid supply pipe A decontamination apparatus for radioactive contaminants, comprising a supply stop valve, a decontamination fluid return pipe connecting the decontamination container and the decompression device, and a decontamination fluid detent valve provided in the decontamination fluid return pipe. A radioactive substance storage container that accumulates radioactive material that is held at a pressure lower than the pressure in the decontamination container and that settles at the bottom of the decontamination container, and connects the bottom of the decontamination container and the radioactive substance storage container Installed in the radioactive material discharge pipe and the radioactive material discharge pipe The radioactive material discharge stop valve, a gas decontamination fluid discharge pipe connecting the radioactive substance storage container and the pressure reducing device, and a gas decontamination fluid stop valve provided in the gas decontamination fluid discharge pipe. Characterized decontamination equipment for radioactive contaminants. 前記除染容器が垂直方向に延びる竪形であって、汚染物を収納して開口部から出し入れ可能なかごを備えた請求項6記載の放射性汚染物の除染装置。The decontamination apparatus for radioactive contaminants according to claim 6, wherein the decontamination container has a basket shape extending in the vertical direction, and includes a cage that accommodates contaminants and can be taken in and out of the opening. 前記除染容器のボデーが円筒状をしており、筒中心軸線に沿って延びる回転ロッドと、駆動ロッドに連結されたかご回転駆動装置とを備え、駆動ロッドが中心部を貫通するようにして複数のかごが積み重ねられるている請求項7の記載の除染装置。The body of the decontamination container has a cylindrical shape, and includes a rotating rod extending along the center axis of the cylinder, and a car rotation driving device connected to the driving rod, so that the driving rod penetrates the center portion. The decontamination apparatus according to claim 7, wherein a plurality of cars are stacked. 前記除染容器が水平方向に延びる横形であって、容器内部に容器一端から他端の前記開口部まで延びるレールを備え、前記かごがこれの底部に設けられた車輪を介してレール上を移動可能である請求項7記載の除染装置。The decontamination container has a horizontal shape extending in the horizontal direction, and includes a rail extending from one end of the container to the opening at the other end, and the car moves on the rail via a wheel provided at the bottom of the container. The decontamination apparatus according to claim 7, which is possible. 液体除染流体を汚染物に向かって噴出する複数のノズルが汚染容器の内壁に設けられた請求項6〜9のいずれか1項に記載の放射性汚染物の除染装置。The decontamination apparatus for radioactive contaminants according to any one of claims 6 to 9, wherein a plurality of nozzles for ejecting liquid decontamination fluid toward the contaminants are provided on the inner wall of the contamination container. 液体除染流体に超音波を加える超音波発振子が除染容器内に配置された請求項6〜10のいずれか1項に記載の放射性汚染物の除染装置。The decontamination apparatus for radioactive contaminants according to any one of claims 6 to 10, wherein an ultrasonic oscillator for applying ultrasonic waves to the liquid decontamination fluid is disposed in the decontamination container. さらに、前記放射性物質蓄積容器内の圧力より低い圧力に保持され、放射線遮蔽された放射性物質回収容器と、放射性物質蓄積容器と放射性物質回収容器とを接続する放射性物質回収管と、放射性物質回収管に設けられた放射性物質回収止め弁とを備えた請求項6〜11のいずれか1項に記載の放射性汚染物の除染装置。Further, the radioactive substance recovery container that is held at a pressure lower than the pressure in the radioactive substance storage container and shielded against radiation, the radioactive substance recovery pipe that connects the radioactive substance storage container and the radioactive substance recovery container, and the radioactive substance recovery pipe The decontamination apparatus of the radioactive contaminant of any one of Claims 6-11 provided with the radioactive substance collection | recovery stop valve provided in.
JP2003164636A 2003-06-10 2003-06-10 Method and apparatus for decontamination of radioactive contaminants Expired - Fee Related JP4044869B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003164636A JP4044869B2 (en) 2003-06-10 2003-06-10 Method and apparatus for decontamination of radioactive contaminants

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003164636A JP4044869B2 (en) 2003-06-10 2003-06-10 Method and apparatus for decontamination of radioactive contaminants

Publications (2)

Publication Number Publication Date
JP2005003408A true JP2005003408A (en) 2005-01-06
JP4044869B2 JP4044869B2 (en) 2008-02-06

Family

ID=34091353

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003164636A Expired - Fee Related JP4044869B2 (en) 2003-06-10 2003-06-10 Method and apparatus for decontamination of radioactive contaminants

Country Status (1)

Country Link
JP (1) JP4044869B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113963831A (en) * 2021-11-30 2022-01-21 中国原子能科学研究院 Heat pump evaporation treatment system and method for radioactive waste liquid treatment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113963831A (en) * 2021-11-30 2022-01-21 中国原子能科学研究院 Heat pump evaporation treatment system and method for radioactive waste liquid treatment
CN113963831B (en) * 2021-11-30 2023-10-24 中国原子能科学研究院 Heat pump evaporation treatment system and method for radioactive waste liquid treatment

Also Published As

Publication number Publication date
JP4044869B2 (en) 2008-02-06

Similar Documents

Publication Publication Date Title
US4601181A (en) Installation for cleaning clothes and removal of particulate contaminants especially from clothing contaminated by radioactive particles
EP0158743B1 (en) Process and device for cleaning parts of plants which are contaminated by radioactivity
US5302324A (en) Method for decontaminating substances contaminated with radioactivity, and method for decontaminating the materials used for said decontamination
JP5990442B2 (en) Volume reduction treatment method for contaminated soil
EP0148489B1 (en) Method and apparatus for decontaminating solid surface
JP4044869B2 (en) Method and apparatus for decontamination of radioactive contaminants
WO1993018524A1 (en) Decontamination apparatus
JP3009753B2 (en) Equipment with remote cleaning and waste collection and treatment by surface peeling in harmful media
US5749470A (en) Installation for decontaminating a radioactively contaminated surface
US5503591A (en) Apparatus for decontaminating substances contaminated with radioactivity
DE102006039035A1 (en) Method for surface treatment of work piece in treatment chamber of industrial purification plant by direct irradiation, involves removing fine metallic particles from surface of work piece and are emitted in periphery of workpiece
US5026432A (en) Method and apparatus for removing and disposing of contaminated concrete
WO2012165025A1 (en) Method for cleaning and decontaminating dust, earth, sand, and soil contaminated by radioactive substance
JP3166402B2 (en) Decontamination method of blast grit
JPH0882697A (en) Method and device for decontaminating radioactive pollutant
JP2004505285A (en) Integrated decontamination and characterization system and method
JPH07111477B2 (en) Cutting and demolition equipment for cylindrical structures
CN110433578A (en) A kind of cleaning device of dust settling pocket
JP2023013181A (en) Adsorbent recovery method
JP5885958B2 (en) Radiation contaminant removal unit and decontamination method
KR102613145B1 (en) Eco-friendly Automatic Cleaning Water Treating, Reusing Device Capable of Automatic Pigball Feeding and Treatment for Heat Exchanger Tube Cleaning Using Pigball
JP2933622B1 (en) Radioactive material recovery device
JPH06230185A (en) Decontamination method and device for radioactive waste
JP2960643B2 (en) Decontamination hood equipment for dry ice blast
CN113245327A (en) Decontamination method and device for radioactive storage tank

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20060727

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070821

A521 Written amendment

Effective date: 20071016

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20071113

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071116

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20101122

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111122

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111122

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121122

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121122

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131122

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees