JP2005002878A - Combustion abnormality detection method for stationary reciprocating engine - Google Patents

Combustion abnormality detection method for stationary reciprocating engine Download PDF

Info

Publication number
JP2005002878A
JP2005002878A JP2003166913A JP2003166913A JP2005002878A JP 2005002878 A JP2005002878 A JP 2005002878A JP 2003166913 A JP2003166913 A JP 2003166913A JP 2003166913 A JP2003166913 A JP 2003166913A JP 2005002878 A JP2005002878 A JP 2005002878A
Authority
JP
Japan
Prior art keywords
cylinder
time point
temperature
reciprocating engine
cylinders
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003166913A
Other languages
Japanese (ja)
Other versions
JP3996095B2 (en
Inventor
Yoshihiro Takahashi
義博 高橋
Yoshiharu Ito
好晴 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toho Gas Co Ltd
Original Assignee
Toho Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Gas Co Ltd filed Critical Toho Gas Co Ltd
Priority to JP2003166913A priority Critical patent/JP3996095B2/en
Publication of JP2005002878A publication Critical patent/JP2005002878A/en
Application granted granted Critical
Publication of JP3996095B2 publication Critical patent/JP3996095B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a combustion abnormality detection method for a stationary reciprocating engine, for detecting combustion abnormality accurately and early. <P>SOLUTION: In the combustion abnormality detection method for the stationary reciprocating engine 2, temperatures of exhaust gas from cylinders 21 to 26 are sequentially measured, and the measured temperatures are stored for the cylinders 21 to 26 as temperature data T(i) (i=1 to 6). For each of the cylinders 21 to 26, a temperature change amount D(i) is found as difference between a temperature data T(i)a at a determination time point ta of any one of time points measuring the temperature of the each of the cylinders 21 to 26, and a temperature data T(i)b at a past time point tb before the determination time point ta. Occurrence of the combustion abnormality of the stationary reciprocating engine 2 is detected, when a dispersion value B or a standard deviation value F of the temperature change amount D(i) of all of the cylinders 21 to 26 exceeds a predetermined set range A. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【技術分野】
本発明は,複数の気筒を有してなる定置式レシプロエンジンに燃焼異常が発生したことを検出する方法に関する。
【0002】
【従来技術】
ガスエンジン又はディーゼルエンジン等の据え置きタイプの定置式レシプロエンジンを燃焼運転させ,この燃焼運転による駆動力を利用して発電を行い,かつ上記燃焼運転による冷却水及び排気ガスの排熱を冷暖房機又は給湯器等に利用して,エネルギー効率を向上させたコージェネレーションシステムが知られている。
そして,上記定置式レシプロエンジンに燃焼異常が発生すると,その出力トルクや出力回転数が変動し,定置式レシプロエンジンが停止したり故障(破損)したりするおそれがあるため,このときには上記燃焼異常を検出して対処することが必要になる。
【0003】
そのため,例えば,レシプロエンジンにおける各気筒(シリンダー)から排気される排気ガスの温度を測定し,いずれかの気筒の排気ガス温度が所定の設定値以下になったときには,この気筒に燃焼異常が発生したことを検出して,レシプロエンジンの燃焼異常を検出する方法がある(従来技術1)。
また,全気筒から排気される排気ガス温度の平均値を算出し,この平均値に対するいずれかの気筒の排気ガス温度の差が,所定の設定値以上になったときに,レシプロエンジンの燃焼異常を検出する方法もある(従来技術2)。このようにレシプロエンジンにおける燃焼異常を検出する方法としては,例えば,特許文献1,2に示すものがある。
【0004】
【特許文献1】
特公昭51−18716号公報
【特許文献2】
特開平6−10749号公報
【0005】
【解決しようとする課題】
ところで,レシプロエンジンにおける各気筒は,それぞれ同じ条件で燃焼させるよう設定してあっても,気筒毎の個体差,メンテナンスの状態,周囲の環境変動等(レシプロエンジンに加わる負荷,外気温,レシプロエンジンの冷却水温度,空燃比等の変動)に影響されて,各気筒の排気ガス温度にばらつきが生じることがある。
しかしながら,上記従来技術1,2における燃焼異常検出方法は,いずれも燃焼異常の有無の判定を行う時点における各気筒の排気ガス温度を用いて燃焼異常を検出するものであり,各判定を行う時点における排気ガス温度の絶対値に基づいて燃焼異常を検出するものである。
【0006】
そのため,上記燃焼異常検出方法においては,上記各気筒の排気ガス温度にばらつきがあったときには,このばらつきによる影響を受けてしまい,燃焼異常の検出精度の向上が困難になっている。また,上記ばらつきによって誤判定が生じてしまうことを防止するために,上記所定の設定値に比較的大きな安全率を設定して余裕を持たせる必要があり,早期に燃焼異常を検出することも困難になっている。
【0007】
本発明は,かかる従来の問題点に鑑みてなされたもので,精度よくかつ早期に定置式レシプロエンジンに発生した燃焼異常を検出することができる定置式レシプロエンジンの燃焼異常検出方法を提供しようとするものである。
【0008】
【課題の解決手段】
第1の発明は,複数の気筒を有してなる定置式レシプロエンジンにおける燃焼異常を検出する方法において,
温度センサにより上記各気筒から排気される排気ガスの温度をそれぞれ逐次測定して,該測定を行った各気筒毎の排気ガスの温度を各気筒毎に温度データとして保存し,
上記測定を行ったいずれかの時点を判定時点とすると共に該判定時点よりも前のいずれかの時点を過去時点として,上記各気筒について,上記判定時点における上記温度データと上記過去時点における上記温度データとの差分である温度変化量をそれぞれ求め,
上記全気筒における上記温度変化量の分散値又は標準偏差が所定の設定範囲を超えたときには,上記定置式レシプロエンジンに燃焼異常が発生したことを検出することを特徴とする定置式レシプロエンジンの燃焼異常検出方法にある(請求項1)。
【0009】
本発明の燃焼異常検出方法は,上記各気筒毎の排気ガスの温度の経時的変化を監視することによって,上記定置式レシプロエンジンにおける燃焼異常の検出を行う。
すなわち,本発明においては,温度センサにより,各気筒から排気される排気ガスの温度をそれぞれ逐次測定し,これを各気筒毎に温度データとして保存する。そして,上記判定時点における温度データと上記過去時点における温度データとの差分である各気筒毎の温度変化量を用いて,上記定置式レシプロエンジンにおける燃焼異常の有無を判定する。
【0010】
そのため,上記過去時点における各気筒の排気ガスの温度にばらつきが生じていても,このばらつきを生じた状態の過去時点から上記判定時点に至るまでに変化した排気ガスの温度に基づいて,上記燃焼異常の有無の判定を行うことができる。そのため,この判定において,上記ばらつきによる影響を受けることがほとんどなく,定置式レシプロエンジンにおける燃焼異常の検出精度を向上させることができる。
また,上記ばらつきによる影響を受けることがほとんどないため,上記所定の設定範囲に不必要に余裕を持たせなくてもよく,定置式レシプロエンジンに燃焼異常が発生したことを早期に検出することもできる。
【0011】
さらに,本発明においては,上記のごとく,全気筒における温度変化量の分散値又は標準偏差を用いて,定置式レシプロエンジンにおける燃焼異常の有無を判定する。
すなわち,本発明においては,全気筒において正常燃焼が行われている際の全気筒における温度変化量の分散値又は標準偏差の範囲を,上記所定の設定範囲として求めておく。
【0012】
そして,判定を行う判定時点における全気筒の温度変化量の分散値又は標準偏差が,上記所定の設定範囲を超えたときに,定置式レシプロエンジンに燃焼異常が発生したことを検出する。そのため,上記過去時点から上記判定時点に至るまでに変化した各気筒毎の排気ガスの温度の違いを,顕著に検出することができる。そのため,定置式レシプロエンジンにおける燃焼異常の検出精度を一層向上させることができ,かつ一層早期に定置式レシプロエンジンに燃焼異常が発生したことを検出することができる。
【0013】
第2の発明は,複数の気筒を有してなる定置式レシプロエンジンにおける燃焼異常を検出する方法において,
上記定置式レシプロエンジンは,複数の吸気マニホールドを有してなるV型エンジンであり,上記各気筒は,所定数毎に上記各吸気マニホールドに接続されており,
温度センサにより上記各気筒から排気される排気ガスの温度をそれぞれ逐次測定して,該測定を行った各気筒毎の排気ガスの温度を各気筒毎に温度データとして保存し,
上記測定を行ったいずれかの時点を判定時点とすると共に該判定時点よりも前のいずれかの時点を過去時点として,上記各気筒について,上記判定時点における上記温度データと上記過去時点における上記温度データとの差分である温度変化量をそれぞれ求め,
上記各吸気マニホールドにそれぞれ接続された複数の気筒の組を気筒組として,いずれかの該気筒組内の全気筒における上記温度変化量の分散値又は標準偏差が上記所定の設定範囲を超えたときには,上記定置式レシプロエンジンに燃焼異常が発生したことを検出することを特徴とする定置式レシプロエンジンの燃焼異常検出方法にある(請求項2)。
【0014】
本発明の燃焼異常検出方法もまた,上記各気筒毎の排気ガスの温度の経時的変化を監視することによって,上記定置式レシプロエンジンにおける燃焼異常の検出を行う。
そして,本発明においては,複数の吸気マニホールドを有してなるV型の定置式レシプロエンジンについて,各吸気マニホールドから各気筒に燃焼用混合気を供給する際に,各吸気マニホールド間に生ずる燃焼用混合気の状態の違いによる影響を受けて各気筒から排気される排気ガスの温度に違いが生じることをも考慮して,定置式レシプロエンジンにおける燃焼異常を検出する。
【0015】
すなわち,本発明においては,各吸気マニホールドにおける各気筒組毎に,上記燃焼異常が発生していないか否かを判定する。そして,判定を行う判定時点におけるいずれかの上記気筒組内の全気筒における温度変化量の分散値又は標準偏差が上記所定の設定範囲を超えたときに,定置式レシプロエンジンに燃焼異常が発生したことを検出する。
そのため,上記各吸気マニホールド間における燃焼用混合気の状態に違いが生じた場合でも,これを受けて燃焼異常の誤判定をしてしまうことを防止することができる。そのため,定置式レシプロエンジンにおける燃焼異常の検出精度を一層向上させることができる。
その他は,本発明においても上記第1の発明と同様である。
【0016】
第3の発明は,複数の気筒を有してなる定置式レシプロエンジンにおける燃焼異常を検出する方法において,
温度センサにより上記各気筒から排気される排気ガスの温度をそれぞれ逐次測定して,該測定を行った各気筒毎の排気ガスの温度を各気筒毎に温度データとして保存し,
上記測定を行ったいずれかの時点を判定時点とすると共に該判定時点よりも前のいずれかの時点を過去時点として,上記各気筒について,上記判定時点における上記温度データと上記過去時点における上記温度データとの差分である温度変化量をそれぞれ求め,
いずれかの気筒における上記温度変化量が,残りの気筒における上記温度変化量に比べて所定の設定範囲を外れて異なるときには,上記定置式レシプロエンジンに燃焼異常が発生したことを検出することを特徴とする定置式レシプロエンジンの燃焼異常検出方法にある(請求項3)。
【0017】
本発明の燃焼異常検出方法もまた,上記各気筒毎の排気ガスの温度の経時的変化を監視することによって,上記定置式レシプロエンジンにおける燃焼異常の検出を行う。
そして,本発明においては,各気筒における温度変化量同士の比較により,定置式レシプロエンジンにおける燃焼異常の有無を判定する。すなわち,本発明においては,各気筒において正常燃焼が行われている際の各気筒間の温度変化量の違いの範囲を,上記所定の設定範囲として求めておく。
【0018】
そして,判定を行う判定時点におけるいずれかの気筒の温度変化量が,残りの気筒における温度変化量に比べて,上記所定の設定範囲を外れて異なるときに,定置式レシプロエンジンに燃焼異常が発生したことを検出する。
そのため,本発明においても上記発明と同様に,上記判定の際に,上記過去時点における各気筒の排気ガスの温度に生じたばらつきによる影響を受けることがほとんどなく,定置式レシプロエンジンにおける燃焼異常の検出精度を向上させることができ,早期にこの燃焼異常を検出することができる。
なお,上記いずれかの気筒は,1つの気筒となる場合だけでなく,2つ以上の気筒と場合もある。
【0019】
第4の発明は,複数の気筒を有してなる定置式レシプロエンジンにおける燃焼異常を検出する方法において,
上記定置式レシプロエンジンは,複数の吸気マニホールドを有してなるV型エンジンであり,上記各気筒は,所定数毎に上記各吸気マニホールドに接続されており,
温度センサにより上記各気筒から排気される排気ガスの温度をそれぞれ逐次測定して,該測定を行った各気筒毎の排気ガスの温度を各気筒毎に温度データとして保存し,
上記測定を行ったいずれかの時点を判定時点とすると共に該判定時点よりも前のいずれかの時点を過去時点として,上記各気筒について,上記判定時点における上記温度データと上記過去時点における上記温度データとの差分である温度変化量をそれぞれ求め,
上記各吸気マニホールドにそれぞれ接続された複数の気筒の組を気筒組として,いずれかの該気筒組内のいずれかの気筒における上記温度変化量が,当該気筒組内の残りの気筒における上記温度変化量に比べて所定の設定範囲を外れて異なるときには,上記定置式レシプロエンジンに燃焼異常が発生したことを検出することを特徴とする定置式レシプロエンジンの燃焼異常検出方法にある(請求項4)。
【0020】
本発明の燃焼異常検出方法もまた,上記各気筒毎の排気ガスの温度の経時的変化を監視することによって,上記定置式レシプロエンジンにおける燃焼異常の検出を行う。
そして,本発明においては,上記第2の発明と同様に,V型の定置式レシプロエンジンにおける各吸気マニホールド間に生ずる燃焼用混合気の状態の違いを考慮して,各吸気マニホールドにおける各気筒組毎に,上記燃焼異常が発生していないか否かを判定する。
【0021】
そして,本発明においては,判定を行う判定時点におけるいずれかの気筒組内のいずれかの気筒における温度変化量が,当該気筒組内の残りの気筒における温度変化量に比べて所定の設定範囲を外れて異なるときに,上記定置式レシプロエンジンに燃焼異常が発生したことを検出する。
そのため,上記各吸気マニホールド間における燃焼用混合気の状態に違いが生じた場合でも,これを受けて燃焼異常の誤判定をしてしまうことを防止することができる。そのため,定置式レシプロエンジンにおける燃焼異常の検出精度を一層向上させることができる。
その他は,本発明においても上記第3の発明と同様である。
【0022】
【発明の実施の形態】
上述した本発明における好ましい実施の形態につき説明する。
上記第1〜第4の発明において,上記定置式レシプロエンジンとは,自動車等の移動を目的とした乗物に使用するレシプロエンジンではなく,使用場所に据え置いて使用するレシプロエンジンのことをいう。この定置式レシプロエンジンとしては,例えば,コンプレッサ又は発電機の駆動を行うものがあり,また,ヒートポンプの動力として用いるもの等もある。また,定置式レシプロエンジンは,コージェネレーションシステムに用いることもできる。。
【0023】
また,上記定置式レシプロエンジンとしては,例えば,定置式ガスエンジン又は定置式ディーゼルエンジン等がある。また,定置式レシプロエンジンの気筒数は,2気筒以上にすることができ,例えば,4気筒,6気筒,8気筒,10気筒又は12気筒とすることができる。
また,上記第1,第3の発明において,定置式レシプロエンジンとしては,直列エンジン又はV型エンジン等のいずれのタイプのものも用いることができる。
【0024】
また,上記第1,第2の発明において,上記全気筒における温度変化量の分散値は,上記各気筒毎に上記温度変化量を二乗したものの全気筒分の総和から,上記温度変化量の全気筒分の総和を二乗したものを差し引いた分散データに基づいて算出することができる。
そして,気筒数をnとし,各気筒における温度変化量をD(i)としたときには,上記分散データは,nΣD(i)−{ΣD(i)};(i=1〜n)に基づいて求めることができる。
【0025】
また,上記各気筒組内の全気筒における温度変化量の分散値もまた,上記と同様に分散データに基づいて算出することができる。そして,各気筒組内の気筒数をmとし,各気筒組内の各気筒における温度変化量をD(i)としたときには,上記各気筒組毎の分散データは,mΣD(i)−{ΣD(i)};(i=1〜m)に基づいて求めることができる。
【0026】
また,上記分散値は,上記各気筒毎の上記温度変化量から全気筒における温度変化量の平均値を差し引いたものの二乗の全気筒分の総和としての分散データに基づいて算出することもできる。そして,気筒数をnとし,各気筒における温度変化量をD(i)とし,全気筒における温度変化量の平均値をDxとしたときには,分散データBは,Σ{D(i)−Dx};(i=1〜n)に基づいて求めることもできる。また,このことは,上記各気筒組内の全気筒における温度変化量の分散値についても同様である。
なお,上記標準偏差は,上記分散データの平方根に基づいて算出することができる。
【0027】
また,上記第1〜第4の発明において,上記過去時点は,上記判定時点の直前に上記温度センサが測定を行った直前時点よりもさらに前の時点とすることが好ましい(請求項5)。
この場合には,上記温度センサが逐次測定を行う時間間隔を短くして一層早期な定置式レシプロエンジンの燃焼異常検出を実現すると共に,上記燃焼異常の判定に使用する過去時点を上記判定時点の直前ではなく,さらに過去に遡った時点として,上記温度変化量が顕著に現れるようにすることができる。そのため,定置式レシプロエンジンにおける燃焼異常の検出精度を一層向上させることができ,一層早期にこの燃焼異常を検出することができる。
【0028】
また,上記定置式レシプロエンジンの燃焼異常検出方法においては,上記温度変化量の絶対値が最も大きな気筒が燃焼異常が発生した気筒であると検出することができる(請求項6)。
この場合には,上記定置式レシプロエンジンにおいて,燃焼異常が発生した気筒を特定することができる。そのため,上記燃焼異常に容易に対処することができる。
【0029】
【実施例】
以下に,図面を用いて本発明の定置式レシプロエンジンの燃焼異常検出方法にかかる実施例につき説明する。
(実施例1)
図1,図2に示すごとく,本例の定置式レシプロエンジン2の燃焼異常検出方法は,複数の気筒21〜26を有してなる定置式レシプロエンジン2の燃焼運転中に発生した失火又は燃焼不良等の燃焼異常を検出する方法である。
すなわち,本例の燃焼異常検出方法においては,まず,温度センサ27により上記各気筒21〜26から排気される排気ガスの温度をそれぞれ逐次測定し,この測定を行った各気筒21〜26毎の排気ガスの温度を各気筒21〜26毎に温度データT(i)(i=1〜6)として保存する。
【0030】
次いで,上記測定を行ったいずれかの時点を判定時点taとすると共にこの判定時点taよりも前のいずれかの時点を過去時点tbとして,上記各気筒21〜26について,上記判定時点taにおける温度データT(i)aと上記過去時点tbにおける温度データT(i)bとの差分である温度変化量D(i)をそれぞれ求める。
そして,上記全気筒21〜26における上記温度変化量D(i)の分散値B又は標準偏差Fが,所定の設定範囲Aを超えたときには,上記定置式レシプロエンジン2に燃焼異常が発生したことを検出する。
【0031】
以下に,これを詳説する。
本例の燃焼異常検出方法は,図2に示すごとく,定置式レシプロエンジン2の燃焼運転による駆動力を利用して発電機3を作動させると共に,上記燃焼運転の際に生じた冷却水及び排気ガスを冷暖房装置又は給湯器等である排熱利用手段4に利用するコージェネレーションシステム1において用いる。
【0032】
すなわち,このコージェネレーションシステム1は,上記定置式レシプロエンジン2,上記発電機3,上記排熱利用手段4,及び上記温度センサ27により測定した排気ガスの温度を利用して定置式レシプロエンジン2の燃焼異常の検出を行うための制御手段5を有してなる。上記温度センサ27は,上記定置式レシプロエンジン2における複数の気筒21〜26の排気口にそれぞれ配設されており,各気筒21〜26の排気口を通過する排気ガスの温度をそれぞれ測定することができる。
【0033】
また,本例の定置式レシプロエンジン2は,空気と燃料とを混合した燃焼用混合気を各気筒21〜26に供給する吸気マニホールド(図示略)を有している。上記定置式レシプロエンジン2は,複数の気筒を直列に配列してなる直列エンジンであり,本例では,1つの吸気マニホールドに対して直列に6つの気筒21〜26を接続してなる。また,本例の定置式レシプロエンジン2は,都市ガス(13A等)を利用して燃焼運転を行うガスエンジンである。
【0034】
また,図2に示すごとく,上記制御手段5は,上記定置式レシプロエンジン2に燃焼異常が発生したことを検出したときには,この燃焼異常の検出を発報することができる発報手段51を備えている。この発報手段51は,燃焼異常を知らせるためのブザーによる警報であってもよく,ディスプレイによる異常表示,異常表示ランプの点灯等による異常表示であってもよい。
また,制御手段5は,定置式レシプロエンジン2において燃焼異常が発生したと検出した気筒21〜26の気筒番号を表示する表示手段52を備えている。この表示手段52は,燃焼異常を検出した気筒番号を表示するディスプレイ又はランプ等とすることができる。
【0035】
本例においては,各温度センサ27によって逐次測定を行う時間間隔(サンプリングタイム)は0.5[秒]とする。このサンプリングタイムは,0.1〜120[秒]のうちで任意に選択した時間とすることができる。また,これに合わせて,上記過去時点tbは,判定時点taから0.1〜120[秒]前のうちで任意に選択した時点とすることができる。
【0036】
本例の過去時点tbは,上記判定時点taの直前に温度センサ27が測定を行った直前時点(0.5[秒]前の時点)よりもさらに前の時点とした。すなわち,本例の過去時点tbは,上記判定時点taよりも5[秒]前の時点とした。
このように,サンプリングタイムを0.5[秒]と短くして早い時期に燃焼異常検出を可能にすると共に,異常判定に使用する過去時点tbを判定時点taの直前ではなく,さらに過去に遡った時点とすることにより,上記各気筒21〜26の温度変化量D(i)の違いが顕著に現れるようにすることができる。
【0037】
また,上記燃焼異常検出方法において,上記定置式レシプロエンジン2に燃焼異常を検出したときには,上記6つの気筒21〜26のうちの上記温度変化量D(i)の絶対値が最も大きな気筒が燃焼異常が発生した気筒であると検出することができる。そして,定置式レシプロエンジン2において,燃焼異常が発生した気筒21〜26を特定することができ,この燃焼異常に容易に対処することができる。
【0038】
本例の燃焼異常検出方法は,上記定置式レシプロエンジン2における各気筒21〜26毎の排気ガスの温度の経時的変化を監視することによって,定置式レシプロエンジン2に発生した燃焼異常を検出する。
以下に,図1を用いて,定置式レシプロエンジン2に発生した燃焼異常を検出する方法につき詳説する。
【0039】
定置式レシプロエンジン2の燃焼運転を行う前には,予め,全気筒21〜26において正常燃焼が行われている際の全気筒21〜26における温度変化量D(i)の分散値Bの範囲を測定する。そして,本例では,上記正常燃焼が行われている際の分散値Bの範囲に,若干の安全率を掛けて,所定の設定範囲Aとした。具体的には,本例の所定の設定範囲Aは,A=0〜10として設定した。
【0040】
そして,図1のステップS101において,定置式レシプロエンジン2を燃焼運転させて,コージェネレーションシステム1の運転を開始する。次いで,S102において,制御手段5は,定置式レシプロエンジン2における各気筒21〜26から排気された排気ガスの温度を,各気筒21〜26に設けた温度センサ27によってそれぞれ測定する。そして,S103において,制御手段5は,測定を行った各気筒21〜26の排気ガスの温度を,各気筒21〜26毎に温度データT(i)(i=1〜6)として保存する。
【0041】
次いで,S104において,上記各気筒21〜26について,上記判定時点taとしての現時点taにおける温度データT(i)aと,上記過去時点tbにおける温度データT(i)bとの差分である温度変化量D(i)をそれぞれ求める。本例の過去時点tbは,現時点taから5[秒]前の時点としたため,温度変化量D(i)は,現時点taにおける温度データT(i)aと,5[秒]前の過去時点tbにおける温度データT(i)bとの差分として求める。
【0042】
次いで,S105において,現時点taにおける全気筒21〜26の温度変化量D(i)の分散値Bを求める。そして,S106において,この分散値Bが,上記正常と判定されるための所定の設定範囲Aを超えているか否かを判別する。
【0043】
S106における判別がYesのときには,現時点taにおける分散値Bが所定の設定範囲Aを超えているとして,制御手段5は定置式レシプロエンジン2の燃焼異常を検出する。このとき,S107において,制御手段5は,上記発報手段51を用いて異常を発報し,次いで,S108において,制御手段5は,上記6つの気筒21〜26のうちの上記温度変化量D(i)の絶対値が最も大きな気筒を検出する。そして,S109において,制御手段5は,この温度変化量D(i)の絶対値が最も大きな気筒の番号を上記表示手段52により表示する。その後は,再びS102を実行する。
【0044】
一方で,S106における判別がNoのときには,現時点taにおける分散値Bが所定の設定範囲A内にあるとして,制御手段5は定置式レシプロエンジン2の正常燃焼状態を検出し,その後,再びS102を実行する。
以降は,上記S102からS107を適宜繰り返して行い,定置式レシプロエンジン2における燃焼異常の有無の検出をリアルタイムに行うことができる。また,図1中には省略してあるが,制御手段5は,任意のタイミングで定置式レシプロエンジン2の運転終了の信号を受けたときには,コージェネレーションシステム1の運転を終了することができる。
【0045】
以下に,上記各気筒21〜26毎に温度変化量D(i)を求め,全気筒21〜26における温度変化量D(i)の分散値Bを求める際に使用した式を示す。
表1は,本例の定置式レシプロエンジン2における気筒は6つあり,判定時点taにおける各温度データT(i)aをT(1)a〜T(6)aとし,過去時点tbにおける各温度データT(i)bをT(1)b〜T(6)bとして,各温度変化量D(i)をD(1)〜D(6)として求めることを示すものである。また,各温度変化量D(i)は,D(i)=T(i)a−T(i)bとして求められる。
また,分散値Bは数1によって求めることができる。ここで,iは第1〜第6気筒21〜26のいずれかを示し,nは気筒数(本例では6)を示している。なお,分散値Bに代えて,数2に示すように標準偏差Fを用いることもできる。
【0046】
【表1】

Figure 2005002878
【0047】
【数1】
Figure 2005002878
【0048】
【数2】
Figure 2005002878
【0049】
なお,上記分散値Bは,数3,数4によって求めることもできる。ここで,Dxは,上記判定時点taにおける全気筒21〜26の温度変化量D(i)の平均値を示す。また,この場合においても,分散値Bに代えて,数5に示したように標準偏差Fを用いることもできる。
【0050】
【数3】
Figure 2005002878
【0051】
【数4】
Figure 2005002878
【0052】
【数5】
Figure 2005002878
【0053】
また,表2には,上記各気筒21〜26毎に温度変化量D(i)を求めると共に全気筒21〜26における温度変化量D(i)の分散値Bを求めた例を示す。同表には,上記各気筒21〜26に設けた各温度センサ27により測定した3つの時点,すなわち2317[秒],2322[秒],2327[秒]の各時間における各気筒21〜26の温度データT(i),温度変化量D(i)及び分散値Bを示す。
時間2322[秒]においては,この時間を判定時点taとすると共に時間2317[秒]を過去時点tbとして,温度変化量D(i)及び分散値Bを求めており,分散値Bは0.28となった。そのため,この分散値B(0.28)は,上記所定の設定範囲A(0〜10)内にあり,正常と判定された。
【0054】
一方で,時間2327[秒]においては,この時間を判定時点taとすると共に時間2322[秒]を過去時点tbとして,温度変化量D(i)及び分散値Bを求めており,分散値Bは52.39となった。そのため,この分散値B(52.39)は,上記所定の設定範囲A(0〜10)を外れており,異常と判定され,定置式レシプロエンジン2の燃焼異常を検出することができた。
そして,時間2327[秒]においては,各気筒21〜26のうち,第5気筒25の温度変化量D(5)の絶対値が20と一番大きく,この第5気筒25に燃焼異常が発生したことが検出できた。
【0055】
【表2】
Figure 2005002878
【0056】
また,図3には,上記定置式レシプロエンジン2の燃焼異常検出方法において,燃焼異常の発生を検出した状況をグラフにして示す。同図において,時間2150[秒]〜2800[秒]ぐらいでは,分散値Bが10を超えて大きくなっており,定置式レシプロエンジン2に燃焼異常が発生したことがわかる。一方で,時間2000[秒]〜2150[秒]及び2800[秒]〜3000[秒]では,分散値Bが2未満と小さくなっており,定置式レシプロエンジン2が正常に動作したことがわかる。
【0057】
本例においては,上述したように,各気筒21〜26について,温度センサ27により測定を行った判定時点taとしての現時点taにおける温度データT(i)aと,これよりも前の過去時点tbにおける温度データT(i)bとの差分を温度変化量D(i)として求め,この温度変化量D(i)の分散値Bにより定置式レシプロエンジン2の燃焼異常の有無の判定を行った。すなわち,本例では,各気筒21〜26毎の排気ガスの温度の経時的変化を監視することによって,定置式レシプロエンジン2における燃焼異常の検出を行った。
【0058】
そのため,上記過去時点tbにおける各気筒21〜26の排気ガスの温度にばらつきが生じていても,このばらつきを生じた状態の過去時点tbから上記判定時点taに至るまでに変化した排気ガスの温度に基づいて,燃焼異常の有無を判定することができる。そのため,上記判定において,上記ばらつきによる影響を受けることがほとんどなく,定置式レシプロエンジン2における燃焼異常の検出精度を向上させることができる。
また,上記ばらつきによる影響を受けることがほとんどないため,上記所定の設定範囲Aに持たせる安全率も小さくすることができ,定置式レシプロエンジン2に燃焼異常が発生したことを早期に検出することもできる。
【0059】
さらに,上記分散値Bを用いた異常判定により,上記過去時点tbから上記判定時点taに至るまでに変化した各気筒21〜26毎の排気ガスの温度の違いを,顕著に検出することができる。そのため,定置式レシプロエンジン2における燃焼異常の検出精度を一層向上させることができ,かつ一層早期に定置式レシプロエンジン2に燃焼異常が発生したことを検出することができる。
【0060】
(実施例2)
本例は,図4に示すごとく,複数の吸気マニホールド28を有してなるV型タイプの定置式レシプロエンジン2について,各吸気マニホールド28間に生じるおそれがある燃焼用混合気G1の状態の違いを考慮して,上記燃焼異常の検出精度を一層向上させる例である。
V型タイプの定置式レシプロエンジン2は,クランク軸(図示略)を中心にしてV字状に配設した一対の気筒201〜212を複数配列してなるものである。そして,本例の各気筒201〜212は,所定の気筒数毎に各吸気マニホールド28に接続されている。
【0061】
図4に示すごとく,本例の吸気マニホールド28は2つあり,V字状の右側に位置する右側吸気マニホールド28Rと左側に位置する左側吸気マニホールド28Lとがある。そして,複数に配列されたV字を形成する一対の気筒201〜212のうちの右側に位置するものを右側吸気マニホールド28Rに接続し,左側に位置するものを左側吸気マニホールド28Lに接続している。
【0062】
具体的には,本例の定置式レシプロエンジン2は,ガスエンジンであると共に12気筒のV型エンジンであり,右側吸気マニホールド28RにはV字状の右側に位置する第1〜第6気筒201〜206を接続し,左側吸気マニホールド28Lには,V字状の左側に位置する第7〜第12気筒207〜212を接続している。そして,右側吸気マニホールド28Rに接続された第1〜第6気筒201〜206は,右側気筒組(Rバンク)を構成し,左側吸気マニホールド28Lに接続された第7〜第12気筒207〜212は,左側気筒組(Lバンク)を構成する。
【0063】
また,各吸気マニホールド28R,Lには,空気と燃料との燃焼用混合気G1を圧縮して多くの燃焼用混合気G1を各気筒201〜212に供給するための過給機281が接続されている。なお,定置式レシプロエンジン2をディーゼルエンジンとしたときには,過給機281は空気を圧縮することになる。
また,各気筒201〜212の排気口にはそれぞれ温度センサ27が設けてあり,各気筒201〜212の排気口は,排気マニホールド29にそれぞれ接続されている。
【0064】
本例においては,判定を行う判定時点taにおける全気筒201〜212の温度変化量D(i)の分散値Bが,上記所定の設定範囲Aを超え,かつ,判定を行う判定時点taにおけるいずれかの気筒組内の全気筒201〜206又は207〜212の温度変化量D(i)の気筒組分散値B1もまた上記所定の設定範囲Aを超えたときに,定置式レシプロエンジン2に燃焼異常が発生したことを検出する。
【0065】
なお,気筒組分散値B1は,上述した実施例1の数1又は数3,4におけるBを用い,右側気筒組の気筒201〜206についての気筒組分散値B1と,左側気筒組の気筒207〜212についての気筒組分散値B1として求めることができる。また,気筒組分散値B1を用いる代わりに気筒組標準偏差F1を用いても勿論よい。気筒組標準偏差F1についても,上述した実施例1の数2又は数5におけるFを用い,右側及び左側の各気筒組毎に求めることができる。
【0066】
上記定置式レシプロエンジン2の燃焼運転の際には,上記各吸気マニホールド28R,Lに接続された各過給機281の個体差等によって,各吸気マニホールド28R,L間において,これらを流れる燃焼用混合気G1の状態に違いが生じることがある。そして,この違いが生じた際には,右側気筒組における気筒201〜206から排出される排気ガスG2の温度と,左側気筒組における気筒207〜212から排出される排気ガスG2の温度とに違いが生じることがある。
【0067】
そして,この場合には,いずれかの気筒201〜212に燃焼異常が発生していないにも拘わらず,上記判定時点taにおける全気筒201〜212の温度変化量D(i)の分散値Bが,上記所定の設定範囲Aを超えてしまうおそれがある。そこで,本例では,上記判定時点taにおけるいずれかの気筒組内の全気筒201〜206又は207〜212の温度変化量D(i)の気筒組分散値B1もまた所定の設定範囲Aを超えたときに,はじめて上記燃焼異常を検出する。
【0068】
そのため,上記各吸気マニホールド28R,L間における燃焼用混合気G1の状態に違いが生じた場合でも,これを受けて燃焼異常の誤判定をしてしまうことを防止することができる。そのため,定置式レシプロエンジン2における燃焼異常の検出精度を一層向上させることができる。
その他は,本例においても,上記実施例1と同様であり,実施例1と同様の作用効果を得ることができる。
【0069】
なお,本例の異常検出方法において,上記全気筒201〜212の温度変化量D(i)の分散値Bが,上記所定の設定範囲Aを超えているか否かは監視せず,上記いずれかの気筒組内の全気筒201〜206又は207〜212の温度変化量D(i)の気筒組分散値B1が上記所定の設定範囲Aを超えているか否かを監視するだけによっても,定置式レシプロエンジン2に燃焼異常が発生したことを検出することができる。この場合においても,上記と同様の作用効果を得ることができる。
【0070】
(実施例3)
本例は,上記定置式レシプロエンジン2における燃焼異常の有無の判定において,上記分散値B又は標準偏差Fを用いる代わりに,いずれかの気筒21〜26における上記温度変化量T(i)が,残りの気筒21〜26における上記温度変化量T(i)に比べて所定の設定範囲A’を外れて異なるときに,上記定置式レシプロエンジン2に燃焼異常が発生したことを検出する例である。
【0071】
すなわち,本例では,複数の気筒21〜26のうちのある1つの気筒を基準気筒とし,この基準気筒における温度変化量T(i)に対して他の残りの気筒における温度変化量T(i)が所定の設定範囲A’を外れて異なるかによって定置式レシプロエンジン2の燃焼異常の検出を行う。
なお,本例の燃焼異常検出方法に用いる定置式レシプロエンジン2の構成は,図2に示したように,上記実施例1の構成と同様である。
【0072】
具体的には,本例においても,上記実施例1と同様に表2を用いて説明する。すなわち,本例では,第1気筒21を基準気筒とし,この第1気筒21における温度変化量T(1)と,他の残りの気筒22〜26における温度変化量T(2)〜T(6)との差分としての差分量E(2)〜E(6)が所定の設定範囲A’内にあるか否かを判定する。ここで,本例の所定の設定範囲A’は,±10[℃]とした。
【0073】
表2において,時間2322[秒]を判定時点taとしたときには,過去時点tbを時間2317[秒]としている。そして,2322[秒]における判定においては,第2気筒22の差分量E(2)は,E(2)=D(2)−D(1)=+0.5となり,第3気筒23の差分量E(3)は,E(3)=D(3)−D(1)=0となり,第4気筒24の差分量E(4)は,E(4)=D(4)−D(1)=−1.0となり,第5気筒25の差分量E(5)は,E(5)=D(5)−D(1)=−0.5となり,第6気筒26の差分量E(6)は,E(6)=D(6)−D(1)=+0.5となる。そのため,第2〜第6のいずれの気筒22〜26の差分量E(2)〜E(6)も,上記所定の設定範囲A’内にあり,正常と判定された。
【0074】
一方で,時間2327[秒]を判定時点taとしたときには,過去時点tbを時間2322[秒]としている。そして,2327[秒]における判定においては,第2気筒22の差分量E(2)は,E(2)=D(2)−D(1)=+0.5となり,第3気筒23の差分量E(3)は,E(3)=D(3)−D(1)=−1.0となり,第4気筒24の差分量E(4)は,E(4)=D(4)−D(1)=−6.0となり,第5気筒25の差分量E(5)は,E(5)=D(5)−D(1)=−19.5となり,第6気筒26の差分量E(6)は,E(6)=D(6)−D(1)=+1.0となる。そのため,第6気筒26の差分量E(6)が,上記所定の設定範囲A’を外れており,定置式レシプロエンジン2に燃焼異常が発生したことが検出された。
【0075】
なお,基準気筒とした第1気筒21に燃焼異常が発生しているときには,第2〜第6の気筒22〜26における差分量E(2)〜E(6)が上記所定の設定範囲A’を外れることになり,この場合でも定置式レシプロエンジン2の燃焼異常を検出することができる。また,本例においては,上記各気筒21〜26の差分量E(1)〜E(6)から,どこの気筒21〜26に燃焼異常が発生したかを検出することもできる。
その他は,本例においても,上記実施例1と同様であり,実施例1と同様の作用効果を得ることができる。
【0076】
また,本例においても,上記実施例2と同様に,定置式レシプロエンジン2はV型エンジンとすることができ,各吸気マニホールド28R,Lにおける各気筒組毎に,上記燃焼異常が発生していないか否かを判定することもできる。この場合には,判定を行う判定時点taにおけるいずれかの気筒組内のいずれかの気筒201〜206又は207〜212における温度変化量D(i)が,当該気筒組内の残りの気筒201〜206又は207〜212における温度変化量D(i)に比べて所定の設定範囲A’を外れて異なるときに,上記定置式レシプロエンジン2に燃焼異常が発生したことを検出することができる。また,この場合には,各吸気マニホールド28R,L間における燃焼用混合気の状態に違いが生じた場合でも,これを受けて燃焼異常の誤判定をしてしまうことを防止することができる。
【図面の簡単な説明】
【図1】実施例1における,定置式レシプロエンジンの燃焼異常検出方法を利用するコージェネレーションシステムを示す説明図。
【図2】実施例1における,定置式レシプロエンジンの燃焼異常検出方法を示すフローチャート。
【図3】実施例1における,横軸に時間tをとると共に縦軸に各気筒における温度データD(i)及び分散値Bをとり,定置式レシプロエンジンの燃焼異常の有無の判定を行った状況を示すグラフ。
【図4】実施例2における,吸気マニホールドを複数有するV型タイプの定置式レシプロエンジンを示す説明図。
【符号の説明】
1...コージェネレーションシステム,
2...定置式レシプロエンジン,
21〜26...各気筒,
27...温度センサ,
28...吸気マニホールド,
3...発電機,
ta...判定時点,
tb...過去時点,
T(i)...温度データ,
T(i)a...判定時点における温度データ,
T(i)b...過去時点における温度データ,
D(i)...温度変化量,
B...分散値,
F...標準偏差,
A...所定の設定範囲,[0001]
【Technical field】
The present invention relates to a method for detecting that a combustion abnormality has occurred in a stationary reciprocating engine having a plurality of cylinders.
[0002]
[Prior art]
A stationary type reciprocating engine such as a gas engine or a diesel engine is burned, power is generated using the driving force of the burning operation, and the exhaust heat of the cooling water and exhaust gas from the burning operation is supplied to an air conditioner or Cogeneration systems with improved energy efficiency are known for use in water heaters.
If a combustion abnormality occurs in the stationary reciprocating engine, the output torque and output speed fluctuate, and the stationary reciprocating engine may stop or fail (damage). Need to be detected and dealt with.
[0003]
Therefore, for example, when the temperature of exhaust gas exhausted from each cylinder (cylinder) in a reciprocating engine is measured and the exhaust gas temperature of any cylinder falls below a predetermined set value, combustion abnormality occurs in this cylinder. There is a method for detecting this and detecting a combustion abnormality of a reciprocating engine (prior art 1).
Also, the average value of the exhaust gas temperature exhausted from all the cylinders is calculated, and when the difference in the exhaust gas temperature of any cylinder with respect to this average value exceeds a predetermined set value, the combustion abnormality of the reciprocating engine is detected. There is also a method for detecting the above (prior art 2). As a method for detecting a combustion abnormality in a reciprocating engine in this way, for example, there are methods disclosed in Patent Documents 1 and 2.
[0004]
[Patent Document 1]
Japanese Patent Publication No.51-18716
[Patent Document 2]
Japanese Patent Laid-Open No. 6-10799
[0005]
[Problems to be solved]
By the way, even if each cylinder in a reciprocating engine is set to burn under the same conditions, individual differences among cylinders, maintenance conditions, surrounding environmental fluctuations, etc. (load applied to the reciprocating engine, outside temperature, reciprocating engine, etc.) Variations in the exhaust gas temperature of each cylinder may be affected by fluctuations in the cooling water temperature, air-fuel ratio, etc.
However, the combustion abnormality detection methods in the above prior arts 1 and 2 both detect the combustion abnormality using the exhaust gas temperature of each cylinder at the time of determining whether or not there is a combustion abnormality. Combustion abnormality is detected based on the absolute value of the exhaust gas temperature.
[0006]
Therefore, in the above-described combustion abnormality detection method, when there is a variation in the exhaust gas temperature of each cylinder, it is affected by this variation, and it is difficult to improve the detection accuracy of the combustion abnormality. In addition, in order to prevent erroneous determination due to the variation, it is necessary to provide a margin by setting a relatively large safety factor for the predetermined set value, and it is possible to detect a combustion abnormality at an early stage. It has become difficult.
[0007]
The present invention has been made in view of such conventional problems, and is intended to provide a combustion abnormality detection method for a stationary reciprocating engine capable of detecting a combustion abnormality occurring in the stationary reciprocating engine with high accuracy and early. To do.
[0008]
[Means for solving problems]
A first invention is a method for detecting a combustion abnormality in a stationary reciprocating engine having a plurality of cylinders.
The temperature of the exhaust gas exhausted from each cylinder is sequentially measured by the temperature sensor, and the temperature of the exhaust gas for each cylinder for which the measurement has been performed is stored as temperature data for each cylinder.
Any time point at which the measurement is performed is set as a determination time point, and any time point before the determination time point is a past time point, and the temperature data at the determination time point and the temperature at the past time point are determined for each cylinder. Obtain the temperature change, which is the difference from the data,
Combustion of a stationary reciprocating engine characterized by detecting that a combustion abnormality has occurred in the stationary reciprocating engine when a dispersion value or standard deviation of the temperature change amount in all the cylinders exceeds a predetermined setting range. It is in the abnormality detection method (claim 1).
[0009]
In the combustion abnormality detection method of the present invention, the combustion abnormality in the stationary reciprocating engine is detected by monitoring the temporal change in the temperature of the exhaust gas for each cylinder.
That is, in the present invention, the temperature of the exhaust gas exhausted from each cylinder is sequentially measured by the temperature sensor, and this is stored as temperature data for each cylinder. Then, the presence or absence of combustion abnormality in the stationary reciprocating engine is determined using the temperature change amount for each cylinder, which is the difference between the temperature data at the determination time and the temperature data at the past time.
[0010]
For this reason, even if there is a variation in the exhaust gas temperature of each cylinder at the past time point, the combustion is performed based on the temperature of the exhaust gas that has changed from the past time point to the determination time point in the state where the variation has occurred. It is possible to determine whether there is an abnormality. Therefore, this determination is hardly affected by the above-described variation, and the detection accuracy of the combustion abnormality in the stationary reciprocating engine can be improved.
In addition, since it is hardly affected by the above-mentioned variation, it is not necessary to give an unnecessary margin to the predetermined setting range, and it is possible to detect early that a combustion abnormality has occurred in a stationary reciprocating engine. it can.
[0011]
Furthermore, in the present invention, as described above, the presence or absence of combustion abnormality in the stationary reciprocating engine is determined using the dispersion value or standard deviation of the temperature change amount in all cylinders.
That is, in the present invention, the dispersion value or standard deviation range of the temperature change amount in all cylinders when normal combustion is performed in all cylinders is obtained as the predetermined set range.
[0012]
Then, when the dispersion value or standard deviation of the temperature change amounts of all the cylinders at the determination time point when the determination is performed exceeds the predetermined setting range, it is detected that a combustion abnormality has occurred in the stationary reciprocating engine. Therefore, the difference in the exhaust gas temperature for each cylinder that has changed from the past time point to the determination time point can be significantly detected. Therefore, the detection accuracy of the combustion abnormality in the stationary reciprocating engine can be further improved, and the occurrence of the combustion abnormality in the stationary reciprocating engine can be detected at an earlier stage.
[0013]
A second invention is a method for detecting a combustion abnormality in a stationary reciprocating engine having a plurality of cylinders.
The stationary reciprocating engine is a V-type engine having a plurality of intake manifolds, and each cylinder is connected to each intake manifold every predetermined number.
The temperature of the exhaust gas exhausted from each cylinder is sequentially measured by the temperature sensor, and the temperature of the exhaust gas for each cylinder for which the measurement has been performed is stored as temperature data for each cylinder.
Any time point at which the measurement is performed is set as a determination time point, and any time point before the determination time point is a past time point, and the temperature data at the determination time point and the temperature at the past time point are determined for each cylinder. Obtain the temperature change, which is the difference from the data,
When a group of a plurality of cylinders connected to each of the intake manifolds is a cylinder group, and the dispersion value or standard deviation of the temperature change amount in all the cylinders in any of the cylinder groups exceeds the predetermined set range The present invention provides a combustion abnormality detection method for a stationary reciprocating engine characterized by detecting that a combustion abnormality has occurred in the stationary reciprocating engine.
[0014]
The combustion abnormality detection method of the present invention also detects a combustion abnormality in the stationary reciprocating engine by monitoring a change in the temperature of the exhaust gas for each cylinder over time.
In the present invention, for a V-type stationary reciprocating engine having a plurality of intake manifolds, the combustion mixture generated between the intake manifolds when the combustion mixture is supplied from each intake manifold to each cylinder. Combustion abnormality in a stationary reciprocating engine is detected in consideration of differences in the temperature of exhaust gas exhausted from each cylinder due to the influence of the difference in the state of the air-fuel mixture.
[0015]
That is, in the present invention, it is determined whether or not the combustion abnormality has occurred for each cylinder set in each intake manifold. A combustion abnormality occurred in the stationary reciprocating engine when the dispersion value or the standard deviation of the temperature change amount in all the cylinders in any of the cylinder groups at the time of determination is over the predetermined setting range. Detect that.
Therefore, even when a difference occurs in the state of the combustion air-fuel mixture between the intake manifolds, it is possible to prevent erroneous determination of combustion abnormality in response to the difference. Therefore, the detection accuracy of the combustion abnormality in the stationary reciprocating engine can be further improved.
Others are the same as those of the first invention in the present invention.
[0016]
A third invention is a method for detecting a combustion abnormality in a stationary reciprocating engine having a plurality of cylinders.
The temperature of the exhaust gas exhausted from each cylinder is sequentially measured by the temperature sensor, and the temperature of the exhaust gas for each cylinder for which the measurement has been performed is stored as temperature data for each cylinder.
Any time point at which the measurement is performed is set as a determination time point, and any time point before the determination time point is a past time point, and the temperature data at the determination time point and the temperature at the past time point are determined for each cylinder. Obtain the temperature change, which is the difference from the data,
When the temperature change amount in any of the cylinders is different from the temperature change amount in the remaining cylinders outside a predetermined set range, it is detected that a combustion abnormality has occurred in the stationary reciprocating engine. The combustion abnormality detection method for the stationary reciprocating engine is as follows.
[0017]
The combustion abnormality detection method of the present invention also detects a combustion abnormality in the stationary reciprocating engine by monitoring a change in the temperature of the exhaust gas for each cylinder over time.
And in this invention, the presence or absence of the combustion abnormality in a stationary reciprocating engine is determined by comparing the temperature change amount in each cylinder. That is, in the present invention, the range of the difference in temperature change between the cylinders when normal combustion is performed in each cylinder is obtained as the predetermined set range.
[0018]
A combustion abnormality occurs in the stationary reciprocating engine when the temperature change amount of one of the cylinders at the determination time point when the determination is made is different from the temperature change amount of the remaining cylinders outside the predetermined set range. Detect that
Therefore, in the present invention, as in the case of the above-described invention, the determination is hardly affected by the variation in the exhaust gas temperature of each cylinder at the past time point, and the combustion abnormality in the stationary reciprocating engine is not affected. The detection accuracy can be improved, and this combustion abnormality can be detected at an early stage.
One of the cylinders described above may be not only one cylinder but also two or more cylinders.
[0019]
A fourth invention is a method for detecting a combustion abnormality in a stationary reciprocating engine having a plurality of cylinders,
The stationary reciprocating engine is a V-type engine having a plurality of intake manifolds, and each cylinder is connected to each intake manifold every predetermined number.
The temperature of the exhaust gas exhausted from each cylinder is sequentially measured by the temperature sensor, and the temperature of the exhaust gas for each cylinder for which the measurement has been performed is stored as temperature data for each cylinder.
Any time point at which the measurement is performed is set as a determination time point, and any time point before the determination time point is a past time point, and the temperature data at the determination time point and the temperature at the past time point are determined for each cylinder. Obtain the temperature change, which is the difference from the data,
A set of a plurality of cylinders connected to each of the intake manifolds is defined as a cylinder set, and the temperature change amount in any cylinder in the cylinder set is the temperature change in the remaining cylinders in the cylinder set. A combustion abnormality detection method for a stationary reciprocating engine is characterized in that it detects that a combustion abnormality has occurred in the stationary reciprocating engine when it differs from a predetermined setting range compared to the quantity. .
[0020]
The combustion abnormality detection method of the present invention also detects a combustion abnormality in the stationary reciprocating engine by monitoring a change in the temperature of the exhaust gas for each cylinder over time.
In the present invention, in the same manner as in the second aspect of the invention, in consideration of the difference in the state of the combustion mixture generated between the intake manifolds in the V-type stationary reciprocating engine, each cylinder group in each intake manifold is considered. Each time, it is determined whether or not the combustion abnormality has occurred.
[0021]
In the present invention, the temperature change amount in any cylinder in any cylinder set at the determination time point when the determination is performed has a predetermined set range compared to the temperature change amounts in the remaining cylinders in the cylinder set. When they are different from each other, it is detected that a combustion abnormality has occurred in the stationary reciprocating engine.
Therefore, even when a difference occurs in the state of the combustion air-fuel mixture between the intake manifolds, it is possible to prevent erroneous determination of combustion abnormality in response to the difference. Therefore, the detection accuracy of the combustion abnormality in the stationary reciprocating engine can be further improved.
Others are the same as in the third aspect of the present invention.
[0022]
DETAILED DESCRIPTION OF THE INVENTION
A preferred embodiment of the present invention described above will be described.
In the first to fourth inventions, the stationary reciprocating engine is not a reciprocating engine used for a vehicle for the purpose of moving an automobile or the like, but a reciprocating engine used by being installed at a place of use. As this stationary reciprocating engine, for example, there is an engine that drives a compressor or a generator, and another engine that is used as power for a heat pump. The stationary reciprocating engine can also be used in a cogeneration system. .
[0023]
Examples of the stationary reciprocating engine include a stationary gas engine and a stationary diesel engine. The number of cylinders of the stationary reciprocating engine can be two or more, for example, four cylinders, six cylinders, eight cylinders, ten cylinders, or twelve cylinders.
In the first and third inventions, as the stationary reciprocating engine, any type such as an inline engine or a V-type engine can be used.
[0024]
In the first and second aspects of the invention, the variance value of the temperature change amount in all the cylinders is obtained by calculating the total value of the temperature change amount from the sum of all cylinders obtained by squaring the temperature change amount for each cylinder. It can be calculated based on variance data obtained by subtracting the sum of the cylinder sums squared.
When the number of cylinders is n and the temperature change amount in each cylinder is D (i), the dispersion data is nΣD (i) 2 -{ΣD (i)} 2 ; (I = 1 to n).
[0025]
Further, the variance value of the temperature change amount in all cylinders in each cylinder set can also be calculated based on the variance data in the same manner as described above. When the number of cylinders in each cylinder set is m and the temperature change amount in each cylinder in each cylinder set is D (i), the dispersion data for each cylinder set is mΣD (i) 2 -{ΣD (i)} 2 ; (I = 1 to m).
[0026]
In addition, the variance value can be calculated based on variance data as a sum of squares of all cylinders obtained by subtracting the average value of temperature change amounts in all cylinders from the temperature change amount for each cylinder. When the number of cylinders is n, the temperature change amount in each cylinder is D (i), and the average value of the temperature change amounts in all the cylinders is Dx, the variance data B is Σ {D (i) −Dx} 2 ; (I = 1 to n). This also applies to the dispersion value of the temperature change amount in all the cylinders in each cylinder set.
The standard deviation can be calculated based on the square root of the variance data.
[0027]
In the first to fourth aspects of the invention, it is preferable that the past time point is a time point immediately before a time point immediately before the temperature sensor performs measurement immediately before the determination time point.
In this case, the time interval at which the temperature sensor sequentially measures is shortened to realize earlier detection of the combustion abnormality of the stationary reciprocating engine, and the past time point used for the determination of the combustion abnormality is determined as the determination time point. It is possible to make the above-described temperature change noticeably appear not as immediately before but as a time point that goes back in the past. Therefore, the detection accuracy of the combustion abnormality in the stationary reciprocating engine can be further improved, and this combustion abnormality can be detected even earlier.
[0028]
Further, in the combustion abnormality detection method for the stationary reciprocating engine, it is possible to detect that the cylinder having the largest absolute value of the temperature change amount is the cylinder in which the combustion abnormality has occurred.
In this case, in the stationary reciprocating engine, the cylinder in which the combustion abnormality has occurred can be specified. Therefore, it is possible to easily cope with the combustion abnormality.
[0029]
【Example】
In the following, an embodiment according to a combustion abnormality detection method for a stationary reciprocating engine of the present invention will be described with reference to the drawings.
(Example 1)
As shown in FIGS. 1 and 2, the combustion abnormality detection method of the stationary reciprocating engine 2 of this example is a misfire or combustion that occurs during the combustion operation of the stationary reciprocating engine 2 having a plurality of cylinders 21 to 26. This is a method for detecting a combustion abnormality such as a defect.
That is, in the combustion abnormality detection method of the present example, first, the temperature of the exhaust gas exhausted from each of the cylinders 21 to 26 is sequentially measured by the temperature sensor 27, and each of the cylinders 21 to 26 for which this measurement has been performed. The temperature of the exhaust gas is stored as temperature data T (i) (i = 1 to 6) for each cylinder 21 to 26.
[0030]
Next, a temperature at the determination time ta is determined for each of the cylinders 21 to 26, with any time point at which the measurement is performed as a determination time point ta and any time point before the determination time ta as a past time point tb. A temperature change amount D (i) that is a difference between the data T (i) a and the temperature data T (i) b at the past time point tb is obtained.
When the dispersion value B or standard deviation F of the temperature change amount D (i) in all the cylinders 21 to 26 exceeds a predetermined setting range A, a combustion abnormality has occurred in the stationary reciprocating engine 2. Is detected.
[0031]
This is described in detail below.
As shown in FIG. 2, the combustion abnormality detection method of this example operates the generator 3 by using the driving force generated by the combustion operation of the stationary reciprocating engine 2, and generates cooling water and exhaust gas generated during the combustion operation. The gas is used in the cogeneration system 1 that uses the exhaust heat utilization means 4 such as an air conditioner or a water heater.
[0032]
That is, the cogeneration system 1 uses the temperature of the stationary reciprocating engine 2 using the temperature of the exhaust gas measured by the stationary reciprocating engine 2, the generator 3, the exhaust heat utilization means 4, and the temperature sensor 27. Control means 5 for detecting combustion abnormality is provided. The temperature sensors 27 are respectively disposed at the exhaust ports of the plurality of cylinders 21 to 26 in the stationary reciprocating engine 2 and measure the temperature of the exhaust gas passing through the exhaust ports of the cylinders 21 to 26, respectively. Can do.
[0033]
Further, the stationary reciprocating engine 2 of the present example has an intake manifold (not shown) for supplying a combustion mixture obtained by mixing air and fuel to the cylinders 21 to 26. The stationary reciprocating engine 2 is an in-line engine in which a plurality of cylinders are arranged in series. In this example, six cylinders 21 to 26 are connected in series to one intake manifold. Further, the stationary reciprocating engine 2 of this example is a gas engine that performs a combustion operation using city gas (13A or the like).
[0034]
In addition, as shown in FIG. 2, the control means 5 includes a reporting means 51 that can report the detection of the combustion abnormality when it detects that a combustion abnormality has occurred in the stationary reciprocating engine 2. ing. This alarm means 51 may be an alarm by a buzzer for notifying a combustion abnormality, or may be an abnormality display by a display, an abnormality display by lighting an abnormality display lamp, or the like.
Further, the control means 5 includes a display means 52 that displays the cylinder numbers of the cylinders 21 to 26 that have been detected that a combustion abnormality has occurred in the stationary reciprocating engine 2. The display means 52 can be a display or a lamp for displaying the cylinder number where the combustion abnormality is detected.
[0035]
In this example, the time interval (sampling time) at which the temperature sensors 27 sequentially measure is 0.5 [seconds]. This sampling time can be arbitrarily selected from 0.1 to 120 [seconds]. In accordance with this, the past time point tb can be arbitrarily selected from 0.1 to 120 [seconds] before the determination time point ta.
[0036]
The past time point tb in this example is a time point before the time point immediately before the temperature sensor 27 performs the measurement (a time point before 0.5 [second]) immediately before the determination time point ta. That is, the past time point tb in this example is a time point 5 [seconds] before the determination time point ta.
In this way, the sampling time is shortened to 0.5 [seconds] to enable detection of combustion abnormality at an early stage, and the past time point tb used for abnormality determination is not traced immediately before the determination time point ta, but is further traced back to the past. By setting the time point, the difference in the temperature change amount D (i) between the cylinders 21 to 26 can be remarkably exhibited.
[0037]
In the combustion abnormality detection method, when a combustion abnormality is detected in the stationary reciprocating engine 2, the cylinder having the largest absolute value of the temperature change amount D (i) among the six cylinders 21 to 26 is combusted. It can be detected that the cylinder has an abnormality. In the stationary reciprocating engine 2, the cylinders 21 to 26 in which the combustion abnormality has occurred can be identified, and the combustion abnormality can be easily dealt with.
[0038]
The combustion abnormality detection method of this example detects a combustion abnormality that has occurred in the stationary reciprocating engine 2 by monitoring changes in the temperature of exhaust gas for each cylinder 21 to 26 in the stationary reciprocating engine 2 over time. .
Hereinafter, a method for detecting a combustion abnormality occurring in the stationary reciprocating engine 2 will be described in detail with reference to FIG.
[0039]
Before performing the combustion operation of the stationary reciprocating engine 2, the range of the dispersion value B of the temperature change amount D (i) in all the cylinders 21 to 26 when the normal combustion is performed in all the cylinders 21 to 26 in advance. Measure. In this example, a predetermined set range A is obtained by multiplying the range of the dispersion value B when the normal combustion is performed by a slight safety factor. Specifically, the predetermined setting range A in this example is set as A = 0 to 10.
[0040]
In step S101 of FIG. 1, the stationary reciprocating engine 2 is operated for combustion, and the operation of the cogeneration system 1 is started. Next, in S <b> 102, the control means 5 measures the temperature of the exhaust gas exhausted from each cylinder 21 to 26 in the stationary reciprocating engine 2 by the temperature sensor 27 provided in each cylinder 21 to 26. In S103, the control means 5 stores the measured exhaust gas temperatures of the respective cylinders 21 to 26 as temperature data T (i) (i = 1 to 6) for each of the cylinders 21 to 26.
[0041]
Next, in S104, for each of the cylinders 21 to 26, a temperature change that is a difference between the temperature data T (i) a at the current time ta as the determination time ta and the temperature data T (i) b at the past time tb. Each quantity D (i) is determined. Since the past time point tb in this example is a time point 5 [seconds] before the current time ta, the temperature change amount D (i) includes the temperature data T (i) a at the current time ta and the past time point 5 [seconds] before. It is obtained as a difference from the temperature data T (i) b at tb.
[0042]
Next, in S105, a dispersion value B of the temperature change amounts D (i) of all the cylinders 21 to 26 at the current time ta is obtained. In S106, it is determined whether or not the variance value B exceeds a predetermined setting range A for determining the normality.
[0043]
When the determination in S106 is Yes, the control means 5 detects the combustion abnormality of the stationary reciprocating engine 2 on the assumption that the dispersion value B at the current time ta exceeds the predetermined setting range A. At this time, in S107, the control means 5 reports an abnormality using the reporting means 51. Next, in S108, the control means 5 causes the temperature change amount D of the six cylinders 21 to 26 to be detected. The cylinder having the largest absolute value of (i) is detected. In S109, the control means 5 displays the number of the cylinder having the largest absolute value of the temperature change amount D (i) on the display means 52. Thereafter, S102 is executed again.
[0044]
On the other hand, when the determination in S106 is No, the control means 5 detects the normal combustion state of the stationary reciprocating engine 2 on the assumption that the dispersion value B at the current ta is within the predetermined setting range A, and thereafter, again executes S102. Execute.
Thereafter, the above steps S102 to S107 are repeated as appropriate, and the presence or absence of combustion abnormality in the stationary reciprocating engine 2 can be detected in real time. Although omitted in FIG. 1, the control means 5 can end the operation of the cogeneration system 1 when receiving an operation end signal of the stationary reciprocating engine 2 at an arbitrary timing.
[0045]
Below, the temperature change amount D (i) is obtained for each of the cylinders 21 to 26, and an equation used when obtaining the dispersion value B of the temperature change amount D (i) in all the cylinders 21 to 26 is shown.
Table 1 shows that there are six cylinders in the stationary reciprocating engine 2 of this example, each temperature data T (i) a at the determination time ta is T (1) a to T (6) a, and each of the temperature data at the past time tb. This indicates that the temperature data T (i) b is determined as T (1) b to T (6) b, and each temperature change amount D (i) is determined as D (1) to D (6). Further, each temperature change amount D (i) is obtained as D (i) = T (i) a−T (i) b.
In addition, the variance value B can be obtained by Equation 1. Here, i represents one of the first to sixth cylinders 21 to 26, and n represents the number of cylinders (6 in this example). In place of the variance value B, the standard deviation F can be used as shown in Equation 2.
[0046]
[Table 1]
Figure 2005002878
[0047]
[Expression 1]
Figure 2005002878
[0048]
[Expression 2]
Figure 2005002878
[0049]
Note that the variance value B can also be obtained by Equations 3 and 4. Here, Dx represents an average value of the temperature change amounts D (i) of all the cylinders 21 to 26 at the determination time ta. Also in this case, instead of the variance value B, the standard deviation F can be used as shown in Equation 5.
[0050]
[Equation 3]
Figure 2005002878
[0051]
[Expression 4]
Figure 2005002878
[0052]
[Equation 5]
Figure 2005002878
[0053]
Table 2 shows an example in which the temperature change amount D (i) is obtained for each of the cylinders 21 to 26 and the dispersion value B of the temperature change amount D (i) in all the cylinders 21 to 26 is obtained. The table shows that each of the cylinders 21 to 26 at three time points measured by the temperature sensors 27 provided in the cylinders 21 to 26, that is, 2317 [seconds], 2322 [seconds], and 2327 [seconds]. Temperature data T (i), temperature change amount D (i), and dispersion value B are shown.
At time 2322 [seconds], the time change amount D (i) and the dispersion value B are obtained using this time as the determination time point ta and the time 2317 [seconds] as the past time point tb. 28. Therefore, this variance value B (0.28) is within the predetermined setting range A (0 to 10) and is determined to be normal.
[0054]
On the other hand, at time 2327 [seconds], this time is set as the determination time ta and the time 2322 [seconds] is set as the past time tb, and the temperature change amount D (i) and the dispersion value B are obtained. Became 52.39. Therefore, the dispersion value B (52.39) is out of the predetermined set range A (0 to 10) and is determined to be abnormal, and the combustion abnormality of the stationary reciprocating engine 2 can be detected.
At time 2327 [seconds], among the cylinders 21 to 26, the absolute value of the temperature change amount D (5) of the fifth cylinder 25 is as large as 20, and combustion abnormality occurs in the fifth cylinder 25. I was able to detect.
[0055]
[Table 2]
Figure 2005002878
[0056]
FIG. 3 is a graph showing a situation where the occurrence of combustion abnormality is detected in the combustion abnormality detection method of the stationary reciprocating engine 2. In the same figure, the dispersion value B is larger than 10 at the time of about 2150 [seconds] to 2800 [seconds], and it can be seen that a combustion abnormality has occurred in the stationary reciprocating engine 2. On the other hand, at the time of 2000 [seconds] to 2150 [seconds] and 2800 [seconds] to 3000 [seconds], the dispersion value B is as small as less than 2, indicating that the stationary reciprocating engine 2 operates normally. .
[0057]
In this example, as described above, for each of the cylinders 21 to 26, the temperature data T (i) a at the current time ta as the determination time ta measured by the temperature sensor 27, and the past time tb before this. The difference between the temperature data T (i) b and the temperature change amount D (i) is obtained as a temperature change amount D (i), and the presence or absence of combustion abnormality of the stationary reciprocating engine 2 is determined based on the dispersion value B of the temperature change amount D (i). . That is, in this example, the combustion abnormality in the stationary reciprocating engine 2 is detected by monitoring the temporal change in the temperature of the exhaust gas for each of the cylinders 21 to 26.
[0058]
Therefore, even if there is a variation in the temperature of the exhaust gas in each of the cylinders 21 to 26 at the past time point tb, the temperature of the exhaust gas that has changed from the past time point tb to the determination time point ta when the variation occurs. Based on the above, it can be determined whether there is a combustion abnormality. Therefore, the determination is hardly affected by the variation, and the detection accuracy of the combustion abnormality in the stationary reciprocating engine 2 can be improved.
Further, since it is hardly affected by the variation, the safety factor given to the predetermined setting range A can be reduced, and early detection of occurrence of combustion abnormality in the stationary reciprocating engine 2 can be performed. You can also.
[0059]
Furthermore, by the abnormality determination using the dispersion value B, the difference in the temperature of the exhaust gas for each of the cylinders 21 to 26 that has changed from the past time point tb to the determination time point ta can be significantly detected. . Therefore, the detection accuracy of the combustion abnormality in the stationary reciprocating engine 2 can be further improved, and it can be detected that the combustion abnormality has occurred in the stationary reciprocating engine 2 at an earlier stage.
[0060]
(Example 2)
In this example, as shown in FIG. 4, the difference in the state of the combustion mixture G <b> 1 that may occur between the intake manifolds 28 in the V-type stationary reciprocating engine 2 having a plurality of intake manifolds 28. This is an example of further improving the detection accuracy of the combustion abnormality.
The V-type stationary reciprocating engine 2 is formed by arranging a plurality of a pair of cylinders 201 to 212 arranged in a V shape around a crankshaft (not shown). And each cylinder 201-212 of this example is connected to each intake manifold 28 for every predetermined number of cylinders.
[0061]
As shown in FIG. 4, there are two intake manifolds 28 in this example, a right intake manifold 28R located on the right side of the V shape and a left intake manifold 28L located on the left side. Of the pair of cylinders 201 to 212 forming a plurality of V-shaped cylinders, the one located on the right side is connected to the right intake manifold 28R, and the one located on the left side is connected to the left intake manifold 28L. .
[0062]
Specifically, the stationary reciprocating engine 2 of this example is a gas engine and a 12-cylinder V-type engine, and the right intake manifold 28R includes first to sixth cylinders 201 positioned on the right side of the V shape. To 206, and the left intake manifold 28L is connected to seventh to twelfth cylinders 207 to 212 located on the left side of the V shape. The first to sixth cylinders 201 to 206 connected to the right intake manifold 28R constitute a right cylinder group (R bank), and the seventh to twelfth cylinders 207 to 212 connected to the left intake manifold 28L The left cylinder group (L bank) is configured.
[0063]
Each intake manifold 28R, L is connected to a supercharger 281 for compressing a combustion mixture G1 of air and fuel and supplying a large amount of the combustion mixture G1 to each cylinder 201-212. ing. When the stationary reciprocating engine 2 is a diesel engine, the supercharger 281 compresses air.
Further, temperature sensors 27 are provided at the exhaust ports of the respective cylinders 201 to 212, and the exhaust ports of the respective cylinders 201 to 212 are respectively connected to the exhaust manifold 29.
[0064]
In this example, the dispersion value B of the temperature change amounts D (i) of all the cylinders 201 to 212 at the determination time ta at which the determination is performed exceeds the predetermined setting range A, and any of the determination time ta at which the determination is performed. When the cylinder set dispersion value B1 of the temperature change amount D (i) of all the cylinders 201 to 206 or 207 to 212 in the cylinder set also exceeds the predetermined set range A, the stationary reciprocating engine 2 burns. Detect that an abnormality has occurred.
[0065]
Note that the cylinder group dispersion value B1 uses B in the above-described Formula 1 or Formulas 3 and 4, and the cylinder group dispersion value B1 for the cylinders 201 to 206 in the right cylinder group and the cylinder 207 in the left cylinder group. Can be obtained as the cylinder set dispersion value B1 for .about.212. Of course, the cylinder group standard deviation F1 may be used instead of the cylinder group dispersion value B1. The cylinder set standard deviation F1 can also be obtained for each cylinder set on the right side and the left side using F in Formula 2 or Formula 5 of Embodiment 1 described above.
[0066]
During the combustion operation of the stationary reciprocating engine 2, the combustion for flowing through the intake manifolds 28R, L due to individual differences of the superchargers 281 connected to the intake manifolds 28R, L, etc. Differences may occur in the state of the gas mixture G1. When this difference occurs, there is a difference between the temperature of the exhaust gas G2 exhausted from the cylinders 201 to 206 in the right cylinder group and the temperature of the exhaust gas G2 exhausted from the cylinders 207 to 212 in the left cylinder group. May occur.
[0067]
In this case, the dispersion value B of the temperature change amounts D (i) of all the cylinders 201 to 212 at the determination time ta is obtained even though no combustion abnormality has occurred in any of the cylinders 201 to 212. , The predetermined setting range A may be exceeded. Therefore, in this example, the cylinder set dispersion value B1 of the temperature change amount D (i) of all the cylinders 201 to 206 or 207 to 212 in any of the cylinder sets at the determination time ta also exceeds the predetermined set range A. The above combustion abnormality is detected for the first time.
[0068]
Therefore, even when a difference occurs in the state of the combustion air-fuel mixture G1 between the intake manifolds 28R and 28L, it is possible to prevent erroneous determination of combustion abnormality in response to the difference. Therefore, the detection accuracy of the combustion abnormality in the stationary reciprocating engine 2 can be further improved.
Others are the same as those in the first embodiment, and the same effects as those in the first embodiment can be obtained.
[0069]
In the abnormality detection method of this example, it is not monitored whether or not the variance value B of the temperature change amount D (i) of all the cylinders 201 to 212 exceeds the predetermined set range A. It is also possible to determine whether the cylinder group dispersion value B1 of the temperature change amount D (i) of all the cylinders 201 to 206 or 207 to 212 in the cylinder group of this cylinder group exceeds the predetermined setting range A by a stationary type. It is possible to detect that a combustion abnormality has occurred in the reciprocating engine 2. Even in this case, the same effect as described above can be obtained.
[0070]
Example 3
In this example, instead of using the dispersion value B or the standard deviation F in determining whether there is a combustion abnormality in the stationary reciprocating engine 2, the temperature change amount T (i) in any one of the cylinders 21 to 26 is: This is an example of detecting that a combustion abnormality has occurred in the stationary reciprocating engine 2 when it differs from the temperature change amount T (i) in the remaining cylinders 21 to 26 outside a predetermined set range A ′. .
[0071]
That is, in this example, one cylinder among the plurality of cylinders 21 to 26 is set as a reference cylinder, and the temperature change amount T (i) in the other remaining cylinders with respect to the temperature change amount T (i) in the reference cylinder. ) Detects a combustion abnormality of the stationary reciprocating engine 2 depending on whether it is different from a predetermined setting range A ′.
The configuration of the stationary reciprocating engine 2 used in the combustion abnormality detection method of the present example is the same as that of the first embodiment as shown in FIG.
[0072]
Specifically, this example will be described using Table 2 as in the first embodiment. That is, in this example, the first cylinder 21 is the reference cylinder, the temperature change amount T (1) in the first cylinder 21 and the temperature change amounts T (2) to T (6) in the remaining cylinders 22 to 26. ) Is determined as to whether or not the difference amounts E (2) to E (6) are within a predetermined setting range A ′. Here, the predetermined setting range A ′ in this example was ± 10 [° C.].
[0073]
In Table 2, when the time 2322 [seconds] is the determination time ta, the past time tb is the time 2317 [seconds]. In the determination at 2322 [seconds], the difference amount E (2) of the second cylinder 22 is E (2) = D (2) −D (1) = + 0.5, and the difference between the third cylinders 23 is determined. The amount E (3) is E (3) = D (3) −D (1) = 0, and the difference amount E (4) of the fourth cylinder 24 is E (4) = D (4) −D ( 1) = − 1.0, and the difference amount E (5) of the fifth cylinder 25 is E (5) = D (5) −D (1) = − 0.5, and the difference amount of the sixth cylinder 26 E (6) becomes E (6) = D (6) −D (1) = + 0.5. Therefore, the difference amounts E (2) to E (6) of any of the second to sixth cylinders 22 to 26 are also within the predetermined set range A ′ and determined to be normal.
[0074]
On the other hand, when the time 2327 [second] is set as the determination time ta, the past time tb is set as the time 2322 [second]. In the determination at 2327 [seconds], the difference amount E (2) of the second cylinder 22 is E (2) = D (2) −D (1) = + 0.5, and the difference between the third cylinders 23 is determined. The amount E (3) is E (3) = D (3) −D (1) = − 1.0, and the difference amount E (4) of the fourth cylinder 24 is E (4) = D (4). −D (1) = − 6.0, and the difference amount E (5) of the fifth cylinder 25 becomes E (5) = D (5) −D (1) = − 19.5, and the sixth cylinder 26 Is E (6) = D (6) −D (1) = + 1.0. Therefore, the difference amount E (6) of the sixth cylinder 26 is out of the predetermined setting range A ′, and it is detected that a combustion abnormality has occurred in the stationary reciprocating engine 2.
[0075]
When a combustion abnormality occurs in the first cylinder 21 as the reference cylinder, the difference amounts E (2) to E (6) in the second to sixth cylinders 22 to 26 are set to the predetermined set range A ′. Even in this case, the combustion abnormality of the stationary reciprocating engine 2 can be detected. In this example, it is also possible to detect in which cylinders 21 to 26 the combustion abnormality has occurred from the difference amounts E (1) to E (6) of the cylinders 21 to 26.
Others are the same as those in the first embodiment, and the same effects as those in the first embodiment can be obtained.
[0076]
Also in this example, as in the second embodiment, the stationary reciprocating engine 2 can be a V-type engine, and the above-described combustion abnormality occurs for each cylinder set in each intake manifold 28R, L. It can also be determined whether or not there is. In this case, the temperature change amount D (i) in any of the cylinders 201 to 206 or 207 to 212 in any of the cylinder sets at the determination time ta at which the determination is performed is the remaining cylinder 201 to 201 in the cylinder set. It is possible to detect that a combustion abnormality has occurred in the stationary reciprocating engine 2 when the temperature change amount D (i) at 206 or 207 to 212 is different from the predetermined set range A ′. Further, in this case, even when a difference occurs in the state of the combustion air-fuel mixture between the intake manifolds 28R and 28L, it is possible to prevent erroneous determination of combustion abnormality in response to this difference.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram illustrating a cogeneration system that uses a combustion abnormality detection method for a stationary reciprocating engine according to a first embodiment.
FIG. 2 is a flowchart showing a combustion abnormality detection method for a stationary reciprocating engine according to the first embodiment.
FIG. 3 is a graph showing time t on the horizontal axis and temperature data D (i) and dispersion value B for each cylinder on the vertical axis in Example 1 to determine whether there is any combustion abnormality in the stationary reciprocating engine. A graph showing the situation.
4 is an explanatory view showing a V-type stationary reciprocating engine having a plurality of intake manifolds in Embodiment 2. FIG.
[Explanation of symbols]
1. . . Cogeneration system,
2. . . Stationary reciprocating engine,
21-26. . . Each cylinder,
27. . . Temperature sensor,
28. . . Intake manifold,
3. . . Generator,
ta. . . Judgment point,
tb. . . Past time,
T (i). . . Temperature data,
T (i) a. . . Temperature data at the time of judgment,
T (i) b. . . Past temperature data,
D (i). . . Temperature change,
B. . . Variance value,
F. . . standard deviation,
A. . . A predetermined setting range,

Claims (6)

複数の気筒を有してなる定置式レシプロエンジンにおける燃焼異常を検出する方法において,
温度センサにより上記各気筒から排気される排気ガスの温度をそれぞれ逐次測定して,該測定を行った各気筒毎の排気ガスの温度を各気筒毎に温度データとして保存し,
上記測定を行ったいずれかの時点を判定時点とすると共に該判定時点よりも前のいずれかの時点を過去時点として,上記各気筒について,上記判定時点における上記温度データと上記過去時点における上記温度データとの差分である温度変化量をそれぞれ求め,
上記全気筒における上記温度変化量の分散値又は標準偏差が所定の設定範囲を超えたときには,上記定置式レシプロエンジンに燃焼異常が発生したことを検出することを特徴とする定置式レシプロエンジンの燃焼異常検出方法。
In a method for detecting a combustion abnormality in a stationary reciprocating engine having a plurality of cylinders,
The temperature of the exhaust gas exhausted from each cylinder is sequentially measured by the temperature sensor, and the temperature of the exhaust gas for each cylinder for which the measurement has been performed is stored as temperature data for each cylinder.
Any time point at which the measurement is performed is set as a determination time point, and any time point before the determination time point is a past time point, and the temperature data at the determination time point and the temperature at the past time point are determined for each cylinder. Obtain the temperature change, which is the difference from the data,
Combustion of a stationary reciprocating engine characterized by detecting that a combustion abnormality has occurred in the stationary reciprocating engine when a dispersion value or standard deviation of the temperature change amount in all the cylinders exceeds a predetermined setting range. Anomaly detection method.
複数の気筒を有してなる定置式レシプロエンジンにおける燃焼異常を検出する方法において,
上記定置式レシプロエンジンは,複数の吸気マニホールドを有してなるV型エンジンであり,上記各気筒は,所定数毎に上記各吸気マニホールドに接続されており,
温度センサにより上記各気筒から排気される排気ガスの温度をそれぞれ逐次測定して,該測定を行った各気筒毎の排気ガスの温度を各気筒毎に温度データとして保存し,
上記測定を行ったいずれかの時点を判定時点とすると共に該判定時点よりも前のいずれかの時点を過去時点として,上記各気筒について,上記判定時点における上記温度データと上記過去時点における上記温度データとの差分である温度変化量をそれぞれ求め,
上記各吸気マニホールドにそれぞれ接続された複数の気筒の組を気筒組として,いずれかの該気筒組内の全気筒における上記温度変化量の分散値又は標準偏差が上記所定の設定範囲を超えたときには,上記定置式レシプロエンジンに燃焼異常が発生したことを検出することを特徴とする定置式レシプロエンジンの燃焼異常検出方法。
In a method for detecting a combustion abnormality in a stationary reciprocating engine having a plurality of cylinders,
The stationary reciprocating engine is a V-type engine having a plurality of intake manifolds, and each cylinder is connected to each intake manifold every predetermined number.
The temperature of the exhaust gas exhausted from each cylinder is sequentially measured by the temperature sensor, and the temperature of the exhaust gas for each cylinder for which the measurement has been performed is stored as temperature data for each cylinder.
Any time point at which the measurement is performed is set as a determination time point, and any time point before the determination time point is a past time point, and the temperature data at the determination time point and the temperature at the past time point are determined for each cylinder. Obtain the temperature change, which is the difference from the data,
When a group of a plurality of cylinders connected to each of the intake manifolds is a cylinder group, and the dispersion value or standard deviation of the temperature change amount in all the cylinders in any of the cylinder groups exceeds the predetermined set range A method for detecting a combustion abnormality in a stationary reciprocating engine, comprising detecting that a combustion abnormality has occurred in the stationary reciprocating engine.
複数の気筒を有してなる定置式レシプロエンジンにおける燃焼異常を検出する方法において,
温度センサにより上記各気筒から排気される排気ガスの温度をそれぞれ逐次測定して,該測定を行った各気筒毎の排気ガスの温度を各気筒毎に温度データとして保存し,
上記測定を行ったいずれかの時点を判定時点とすると共に該判定時点よりも前のいずれかの時点を過去時点として,上記各気筒について,上記判定時点における上記温度データと上記過去時点における上記温度データとの差分である温度変化量をそれぞれ求め,
いずれかの気筒における上記温度変化量が,残りの気筒における上記温度変化量に比べて所定の設定範囲を外れて異なるときには,上記定置式レシプロエンジンに燃焼異常が発生したことを検出することを特徴とする定置式レシプロエンジンの燃焼異常検出方法。
In a method for detecting a combustion abnormality in a stationary reciprocating engine having a plurality of cylinders,
The temperature of the exhaust gas exhausted from each cylinder is sequentially measured by the temperature sensor, and the temperature of the exhaust gas for each cylinder for which the measurement has been performed is stored as temperature data for each cylinder.
Any time point at which the measurement is performed is set as a determination time point, and any time point before the determination time point is a past time point, and the temperature data at the determination time point and the temperature at the past time point are determined for each cylinder. Obtain the temperature change, which is the difference from the data,
When the temperature change amount in any of the cylinders is different from the temperature change amount in the remaining cylinders outside a predetermined set range, it is detected that a combustion abnormality has occurred in the stationary reciprocating engine. A combustion abnormality detection method for a stationary reciprocating engine.
複数の気筒を有してなる定置式レシプロエンジンにおける燃焼異常を検出する方法において,
上記定置式レシプロエンジンは,複数の吸気マニホールドを有してなるV型エンジンであり,上記各気筒は,所定数毎に上記各吸気マニホールドに接続されており,
温度センサにより上記各気筒から排気される排気ガスの温度をそれぞれ逐次測定して,該測定を行った各気筒毎の排気ガスの温度を各気筒毎に温度データとして保存し,
上記測定を行ったいずれかの時点を判定時点とすると共に該判定時点よりも前のいずれかの時点を過去時点として,上記各気筒について,上記判定時点における上記温度データと上記過去時点における上記温度データとの差分である温度変化量をそれぞれ求め,
上記各吸気マニホールドにそれぞれ接続された複数の気筒の組を気筒組として,いずれかの該気筒組内のいずれかの気筒における上記温度変化量が,当該気筒組内の残りの気筒における上記温度変化量に比べて所定の設定範囲を外れて異なるときには,上記定置式レシプロエンジンに燃焼異常が発生したことを検出することを特徴とする定置式レシプロエンジンの燃焼異常検出方法。
In a method for detecting a combustion abnormality in a stationary reciprocating engine having a plurality of cylinders,
The stationary reciprocating engine is a V-type engine having a plurality of intake manifolds, and each cylinder is connected to each intake manifold every predetermined number.
The temperature of the exhaust gas exhausted from each cylinder is sequentially measured by the temperature sensor, and the temperature of the exhaust gas for each cylinder for which the measurement has been performed is stored as temperature data for each cylinder.
Any time point at which the measurement is performed is set as a determination time point, and any time point before the determination time point is a past time point, and the temperature data at the determination time point and the temperature at the past time point are determined for each cylinder. Obtain the temperature change, which is the difference from the data,
A set of a plurality of cylinders connected to each of the intake manifolds is defined as a cylinder set, and the temperature change amount in any cylinder in the cylinder set is the temperature change in the remaining cylinders in the cylinder set. A combustion abnormality detection method for a stationary reciprocating engine, characterized in that it detects that a combustion abnormality has occurred in the stationary reciprocating engine when it differs from a predetermined set range compared to the amount.
請求項1〜4のいずれか一項において,上記過去時点は,上記判定時点の直前に上記温度センサが測定を行った直前時点よりもさらに前の時点とすることを特徴とする定置式レシプロエンジンの燃焼異常検出方法。The stationary reciprocating engine according to any one of claims 1 to 4, wherein the past time point is a time point immediately before a time point immediately before the temperature sensor performs measurement immediately before the determination time point. Combustion abnormality detection method. 請求項1〜5のいずれか一項において,上記温度変化量の絶対値が最も大きな気筒が燃焼異常が発生した気筒であると検出することを特徴とする定置式レシプロエンジンの燃焼異常検出方法。6. The combustion abnormality detection method for a stationary reciprocating engine according to claim 1, wherein the cylinder having the largest absolute value of the temperature change amount is detected as a cylinder in which combustion abnormality has occurred.
JP2003166913A 2003-06-11 2003-06-11 Combustion abnormality detection method for stationary reciprocating engine Expired - Fee Related JP3996095B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003166913A JP3996095B2 (en) 2003-06-11 2003-06-11 Combustion abnormality detection method for stationary reciprocating engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003166913A JP3996095B2 (en) 2003-06-11 2003-06-11 Combustion abnormality detection method for stationary reciprocating engine

Publications (2)

Publication Number Publication Date
JP2005002878A true JP2005002878A (en) 2005-01-06
JP3996095B2 JP3996095B2 (en) 2007-10-24

Family

ID=34092921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003166913A Expired - Fee Related JP3996095B2 (en) 2003-06-11 2003-06-11 Combustion abnormality detection method for stationary reciprocating engine

Country Status (1)

Country Link
JP (1) JP3996095B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007278106A (en) * 2006-04-04 2007-10-25 Tokyo Gas Co Ltd Method and device for detecting misfire of internal combustion engine for power generation
JP2007298009A (en) * 2006-05-02 2007-11-15 Toho Gas Co Ltd Abnormality diagnostic device for power generation system
JP2012092809A (en) * 2010-10-28 2012-05-17 Tokyo Gas Co Ltd Misfire detection system and method of internal combustion engine
JP2012097603A (en) * 2010-10-29 2012-05-24 Tokyo Gas Co Ltd Misfire detection method and misfire detection system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007278106A (en) * 2006-04-04 2007-10-25 Tokyo Gas Co Ltd Method and device for detecting misfire of internal combustion engine for power generation
JP4674765B2 (en) * 2006-04-04 2011-04-20 東京瓦斯株式会社 Misfire detection method and apparatus for internal combustion engine for power generation
JP2007298009A (en) * 2006-05-02 2007-11-15 Toho Gas Co Ltd Abnormality diagnostic device for power generation system
JP4634964B2 (en) * 2006-05-02 2011-02-16 東邦瓦斯株式会社 Abnormality diagnosis device for power generation system
JP2012092809A (en) * 2010-10-28 2012-05-17 Tokyo Gas Co Ltd Misfire detection system and method of internal combustion engine
JP2012097603A (en) * 2010-10-29 2012-05-24 Tokyo Gas Co Ltd Misfire detection method and misfire detection system

Also Published As

Publication number Publication date
JP3996095B2 (en) 2007-10-24

Similar Documents

Publication Publication Date Title
US9151238B2 (en) Fault diagnosis method, fault diagnosis system, and fault diagnosis device for engine
CN101387234B (en) Intake air temperature rationality diagnostic
CN105593490B (en) The control device of turbocharger
CN103998767B (en) The combustion control device of gas engine
EP2112349A1 (en) A scavenge performance monitoring system and a method for monitoring a process parameter in the scavenging process of a longitudinally scavenged two-stroke large diesel engine
Saikaly et al. Preventive knock protection technique for stationary SI engines fuelled by natural gas
GB2349952A (en) Real-time engine misfire detection method involving the calculation of a karlovitz number
CN104420990B (en) Location-based air/fuel ratio calculates in internal combustion engine
JP6531222B1 (en) Engine abnormality detection device
JPH03290045A (en) Trouble diagnosing device for engine
Stuhldreher et al. Downsized boosted engine benchmarking and results
JP3996095B2 (en) Combustion abnormality detection method for stationary reciprocating engine
Gasbarro et al. Development of the control and acquisition system for a natural-gas spark-ignition engine test bench
US7461545B2 (en) Method and apparatus for monitoring cyclic variability in reciprocating engines
CN111156093B (en) Control method and device for diesel-alcohol dual-fuel engine
Abadi et al. Single and multiple misfire detection in internal combustion engines using vold-kalman filter order-tracking
CN110542560B (en) Detection method and detection system for valve clearance fault and automobile
US8069709B2 (en) Ion-based triple sensor
JP5496004B2 (en) Engine misfire detection apparatus and method
RU2633521C1 (en) Diagnostics system for internal combustion engine
CN106609708B (en) Prechamber fuel admission valve diagnostic
JP4219842B2 (en) Detection method of abnormal combustion cylinder in stationary reciprocating engine
KR100494904B1 (en) Method of detecting misfire in a vehicle
JPS58223034A (en) Method and device for judging cause of abnormality of diesel engine
Cesario et al. Methodology for misfire and partial burning diagnosis in SI engines

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070212

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070627

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070713

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070731

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070801

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 3996095

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130810

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees