JP2005002318A - Polymer material and its surface modification method - Google Patents

Polymer material and its surface modification method Download PDF

Info

Publication number
JP2005002318A
JP2005002318A JP2003379652A JP2003379652A JP2005002318A JP 2005002318 A JP2005002318 A JP 2005002318A JP 2003379652 A JP2003379652 A JP 2003379652A JP 2003379652 A JP2003379652 A JP 2003379652A JP 2005002318 A JP2005002318 A JP 2005002318A
Authority
JP
Japan
Prior art keywords
polymer material
modifying
material according
aromatic substance
photocatalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003379652A
Other languages
Japanese (ja)
Other versions
JP4247096B2 (en
Inventor
Kazuhito Hashimoto
和仁 橋本
Toshio Takahashi
壽雄 高橋
Takuji Matsushita
卓史 松下
Naoki Henmi
直樹 逸見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanagawa Academy of Science and Technology
Fukoku Co Ltd
Fukoku KK
Original Assignee
Kanagawa Academy of Science and Technology
Fukoku Co Ltd
Fukoku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanagawa Academy of Science and Technology, Fukoku Co Ltd, Fukoku KK filed Critical Kanagawa Academy of Science and Technology
Priority to JP2003379652A priority Critical patent/JP4247096B2/en
Publication of JP2005002318A publication Critical patent/JP2005002318A/en
Application granted granted Critical
Publication of JP4247096B2 publication Critical patent/JP4247096B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a surface modification method of a polymer material which can markedly improve surface properties of the polymer material through a new process that quite differs basically from the conventional surface modification method, and to provide a polymer material having a modified surface that is obtained by the method. <P>SOLUTION: The surface modification method of a polymer material comprises irradiating specified ultra-violet light onto the surface of the polymer material in the presence of an aromatic substance, and preferably in the presence of a photocatalyst-containing layer. The polymer material having improved surface properties (e.g. friction coefficient) is obtained by the method. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、高分子材およびその表面改質方法に関し、とくに特定の条件下で紫外線を照射することにより表面を改質するようにした、高分子材表面の低摩擦係数化等に好適な高分子材の表面改質方法およびその方法により表面が改質された高分子材に関する。   The present invention relates to a polymer material and a method for modifying the surface thereof, and more particularly to a high coefficient suitable for reducing the coefficient of friction of the surface of the polymer material by modifying the surface by irradiating ultraviolet rays under specific conditions. The present invention relates to a surface modification method of a molecular material and a polymer material whose surface is modified by the method.

高分子材、たとえばゴム等のエラストマーの表面特性を改良するために、各種の表面改質方法が知られている。たとえば、表面の低摩擦係数化、非粘着性向上を達成する方法として、一般に、ゴムの表面あるいは表面層に対し、塩素等のハロゲンを付加反応させる方法や、シリコーン、フッ素樹脂、ウレタン樹脂、ヒドロゲルポリマー等をコーティングする方法、特定の有機酸や無機酸を付与する方法、プラズマエッチングやコロナ放電処理を施す方法等が知られている。   Various surface modification methods are known in order to improve the surface properties of polymer materials such as elastomers such as rubber. For example, as a method for achieving a low friction coefficient and non-adhesiveness on the surface, generally, a method of adding a halogen such as chlorine to the surface or surface layer of rubber, a silicone, a fluororesin, a urethane resin, or a hydrogel A method of coating a polymer or the like, a method of applying a specific organic acid or inorganic acid, a method of performing plasma etching or corona discharge treatment, and the like are known.

ところが、塩素等のハロゲンを付加反応させる方法には、低摩擦係数化等に対する有効性は認められるものの、作業環境の悪化や排水処理の問題、さらには廃棄に伴う焼却処理時のダイオキシン等の発生等の問題がある。また、特定の樹脂等を表面にコーティングする方法には、使用条件によっては脱落のおそれがあるとともに、異種ポリマーを表面コートするので、発揮させたい母材自身の特性が変化したりするおそれもあるという問題がある。さらに、特定の有機酸や無機酸を付与する方法やプラズマエッチングやコロナ放電処理を施す方法には、高価な処理設備を要するとともに処理設備の大型化を招き、さらに、処理工程の複雑化も招くという問題がある。   However, although the method of adding halogen such as chlorine is effective for reducing the friction coefficient, the work environment is deteriorated, wastewater treatment is problematic, and dioxins are generated during incineration due to disposal. There are problems such as. In addition, the method of coating the surface with a specific resin, etc., may drop off depending on the use conditions, and since the surface is coated with a heterogeneous polymer, the characteristics of the base material itself to be exhibited may change. There is a problem. Furthermore, the method of applying a specific organic acid or inorganic acid, or the method of performing plasma etching or corona discharge treatment requires expensive processing equipment, increases the size of the processing equipment, and further complicates the processing steps. There is a problem.

本発明の課題は、上記のような従来一般の表面改質方法とは基本的に全く異なる新規なプロセスにより、高分子材の表面特性を格段に向上させることができる、高分子材の表面改質方法およびその方法により表面が改質された高分子材を提供することにある。   The object of the present invention is to improve the surface properties of a polymer material, which can significantly improve the surface properties of the polymer material by a novel process that is fundamentally completely different from the conventional general surface modification methods. It is an object of the present invention to provide a quality material and a polymer material whose surface is modified by the method.

上記課題を解決するために、本発明に係る高分子材の表面改質方法は、高分子材の表面に芳香族物質を存在させた状態で、高分子材の表面に紫外線を照射することを特徴とする方法からなる。この方法では、高分子材の表面において、芳香族物質の存在下での紫外線照射により特定の光反応が生じ、表面が改質される。表面改質により、高分子材の表面は、たとえば低摩擦係数化される。   In order to solve the above-mentioned problems, the surface modification method for a polymer material according to the present invention includes irradiating the surface of the polymer material with ultraviolet rays in the state where an aromatic substance is present on the surface of the polymer material. It consists of a characteristic method. In this method, a specific photoreaction occurs on the surface of the polymer material by ultraviolet irradiation in the presence of an aromatic substance, and the surface is modified. By the surface modification, for example, the surface of the polymer material has a low friction coefficient.

この本発明に係る表面改質方法においては、芳香族物質の接触下で、高分子材の表面に紫外線を照射することができる。また、高分子材の表面に芳香族物質を接触させた後、高分子材の表面に紫外線を照射することもできる。後者の方法は、紫外線照射前に所定時間、高分子材の表面に芳香族物質を接触させておき、しかる後に、該接触により表面に芳香族物質を存在させた状態になっている高分子材に対して紫外線を照射する方法であり、後述の実施例に示すように、目標とする表面改質を達成するための紫外線照射時間を、前者の方法に比べて大幅に短縮することが可能である。   In the surface modification method according to the present invention, the surface of the polymer material can be irradiated with ultraviolet rays under the contact of an aromatic substance. Further, after bringing the aromatic substance into contact with the surface of the polymer material, the surface of the polymer material can be irradiated with ultraviolet rays. In the latter method, an aromatic substance is brought into contact with the surface of the polymer material for a predetermined time before ultraviolet irradiation, and then the polymer material is in a state in which the aromatic substance is present on the surface by the contact. As shown in the examples to be described later, it is possible to significantly reduce the ultraviolet irradiation time for achieving the target surface modification as compared with the former method. is there.

上記芳香族物質は、気相または液相で高分子材の表面に接触させることが可能である。とくに上記の芳香族物質の接触下で紫外線を照射する方法では、芳香族物質の接触と実質的に同時に紫外線照射も伴うことから、とくに気相にて高分子材の表面に接触させることが好ましい。たとえば、所定の芳香族物質を揮発あるいは蒸発させ、飽和蒸気圧の雰囲気として高分子材の表面に接触させることができる。上記の紫外線照射前に予め所定時間芳香族物質を接触させる方法では、気相の他に液相で芳香族物質を接触させることもできる。   The aromatic substance can be brought into contact with the surface of the polymer material in a gas phase or a liquid phase. In particular, in the method of irradiating ultraviolet rays under the contact of the aromatic substance, it is preferable to contact the surface of the polymer material in the gas phase, since ultraviolet irradiation is substantially simultaneously with the contact with the aromatic substance. . For example, a predetermined aromatic substance can be volatilized or evaporated and brought into contact with the surface of the polymer material as a saturated vapor pressure atmosphere. In the method in which the aromatic substance is contacted in advance for a predetermined time before the ultraviolet irradiation, the aromatic substance can be contacted in the liquid phase in addition to the gas phase.

さらに、本発明に係る表面改質方法においては、芳香族物質を高分子材に練り混むことにより高分子材の表面に存在させることもできる。とくに固体芳香族物質であれば、容易に高分子材に練り混むことができ、中でも固体昇華性芳香族物質を練り混むことにより高分子材の表面を良好に改質することができる。   Furthermore, in the surface modification method according to the present invention, an aromatic substance can be present on the surface of the polymer material by kneading and mixing with the polymer material. In particular, if it is a solid aromatic substance, it can be easily kneaded and mixed with the polymer material. In particular, the surface of the polymer material can be well modified by kneading and mixing the solid sublimable aromatic substance.

本発明に係る表面改質方法の対象となる高分子材としては特に限定されず、各種エラストマーや各種樹脂に対して本発明の適用が可能である。たとえば、後述の実施例からも明らかなように、エラストマー、とくにゴム(天然ゴム、合成ゴム)に適用した場合に優れた効果が得られ、中でも含フッ素エラストマー、とくにフッ素系ゴムに適用した場合に顕著な表面改質効果が得られ、また、特定の樹脂に対しても効果が認められた。とくにゴムには、非粘着性の向上(表面低粘着化)や低摩擦係数化が要求されることが多く、中でも、表面の摩擦係数を大幅に低下させることができれば、ゴム製品の特性を大幅に向上できる用途が数多くある。たとえば、自動車のワイパーブレードや、Oリング、ベルトなどに使用されるゴムの表面摩擦係数を大幅に低下させることができれば、ゴムと接触する相手部材との摺動抵抗等を低減でき、作動力の低減や耐久性の向上、異音発生防止や作動音の低減等が可能になる。ただし、本発明における高分子材としては、ゴム以外のエラストマー等も使用可能である。   The polymer material to be subjected to the surface modification method according to the present invention is not particularly limited, and the present invention can be applied to various elastomers and various resins. For example, as will be apparent from the examples described later, excellent effects are obtained when applied to elastomers, particularly rubber (natural rubber, synthetic rubber), and particularly when applied to fluorine-containing elastomers, particularly fluorine-based rubber. A remarkable surface modification effect was obtained, and an effect was also observed for specific resins. In particular, rubber is often required to have improved non-stickiness (lower surface adhesion) and lower friction coefficient. In particular, if the surface friction coefficient can be significantly reduced, the characteristics of rubber products will be greatly improved. There are many uses that can be improved. For example, if the surface friction coefficient of rubber used in automobile wiper blades, O-rings, belts, etc. can be greatly reduced, the sliding resistance with the mating member in contact with the rubber can be reduced, and the operating force can be reduced. Reduction, improvement of durability, generation of abnormal noise, reduction of operating noise, etc. are possible. However, an elastomer other than rubber can be used as the polymer material in the present invention.

上記芳香族物質としては、たとえばフェニル基含有低分子化合物を用いることができる。とくに、後述の実施例からも明らかなように、芳香族物質としてトルエンやエチルベンゼン、さらにはナフタレンを使用した場合に、優れた効果が得られることが判明している。   As the aromatic substance, for example, a phenyl group-containing low molecular weight compound can be used. In particular, as is clear from the examples described later, it has been found that excellent effects can be obtained when toluene, ethylbenzene, or naphthalene is used as the aromatic substance.

また、本発明に係る表面改質方法における紫外線としては、とくに低圧水銀ランプによる紫外線が有効である。理由は明らかではないが、ブラックライトによる紫外線では、期待したほどの表面改質効果が得られず、低圧水銀ランプからの紫外線を上記条件下で照射した場合に、極めて優れた表面改質効果が得られることが判明している。   In addition, as the ultraviolet rays in the surface modification method according to the present invention, ultraviolet rays from a low-pressure mercury lamp are particularly effective. The reason is not clear, but the ultraviolet light from black light does not provide the surface modification effect as expected, and when the ultraviolet light from the low-pressure mercury lamp is irradiated under the above conditions, the surface modification effect is extremely excellent. It has been found that it can be obtained.

また、本発明に係る表面改質方法においては、芳香族物質の存在下で高分子材の表面に紫外線を照射することにより、低摩擦係数化に代表される表面改質効果が得られるのであるが、さらに優れた効果を得るために、光触媒を併用することができる。   Further, in the surface modification method according to the present invention, a surface modification effect typified by a low friction coefficient can be obtained by irradiating the surface of the polymer material with ultraviolet rays in the presence of an aromatic substance. However, a photocatalyst can be used in combination in order to obtain a further excellent effect.

たとえば、予め高分子材の表面に光触媒含有層を形成しておき、その状態で芳香族物質の存在下に高分子材の表面に紫外線を照射すれば、後述の実施例に示すように、表面の摩擦係数をさらに大幅に低下させることが可能になる。この光触媒含有層は、光触媒を高分子材に練り込むことにより形成することもできるし、コーティングにより形成することもできる。また、高分子材の表面に直接光触媒含有層を形成するのではなく、高分子材の表面に対し、間隙をもたせて光触媒含有層を配置し、この間隙に芳香族物質を存在せしめるようにして、上記所定の条件下で表面改質処理を行うことも可能である。   For example, if a photocatalyst containing layer is formed in advance on the surface of the polymer material, and the surface of the polymer material is irradiated with ultraviolet rays in the presence of the aromatic substance, It is possible to further greatly reduce the friction coefficient. This photocatalyst-containing layer can be formed by kneading the photocatalyst into a polymer material, or can be formed by coating. In addition, the photocatalyst containing layer is not directly formed on the surface of the polymer material, but the photocatalyst containing layer is disposed with a gap on the surface of the polymer material so that an aromatic substance exists in the gap. It is also possible to perform the surface modification treatment under the predetermined conditions.

光触媒含有層に使用する光触媒としては、酸化チタンや酸化ジルコニウム、チタン酸ストロンチウムの粉末や微粒子を使用することができる。これら光触媒は通常単独で使用されるが、混合して使用することも可能である。このような光触媒の存在下にて、上記所定の条件下で表面改質処理を行えば、とくに表面の摩擦係数をさらに顕著に低下させることができ、従来の塩素等によるハロゲンの付加反応では達成し得なかったような、極めて低い摩擦係数を達成することが可能となる。   As the photocatalyst used in the photocatalyst-containing layer, titanium oxide, zirconium oxide, strontium titanate powder or fine particles can be used. These photocatalysts are usually used alone, but can also be used as a mixture. In the presence of such a photocatalyst, if the surface modification treatment is performed under the above-mentioned predetermined conditions, the coefficient of friction of the surface can be further reduced particularly, and this is achieved by the conventional halogen addition reaction with chlorine or the like. It is possible to achieve a very low coefficient of friction that could not be achieved.

本発明に係る高分子材は、このような方法により表面が改質されたものからなる。とくに、高分子材がエラストマー、とくにゴムからなる場合、顕著な表面の低摩擦係数化が可能となる。また、後述の実施例の結果からも明らかなように、ポリエチレンやポリプロピレン等の樹脂に対して、水との接触角等の特性の改良が可能となる。   The polymer material according to the present invention comprises a material whose surface is modified by such a method. In particular, when the polymer material is made of an elastomer, particularly rubber, the surface friction coefficient can be significantly reduced. Further, as is apparent from the results of Examples described later, it is possible to improve characteristics such as a contact angle with water for resins such as polyethylene and polypropylene.

本発明に係る高分子材の表面改質方法によれば、芳香族物質の存在下で高分子材の表面に所定の紫外線を照射することにより、表面を顕著に改質することができ、この処理が施された高分子材では、目標とする望ましい表面特性を得ることができる。とくに、エラストマー、中でもゴム(とくにフッ素系ゴム)に対しては、その表面を顕著に低摩擦係数化や低粘着化することができる。   According to the surface modification method for a polymer material according to the present invention, the surface can be significantly modified by irradiating the surface of the polymer material with predetermined ultraviolet rays in the presence of an aromatic substance. In the polymer material that has been subjected to the treatment, the desired desirable surface characteristics can be obtained. In particular, the surface of elastomers, particularly rubber (especially fluorine-based rubber), can be made to have a significantly low friction coefficient and low adhesion.

また、この処理を光触媒含有層の存在下で行えば、従来処理では達成し得なかったほどの表面改質効果、とくに極めて優れた低摩擦係数化効果や低粘着化効果を得ることができる。   Further, if this treatment is carried out in the presence of the photocatalyst-containing layer, it is possible to obtain a surface modification effect that cannot be achieved by the conventional treatment, in particular, a very excellent low friction coefficient effect and low adhesion effect.

以下に、本発明の望ましい実施の形態を、実施例に基づいて説明する。
実施例1
まず、高分子材、とくにゴムについて、芳香族物質、とくにトルエンの存在下で、紫外線を照射することにより、ゴムの表面特性、とくに摩擦係数を大幅に低減できることを以下の試験により確認した。
Hereinafter, preferred embodiments of the present invention will be described based on examples.
Example 1
First, it was confirmed by the following tests that polymer materials, particularly rubber, can significantly reduce the surface properties of rubber, particularly the friction coefficient, by irradiating with ultraviolet rays in the presence of aromatic substances, particularly toluene.

1Lの透明石英ガラス容器中に、以下に示す各種ゴムのサンプルを収容し、6cmφのシャーレにトルエンを入れて前記ガラス容器内に置き、ガラス容器内をトルエンの飽和蒸気圧状態とした後、紫外線の照射処理を行った。   Samples of various rubbers shown below are accommodated in a 1 L transparent quartz glass container, toluene is placed in a 6 cmφ petri dish and placed in the glass container. The irradiation treatment was performed.

使用したサンプルは、天然ゴムであり、該天然ゴムに光触媒を含有させないサンプルと、該天然ゴムに、光触媒として酸化チタン(TiO2 )(石原産業社製、ST−41)と酸化ジルコニウム(ZrO2 )(和光試薬社製)を、それぞれ10%(体積%)、30%、50%、練り込みにより含有させたサンプルとについて試験した。これらサンプルの表面に、トルエンが気相で接触している状態にて、低圧水銀ランプにより紫外線を48時間照射した。反応温度は30℃とした。この紫外線照射後の各サンプルの表面について、ガラスとの静摩擦係数μを測定した。結果を表1に示す。 The sample used is natural rubber, a sample in which the natural rubber does not contain a photocatalyst, and titanium oxide (TiO 2 ) (ST-41, manufactured by Ishihara Sangyo Co., Ltd.) and zirconium oxide (ZrO 2 ) as the photocatalyst. ) (Manufactured by Wako Reagent Co., Ltd.) was tested with 10% (volume%), 30%, 50%, and samples incorporated by kneading. The surface of these samples was irradiated with ultraviolet rays for 48 hours with a low-pressure mercury lamp in a state where toluene was in contact with the gas phase. The reaction temperature was 30 ° C. About the surface of each sample after this ultraviolet irradiation, the static friction coefficient (micro | micron | mu) with glass was measured. The results are shown in Table 1.

比較例1
上記天然ゴムのサンプルを、何ら処理しない状態で、上記同様ガラスとの表面静摩擦係数μを測定したところ、2.2であった。
Comparative Example 1
The surface friction coefficient μ of the natural rubber sample with glass was measured in the same manner as described above in a state where no treatment was performed, and it was 2.2.

比較例2
上記天然ゴムのサンプルに、従来の塩素を用いてハロゲンの付加反応処理を行ったサンプルについて、上記同様ガラスとの表面静摩擦係数μを測定したところ、0.42であった。
Comparative Example 2
The sample obtained by subjecting the natural rubber sample to a halogen addition reaction using conventional chlorine was measured for the surface static friction coefficient μ with the glass in the same manner as described above, and it was 0.42.

比較例3
上記天然ゴムのサンプルに、トルエンを接触させずに、低圧水銀ランプによる紫外線を48時間照射したサンプルについて、上記同様ガラスとの表面静摩擦係数μを測定したところ、1.23であった。
Comparative Example 3
The sample obtained by irradiating the sample of natural rubber with ultraviolet light from a low-pressure mercury lamp for 48 hours without contacting toluene was measured for the surface static friction coefficient μ with the glass in the same manner as described above, and found to be 1.23.

Figure 2005002318
Figure 2005002318

表1の結果と比較例1、2の結果との比較から、トルエン雰囲気中で低圧水銀ランプによる紫外線を照射することにより、光触媒が無添加のゴムの場合には、元のゴム表面の静摩擦係数2.2から静摩擦係数0.526へと大幅に低下させることができ、従来の塩素処理とほぼ同等の低摩擦係数化を達成できたことがわかる。また、比較例3の結果から、トルエン雰囲気中でない場合には、同じように紫外線を照射しても、低摩擦係数化の効果は得られるものの期待したほど低下できず、従来の塩素処理における場合と同等の効果は得られないことがわかる。すなわち、トルエン雰囲気と所定の紫外線照射との両方の条件によって初めて、大幅な低摩擦係数化の効果が得られたものである。   From the comparison between the results of Table 1 and the results of Comparative Examples 1 and 2, by applying ultraviolet light from a low-pressure mercury lamp in a toluene atmosphere, when the photocatalyst is an additive-free rubber, the static friction coefficient of the original rubber surface It can be seen that the coefficient of static friction can be greatly reduced from 2.2 to 0.526, and a low coefficient of friction almost equal to that of conventional chlorination can be achieved. Further, from the result of Comparative Example 3, when not in a toluene atmosphere, the effect of lowering the coefficient of friction was obtained even when irradiated with ultraviolet rays in the same manner, but it could not be reduced as expected, and in the case of conventional chlorination It can be seen that the same effect cannot be obtained. That is, the effect of greatly reducing the friction coefficient is obtained only under the conditions of both the toluene atmosphere and the predetermined ultraviolet irradiation.

さらに、表1における光触媒添加の場合の結果から、トルエン雰囲気と所定の紫外線照射の条件に加え、光触媒の存在下でこの処理を行えば、さらに大幅に摩擦係数を低下させることができることがわかる。表1に示すように、光触媒の存在下で達成できた静摩擦係数の値は、従来の塩素処理で達成できた値に比べても、さらに大幅に低下でき、従来処理では達成し得なかった極めて顕著な低摩擦係数化効果が得られることがわかる。   Furthermore, from the result in the case of addition of the photocatalyst in Table 1, it can be seen that the friction coefficient can be further greatly reduced by performing this treatment in the presence of the photocatalyst in addition to the conditions of toluene atmosphere and predetermined ultraviolet irradiation. As shown in Table 1, the value of the coefficient of static friction that can be achieved in the presence of the photocatalyst can be further greatly reduced compared to the value that can be achieved by the conventional chlorination, which is extremely difficult to achieve by the conventional treatment. It can be seen that a remarkable effect of reducing the friction coefficient can be obtained.

また、表1の結果から、この光触媒の添加量には光触媒の種類に応じて最適量が存在することがわかる。上記試験例では、酸化チタン(TiO2 )では添加量が多くなりすぎると静摩擦係数は却って悪化する傾向にあり、酸化ジルコニウム(ZrO2 )では添加量の少ない領域(10%近傍)と多い領域(50%近傍)にて、中間領域(30%近傍)よりも低摩擦係数化できているが、この最適添加量については、光触媒の種類や、高分子材の種類、得ようとする目標特性に応じて、試験結果等を参照しながら適宜決定すればよい。 Moreover, from the results in Table 1, it can be seen that there is an optimum amount of this photocatalyst added depending on the type of photocatalyst. In the above test example, when the addition amount of titanium oxide (TiO 2 ) increases too much, the static friction coefficient tends to deteriorate, while in zirconium oxide (ZrO 2 ), the addition amount region (near 10%) and the large region (nearly 10%) The friction coefficient is lower than that in the middle region (near 30%) in the vicinity of 50%, but the optimum addition amount depends on the type of photocatalyst, the type of polymer material, and the target characteristics to be obtained. Accordingly, it may be determined appropriately with reference to the test results.

参考例
なお、本発明においては、目標とする低摩擦係数化効果を得るためには、紫外線の種類も重要な要素であることがわかっている。すなわち、実施例1における試験において、紫外線源として低圧水銀ランプの代わりにブラックライト(光強度:1mW/cm2 )を使用し、他の条件は実施例1と全く同じにして試験したところ、表2に示す結果となった。
Reference Example In addition, in the present invention, it is known that the type of ultraviolet rays is also an important factor in order to obtain the target low friction coefficient effect. That is, in the test in Example 1, black light (light intensity: 1 mW / cm 2 ) was used instead of the low-pressure mercury lamp as the ultraviolet light source, and the other conditions were exactly the same as in Example 1. The result shown in 2 was obtained.

Figure 2005002318
Figure 2005002318

表1と表2の比較から、上記試験条件では、ブラックライトによる紫外線照射ではほとんど低摩擦係数化効果が無いことが明らかであり、低圧水銀ランプによる紫外線照射が必要であることがわかる。つまり、特定の紫外線の使用が必要である。   From the comparison between Table 1 and Table 2, it is clear that under the above test conditions, ultraviolet irradiation with black light has almost no effect of reducing the friction coefficient, and ultraviolet irradiation with a low-pressure mercury lamp is necessary. In other words, it is necessary to use specific ultraviolet rays.

なお、上記試験は天然ゴムについて行ったものであるが、イソプレンゴムについても同様の表面改質効果があることを確認している。また、本発明は、前述の如く、他のエラストマーにも展開可能である。   In addition, although the said test was done about natural rubber, it has confirmed that the isoprene rubber has the same surface modification effect. Further, as described above, the present invention can be applied to other elastomers.

実施例2
本発明に係る表面改質方法における、芳香族物質の種類による効果の違いを確認するために以下の試験を行った。1Lの透明石英ガラス容器中に天然ゴムのサンプルを収容し、6cmφのシャーレに各種芳香族物質を入れて前記ガラス容器内に置き、ガラス容器内を該芳香族物質の飽和蒸気圧状態とした後、紫外線の照射処理を行った。このサンプルとしては、天然ゴムに光触媒を含有させないものを用いた。このサンプルの表面に各種芳香族物質が気相で接触している状態にて、低圧水銀ランプにより紫外線を48時間照射した。反応温度は30℃とした。この紫外線照射後の各サンプルの表面について、ガラスとの静摩擦係数μを測定した。結果を表3に示す。
Example 2
In order to confirm the difference in the effect depending on the type of aromatic substance in the surface modification method according to the present invention, the following test was conducted. After a sample of natural rubber is placed in a 1 L transparent quartz glass container, various aromatic substances are placed in a 6 cmφ petri dish and placed in the glass container, and the inside of the glass container is brought to a saturated vapor pressure state of the aromatic substance. Then, an ultraviolet irradiation treatment was performed. As this sample, a natural rubber containing no photocatalyst was used. With the surface of this sample in contact with various aromatic substances in a gas phase, the sample was irradiated with ultraviolet rays for 48 hours by a low-pressure mercury lamp. The reaction temperature was 30 ° C. About the surface of each sample after this ultraviolet irradiation, the static friction coefficient (micro | micron | mu) with glass was measured. The results are shown in Table 3.

Figure 2005002318
Figure 2005002318

表3から明らかなように、各種芳香族物質に対して、本発明に係る表面改質方法の有効性が確認された。本試験では、とくにトルエン、エチルベンゼン、ナフタレンを使用した場合に優れた摩擦係数低減効果が得られた。   As apparent from Table 3, the effectiveness of the surface modification method according to the present invention was confirmed for various aromatic substances. In this test, an excellent effect of reducing the friction coefficient was obtained particularly when toluene, ethylbenzene, or naphthalene was used.

実施例3
本発明に係る表面改質方法において、芳香族物質の接触下で紫外線を照射するのではなく、予め高分子材の表面に芳香族物質を所定時間接触させておき、しかる後に、接触させていた芳香族物質の環境を解除した状態にて紫外線を照射すると、紫外線照射時間を大幅に短縮できることを確認する試験を行った。1Lの透明石英ガラス容器中に天然ゴムのサンプルを収容し、6cmφのシャーレにトルエンを入れて前記ガラス容器内に置き、ガラス容器内をトルエンの飽和蒸気圧状態とし、室温にて所定時間放置(これを、予備浸漬時間と呼ぶ。)した後、サンプルの膨潤率を測定した、その後、トルエンの入ったシャーレを除去し、紫外線の照射処理を行った。高分子材サンプルとしては、天然ゴムに光触媒を含有させないものを用いた。このサンプルの表面に低圧水銀ランプにより紫外線を30分照射した。反応温度は30℃とした。この紫外線照射後のサンプルの表面について、ガラスとの静摩擦係数μを測定した。結果を、上記膨潤率の測定結果とともに、表4に示す。
Example 3
In the surface modification method according to the present invention, instead of irradiating ultraviolet rays under the contact of the aromatic substance, the aromatic substance was previously brought into contact with the surface of the polymer material for a predetermined time, and then contacted. A test was conducted to confirm that the ultraviolet irradiation time can be significantly shortened by irradiating ultraviolet rays with the aromatic substance released from the environment. A sample of natural rubber is placed in a 1 L transparent quartz glass container, and toluene is placed in a 6 cmφ petri dish and placed in the glass container. The glass container is brought to a saturated vapor pressure state of toluene and left at room temperature for a predetermined time ( This was called the pre-soak time.) After that, the swelling rate of the sample was measured, and then the petri dish containing toluene was removed, and an ultraviolet irradiation treatment was performed. As the polymer material sample, a natural rubber containing no photocatalyst was used. The surface of this sample was irradiated with ultraviolet rays for 30 minutes by a low-pressure mercury lamp. The reaction temperature was 30 ° C. About the surface of the sample after this ultraviolet irradiation, the static friction coefficient (micro | micron | mu) with glass was measured. The results are shown in Table 4 together with the measurement results of the swelling rate.

Figure 2005002318
Figure 2005002318

表4に示すように、この方法によれば、紫外線照射時間が30分という短時間でありながら、優れた表面改質効果が得られることが分かる。紫外線照射時間を短時間にできることから、工業的に利用価値の高い方法であると理解される。また、膨潤率と静摩擦係数μとの間には、膨潤率が高いほどμが低下するという相関関係があることも判明した。   As shown in Table 4, according to this method, it is understood that an excellent surface modification effect can be obtained while the ultraviolet irradiation time is as short as 30 minutes. Since the ultraviolet irradiation time can be shortened, it is understood that the method has a high industrial value. It has also been found that there is a correlation between the swelling ratio and the static friction coefficient μ that μ decreases as the swelling ratio increases.

実施例4
次に、本発明に係る表面改質方法が、ゴム等のエラストマー以外、各種樹脂に対しても有効であることを確認する試験を行った。1Lの透明石英ガラス容器中に各種樹脂サンプルを収容し、6cmφのシャーレにトルエンを入れて前記ガラス容器内に置き、ガラス容器内をトルエンの飽和蒸気圧状態とした後、紫外線の照射処理を行った。サンプルの表面にトルエンが気相で接触している状態にて、低圧水銀ランプにより紫外線を48時間照射した。反応温度は30℃とした。この紫外線照射後の各サンプルの表面について、水との接触角を測定した、比較として、未照射サンプルおよび空気中で紫外線を48時間照射したサンプルについても同様の測定を行った。さらに、サンプルの赤外線吸収スペクトル測定を行い、ベンゼン核特性吸収ピークである690〜699cm-1のピークの有無を調査した結果、ポリプロピレンにおいてベンゼン核の吸収スペクトルが存在し、ポリプロピレンとトルエンが反応していることが確認できた。結果を表5に示す。このように、本発明に係る方法を用いると、樹脂の表面を改質できる。
Example 4
Next, the test which confirms that the surface modification method based on this invention is effective also with respect to various resin other than elastomers, such as rubber | gum, was done. Various resin samples are housed in a 1 L transparent quartz glass container, toluene is placed in a 6 cmφ petri dish and placed in the glass container, and the glass container is brought into a saturated vapor pressure state of toluene, and then irradiated with ultraviolet rays. It was. In a state where toluene was in contact with the surface of the sample in a gas phase, the sample was irradiated with ultraviolet rays by a low pressure mercury lamp for 48 hours. The reaction temperature was 30 ° C. As a comparison, the surface of each sample after irradiation with ultraviolet rays was measured for the contact angle with water. For comparison, the same measurement was performed on an unirradiated sample and a sample irradiated with ultraviolet rays in air for 48 hours. Furthermore, the infrared absorption spectrum of the sample was measured, and the presence or absence of the benzene nucleus characteristic absorption peak of 690 to 699 cm −1 was investigated. As a result, the polypropylene had an absorption spectrum of the benzene nucleus, and the polypropylene and toluene reacted. It was confirmed that The results are shown in Table 5. Thus, when the method according to the present invention is used, the surface of the resin can be modified.

Figure 2005002318
Figure 2005002318

実施例5
次に、本発明に係る表面改質方法が、高分子材の耐久性改良にも効果的であることを確認する試験を、前記実施例2で優れた効果が得られたエチルベンゼンについて行った。1Lの透明石英ガラス容器中に天然ゴムのサンプルを収容し、6cmφのシャーレにエチルベンゼンを入れて前記ガラス容器内に置き、ガラス容器内をエチルベンゼンの飽和蒸気圧状態とした後、紫外線の照射処理を行った。サンプルの表面にエチルベンゼンが気相で接触している状態にて、低圧水銀ランプにより紫外線を5時間照射した。反応温度は30℃とした。この紫外線照射後のサンプルと比較して、上記天然ゴムを塩素処理したサンプルとを摩耗試験機にかけ、摺動を繰り返して摺動回数(耐久回数)の増加に伴って静摩擦係数μがどのように変化するかを測定した(摺動速度:600mm/分、相手材:ガラス)。測定した静摩擦係数μの変化結果を表6に示す。この結果から、この処理は、従来の塩素処理したサンプルに比べ、耐久性に優れていることが分かる。
Example 5
Next, a test for confirming that the surface modification method according to the present invention is also effective for improving the durability of the polymer material was performed on ethylbenzene, which was excellent in Example 2. A sample of natural rubber is placed in a 1 L transparent quartz glass container, ethylbenzene is placed in a 6 cmφ petri dish and placed in the glass container. The glass container is brought to a saturated vapor pressure state of ethylbenzene, and then subjected to ultraviolet irradiation treatment. went. In a state where ethylbenzene was in contact with the surface of the sample in a gas phase, the sample was irradiated with ultraviolet rays by a low pressure mercury lamp for 5 hours. The reaction temperature was 30 ° C. Compared with this UV-irradiated sample, the natural rubber chlorinated sample was subjected to a wear tester, and the sliding coefficient was repeated. The change was measured (sliding speed: 600 mm / min, mating material: glass). Table 6 shows the measurement results of the measured static friction coefficient μ. From this result, it can be seen that this treatment is superior to the conventional chlorinated sample.

Figure 2005002318
Figure 2005002318

実施例6
次に、従来表面改質が難しいと言われてきたEPDM(エチレンプロピレンゴム)に対する本発明に係る表面改質方法の効果確認試験を行った。1Lの透明石英ガラス容器中にEPDMのサンプルを収容し、6cmφのシャーレに各種芳香族物質を入れて前記ガラス容器内に置き、ガラス容器内を該芳香族物質の飽和蒸気圧状態とした後、紫外線の照射処理を行った。サンプルとしては、EPDMに光触媒を含有させないものを用いた。このサンプルの表面に芳香族物質が気相で接触している状態にて、低圧水銀ランプにより紫外線を48時間照射した。反応温度は30℃とした。この紫外線照射後の各サンプル表面について、ガラスとの静摩擦係数μを測定した。結果を表7に示す。表7に示す結果から、この方法により、従来表面改質が難しいと言われてきたEPDMゴムに対しても表面を改質できることが分かる。。
Example 6
Next, a test for confirming the effect of the surface modification method according to the present invention on EPDM (ethylene propylene rubber), which has been said to be difficult to modify the surface, was conducted. A sample of EPDM is housed in a 1 L transparent quartz glass container, and various aromatic substances are placed in a 6 cmφ petri dish and placed in the glass container. After the inside of the glass container is in a saturated vapor pressure state of the aromatic substance, An ultraviolet irradiation treatment was performed. As the sample, EPDM containing no photocatalyst was used. With the aromatic substance in contact with the surface of the sample in the gas phase, the sample was irradiated with ultraviolet rays for 48 hours by a low-pressure mercury lamp. The reaction temperature was 30 ° C. About each sample surface after this ultraviolet irradiation, the static friction coefficient (micro | micron | mu) with glass was measured. The results are shown in Table 7. From the results shown in Table 7, it can be seen that this method can modify the surface of EPDM rubber, which has been conventionally difficult to modify. .

Figure 2005002318
Figure 2005002318

本発明に係る高分子材の表面改質方法は、含フッ素エラストマー加硫成形物、とくにフッ素系ゴムの表面低粘着化にも有効である。また、芳香族物質、とくに昇華性芳香族物質を用いて、エラストマーの表面改質にも有効である。さらには、本発明は、芳香族物質、とくに固体昇華性芳香族物質をエラストマー等の高分子材に練り込むことにより、表面改質を実施することもできる。これらに関する実施例について以下に説明する。   The method for modifying the surface of a polymer material according to the present invention is also effective for reducing the surface of a fluorine-containing elastomer vulcanized product, particularly a fluorine-based rubber. It is also effective for surface modification of elastomers using aromatic substances, particularly sublimable aromatic substances. Furthermore, in the present invention, surface modification can also be carried out by kneading an aromatic substance, particularly a solid sublimable aromatic substance, into a polymer material such as an elastomer. Examples relating to these will be described below.

実施例7
(含フッ素エラストマー加硫成形物の表面低粘着化)
一般的に含フッ素エラストマー加硫物は耐熱性、耐油性、耐溶剤性等の性質が優れており、例えば自動車、工業用機械、化学プラントなどの部品に広く使用されている。しかしながら近年の含フッ素エラストマー加硫成形物の用途の拡大に伴って、上記性質に加えて、より優れた特性を備えることを要求される場合が多くなってきた。例えば、自動車の吸排気系統や燃料系の制御バルブに使用される場合には、耐熱性、耐油性、耐溶剤性等の諸性質に加えて、特に表面が低粘着性を備えることを要求される。そのため加硫成形物に化学処理、又は物理的処理を施して上記性質を付与することが行われている。そのような化学的処理による例としては、一旦含フッ素エラストマーを加硫成形し、加硫成形物をフッ素ガス、アミン、金属ナトリウム等で処理して加硫成形物の表面に低粘着性の特性を付与する方法、また物理的処理による例としては、含フッ素エラストマー加硫成形物にフッ素樹脂をコーティングしたり、高エネルギープラズマによる表面改質を行って表面特性を改善したりする等の製造方法があった。ところが、上述の化学的処理方法のうち、フッ素ガス処理法やナトリウム処理法には危険を伴うことが多く、また高エネルギープラズマを用いる等、物理的処理方法による場合には特殊な設備を必要とし、製造コストを下げることができなかった。一方、含フッ素エラストマーに種々の物質を配合して原料を作製し、これを加硫成形することで、加硫成形物に諸特性を付与する方法が試みられてきた。例えば、従来技術として、シリコーン、アミドなどのブルーム剤を含フッ素エラストマーに配合して、含フッ素エラストマー加硫成形物の表面に低粘着性物質を析出させ、諸特性を付加する方法が行われてきた。また、グラファイト、マイカ、またはフッ素樹脂等の自己潤滑性を有する物質を含フッ素エラストマーに配合して加硫成形物の特性を改善させることも行われてきた。しかしながらブルーム剤を用いる従来技術では、加硫成形物の表面低粘着性は十分でなく、しかも耐久性に劣っていた。また、自己潤滑性を有する物質を添加するだけでは十分な特性が得られないばかりか、強度的に劣る等、実用的なものとはならなかった。このように、従来知られている原料組成及び配合比では、表面低粘着性に優れた含フッ素エラストマー加硫成形物を得ることはできなかった。
Example 7
(Reducing surface adhesion of fluorinated elastomer vulcanized products)
Generally, fluorinated elastomer vulcanizates are excellent in properties such as heat resistance, oil resistance, and solvent resistance, and are widely used in parts such as automobiles, industrial machines, and chemical plants. However, with the recent expansion of the use of fluorinated elastomer vulcanized products, in addition to the above properties, it is often required to have more excellent characteristics. For example, when used for an intake / exhaust system of an automobile or a control valve of a fuel system, in addition to various properties such as heat resistance, oil resistance, solvent resistance, etc., the surface is particularly required to have low adhesion. The Therefore, chemical treatment or physical treatment is applied to the vulcanized molded product to impart the above properties. As an example of such chemical treatment, once the fluorinated elastomer is vulcanized and molded, the vulcanized molded product is treated with fluorine gas, amine, metallic sodium, etc., and the surface of the vulcanized molded product has low adhesive properties. Examples of methods for imparting the surface properties, and examples of physical treatment include coating a fluororesin on a fluorinated elastomer vulcanized product, and improving the surface properties by surface modification by high energy plasma, etc. was there. However, among the chemical treatment methods described above, the fluorine gas treatment method and the sodium treatment method are often dangerous, and special equipment is required when using physical treatment methods such as using high-energy plasma. The manufacturing cost could not be reduced. On the other hand, a method for imparting various properties to a vulcanized molded product by preparing raw materials by blending various substances into a fluorine-containing elastomer and vulcanizing the material has been tried. For example, as a conventional technique, a blooming agent such as silicone or amide is blended with a fluorine-containing elastomer, and a low-adhesive substance is precipitated on the surface of the fluorine-containing elastomer vulcanized molded article to add various properties. It was. In addition, a self-lubricating substance such as graphite, mica, or fluororesin has been added to the fluorine-containing elastomer to improve the properties of the vulcanized molded product. However, in the conventional technique using a blooming agent, the low-viscosity surface of the vulcanized molded product is not sufficient, and the durability is inferior. Further, not only by adding a substance having a self-lubricating property, sufficient characteristics cannot be obtained, but also the strength is inferior, and it has not become practical. As described above, it was not possible to obtain a fluorinated elastomer vulcanized molded article having excellent surface low-adhesion with the conventionally known raw material composition and blending ratio.

本発明に係る方法では、上記のような従来技術の不利不便を解消することが可能となり、加硫成形物の耐熱性、耐油性、耐溶剤性、機械的強度及び弾性を損なうことなく、表面低粘着性に優れた含フッ素エラストマー成形物を提供することが可能となる。   In the method according to the present invention, it is possible to eliminate the disadvantages and disadvantages of the prior art as described above, and without damaging the heat resistance, oil resistance, solvent resistance, mechanical strength and elasticity of the vulcanized molded product. It becomes possible to provide a fluorine-containing elastomer molded article excellent in low adhesiveness.

本実施例7における処理方法は、1Lの透明石英ガラス容器中に含フッ素エラストマーのサンプルを収容し、6cmΦのシャーレに各種芳香族物質(トルエン、ナフタレン)を入れて前記ガラス容器内に置き、ガラス容器内を該芳香族物質の飽和蒸気圧状態とした後、紫外線の照射処理を行った。サンプルとしては含フッ素エラストマー3種類を用いた。処理条件は表8に示した。固着試験方法は、直径12mm×厚さ2mmのサンプルを、外径30mm、内径8mmのSUS304に接触させてサンプルに1kgの荷重をかけ、120℃×24時間の条件で放置し、24時間経過後荷重をかけたままで23℃の温度で放冷させて完全に冷却した後、SUSとサンプルとの固着力をロードセルを含む試験機で1mm/分の速度で固着荷重を測定した。この結果より、この処理方法で含フッ素エラストマーの表面を改質できることが分かる。つまり、各種フッ素系ゴムに関し、未処理のものに比べ、大幅に固着荷重が減少しており、表面低粘着化に優れた効果が得られた。   In the treatment method of Example 7, a fluoroelastomer sample is accommodated in a 1 L transparent quartz glass container, various aromatic substances (toluene, naphthalene) are placed in a 6 cmφ petri dish and placed in the glass container. After the inside of the container was in a saturated vapor pressure state of the aromatic substance, an ultraviolet irradiation treatment was performed. Three types of fluorine-containing elastomers were used as samples. The processing conditions are shown in Table 8. The fixing test method is to contact a sample of 12 mm in diameter and 2 mm in thickness with SUS304 having an outer diameter of 30 mm and an inner diameter of 8 mm, apply a load of 1 kg to the sample, and leave it at 120 ° C. for 24 hours. After the sample was allowed to cool at a temperature of 23 ° C. with the load applied, the sample was completely cooled, and then the fixation load of SUS and the sample was measured at a rate of 1 mm / min with a test machine including a load cell. From this result, it is understood that the surface of the fluorine-containing elastomer can be modified by this treatment method. That is, with respect to various fluororubbers, the sticking load was greatly reduced as compared with the untreated rubber, and an excellent effect for lowering the surface was obtained.

Figure 2005002318
Figure 2005002318

実施例8
(昇華性芳香族物質を用いたエラストマーの表面改質)
天然ゴム、合成ゴム等のエラストマーはトルエン、エチルベンゼン、n-ブチルベンゼン、n-プロピルベンゼン等の液体芳香族雰囲気中で低圧水銀ランプ照射により表面改質でき、低摩擦係数化(低μ化)、高耐久性付与等ができるが、液体芳香族がエラストマーに膨潤、変形等の悪影響を及ぼして、エラストマーの特質を損なう場合が考えられる。ここで、芳香族物質にナフタレン、アントラセン、メチルナフタレン、アントラキノン等の固体昇華性芳香族を用いることで、エラストマーに膨潤、変形等の悪影響を与えずに表面改質できることが分かった。
Example 8
(Surface modification of elastomers using sublimable aromatic substances)
Elastomers such as natural rubber and synthetic rubber can be surface-modified by irradiation with a low-pressure mercury lamp in a liquid aromatic atmosphere such as toluene, ethylbenzene, n-butylbenzene, n-propylbenzene, etc., resulting in a low friction coefficient (low μ), Although high durability can be imparted, the liquid aromatics may adversely affect the elastomer, such as swelling and deformation, and impair the properties of the elastomer. Here, it was found that by using solid sublimable aromatics such as naphthalene, anthracene, methylnaphthalene, and anthraquinone as the aromatic substance, the surface can be modified without adversely affecting the elastomer such as swelling and deformation.

本実施例8における処理方法は、1Lの透明石英ガラス容器中にエラストマーサンプルを収容し、6cmΦのシャーレに各種芳香族物質を入れて前記ガラス容器内に置き、ガラス容器内を該芳香族物質の飽和蒸気圧状態とした後、紫外線の照射処理を行った。このサンプルの表面に該芳香族物質が気相で接触している状態にて、低圧水銀ランプにより紫外線を48時間照射した。反応温度は30℃とした。この紫外線照射後の各サンプル表面について、ガラスとの静摩擦係数μと体積膨潤率を測定した。結果を表9に示す。この結果より、固体昇華性芳香族物質を用いることで、エラストマーに膨潤、変形等の悪影響を与えずに表面改質できることが分かった。すなわち、表9に示すように、トルエン中で処理されたものに比べ、固体昇華性芳香族物質であるナフタレン中で処理されたものは、静摩擦係数μに大きな差がなく低摩擦係数に維持されつつ、体積膨潤率は極めて低く抑えられている。   In the treatment method in Example 8, an elastomer sample is accommodated in a 1 L transparent quartz glass container, various aromatic substances are placed in a 6 cmφ petri dish and placed in the glass container, and the inside of the glass container is filled with the aromatic substance. After setting to a saturated vapor pressure state, ultraviolet irradiation treatment was performed. While the aromatic substance was in contact with the surface of the sample in a gas phase, the sample was irradiated with ultraviolet rays for 48 hours by a low-pressure mercury lamp. The reaction temperature was 30 ° C. About each sample surface after this ultraviolet irradiation, the static friction coefficient (micro | micron | mu) and volume swelling rate with glass were measured. The results are shown in Table 9. From this result, it was found that the surface modification can be performed without adversely affecting the elastomer such as swelling and deformation by using a solid sublimable aromatic substance. That is, as shown in Table 9, compared with those treated in toluene, those treated in naphthalene, which is a solid sublimable aromatic substance, have a large difference in static friction coefficient μ and are maintained at a low friction coefficient. However, the volume swelling rate is kept extremely low.

Figure 2005002318
Figure 2005002318

実施例9
(固体昇華性芳香族をエラストマー等の高分子材料に練りこむことによる表面改質)
天然ゴム、合成ゴム等のエラストマーはトルエン、エチルベンゼン、n-ブチルベンゼン、n-プロピルベンゼン等の液体芳香族雰囲気中やナフタレン、アントラセン、メチルナフタレン、アントラキノン等の固体昇華性芳香族雰囲気中で低圧水銀ランプ照射により表面改質でき、低μ化、高耐久性付与等ができるが、固体昇華性芳香族を用いる場合は予め、エラストマー等の高分子材料に練りこむことができ、この材料で成形されたサンプルに紫外線を照射することで表面改質できる。練り込み量は適宜調整できる。この方法で処理を行えば、容器中に芳香族物質を入れておく必要がなく、容易な処理作業で表面改質できる。
Example 9
(Surface modification by kneading solid sublimable aromatics into polymer materials such as elastomers)
Elastomers such as natural rubber and synthetic rubber are low-pressure mercury in liquid aromatic atmospheres such as toluene, ethylbenzene, n-butylbenzene, n-propylbenzene, and solid sublimable aromatic atmospheres such as naphthalene, anthracene, methylnaphthalene, and anthraquinone. The surface can be modified by irradiation with a lamp to reduce the μ, impart high durability, etc., but when using a solid sublimable aromatic, it can be kneaded into a polymer material such as an elastomer in advance and molded with this material. The surface can be modified by irradiating the sample with ultraviolet rays. The amount of kneading can be adjusted as appropriate. When the treatment is performed by this method, it is not necessary to put an aromatic substance in the container, and the surface can be modified by an easy treatment operation.

本実施例9における処理方法は、1Lの透明石英ガラス容器中に予め固体昇華性芳香族を練りこんだ材料により成形されたエラストマーサンプルを収容し、6cmΦのシャーレに入れて前記ガラス容器内に置き、紫外線の照射処理を行った。低圧水銀ランプにより紫外線を48時間照射した。反応温度は30℃とした。この紫外線照射後の各サンプル表面について、ガラスとの静摩擦係数μを測定した。結果を表10に示す。この結果より、この方法で処理を行えば、容器中に芳香族物質を入れておく必要がなく、容易な処理作業で表面改質できることが分かる。   In the treatment method of Example 9, an elastomer sample formed in advance with a material in which a solid sublimable aromatic is kneaded is placed in a 1 L transparent quartz glass container, and placed in a 6 cmφ petri dish and placed in the glass container. Then, an ultraviolet irradiation treatment was performed. Ultraviolet rays were irradiated for 48 hours with a low-pressure mercury lamp. The reaction temperature was 30 ° C. About each sample surface after this ultraviolet irradiation, the static friction coefficient (micro | micron | mu) with glass was measured. The results are shown in Table 10. From this result, it can be seen that if the treatment is performed by this method, it is not necessary to put an aromatic substance in the container, and the surface can be modified by an easy treatment operation.

Figure 2005002318
Figure 2005002318

Claims (23)

高分子材の表面に芳香族物質を存在させた状態で、高分子材の表面に紫外線を照射することを特徴とする、高分子材の表面改質方法。   A method for modifying a surface of a polymer material, comprising irradiating the surface of the polymer material with ultraviolet rays in a state where an aromatic substance is present on the surface of the polymer material. 芳香族物質の接触下で、高分子材の表面に紫外線を照射することを特徴とする、請求項1の高分子材の表面改質方法。   2. The method for modifying a surface of a polymer material according to claim 1, wherein the surface of the polymer material is irradiated with ultraviolet rays in contact with an aromatic substance. 高分子材の表面に芳香族物質を接触させた後、高分子材の表面に紫外線を照射することを特徴とする、請求項1の高分子材の表面改質方法。   The method for modifying a surface of a polymer material according to claim 1, wherein the surface of the polymer material is irradiated with ultraviolet rays after contacting an aromatic substance with the surface of the polymer material. 芳香族物質を気相または液相にて高分子材の表面に接触させる、請求項2または3の高分子材の表面改質方法。   The method for modifying a surface of a polymer material according to claim 2 or 3, wherein the aromatic substance is brought into contact with the surface of the polymer material in a gas phase or a liquid phase. 芳香族物質を高分子材に練り混むことにより高分子材の表面に存在させる、請求項1の高分子材の表面改質方法。   The method for modifying a surface of a polymer material according to claim 1, wherein an aromatic substance is kneaded into the polymer material to be present on the surface of the polymer material. 高分子材がエラストマーからなる、請求項1〜5のいずれかに記載の高分子材の表面改質方法。   The method for modifying a surface of a polymer material according to any one of claims 1 to 5, wherein the polymer material comprises an elastomer. 高分子材が含フッ素エラストマーからなる、請求項6の高分子材の表面改質方法。   The method for modifying a surface of a polymer material according to claim 6, wherein the polymer material comprises a fluorine-containing elastomer. 高分子材がゴムからなる、請求項6または7の高分子材の表面改質方法。   The method for modifying a surface of a polymer material according to claim 6 or 7, wherein the polymer material comprises rubber. 高分子材が樹脂からなる、請求項1〜5のいずれかに記載の高分子材の表面改質方法。   The method for modifying a surface of a polymer material according to any one of claims 1 to 5, wherein the polymer material comprises a resin. 予め高分子材の表面に光触媒含有層を形成する、請求項1〜9のいずれかに記載の高分子材の表面改質方法。   The method for modifying a surface of a polymer material according to any one of claims 1 to 9, wherein a photocatalyst-containing layer is formed in advance on the surface of the polymer material. 光触媒含有層を、光触媒を高分子材に練り込むことにより形成する、請求項10の高分子材の表面改質方法。   The method for modifying a surface of a polymer material according to claim 10, wherein the photocatalyst-containing layer is formed by kneading the photocatalyst into the polymer material. 光触媒含有層をコーティングにより形成する、請求項10の高分子材の表面改質方法。   The method for modifying a surface of a polymer material according to claim 10, wherein the photocatalyst-containing layer is formed by coating. 高分子材の表面に対し、間隙をもたせて光触媒含有層を配置する、請求項1〜9のいずれかに記載の高分子材の表面改質方法。   The method for modifying the surface of a polymer material according to any one of claims 1 to 9, wherein the photocatalyst-containing layer is disposed with a gap with respect to the surface of the polymer material. 光触媒含有層が、酸化チタン、酸化ジルコニウム、チタン酸ストロンチウムの少なくとも一つを含有している、請求項10〜13のいずれかに記載の高分子材の表面改質方法。   The method for modifying a surface of a polymer material according to any one of claims 10 to 13, wherein the photocatalyst-containing layer contains at least one of titanium oxide, zirconium oxide, and strontium titanate. 芳香族物質がトルエンからなる、請求項1〜14のいずれかに記載の高分子材の表面改質方法。   The method for modifying the surface of a polymer material according to any one of claims 1 to 14, wherein the aromatic substance comprises toluene. 芳香族物質がエチルベンゼンからなる、請求項1〜14のいずれかに記載の高分子材の表面改質方法。   The method for modifying a surface of a polymer material according to claim 1, wherein the aromatic substance is ethylbenzene. 芳香族物質がナフタレンからなる、請求項1〜14のいずれかに記載の高分子材の表面改質方法。   The method for modifying a surface of a polymer material according to claim 1, wherein the aromatic substance is naphthalene. 紫外線を低圧水銀ランプにより照射する、請求項1〜17のいずれかに記載の高分子材の表面改質方法。   The method for modifying the surface of a polymer material according to any one of claims 1 to 17, wherein the ultraviolet ray is irradiated by a low-pressure mercury lamp. 請求項1〜18のいずれかに記載の方法により表面が改質された高分子材。   A polymer material whose surface is modified by the method according to claim 1. エラストマーからなる、請求項19の高分子材。   20. The polymer material according to claim 19, comprising an elastomer. 含フッ素エラストマーからなる、請求項20の高分子材。   The polymer material according to claim 20, comprising a fluorine-containing elastomer. ゴムからなる、請求項20または21の高分子材。   The polymer material according to claim 20 or 21, comprising rubber. 樹脂からなる、請求項19の高分子材。   20. The polymer material according to claim 19, comprising a resin.
JP2003379652A 2002-11-08 2003-11-10 Polymer material and surface modification method thereof Expired - Fee Related JP4247096B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003379652A JP4247096B2 (en) 2002-11-08 2003-11-10 Polymer material and surface modification method thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2002324971 2002-11-08
JP2003141626 2003-05-20
JP2003379652A JP4247096B2 (en) 2002-11-08 2003-11-10 Polymer material and surface modification method thereof

Publications (2)

Publication Number Publication Date
JP2005002318A true JP2005002318A (en) 2005-01-06
JP4247096B2 JP4247096B2 (en) 2009-04-02

Family

ID=34108503

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003379652A Expired - Fee Related JP4247096B2 (en) 2002-11-08 2003-11-10 Polymer material and surface modification method thereof

Country Status (1)

Country Link
JP (1) JP4247096B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112006003405T5 (en) 2005-12-14 2008-10-23 Japan Atomic Energy Agency Radio frequency substrate and manufacturing method therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112006003405T5 (en) 2005-12-14 2008-10-23 Japan Atomic Energy Agency Radio frequency substrate and manufacturing method therefor

Also Published As

Publication number Publication date
JP4247096B2 (en) 2009-04-02

Similar Documents

Publication Publication Date Title
US6733893B2 (en) Coated silicone rubber article and method of preparing same
Da Maia et al. Influence of gas and treatment time on the surface modification of EPDM rubber treated at afterglow microwave plasmas
Pastor‐Blas et al. Surface characterization of synthetic vulcanized rubber treated with oxygen plasma
JP4247096B2 (en) Polymer material and surface modification method thereof
Ning et al. An excellent ozone-resistant polymethylvinylsiloxane coating on natural rubber by thiol-ene click chemistry.
Romero-Sánchez et al. UV treatment of synthetic styrene-butadiene-styrene rubber
KR20050095554A (en) Perfluoroelastomer molded article and method for producing the same
JP4749673B2 (en) Non-sticking perfluoroelastomer molded body and method for producing the same
CN109944079B (en) Wear-resistant and aging-resistant PVC artificial leather
TW201730263A (en) Cross-linking elastomer composition, molded article, seal material, plasma treatment device and semiconductor manufacturing device including seal material, hardness-reducing agent for molded article, and method for manufacturing molded article
Nair et al. Ageing studies of ethylene propylene diene monomer rubber/styrene butadiene rubber blends: Effects of heat, ozone, gamma radiation, and water
JP4497495B2 (en) Rubber surface modification method and rubber wiper blade using the same
JPH11172027A (en) Production of surface-modified rubber, surface-modified rubber and sealing material
Ortíz-Magán et al. Influence of rubber formulation on surface modifications produced by RF plasma
RU2232780C2 (en) Fluorine rubber-based coating formation method
KR20010043880A (en) White Elastomer Seal Materials and a Process for Manufacture Thereof
Romero-Sánchez et al. Improved adhesion between polyurethane and SBR rubber treated with trichloroisocyanuric acid solutions containing different concentrations of chlorine
Henry et al. Influence of Plasma Chamber Set‐Up on the Surface Modification of Non‐Vulcanized and Pure SBR Rubber Treated at Radio‐Frequencies Air Plasma
JP2003286357A (en) Fluororubber molding and treatment method for endowing the same with non-adhesive property
Oya et al. Surface characteristics of polyethylene terephthalate (PET) film exposed to active oxygen species generated via ultraviolet (UV) lights irradiation in high and low humidity conditions
Ortíz‐Magán et al. Improved adhesion of RF plasma treated rubbers by isocyanate incorporation to polyurethane adhesive
JP3979845B2 (en) Method for producing surface-modified fluororubber, obtained surface-modified fluororubber and use thereof
JPH0260901A (en) Molded rubber item with high oil resistance
JPH0335032A (en) Production of vulcanized molded body of fluorine-containing elastomer having modified surface
Babaei et al. The effect of sterilization procedures on the physiochemical properties and performance of plasma polymer films

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080729

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081021

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081225

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090109

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120116

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130116

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130116

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140116

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees