JP2005002737A - Sand depositing construction method in seashore - Google Patents

Sand depositing construction method in seashore Download PDF

Info

Publication number
JP2005002737A
JP2005002737A JP2003169885A JP2003169885A JP2005002737A JP 2005002737 A JP2005002737 A JP 2005002737A JP 2003169885 A JP2003169885 A JP 2003169885A JP 2003169885 A JP2003169885 A JP 2003169885A JP 2005002737 A JP2005002737 A JP 2005002737A
Authority
JP
Japan
Prior art keywords
gravel
seashore
wave
sand
construction method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003169885A
Other languages
Japanese (ja)
Inventor
Yasuo Yamada
泰生 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JAPAN TECHNOLOGY KK
Original Assignee
JAPAN TECHNOLOGY KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JAPAN TECHNOLOGY KK filed Critical JAPAN TECHNOLOGY KK
Priority to JP2003169885A priority Critical patent/JP2005002737A/en
Publication of JP2005002737A publication Critical patent/JP2005002737A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A10/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE at coastal zones; at river basins
    • Y02A10/11Hard structures, e.g. dams, dykes or breakwaters

Landscapes

  • Revetment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem of being unable to actively cure the eroded seashore, since such a conventional technology is an erosion preventing construction method and a seashore stabilizing construction method, though a main civil engineering structure conventionally performed as a seashore sand depositing work is a jetty, an off-shore bank, and a head land control. <P>SOLUTION: A permeable structure is continuously constructed in parallel to a shoreline, and sand and pebbles floating by being carried by waves, are precipitated and deposited before and behind the structure. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、侵食された海浜を復元するための海岸堆砂工法に関する。
【0002】
【従来の技術】
砂浜海岸において、消波構造として従来から行われて土木構造物の主なものは突堤、離岸堤、ヘッドランドコントロール等があり、これらは、波の衝撃によって発生する侵食を防止するもので、その消波の過程にそれら土木構造物の内側に長年にわたって砂礫が徐々に堆積する場合もある。
【0003】
【発明が解決しようとする課題】
したがって、このような従来技術は、侵食防止工法であり、侵食された海浜を積極的に復元することはできない。
【0004】
【課題を解決するための手段】
そこで本発明は、汀線に対して並行に連続させて透過性の構造物を築造し、砕波帯内に設けることにより波によって運ばれて浮遊している砂礫を構造物の前後に沈降堆砂させることを特徴とし、これによって、汀線に打ち寄せる波が自然に砕波し始めるかあるいは終了して流れに変換する時点で波のエネルギーを弱めるもので、その砕波後の波が構造物を越えたり透過したりすることにより、波の移動速度を抑え、その波によって運ばれて浮遊している砂礫の浮遊時間を長くして構造物の前後にその砂礫を沈降堆砂させることによって、侵食された海浜を復元するものである。
【0005】
【発明の実施の形態】
以下に本発明の実施の形態例を図面を用いて説明する。
図1は説明図であり、本堆砂工法の構造物1は図示する如く、堆砂させたい海岸の汀線に連続して並行に堤状体として構築される。構造物1の堤状体は、その形状を図示する如く、断面形状がほぼ台形とするのが一般であるが、必ずしもそのような形状である必要はなく、現地の状況に応じて適宜に決定される。
【0006】
また、設置箇所は、構造物が砕波帯内に存在するような入射状態の波浪条件となるようにするとよく、そうすることによって入射する波はほとんどが砕波中または砕波後の波となる。
また、波の入射角が汀線に直角であるとよい。しかし、この条件は、現場の状況によって決定されるものであるが、施工にあたってなるたけこの条件を満たすように施工することが望ましい。
【0007】
ここで連続とは、従来工法の離岸堤の場合、複数基礎で築造され、隣接する離岸堤と離岸堤の間には開口部(通常離岸堤延長Lに対してL/2をとる。)を設けることになっているのに対して、開口部を設けない(小舟の出入り口は除く。
)ことである。したがって、構造物1は一連に連続しており、上記の如く、小舟の出入り口があってもそれは連続状態の概念とする。
【0008】
なお、そのような開口部を設けた場合には、図示しないがその開口部の海側に開口部からの小舟の出入りに邪魔にならない程度の距離を離して、開口部に対向するように直線状や円弧状等に曲げた遮蔽壁を設置して波が構造物1から背後(陸側)に直接入らないようにするとよい。
【0009】
また、並行とは、構造物1の背後(陸側)が、自然の砂浜海岸で林帯である場合、崖状海岸である場合、海岸堤防あるいは防潮護岸が築造してある場合などいかなる形状の海岸であっても原則としてその汀線に並行に築造することである。
しかし、自然状況がそのような築造に適さない場合が多々あり、そのような場合にはできる範囲内でできるだけ並行に近い状態に築造する。したがって、これらのすべての状態を含めて本発明(請求項を含む。)では並行という。
【0010】
構造物1の構築材料は、本実施の形態例では消波用異型ブロックを用いているが、必ずしも消波用異型ブロックである必要はなく、現在容易に入手できる材料であるために利用するもので、その他の材料例としては木材、自然石、自然岩、粘土を固めたブロック等どのようなものでもよい。消波用異型ブロックは景観を損なうものであり、理想的には砂岩のように経時変化により消滅してしまうような材料であるとよく、環境良化に役立つような材料の使用がよい。
【0011】
また、砂浜海岸では直接にブロック等を設置した場合には年月を経て沈下を招くことになる。このような状況下では、その効果が発揮できなくなるので、設置地盤に例えば蛇籠や布団籠等の沈下防止材を設置するとよく、その場合、横断敷幅は、構造物1の法尻から海側に1m以上出ていれば理想的である。
【0012】
さらに、構造物1の陸側内域に砂礫を沈降堆砂させるものであるから、構造物1の天端高は、入射波の越波や越流を多少発生させる高さでなければならない。
したがって、消波工や離岸堤より低い天端高とする。
また、透過堤であることも堆積効果に影響を与える要素となる。したがって、消波工の断面より敷幅、天端の断面が小さく設計されている。
【0013】
これによって、構造物1に衝突後の波が構造物1の背後に透過した時点で砂礫を運搬する作用と越波した水塊が構造物1の背後に運搬した後に沈降堆積する作用の両方によって堆砂させることができる(図2参照。)。
さらに、それに加え構造物1の海側前面においても、砕波して浮遊する砂礫といったん構造物1の背後に入った海水が引くときに構造物1の隙間を抜けて通るときの海水中の砂礫が沈降して堆積が得られる(図2参照。)。図において、1点鎖線は侵食される前の海浜の状態を示す。
【0014】
実験によると、以下のような条件が最適な条件であることを見い出した。
それは、海底勾配1/20〜1/30で、沖波波形勾配が0.025〜0.040の場合、砂浜等の汀線から構造物1の法尻が3.0〜5.0m以内にあるように構築すると最良の結果が出た。なお、波形勾配は波高/波長で表される。
【0015】
上記が実験上得られた最適条件であるが、実際には現場の自然条件は必ずしもそれにあてはまるものではないが、上記の如く、その条件に近づけることによってよりよい効果が得られる。
このようにして、構造物の前後に堆砂が得られるが、さらに広い領域に堆砂を得るには、図3に示す如く、経年後に第2、第3の構造物を沖側に順次に設置することにより順次堆砂させて前浜を前進させ、復元することができる。
【0016】
【発明の効果】
以上詳細に説明した本発明によると、汀線に対して並行に連続させた透過性の構造物を築造することにより、砕波後の波が、その移動速度を抑えられ、その波によって運ばれて浮遊している砂礫の浮遊時間を長くして構造物背後に透過した時点で運搬した砂礫を堆積させる作用と、構造物を越波した水塊がその構造物の背後に砂礫を沈降堆積させる作用とにより、連続構造物の背後において砂礫を堆積させて復元させる効果を得る。
【0017】
さらに、連続構造物の前面においても、砕波に伴って浮遊している砂礫と、いったん構造物の背後に入った海水が引くときに構造物の隙間を抜けて通るときの海水中に浮遊している砂礫が沈降して堆積が得られて復元させる効果を得る。
【図面の簡単な説明】
【図1】説明図
【図2】堆積状態を示す説明図
【図3】前浜を前進させる堆砂工法の説明図
【符号の説明】
1 構造物
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a coastal sedimentation method for restoring an eroded beach.
[0002]
[Prior art]
On sandy beaches, the main civil engineering structures conventionally used as wave-dissipating structures are jetty, breakwater, headland control, etc., which prevent erosion caused by the impact of waves, During the wave extinction process, gravel may gradually accumulate over the years inside these civil structures.
[0003]
[Problems to be solved by the invention]
Therefore, such a prior art is an erosion prevention method, and the eroded beach cannot be actively restored.
[0004]
[Means for Solving the Problems]
Therefore, in the present invention, a permeable structure is constructed in parallel with the shoreline, and the floating gravel carried by the waves is sedimented before and after the structure by being provided in the surf zone. By this, when the wave that hits the shore begins to break naturally or ends and transforms into a flow, the wave energy is weakened, and the wave after breaking breaks through or passes through the structure. The eroded beaches by slowing the speed of the waves, increasing the float time of the gravel carried by the waves and allowing the gravel to settle down before and after the structure. It is something to restore.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is an explanatory diagram, and the structure 1 of the present sand construction method is constructed as a bank-like body in parallel with the coastline of the coast to be deposited as shown in the figure. As shown in the figure, the dam-like body of the structure 1 generally has a substantially trapezoidal cross-sectional shape. However, it is not always necessary to have such a shape, and is appropriately determined according to local conditions. Is done.
[0006]
Moreover, it is good for the installation location to make it the wave condition of the incident state in which a structure exists in a wave breaking zone, and, by doing so, most of the incident waves become a wave during wave breaking or after wave breaking.
The incident angle of the wave is preferably perpendicular to the shoreline. However, although this condition is determined by the situation at the site, it is desirable that the construction should be performed so as to satisfy this condition.
[0007]
The term “continuous” as used herein refers to the construction of offshore dikes in the conventional construction method. ) Is not provided, but no opening is provided (excluding the entrance of a small boat).
) Therefore, the structure 1 is continuous in series, and as described above, even if there is an entrance / exit of a small boat, it is a concept of a continuous state.
[0008]
When such an opening is provided, although not shown, a straight line is provided on the sea side of the opening so as to face the opening at a distance that does not interfere with the entry / exit of the boat from the opening. It is advisable to install a shielding wall bent in the shape of an arc or arc so that waves do not enter the back (land side) directly from the structure 1.
[0009]
In addition, the term “parallel” refers to any shape such as when the back of the structure 1 (land side) is a natural sandy beach, a forest zone, a cliff-like coast, or a coastal dike or tide revetment. Even on the coast, in principle, it should be built in parallel with the shoreline.
However, there are many cases where the natural situation is not suitable for such a construction, and in such a case, the construction is made as close to parallel as possible within a possible range. Therefore, the present invention (including claims) including all these states is referred to as parallel.
[0010]
The construction material of the structure 1 uses a wave-dissipating atypical block in the present embodiment, but does not necessarily need to be a wave-dissipating atypical block, and is used because it is a readily available material. The other material examples may be wood, natural stone, natural rock, blocks made of clay, or the like. The wave-dissipating atypical block damages the landscape. Ideally, it should be a material that disappears over time, such as sandstone, and a material that helps improve the environment should be used.
[0011]
In addition, if a block or the like is installed directly on the sandy beach, it will cause a settlement over time. Under such circumstances, the effect cannot be exerted, so it is advisable to install an anti-sagging material such as a gabion or a futon wall on the installation ground. Ideally, it should be 1 meter or more.
[0012]
Furthermore, since the gravel is settled and deposited in the land-side inner area of the structure 1, the top height of the structure 1 must be a height that generates some overtopping and overflowing of the incident wave.
Therefore, the ceiling height is lower than that of the wave breaker and the offshore bank.
Moreover, the fact that it is a permeation bank is an element that affects the sedimentation effect. Therefore, the floor width and the cross section of the top end are designed to be smaller than the cross section of the wave breaker.
[0013]
As a result, both the action of transporting gravel when the wave after collision with the structure 1 permeates behind the structure 1 and the action of sedimentation and sedimentation after the overcast water mass is transported behind the structure 1 Sand can be used (see FIG. 2).
In addition to that, on the sea front side of the structure 1, the gravel in the seawater that passes through the gap between the structure 1 when the gravel that breaks and breaks and the seawater that has entered the back of the structure 1 is drawn. Settles and deposits are obtained (see FIG. 2). In the figure, the one-dot chain line indicates the state of the beach before erosion.
[0014]
According to experiments, the following conditions were found to be optimal conditions.
That is, when the seabed slope is 1/20 to 1/30, and the offshore wave slope is 0.025 to 0.040, the bottom of the structure 1 seems to be within 3.0 to 5.0m from the shoreline of sandy beach etc. The best results were obtained when constructed. The waveform gradient is represented by wave height / wavelength.
[0015]
The above is the optimum condition obtained experimentally. Actually, the natural condition in the field is not necessarily applicable, but as described above, a better effect can be obtained by approaching the condition.
In this way, sediment is obtained before and after the structure, but in order to obtain sediment in a wider area, as shown in FIG. By installing it, it is possible to restore and restore the foreshore by sequentially depositing sand.
[0016]
【The invention's effect】
According to the present invention described in detail above, by constructing a permeable structure that is continuous in parallel with the shoreline, the wave after breaking can be suppressed in its moving speed, and is carried by the wave and floats. The action is to deposit the gravel that has been transported when it has permeated behind the structure by increasing the floating time of the gravel, and by the action of the water mass overtopping the structure causing sedimentation of the gravel behind the structure. The effect of depositing and restoring gravel behind the continuous structure is obtained.
[0017]
Furthermore, even on the front surface of a continuous structure, it floats in the seawater when it passes through the gap between the structures when gravel floats along with breaking waves and the seawater that enters the back of the structure pulls. The gravel is settled and the sediment is obtained, and the effect of restoring is obtained.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing an accumulation state. FIG. 3 is an explanatory diagram of a sedimentation method for advancing a foreshore.
1 structure

Claims (4)

汀線に対して並行に連続させて透過性の構造物を築造し、波によって運ばれて浮遊している砂礫を構造物の前後に沈降堆砂させることを特徴とする海岸堆砂工法。A coastal sedimentation method characterized in that a permeable structure is constructed in parallel to the shoreline, and sand and gravel carried by waves are settling before and after the structure. 請求項1において、構造物を、砕波帯内に設け、波によって運ばれて浮遊している砂礫の浮遊時間を長くして構造物の前後にその砂礫を沈降堆砂させることを特徴とする海岸堆砂工法。The coast according to claim 1, wherein the structure is provided in a surf zone, and the floating time of the gravel carried by the waves is increased and the gravel is sedimented before and after the structure. Sedimentation method. 請求項1において、構造物の天端高を、入射波の越波や越流を発生させる高さとし、波によって運ばれて浮遊している砂礫の浮遊時間を長くして構造物の前後にその砂礫を沈降堆砂させることを特徴とする海岸堆砂工法。2. The top height of the structure according to claim 1, wherein the top of the structure is a height that generates an overtopping or overflow of the incident wave, and the floating time of the gravel carried by the waves is increased to increase the gravel before and after the structure. Coastal sedimentation method characterized by sedimentation of sand. 請求項1において、構造物が、波の入射角が汀線に直角に近くなるように設けることを特徴とする海岸堆砂工法。2. The coastal sedimentation method according to claim 1, wherein the structure is provided so that an incident angle of the wave is close to a right angle with the shoreline.
JP2003169885A 2003-06-13 2003-06-13 Sand depositing construction method in seashore Pending JP2005002737A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003169885A JP2005002737A (en) 2003-06-13 2003-06-13 Sand depositing construction method in seashore

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003169885A JP2005002737A (en) 2003-06-13 2003-06-13 Sand depositing construction method in seashore

Publications (1)

Publication Number Publication Date
JP2005002737A true JP2005002737A (en) 2005-01-06

Family

ID=34094884

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003169885A Pending JP2005002737A (en) 2003-06-13 2003-06-13 Sand depositing construction method in seashore

Country Status (1)

Country Link
JP (1) JP2005002737A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007126941A (en) * 2005-11-07 2007-05-24 Penta Ocean Constr Co Ltd Method for preventing effluence of reclamation material on seashore
KR100750883B1 (en) * 2006-09-28 2007-08-22 주식회사 한국항만기술단 Permeability structure and the construction method of this for sand beach shore maintenance and littoral nourishment facilities
JP2016519233A (en) * 2013-05-22 2016-06-30 ウリチャンウー アーキテクチュア アンド エンジニアリング カンパニーリミテッド Lost sand restoration fixed structure unit, structure and restoration method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007126941A (en) * 2005-11-07 2007-05-24 Penta Ocean Constr Co Ltd Method for preventing effluence of reclamation material on seashore
KR100750883B1 (en) * 2006-09-28 2007-08-22 주식회사 한국항만기술단 Permeability structure and the construction method of this for sand beach shore maintenance and littoral nourishment facilities
JP2016519233A (en) * 2013-05-22 2016-06-30 ウリチャンウー アーキテクチュア アンド エンジニアリング カンパニーリミテッド Lost sand restoration fixed structure unit, structure and restoration method

Similar Documents

Publication Publication Date Title
Kudale Impact of port development on the coastline and the need for protection
US3564853A (en) Method of controlling erosion on seashores
Bird et al. Causes of beach erosion
US6499911B2 (en) Compliant porous groin and shoreline reclamation method
JPH04504151A (en) Permeable breakwater
Burcharth et al. Types and functions of coastal structures
Sulaiman et al. The role of geotextile tube as low-crested breakwaters in restoring severe beach erosion problem at Pebuahan Beach in Bali Island
JP2005002737A (en) Sand depositing construction method in seashore
Charlier et al. Coastal defense and beach renovation
Tayade et al. Importance of Location & Alignment of geotextile tubes for the coastal protection measures
JP4041903B1 (en) Route burial prevention method and harbor facilities that prevent burial
JP2006193981A (en) Littoral transport control structure
KR100657180B1 (en) The loss prevention retaining wall of a seashore bank
Tanaka et al. Topographic change resulting from construction of a harbor on a sandy beach: Kashima Port
EP0759108B1 (en) Regeneration of tidal mud flats
Toyoshima Changes of sea bed due to detached breakwaters
Parchure et al. Lessons learned from existing projects on shoaling in harbors and navigation channels
Morelli Collection and analysis of historical data on shoreline evolution at the sites of Ravenna, Cesenatico and Rimini
Belyakov et al. Influence of the Southern area of the Ust-Luga commercial sea port on the channel regime of the Khabolovka river
EP2252741B1 (en) Sediment accretion method
Mutagami et al. Optimal design of artificial reefs in a pocket beach at nagasakibana, japan
Parchure et al. Potential methods for reducing shoaling in harbors and navigation channels
Manohar Sediment Movement at Indian Ports
Kawata Methodology of beach erosion control and its application
Silvester et al. Headland control to prevent cooling water sand incursion

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050126

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060308

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060316

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060308

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060516

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070410

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070814