JP2005003247A - Structure of thermal storage body of thermal storage type exhaust gas treatment device - Google Patents

Structure of thermal storage body of thermal storage type exhaust gas treatment device Download PDF

Info

Publication number
JP2005003247A
JP2005003247A JP2003165684A JP2003165684A JP2005003247A JP 2005003247 A JP2005003247 A JP 2005003247A JP 2003165684 A JP2003165684 A JP 2003165684A JP 2003165684 A JP2003165684 A JP 2003165684A JP 2005003247 A JP2005003247 A JP 2005003247A
Authority
JP
Japan
Prior art keywords
exhaust gas
heat storage
storage body
combustion chamber
thermal storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003165684A
Other languages
Japanese (ja)
Inventor
Yoshio Nakatani
好良 中谷
Hideo Yamaguchi
英男 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugai Ro Co Ltd
Original Assignee
Chugai Ro Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugai Ro Co Ltd filed Critical Chugai Ro Co Ltd
Priority to JP2003165684A priority Critical patent/JP2005003247A/en
Publication of JP2005003247A publication Critical patent/JP2005003247A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Incineration Of Waste (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a structure of a thermal storage body of a thermal storage type exhaust gas treatment device capable of effectively inhibiting the attachment of silica. <P>SOLUTION: This thermal storage type exhaust gas treatment device comprises the thermal storage body 4 which is faced to a combustion chamber for heating and decomposing an exhaust gas for alternately circulating an exhaust gas introduced into the combustion chamber and an exhaust gas discharged from the combustion chamber, and heated by the discharged exhaust gas for heating the introduced exhaust gas. Heat-proof coating layers C for reducing the surface energy, are formed on faces of the thermal storage body 4 to be exposed to the exhaust gas, concretely its upper face 4a faced to the combustion chamber and a face of a gas passage 10. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、シリカの付着を効果的に抑制することができる蓄熱式排ガス処理装置の蓄熱体構造に関する。
【0002】
【従来の技術】
塗装乾燥炉や金属熱処理炉等からの排ガスには、有機溶剤、可塑剤、油分あるいは界面活性剤等の他、それらが熱分解して発生した高沸点、高分子のヤニ成分や、アンモニア、硫化水素、あるいはダイオキシン類等の有害成分が含有されている。したがって、従来、一般に、有害成分を含有する排ガスは、脱臭装置とも称される蓄熱式排ガス処理装置に供給されて、有害成分を加熱分解処理して無害化したのち、排気塔から大気に放散している。
【0003】
蓄熱式排ガス処理装置は、一端が燃焼室に連通する少なくとも2以上の蓄熱体と、これら蓄熱体の他端に連通する開閉弁とを有し、導入排ガスを導入ダクトから開閉弁を介して蓄熱体のいずれかに流通させて、当該蓄熱体で予熱したうえで燃焼室に導入し、ここで有害成分を加熱分解して無害化し、無害化された排出排ガスを他の蓄熱体に流通させ熱交換させて降温した後、開閉弁を介して排気ダクトに排出し、排気塔から大気に放散する。そして、所定時間が経過すると、開閉弁の開閉状態を切り換えて、前工程で排出排ガスにより加熱された蓄熱体に、導入排ガスを流通させて予熱する一方、前工程で導入排ガスにより冷却された蓄熱体に、これを加熱すべく高温の排出排ガスを流通させ、その後大気に放散する工程を繰り返す。
【0004】
蓄熱体は、その内部に排ガスを流通させることができるように、セラミック製のハニカム構造を有する蓄熱材を複数段積層したもの、セラミック製の球状の蓄熱材を所定高さに積層したもの、さらには、複数本のセラミック製のパイプを所定長さに切断したもの等で構成されている。
【0005】
ところで、排ガス中に有機シリコンやシランカップリング剤などの珪素化合物が含有されている場合があり、排ガス中のこれら珪素化合物は、高温の炉内雰囲気中で酸化されて、微粒子状の酸化シリコン(SiO:以下、シリカと称す)となる。この微粒子状のシリカは、燃焼室に面する表面から排出排ガスが流通する方向に相当の深さにまでわたって、蓄熱体に付着して成長し、やがて目詰まりを生じさせて蓄熱体を閉塞させる。特に、燃焼室に面する蓄熱体の表面は最も温度が高く、この表面やその周辺でシリカが融着して堆積する。そしてこのシリカの付着・融着によって蓄熱体に閉塞が生じると、圧損が増大し、また蓄熱体の飛散が生じるなどして、蓄熱式排ガス処理装置の連続運転に支障をきたすことになる。
【0006】
従来は、蓄熱体の上記表面や排ガスが流通する内部に閉塞が生じるのを防止するために、蓄熱体を定期的に清掃していたが、融着したシリカは非常に硬度が高いため除去作業は極めて困難であり、かつ、清掃期間中は装置を稼動できず、稼動効率を低下させていた。このような点に鑑み、本願出願人は特許文献1に開示したように、蓄熱体へのシリカの付着成長を制御するには、排ガスが蓄熱体を通過する間に受け取る熱量(エネルギ)を少なくすればよいことに着目し、燃焼室の雰囲気温度を750℃以上810℃以下に維持するようにした「蓄熱式排ガス処理装置による排ガス処理方法」を提案した。
【0007】
【特許文献1】
特開2002−61822号公報
【0008】
【発明が解決しようとする課題】
上記特許文献1の開示技術は十分な蓄熱体の閉塞防止効果を発揮するが、本願発明者はシリカの付着メカニズムに関し、さらに排ガスに晒される蓄熱体の面の状態に関する知見を得、これに基づきさらに効果的な付着防止技術を完成するに至ったものである。
【0009】
本発明は、シリカの付着を効果的に抑制することができる蓄熱式排ガス処理装置の蓄熱体構造を提供することを目的とする。
【0010】
【課題を解決するための手段】
本発明にかかる蓄熱式排ガス処理装置の蓄熱体構造は、排ガスを加熱分解処理する燃焼室に面して設けられ、該燃焼室へ導入される排ガスと当該燃焼室から排出される排ガスとが交互に流通されて、排出される排ガスで加熱されて、導入される排ガスを加熱する蓄熱体を備えた蓄熱式排ガス処理装置において、排ガスに晒される上記蓄熱体の面に、その表面エネルギを低減させる耐熱性のコーティング層を形成したことを特徴とする。
【0011】
コーティング層は、排ガスの熱に耐え得る耐熱性を有し、かつ蓄熱体の面の表面エネルギを低減して、これによりシリカが蓄熱体の面に付着するのを効果的に防止することが可能であって、当該蓄熱体の閉塞を抑制し得る。
【0012】
また、前記コーティング層は、表面温度が少なくとも750℃以上の前記蓄熱体の面に形成されることを特徴とする。コーティング層は、シリカの付着が顕著となる、少なくとも750℃以上の蓄熱体の面に形成すれば良く、コーティング層の形成範囲を特定してコーティング量を削減することで、シリカの付着防止機能を備えた蓄熱体を容易かつ安価に得ることが可能となる。
【0013】
コーティング層を形成するコーティング材としては、窒化硼素、モリブデンもしくは雲母を含むものが好ましい。
【0014】
【発明の実施の形態】
以下に、本発明にかかる蓄熱式排ガス処理装置の蓄熱体構造の好適な一実施形態を、添付図面を参照して詳細に説明する。本発明にかかる蓄熱体構造が採用される本実施形態の蓄熱式排ガス処理装置1は、加熱手段としてのバーナ3を備えて排ガスを加熱分解処理する燃焼室2と、この燃焼室2に面して設けられた少なくとも2つ(図では3つ)の蓄熱体4(4A,4B,4C)と、各蓄熱体4に連通され、導入ダクトP1からの珪素化合物および有害成分を含有する導入排ガスをいずれかの蓄熱体4に流通させる第1開閉弁V1(V1a,V1b,V1c)と、各蓄熱体4に連通され、燃焼室2で有害成分が加熱分解処理された排出排ガスを、他の蓄熱体4を流通させて排気ダクトP2へ排気する第2開閉弁V2(V2a,V2b,V2c)と、残りの蓄熱体4へパージガスを供給する第3開閉弁V3(V3a,V3b,V3c)とを備える。なお、必ずしも各蓄熱体4それぞれに複数の開閉弁V1,V2,V3を設ける必要はなく、1つのロータリバルブで各蓄熱体4への給排気を切り換えるようにしてもよい。
【0015】
排気ダクトP2には排気ファンFが設けられ、この排気ファンFの下流側に分岐ダクトP4が設けられ、この分岐ダクトP4は第3開閉弁V3に接続され、排出排ガスがパージガスとして利用される。
【0016】
次に、前記構成からなる蓄熱式排ガス処理装置1による排ガス処理方法を説明する。まず、珪素化合物を含有する導入排ガス中の有害成分(溶剤)濃度がその自燃限界濃度より低い場合においては、燃焼室2内は、これに設けた温度測定手段TBの測定温度に基づいてバーナ3の燃焼量が制御されて、雰囲気温度が750〜810℃に保持される。
【0017】
そして、第1開閉弁V1a、第2開閉弁V2c、第3開閉弁V3bおよび分岐ダクトP4に設けた開閉弁V6を開とし、他を閉として排気ファンFを駆動すると、導入排ガス(たとえば、塗装乾燥炉からの有機シリコンと有機溶剤等を含有する排ガス)は、導入ダクトP1 から第1開閉弁V1aを介し、第1蓄熱体4Aを流通して燃焼室2に至り、ここで有機溶剤等が加熱分解される。その後、排出排ガスは第3蓄熱体4Cを流通し、当該蓄熱体4Cと熱交換して冷却され約230℃に降温されたのち、第2開閉弁V2cから排気ダクトP2を経て排気塔5より大気に放散される。
【0018】
また、排出排ガスの一部は、排気ファンFにより分岐ダクトP4、第3開閉弁V3bを通って第2蓄熱体4Bを流通し、当該蓄熱体4B内に残留する排ガスを燃焼室2内へパージする。そして各開閉弁V1,V2,V3は、所定時間毎に切り換わる。
【0019】
すなわち、所定時間(たとえば1分)が経過すると、第1開閉弁V1a、第2開閉弁V2c、第3開閉弁V3bは閉、第1開閉弁V1c、第2開閉弁V2bおよび第3開閉弁V3aが開となり、前工程で排出排ガスにより加熱された第3蓄熱体4Cに導入排ガスが流通され、予熱されたのち燃焼室2内で加熱分解され、その排出排ガスは、前工程でパージされた第2蓄熱体4Bから排気ダクトP2を経て排気塔5より大気に放散される。一方、第1蓄熱体4Aにはパージガスが供給され、前述と同様、当該蓄熱体4A内に残留する排ガスを燃焼室2にパージすることになる。以後、開閉弁V1,V2,V3を切り換えて第1蓄熱体4Aに排出排ガスを流通させ、第2蓄熱体4Bに導入排ガスを流通させ、第3蓄熱体4Cにパージガスを供給し、その後、前記工程を繰り返す。
【0020】
ところで、蓄熱体4自体は従来と同様に、その内部に排ガスを流通させることができるように、例えば図3に示したセラミック製のハニカム構造を有する蓄熱材を複数段積層したもの、セラミック製の球状の蓄熱材を所定高さに積層したもの、さらには、複数本のセラミック製のパイプを所定長さに切断したもの等、開閉弁V1,V2,V3側と燃焼室2側との間を連通する多数のガス通路10を備えて構成される。
【0021】
そして本発明者等は、シリカによる蓄熱体4の閉塞メカニズムについて、鋭意研究の結果、次のような知見を得た。第1に、シリカの付着層は、燃焼室2に面する最も温度の高い蓄熱体4の表面、図示例にあっては上面4aからガス通路10内の相当の深さまで存在し、その破断面を観察すると部分的に貝殻模様が確認されたことから、シリカは、蓄熱体4の上面4aに付着しさらには融着して層状に成長しながら、この層状のシリカがガス通路10内の通路面に向かって次第に侵入していき、この結果、排ガスに晒されるこれら蓄熱体4の面、具体的には蓄熱体4の上面4aやガス通路10の通路面でシリカの堆積が進行し、これによって蓄熱体4が閉塞されると考えられる。
【0022】
また、燃焼室2内で有機シリコンなどの珪素化合物が高温で酸化されてできるシリカそのものは、燃焼室2内で採取されたものを観察した結果、粒子径が最小のもので1μm未満という小さい粒子の凝集体であった。このように小さい粒子であると、比表面積が極端に大きいため、表面張力(表面エネルギ)もかなり大きなものとなり、粒子の接触部では大きな粒子の場合よりもはるかに低い温度で融着が起きるようになる。このようなことから、微細なシリカパウダが蓄熱体上面4aやガス通路10の通路面に凝集または衝突によって付着し、微粒子であるために燃焼室温度が810℃付近であっても融着して固着すると推定される。上述した貝殻模様が部分的に見られるのは、粒子同士が融着していることを示している。蓄熱体4の温度分布からすると、750℃以上の部分で融着が起こっており、熱分解処理に要する高温状態ではこの融着は避けられないと考えられる。
【0023】
第2に、そしてこの点が重要であるが、図4に示すように、蓄熱体4の面には、これが熱衝撃によって破損されることを防止する目的で、直径数十μm程度の微細な孔であるマクロポア12が無数に存在していて、このマクロポア12の存在が、蓄熱体4の面へのガス状物質、すなわちシリカの吸着性を高めていると推定される。燃焼室2に面して高温となり、かつ排ガスに晒される蓄熱体上面4aで、そのマクロポア12の内部にシリカが詰まっていたことが観察されたことからも、それが理解される。
【0024】
従って、蓄熱体4の面で固着が起こるのは、その原因の一つとして高温であることが挙げられる他に、蓄熱体4の面が、シリカになろうとしている原因ガス(排ガス)を引き付け易い、ガス吸着性を示す表面であるためと推定される。このために、蓄熱体4の面にシリカの微粒子が付着し、一定以上の温度であれば、シリカによる閉塞が相当の確率で起こると考えられる。
【0025】
本願発明者等は上記知見に基づき、シリカが付着する蓄熱体4の面を、はっすい性ガラスが水をはじくように、付着し難いものとすることができれば、閉塞を解決することができるとの結論に至ったものである。例えば、はっすい性のガラスは、弗素化合物やシランカップリング剤を塗布することで表面エネルギを低減させることができる。そして、それよりも表面エネルギの高い水が付着したときには、これらはっすい性ガラスおよび水の挙動は、表面エネルギが最小に保たれるように、すなわちこの例では、表面エネルギの高い水の表面積が最小になるよう、水は球に近づこうとして、はっすい性が発揮される。
【0026】
以上のような検討に基づき、本実施形態にあっては図2に示すように、燃焼室2へ導入される導入排ガスと当該燃焼室2から排出される排出排ガスとが交互に流通されて、排出排ガスで加熱されて、導入排ガスを加熱するために、排ガスに晒されるマクロポア12を有する蓄熱体4の面に、具体的にはその上面4aおよびガス通路10の通路面に、その表面エネルギを低減させる耐熱性のコーティング層Cが形成される。
【0027】
蓄熱体4の面に、その表面エネルギを低減させて、いわゆる疎水性とするコーティング層Cを形成することで、蓄熱体4の面のマクロポア12に蓋をして、吸着しにくい表面を形成することができる。また、蓋をすることができないとしても、コーティング層Cによってマクロポア12の入口の表面エネルギを低い状態にすることは可能であり、マクロポア12へのシリカの侵入を防止することができる。コーティング層Cの表面は、平坦面になることが望ましい。
【0028】
コーティング層Cを形成するコーティング材としては、鋳物の離型材として用いられる、微粒子状であって、高温状態で安定な耐熱性を有する窒化硼素やモリブデンなどを含むものを採用することが好ましい。また、雲母を含むコーティング材を用いてもよい。実際、蓄熱体4の面に形成した窒化硼素を含むコーティング材によって形成したコーティング層Cに水を付着させた場合、コーティング層Cは水よりもその表面エネルギが低いので、水滴は球状を保つことが観察された。他方、通常の蓄熱体4の表面では水滴が近づくとこれを瞬時に吸水してしまうことが観察された。
【0029】
このようにコーティング層Cは、燃焼室2内の雰囲気温度や流通する排ガスの熱に耐え得る耐熱性を有し、かつ蓄熱体4の面の表面エネルギを低減するので、これによりシリカが蓄熱体4の面、例えばその上面4aやガス通路10の通路面に付着するのを適切に防止することができ、当該蓄熱体4が閉塞されるのを抑制することができる。これにより、蓄熱体4をメンテナンスフリーとすることが可能になり、また圧損の低減および蓄熱体4の飛散防止を確保することができて、蓄熱式排ガス処理装置1の長期間にわたる連続運転が可能となる。
【0030】
また、コーティング層Cは、シリカの付着が顕著となる、表面温度が少なくとも750℃以上に達する領域Rの蓄熱体4の面に形成すれば良く、これにより、コーティング層Cの形成範囲Rを特定してコーティング量を削減することで、シリカの付着防止機能を備えた蓄熱体4を容易かつ安価に得ることができる。
【0031】
他方、融着を軽減するために、上記特許文献1で本願出願人が開示した燃焼室2内の雰囲気温度を810℃以下に抑える技術と、組み合わせることが好ましい。この特許文献1では、燃焼室2の雰囲気温度を約750〜810℃と低く設定し、蓄熱体4の保有熱量を減少させることで、排ガスに供給される熱エネルギを少なくし、珪素化合物がシリカになるのに必要な反応時間を長くするようにし、これにより蓄熱体4におけるシリカの付着成長を抑制するようにしている。
【0032】
具体的には、図1に示すように、導入ダクトP1に第1制御弁V4を備えた希釈ガス供給管P3を設け、この第1制御弁V4を温度測定手段TBからの信号により開閉するようにし、燃焼室2の雰囲気温度が810℃まで上昇すると、第1制御弁V4を開として導入排ガス中に希釈ガス(たとえば空気)を供給して、燃焼室2の雰囲気温度が750〜810℃となるように制御する。
【0033】
また、排ガスの処理量(流量)は、排気ファンFを制御して導入ダクトP1内を所定の圧力に保持することで調整しているが、前述のように導入ダクトP1へ希釈ガスを供給するために第1制御弁V4を開くと、導入ダクトP1内の圧力が大気圧に近づくため上昇し、珪素化合物および有害物質を含有する排ガスの処理量が減少する。そこで、第1制御弁V4の開放による排ガスの処理量の減少を防ぐために導入ダクトP1内の圧力を検出し、この検出した圧力が変動したら導入ダクトP1内の圧力を所定値に保持するよう排気ファンFのモータMの回転数を増やしている。
【0034】
さらに、導入排ガス中に希釈ガスを供給しても燃焼室2の雰囲気温度が上昇する場合、燃焼室2の雰囲気温度が820℃に達すると、温度測定手段TBからの信号により第2制御弁V5を開として、燃焼室2の高温雰囲気の一部を分岐排気ダクトP5を介して直接排気ダクトP2へ排出して、燃焼室2の雰囲気温度の上昇を抑制する。このような燃焼室2内の温度制御との組み合わせによって、効果的に蓄熱体4の閉塞防止を達成することができる。
【0035】
次に、蓄熱式排ガス処理装置1の蓄熱体4の形成方法について説明する。基本的には、排ガスに晒される蓄熱体4の面に、その表面エネルギを低減させる耐熱性のコーティング材を噴霧して、コーティング層Cを形成するようにすればよい。噴霧に際しては、一般的な加圧式のスプレーを使用すればよい。また、コーティング作業は、蓄熱体4を蓄熱式排ガス処理装置1に取り付けたままで、実施することができる。
【0036】
まず、コーティング材を噴霧する前に、ガス通路10の口径が狭まらないように、蓄熱体4に付着している異物を除去する。また、コーティング材は水で希釈しておく。水でコーティング材を希釈することで、噴霧されるコーティング材の粘度を下げて、スムーズな噴射と、スプレーによる蓄熱体4の面への噴霧の均一化を確保することができる。コーティング材は常温状態で蓄熱体4に噴霧する。蓄熱体4自身の高い吸水性によって、水分がすぐに蓄熱体4に吸収され、コーティング材だけが蓄熱体4に密着される。コーティング材の噴霧は、燃焼室2に面する上面4aから750℃以上に達する部分のガス通路10内にわたって行う。以上のような手順により、コーティング層Cを蓄熱体に容易に形成することができる。
【0037】
【発明の効果】
以上要するに、本発明にかかる蓄熱式排ガス処理装置の蓄熱体構造にあっては、蓄熱体へのシリカの付着を効果的に抑制することができる。
【図面の簡単な説明】
【図1】本発明にかかる蓄熱式排ガス処理装置の蓄熱体構造が採用される蓄熱式排ガス処理装置の一例を示す概略構成図である。
【図2】本発明にかかる蓄熱式排ガス処理装置の蓄熱体構造の好適な一実施形態を示す部分斜視図である。
【図3】蓄熱式排ガス処理装置の蓄熱体の一般的な構造を示す蓄熱体上面部の斜視図である。
【図4】図3の蓄熱体の表面に存在するマクロポアを示す蓄熱体の部分側断面図である。
【符号の説明】
1 蓄熱式排ガス処理装置
2 燃焼室
4 蓄熱体
4a 蓄熱体の上面
10 ガス通路
C コーティング層
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a heat storage body structure of a heat storage type exhaust gas treatment device that can effectively suppress silica adhesion.
[0002]
[Prior art]
Exhaust gas from paint drying furnaces and metal heat treatment furnaces includes organic solvents, plasticizers, oils, surfactants, etc., as well as high-boiling, polymeric spear components generated by thermal decomposition of these, ammonia, sulfide It contains harmful components such as hydrogen or dioxins. Therefore, conventionally, exhaust gas containing harmful components is generally supplied to a regenerative exhaust gas treatment device, also called a deodorizing device, and the harmful components are thermally decomposed and made harmless, and then diffused from the exhaust tower to the atmosphere. ing.
[0003]
The heat storage type exhaust gas treatment apparatus has at least two or more heat storage bodies having one end communicating with the combustion chamber, and an on-off valve communicating with the other end of these heat storage bodies, and stores the introduced exhaust gas from the introduction duct through the on-off valve. Circulate to any one of the body, preheat it with the heat storage body, introduce it into the combustion chamber, where the harmful components are thermally decomposed and rendered harmless, and the harmless exhaust gas is circulated to other heat storage bodies After the temperature is lowered by exchanging, it is discharged to an exhaust duct through an on-off valve and diffused from the exhaust tower to the atmosphere. When a predetermined time has elapsed, the open / close state of the on-off valve is switched and preheated by circulating the introduced exhaust gas to the heat storage body heated by the exhaust exhaust gas in the previous process, while being stored by the introduced exhaust gas in the previous process. Repeat the process of circulating hot exhaust gas to the body to heat it and then dissipate it into the atmosphere.
[0004]
The heat accumulator is formed by laminating a plurality of stages of heat accumulating materials having a ceramic honeycomb structure so that exhaust gas can be circulated therein, and by laminating ceramic spherical heat accumulating materials at a predetermined height, and Is composed of a plurality of ceramic pipes cut into a predetermined length.
[0005]
By the way, in some cases, silicon compounds such as organic silicon and silane coupling agents are contained in the exhaust gas, and these silicon compounds in the exhaust gas are oxidized in a high-temperature furnace atmosphere to form particulate silicon oxide ( SiO 2 : hereinafter referred to as silica). This particulate silica extends from the surface facing the combustion chamber to a considerable depth in the direction in which the exhaust gas flows, and grows by adhering to the heat accumulator, eventually clogging and clogging the heat accumulator. Let In particular, the surface of the heat storage body facing the combustion chamber has the highest temperature, and silica is fused and deposited on this surface and its periphery. If the heat accumulator is clogged by the adhesion and fusion of silica, the pressure loss increases and the heat accumulator is scattered, thereby hindering the continuous operation of the heat accumulator.
[0006]
Conventionally, in order to prevent clogging of the surface of the heat storage body and the inside where the exhaust gas circulates, the heat storage body is regularly cleaned, but the fused silica is extremely hard and is removed. It was extremely difficult, and the apparatus could not be operated during the cleaning period, thus lowering the operation efficiency. In view of such a point, as disclosed in Patent Document 1, the applicant of the present application controls the amount of heat (energy) received while exhaust gas passes through the heat storage body in order to control the adhesion growth of silica on the heat storage body. Focusing on what is necessary, an “exhaust gas treatment method using a regenerative exhaust gas treatment apparatus” was proposed in which the atmosphere temperature in the combustion chamber was maintained at 750 ° C. or more and 810 ° C. or less.
[0007]
[Patent Document 1]
Japanese Patent Laid-Open No. 2002-61822
[Problems to be solved by the invention]
Although the disclosed technique of Patent Document 1 exhibits a sufficient effect of preventing the blockage of the heat storage body, the inventor of the present application has obtained knowledge about the adhesion mechanism of silica, and further the state of the surface of the heat storage body exposed to the exhaust gas. In addition, an effective adhesion prevention technique has been completed.
[0009]
An object of this invention is to provide the thermal storage body structure of the thermal storage type exhaust gas processing apparatus which can suppress the adhesion of a silica effectively.
[0010]
[Means for Solving the Problems]
The heat storage structure of the heat storage type exhaust gas processing apparatus according to the present invention is provided facing a combustion chamber for thermally decomposing exhaust gas, and the exhaust gas introduced into the combustion chamber and the exhaust gas discharged from the combustion chamber alternately In a regenerative exhaust gas treatment apparatus equipped with a heat accumulator that is heated by exhaust gas that is distributed and discharged and heats the introduced exhaust gas, the surface energy of the heat accumulator exposed to the exhaust gas is reduced. A heat-resistant coating layer is formed.
[0011]
The coating layer has heat resistance that can withstand the heat of the exhaust gas, and can reduce the surface energy of the surface of the heat accumulator, thereby effectively preventing silica from adhering to the surface of the heat accumulator. Then, the blockage of the heat storage body can be suppressed.
[0012]
Further, the coating layer is formed on the surface of the heat storage body having a surface temperature of at least 750 ° C. or more. The coating layer may be formed on the surface of the heat storage body of at least 750 ° C. where the silica adhesion becomes significant. By specifying the formation range of the coating layer and reducing the coating amount, the silica adhesion preventing function can be achieved. It becomes possible to obtain the provided heat storage body easily and inexpensively.
[0013]
As a coating material for forming the coating layer, a material containing boron nitride, molybdenum or mica is preferable.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
EMBODIMENT OF THE INVENTION Below, suitable one Embodiment of the thermal storage body structure of the thermal storage type exhaust gas processing apparatus concerning this invention is described in detail with reference to an accompanying drawing. A regenerative exhaust gas treatment apparatus 1 according to this embodiment in which a heat storage body structure according to the present invention is employed is provided with a combustion chamber 2 that includes a burner 3 as a heating means and thermally decomposes exhaust gas, and faces the combustion chamber 2. And at least two (three in the figure) heat storage bodies 4 (4A, 4B, 4C) provided in communication with each heat storage body 4 and introducing exhaust gas containing silicon compounds and harmful components from the introduction duct P1 The first on-off valve V1 (V1a, V1b, V1c) that is circulated through any one of the heat storage bodies 4 and the exhaust gas that is communicated with each heat storage body 4 and has been subjected to thermal decomposition treatment of harmful components in the combustion chamber 2 A second on-off valve V2 (V2a, V2b, V2c) that circulates the body 4 and exhausts to the exhaust duct P2, and a third on-off valve V3 (V3a, V3b, V3c) that supplies purge gas to the remaining heat storage body 4 Prepare. Note that it is not always necessary to provide each of the heat storage bodies 4 with a plurality of on-off valves V1, V2, V3, and the supply / exhaust to each heat storage body 4 may be switched with a single rotary valve.
[0015]
An exhaust fan F is provided in the exhaust duct P2, and a branch duct P4 is provided on the downstream side of the exhaust fan F. The branch duct P4 is connected to the third on-off valve V3, and the exhaust gas is used as a purge gas.
[0016]
Next, an exhaust gas treatment method by the regenerative exhaust gas treatment apparatus 1 having the above-described configuration will be described. First, in the case where the harmful component (solvent) concentration in the introduced exhaust gas containing the silicon compound is lower than its self-flammability limit concentration, the combustion chamber 2 has the burner 3 based on the measured temperature of the temperature measuring means TB provided therein. Is controlled to maintain the atmospheric temperature at 750 to 810 ° C.
[0017]
When the first on-off valve V1a, the second on-off valve V2c, the third on-off valve V3b, and the on-off valve V6 provided in the branch duct P4 are opened and the other is closed, the exhaust fan F is driven, and the exhaust gas introduced (for example, paint) Exhaust gas containing organic silicon and organic solvent from the drying furnace) flows from the introduction duct P1 through the first on-off valve V1a to the combustion chamber 2 through the first heat storage body 4A. Thermally decomposed. After that, the exhaust gas flows through the third heat storage body 4C, is cooled by exchanging heat with the heat storage body 4C, cooled to about 230 ° C., and then discharged from the exhaust tower 5 through the exhaust duct P2 from the second on-off valve V2c. To be dissipated.
[0018]
Further, a part of the exhaust gas flows through the second heat storage body 4B through the branch duct P4 and the third on-off valve V3b by the exhaust fan F, and the exhaust gas remaining in the heat storage body 4B is purged into the combustion chamber 2 To do. And each on-off valve V1, V2, V3 switches for every predetermined time.
[0019]
That is, when a predetermined time (for example, 1 minute) elapses, the first on-off valve V1a, the second on-off valve V2c, and the third on-off valve V3b are closed, and the first on-off valve V1c, the second on-off valve V2b, and the third on-off valve V3a. Is opened, the introduced exhaust gas is distributed to the third heat storage body 4C heated by the exhaust gas in the previous process, preheated and then thermally decomposed in the combustion chamber 2, and the exhaust gas is purged in the previous process. 2 It is dissipated from the heat storage body 4B to the atmosphere from the exhaust tower 5 through the exhaust duct P2. On the other hand, purge gas is supplied to the first heat storage body 4A, and the exhaust gas remaining in the heat storage body 4A is purged into the combustion chamber 2 as described above. Thereafter, the on-off valves V1, V2, and V3 are switched so that the exhaust gas is circulated through the first heat storage body 4A, the introduced exhaust gas is circulated through the second heat storage body 4B, and the purge gas is supplied to the third heat storage body 4C. Repeat the process.
[0020]
By the way, in the same way as in the past, the heat storage body 4 itself has a structure in which a plurality of heat storage materials having a ceramic honeycomb structure shown in FIG. Between the on-off valves V1, V2, and V3 side and the combustion chamber 2 side, such as those in which spherical heat storage materials are laminated at a predetermined height, or a plurality of ceramic pipes cut to a predetermined length A plurality of gas passages 10 communicating with each other are provided.
[0021]
And the present inventors obtained the following knowledge as a result of earnest research about the obstruction | occlusion mechanism of the thermal storage body 4 by a silica. First, the silica adhesion layer exists from the surface of the heat storage body 4 having the highest temperature facing the combustion chamber 2, in the illustrated example, from the upper surface 4 a to a considerable depth in the gas passage 10. As a result, it was confirmed that the silica layer adhered to the upper surface 4a of the heat accumulator 4 and further fused to grow into a layer, and this layered silica passed through the gas passage 10. As the result, the silica gradually accumulates on the surface of the heat storage body 4 exposed to the exhaust gas, specifically, the upper surface 4a of the heat storage body 4 and the passage surface of the gas passage 10, It is considered that the heat storage body 4 is blocked by the above.
[0022]
Further, the silica itself, which is formed by oxidizing a silicon compound such as organic silicon in the combustion chamber 2 at a high temperature, is a small particle having a minimum particle size of less than 1 μm as a result of observing the sample collected in the combustion chamber 2. It was an aggregate. In such a small particle, the specific surface area is extremely large, so the surface tension (surface energy) also becomes considerably large, and fusion occurs at a temperature much lower than that of a large particle at the contact portion of the particle. become. For this reason, fine silica powder adheres to the upper surface 4a of the heat storage body 4 or the passage surface of the gas passage 10 by agglomeration or collision, and because it is a fine particle, it is fused and fixed even when the combustion chamber temperature is around 810 ° C. It is estimated that. The partial appearance of the shell pattern described above indicates that the particles are fused. Judging from the temperature distribution of the heat accumulator 4, fusion occurs at a temperature of 750 ° C. or higher, and it is considered that this fusion is inevitable in a high temperature state required for the thermal decomposition treatment.
[0023]
Second, and this point is important, as shown in FIG. 4, the surface of the heat accumulator 4 has a fine diameter of about several tens of micrometers in order to prevent it from being damaged by thermal shock. There are an infinite number of macropores 12 that are pores, and it is estimated that the presence of the macropores 12 enhances the adsorptivity of gaseous substances on the surface of the heat storage body 4, that is, silica. This is also understood from the fact that silica was clogged in the macropores 12 on the upper surface 4a of the heat accumulator that faced the combustion chamber 2 and was exposed to exhaust gas.
[0024]
Therefore, the sticking occurs on the surface of the heat storage body 4 is caused by the high temperature as one of the causes, and the surface of the heat storage body 4 attracts the cause gas (exhaust gas) that is going to become silica. It is presumed that the surface is easy to show gas adsorbability. For this reason, if the silica fine particles adhere to the surface of the heat storage body 4 and the temperature is above a certain level, it is considered that clogging with silica occurs with a considerable probability.
[0025]
Based on the above findings, the inventors of the present application can solve the blockage if the surface of the heat storage body 4 to which the silica adheres can be made difficult to adhere so that the frosted glass repels water. The conclusion was reached. For example, the surface energy can be reduced by applying a fluorine compound or a silane coupling agent to a glass having a high gloss property. And when water with higher surface energy adheres, the behavior of these glazing glasses and water is such that the surface energy is kept to a minimum, i.e. in this example the surface area of water with higher surface energy. In order to minimize the water, the water tends to approach the sphere, and it is very slick.
[0026]
Based on the above examination, in this embodiment, as shown in FIG. 2, the introduced exhaust gas introduced into the combustion chamber 2 and the exhaust exhaust gas discharged from the combustion chamber 2 are alternately circulated, In order to heat the introduced exhaust gas, the surface energy is applied to the surface of the heat storage body 4 having the macropores 12 exposed to the exhaust gas, specifically, the upper surface 4a and the passage surface of the gas passage 10 in order to heat the introduced exhaust gas. A heat-resistant coating layer C to be reduced is formed.
[0027]
The surface energy of the heat storage body 4 is reduced to form a so-called hydrophobic coating layer C, so that the macropores 12 on the surface of the heat storage body 4 are covered to form a surface that is difficult to adsorb. be able to. Even if it cannot be covered, the surface energy at the entrance of the macropore 12 can be lowered by the coating layer C, and the intrusion of silica into the macropore 12 can be prevented. The surface of the coating layer C is preferably a flat surface.
[0028]
As the coating material for forming the coating layer C, it is preferable to employ a material containing boron nitride or molybdenum which is used as a mold release material and is in the form of fine particles and has stable heat resistance in a high temperature state. Moreover, you may use the coating material containing a mica. Actually, when water is adhered to the coating layer C formed by the coating material containing boron nitride formed on the surface of the heat storage body 4, the surface energy of the coating layer C is lower than that of water, so that the water droplets are kept in a spherical shape. Was observed. On the other hand, it was observed that when a water droplet approaches the surface of the normal heat storage body 4, it absorbs water instantly.
[0029]
In this way, the coating layer C has heat resistance that can withstand the atmospheric temperature in the combustion chamber 2 and the heat of the exhaust gas flowing, and reduces the surface energy of the surface of the heat storage body 4. 4, for example, the upper surface 4 a and the passage surface of the gas passage 10 can be appropriately prevented, and the heat storage body 4 can be prevented from being blocked. As a result, it becomes possible to make the heat storage body 4 maintenance-free, reduce pressure loss and prevent the heat storage body 4 from being scattered, and allow the heat storage type exhaust gas treatment apparatus 1 to operate continuously over a long period of time. It becomes.
[0030]
Further, the coating layer C may be formed on the surface of the heat storage body 4 in the region R where the surface temperature reaches at least 750 ° C., in which the silica adheres significantly, thereby identifying the formation range R of the coating layer C. By reducing the coating amount, the heat storage body 4 having a silica adhesion preventing function can be obtained easily and inexpensively.
[0031]
On the other hand, in order to reduce fusion, it is preferable to combine with the technique which suppresses the atmospheric temperature in the combustion chamber 2 to 810 degrees C or less which the applicant of this application disclosed by the said patent document 1. FIG. In this patent document 1, the atmospheric temperature of the combustion chamber 2 is set as low as about 750 to 810 ° C., and the amount of heat stored in the heat storage body 4 is reduced, so that the heat energy supplied to the exhaust gas is reduced, and the silicon compound is silica. The reaction time required to become longer is made longer, thereby suppressing the silica adhesion growth in the heat storage body 4.
[0032]
Specifically, as shown in FIG. 1, a dilution gas supply pipe P3 having a first control valve V4 is provided in the introduction duct P1, and the first control valve V4 is opened and closed by a signal from the temperature measuring means TB. When the atmospheric temperature in the combustion chamber 2 rises to 810 ° C., the first control valve V4 is opened to supply dilution gas (for example, air) into the introduced exhaust gas, and the atmospheric temperature in the combustion chamber 2 becomes 750 to 810 ° C. Control to be.
[0033]
Further, the exhaust gas treatment amount (flow rate) is adjusted by controlling the exhaust fan F to maintain the inside of the introduction duct P1 at a predetermined pressure. As described above, the dilution gas is supplied to the introduction duct P1. Therefore, when the first control valve V4 is opened, the pressure in the introduction duct P1 increases because it approaches atmospheric pressure, and the amount of exhaust gas containing silicon compounds and harmful substances decreases. Therefore, the pressure in the introduction duct P1 is detected in order to prevent a reduction in the amount of exhaust gas treated due to the opening of the first control valve V4, and when the detected pressure fluctuates, the exhaust in order to maintain the pressure in the introduction duct P1 at a predetermined value. The number of rotations of the motor M of the fan F is increased.
[0034]
Further, when the atmospheric temperature of the combustion chamber 2 rises even if the dilution gas is supplied into the introduced exhaust gas, when the atmospheric temperature of the combustion chamber 2 reaches 820 ° C., the second control valve V5 is received by a signal from the temperature measuring means TB. Is opened, and a part of the high-temperature atmosphere in the combustion chamber 2 is directly discharged to the exhaust duct P2 via the branch exhaust duct P5 to suppress an increase in the atmosphere temperature in the combustion chamber 2. The combination with such temperature control in the combustion chamber 2 can effectively prevent the heat storage body 4 from being blocked.
[0035]
Next, a method for forming the heat storage body 4 of the heat storage type exhaust gas treatment apparatus 1 will be described. Basically, the coating layer C may be formed by spraying a heat-resistant coating material that reduces the surface energy on the surface of the heat storage body 4 exposed to the exhaust gas. In spraying, a general pressurized spray may be used. The coating operation can be performed with the heat storage body 4 attached to the heat storage type exhaust gas treatment device 1.
[0036]
First, before spraying a coating material, the foreign material adhering to the heat storage body 4 is removed so that the aperture of the gas passage 10 may not be narrowed. The coating material is diluted with water. By diluting the coating material with water, the viscosity of the sprayed coating material can be lowered to ensure smooth spraying and uniform spraying on the surface of the heat storage body 4 by spraying. The coating material is sprayed onto the heat storage body 4 in a normal temperature state. Due to the high water absorption of the heat storage body 4 itself, moisture is immediately absorbed by the heat storage body 4, and only the coating material is in close contact with the heat storage body 4. The spraying of the coating material is performed over the portion of the gas passage 10 that reaches 750 ° C. or more from the upper surface 4 a facing the combustion chamber 2. By the procedure as described above, the coating layer C can be easily formed on the heat storage body.
[0037]
【The invention's effect】
In short, in the heat storage body structure of the heat storage type exhaust gas treatment apparatus according to the present invention, silica adhesion to the heat storage body can be effectively suppressed.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram showing an example of a heat storage type exhaust gas treatment apparatus in which a heat storage body structure of a heat storage type exhaust gas treatment apparatus according to the present invention is adopted.
FIG. 2 is a partial perspective view showing a preferred embodiment of a heat storage structure of a heat storage type exhaust gas treatment apparatus according to the present invention.
FIG. 3 is a perspective view of a heat storage body upper surface portion showing a general structure of a heat storage body of a heat storage type exhaust gas treatment apparatus.
4 is a partial side cross-sectional view of a heat storage body showing macropores existing on the surface of the heat storage body of FIG. 3;
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Thermal storage type exhaust gas processing apparatus 2 Combustion chamber 4 Thermal storage body 4a Upper surface 10 of thermal storage body Gas passage C Coating layer

Claims (3)

排ガスを加熱分解処理する燃焼室に面して設けられ、該燃焼室へ導入される排ガスと当該燃焼室から排出される排ガスとが交互に流通されて、排出される排ガスで加熱されて、導入される排ガスを加熱する蓄熱体を備えた蓄熱式排ガス処理装置において、排ガスに晒される上記蓄熱体の面に、その表面エネルギを低減させる耐熱性のコーティング層を形成したことを特徴とする蓄熱式排ガス処理装置の蓄熱体構造。The exhaust gas is provided facing the combustion chamber where the exhaust gas is thermally decomposed, and the exhaust gas introduced into the combustion chamber and the exhaust gas discharged from the combustion chamber are alternately circulated, heated by the exhaust gas discharged, and introduced. In a heat storage type exhaust gas treatment apparatus equipped with a heat storage body for heating the exhaust gas to be heated, a heat storage type coating is provided on the surface of the heat storage body exposed to the exhaust gas, and a heat-resistant coating layer for reducing the surface energy is formed. Heat storage structure of exhaust gas treatment equipment. 前記コーティング層は、表面温度が少なくとも750℃以上の前記蓄熱体の面に形成されることを特徴とする請求項1に記載の蓄熱式排ガス処理装置の蓄熱体構造。The heat storage structure of a heat storage type exhaust gas treatment apparatus according to claim 1, wherein the coating layer is formed on a surface of the heat storage body having a surface temperature of at least 750 ° C or higher. 前記コーティング層が、窒化硼素、モリブデンもしくは雲母を含むコーティング材によって形成されることを特徴とする請求項1または2に記載の蓄熱式排ガス処理装置の蓄熱体構造。The heat storage structure of a heat storage type exhaust gas treatment apparatus according to claim 1 or 2, wherein the coating layer is formed of a coating material containing boron nitride, molybdenum, or mica.
JP2003165684A 2003-06-10 2003-06-10 Structure of thermal storage body of thermal storage type exhaust gas treatment device Pending JP2005003247A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003165684A JP2005003247A (en) 2003-06-10 2003-06-10 Structure of thermal storage body of thermal storage type exhaust gas treatment device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003165684A JP2005003247A (en) 2003-06-10 2003-06-10 Structure of thermal storage body of thermal storage type exhaust gas treatment device

Publications (1)

Publication Number Publication Date
JP2005003247A true JP2005003247A (en) 2005-01-06

Family

ID=34092089

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003165684A Pending JP2005003247A (en) 2003-06-10 2003-06-10 Structure of thermal storage body of thermal storage type exhaust gas treatment device

Country Status (1)

Country Link
JP (1) JP2005003247A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011102664A (en) * 2009-11-10 2011-05-26 Chugai Ro Co Ltd Heat storage type combustion deodorizer
WO2013077079A1 (en) * 2011-11-25 2013-05-30 新東工業株式会社 Heat storage-type exhaust gas purification device
JP2016537192A (en) * 2013-08-30 2016-12-01 デュール システムズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Geometric shape and arrangement of improved block flow path for thermal oxidation regenerator
JP7034366B1 (en) * 2021-10-25 2022-03-11 中外炉工業株式会社 Thermal storage type combustion deodorizer

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011102664A (en) * 2009-11-10 2011-05-26 Chugai Ro Co Ltd Heat storage type combustion deodorizer
WO2013077079A1 (en) * 2011-11-25 2013-05-30 新東工業株式会社 Heat storage-type exhaust gas purification device
JPWO2013077079A1 (en) * 2011-11-25 2015-04-27 新東工業株式会社 Thermal storage exhaust gas purification system
JP2016537192A (en) * 2013-08-30 2016-12-01 デュール システムズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Geometric shape and arrangement of improved block flow path for thermal oxidation regenerator
JP7034366B1 (en) * 2021-10-25 2022-03-11 中外炉工業株式会社 Thermal storage type combustion deodorizer

Similar Documents

Publication Publication Date Title
TWI296224B (en) Nozzle for spraying sublimable solid particles entrained in gas for cleaning surface and method of cleaning surface using the same
KR100882052B1 (en) Nitrogen enriched cooling air module for uv curing system
US20050207946A1 (en) Exhaust gas filter, method of manufacturing the exhaust gas filter, and exhaust gas processing device using the exhaust gas filter
KR100808343B1 (en) Bifunctional manganese oxide/titanium dioxide photocatalyst/thermocatalyst
TW201032889A (en) Method of treating an exhaust gas stream
JP3648539B2 (en) Exhaust flow treatment system for oxidation treatment of semiconductor manufacturing exhaust
JPH08150317A (en) Waste gas treating device
JP2005003247A (en) Structure of thermal storage body of thermal storage type exhaust gas treatment device
US20140231659A1 (en) Methods and apparatus for use with extreme ultraviolet light having contamination protection
JPH10230119A (en) Bag filter and its manufacture
EP3002060A1 (en) Method and facility for regenerating a structured denitrification catalyst
JP2002061822A (en) Method for treating exhaust gas by heat-storage exhaust-gas treating equipment
KR20160001021A (en) Filter Dust Collector with Heat-Exchangeable Filter
JP2008231644A (en) Carbon fiber production apparatus and carbon fiber production method
TW531436B (en) Method and apparatus for cleaning exhaust gas and dust collector used for its apparatus
JP2006051439A (en) Photocatalyst functional coating film and its forming method
US20110293495A1 (en) Component having a catalytic surface, method for the production thereof, and use of said component
JP3269964B2 (en) Spray nozzle device in waste treatment facility
JP3940832B2 (en) Thermal storage type exhaust gas treatment equipment
US5238897A (en) Catalyst for molecular catalytic cracking of heavy hydrocarbons at ambient temperatures, and method of making the same
JP3515253B2 (en) Thermal storage type deodorizing equipment
JPH11300153A (en) Sublimed component removing unit and heat treatment device provided with the same
JPH0767524B2 (en) Exhaust gas treatment method and device
JP6424680B2 (en) Method of regenerating denitration catalyst
JP6150679B2 (en) Fluidized bed heat recovery device and heat transporter used therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20060517

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20070711

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20070724

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20071127

Free format text: JAPANESE INTERMEDIATE CODE: A02