JP2005002190A - Soil improving material safe for marine organism and method for evaluating safety thereof - Google Patents

Soil improving material safe for marine organism and method for evaluating safety thereof Download PDF

Info

Publication number
JP2005002190A
JP2005002190A JP2003166207A JP2003166207A JP2005002190A JP 2005002190 A JP2005002190 A JP 2005002190A JP 2003166207 A JP2003166207 A JP 2003166207A JP 2003166207 A JP2003166207 A JP 2003166207A JP 2005002190 A JP2005002190 A JP 2005002190A
Authority
JP
Japan
Prior art keywords
ground
sea
marine
solidified material
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003166207A
Other languages
Japanese (ja)
Inventor
Takeshi Konishi
武 小西
Junichi Yamamoto
淳一 山本
Masami Fujihira
雅巳 藤平
Kazumi Osawa
一実 大沢
Takashi Niizaka
孝志 新坂
Shigeji Kobori
茂次 小堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOBU KAGAKU KK
Sanshin Corp
Mirai Construction Co Ltd
Original Assignee
TOBU KAGAKU KK
Sanshin Corp
Mirai Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOBU KAGAKU KK, Sanshin Corp, Mirai Construction Co Ltd filed Critical TOBU KAGAKU KK
Priority to JP2003166207A priority Critical patent/JP2005002190A/en
Publication of JP2005002190A publication Critical patent/JP2005002190A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/80Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in fisheries management
    • Y02A40/81Aquaculture, e.g. of fish

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a soil improving material that is safe for marine organisms in a sea area or in seashore in which marine organisms live and is suitable for soil improvement. <P>SOLUTION: The soil improving material is useful for improving soil at the sea bottom or seashore of area in which marine organisms live, is used by injecting a hardening material composed of 100 parts wt. of light burnt magnesia and 5-100 parts wt. of a water-soluble phosphate fertilizer into the soil. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、海水の移動が少ないか、あるいは滞留する港湾ないしその近郊の海面の地盤、または流れが比較的穏やかな海岸における砂地盤、もしくは施工周辺の区画と地下水が連通している地域における海産生物に影響を与えない地盤改良材と海産生物に対する安全性の評価方法に関する。
【0002】
【従来の技術】
近年、海域周辺の臨海部の開発が進められているが、これらの地域では地下水が高く、しかも緩く堆積しているために非常に軟弱な地盤が多く、深層混合処理工法やCPG工法などの液状化対策を行う必要がある。
また、港湾などの浚渫工事において大量の軟弱な浚渫土が発生し、その処分地の確保が問題となっており、この浚渫土を埋立材として再利用する管中混合固化処理工法などの工事が多く行われている。これらの工法で使用する固化材として、高炉B種セメント、普通ポルトランドセメント等が一般的に用いられている。
【0003】
しかしながら、これら従来の固化材は、硬化する過程でCa(OH)を生成する性質をもっており、従って、地盤中に形成された固結体の周囲にpHが12〜14以上の高いpHを持つ液体を溶出してしまう。このように高いpHを持つ液体が溶出した水中の構造物には海産生物が付着して繁殖し難いことが確認されており、従って、海草等を育成できないコンクリート構造物となるので、環境上問題である。更にこの固結体は常時六価クロム等を溶出して海産生物に悪影響を与えるという問題がある。
【0004】
従って、港湾や突堤などの構造物が建造されている場所の地盤や海辺の近くに設置された養殖場周辺の地盤を改良するためには、前記のようにコンクリート構造物や地盤から魚類や海草や貝類等の海産生物に悪影響を与えるような溶出物のない固化材を使用しなければならない。
【0005】
そこで自然環境負荷の少ない地盤改良工事を施工するために、従来の固化材に代わる固化材として、軽焼マグネシアを主成分とする水硬性硬化物が提案されている(例えば特許文献1参照)。
【0006】
一方、海域周辺で地盤改良工事を行うにあたり、周辺に生息している生物への影響を確認する手法としては、淡水域、海域を問わず、スタンダードな試験法である「ヒメダカを用いた淡水生物の急性毒性試験」が用いられている。
【0007】
【特許文献1】
特開2001−200252号公報
【0008】
【発明が解決しようとする課題】
前記特許文献1に記載された発明は、軽焼マグネシア100重量部に対し、石こう、ポルトランドセメント及び高炉スラグから選ばれる1種以上1〜100重量部を含み、凝結遅延剤としてオキシカルボン酸塩又はケトカルボン酸0.1〜1.0重量部を含有する土壌硬化材組成物である。
【0009】
この土壌組成物である固化材は、硬化の過程でMg(OH)を主に生成する。しかし、このMg(OH)が水中に溶解する溶解度は、前記のように普通ポルトランドセメントや高炉B種セメントから発生するCa(OH)に比較すると非常に低い値を示している。従って、この固化材を使用して海底の地盤を改良したり構造物を製造した場合は、従来の普通ポルトランドセメントや高炉B種セメントを使用した場合に比較して、構造物から溶出するpHが低いことから海草や貝類が付着し易く、海産生物への悪影響が少ないことが期待される。
【0010】
しかしながら、この特許文献1にはその固化材が及ぼす海産生物に対する影響については何ら具体的に記載も示唆もされていないので、これを明確にしなければ海産生物が生存する地域の地盤改良に使用できないという問題があった。
【0011】
一方、生物に対する安全性の評価法として一般的に実施されている「ヒメダカを用いた淡水生物の急性毒性試験」は淡水域の生物を対象としており、海域の生物を対象としていない。さらに、淡水生物と海産生物では毒性に対する感受性に違いがあることから、海域で施工する場合の固化材の安全性を適正に評価できる試験法の確立が必要である。
【0012】
従って、本発明の目的とするところは、海産生物に対する安全性の評価法を確立して固化材の影響を確認することで、この固化材を使用した最適な地盤改良材を提供するものである。
【0013】
【課題を解決するための手段】
前記目的を達成するための本発明にかかる海産生物に安全な地盤改良材及びその安全性の評価方法は、次のように構成されている。
【0014】
(1)海産生物が生存する地域の海底あるいは海岸の地盤を改良する材料であって、この地盤中に軽焼マグネシア100重量部に対して水溶性リン酸肥料5〜100重量部を含む固化材を地盤中に混入することを特徴としている。
【0015】
(2)施工区域が海域に隣接しており、更に施工周辺の区画と地下水が連通し、改良地盤より構成物質が溶出可能な地盤に対して、軽焼マグネシア100重量部に対して、水溶態リン酸肥料5〜100重量部を含む固化材を原地盤に混合・圧入して地盤改良することによって、pH上昇及び六価クロム等の溶出による施工周辺の汚染を誘因しないことを特徴としている。
【0016】
(3)海域施工で使用する固化材を濾過海水で希釈して異なる濃度を準備した溶液に、海産生物であるノリ芽、アサリ浮遊幼生およびアマモを一定期間暴露させ、生物の半数がへい死または成長阻害を引き起こす固化材濃度を比較することで、海域施工における海産生物への安全性を評価することを特徴としている。
【0017】
本発明は、海産生物が生存する海域の海底や海岸の地盤に対して軽焼マグネシアを主成分とする固化材の混合・圧入等の方法によって改良するものである。
【0018】
固化材として軽焼マグネシアに対して除放性リン酸成分として水溶性リン酸塩を添加したもの(タイプAという)と、炭酸塩を添加したもの(タイプBという)とがあるが、後述するように本発明においてはタイプAに限定される。
【0019】
一方、海産生物に対する固化材の安全性を適正に評価するためには、海産生物を用いた急性毒性試験方法を開発する必要がある。供試生物については、我が国沿岸に生息する海産生物で以下の条件を満足する種類を選択した。
1)大きさのそろった多数の個体が入手できる。
2)飼育が比較的簡単である。
3)化学物質に対する感受性が高い。
【0020】
その結果、多くの内湾に一般的に生息、分布するスサビノリ(ノリ芽、ノリ葉体)及びアサリ(浮遊幼生、稚貝)と、特に清浄な海水の内湾に生息するアマモの5種の検体を用いた新たな評価法を開発した。なお、実験の結果、スサビノリについてはノリ芽、アサリについては浮遊幼生が化学物質に対する感受性が高いことが明らかになった。そこで実際の試験ではノリ芽、アサリ浮遊幼生、アマモについて試験を実施すれば海域での毒性を評価することが可能である。
【0021】
具体的には、ノリ芽、アサリ浮遊幼生及びアマモについて、固化材を溶解させた海水に所定期間供試生物を曝露し、供試生物が半数量へい死する濃度(半数致死濃度:LC50)及び半数量の成長阻害が認められる濃度(半数影響濃度:EC50)等を求めるものである。この新規な評価方法によって、従来では実施されていなかった固化材の海域における毒性を数値で明確に表すことが可能となり、海産生物に対する安全性を、容易かつ適切に判定して評価することができる。以下に試験法の詳細を示す。
【0022】
イ)スサビノリ(ノリ芽)
紅藻類の一種であるスサビノリは、春から夏季は果胞子が発芽しカキ殻へ穿孔した糸状体の状態で過ごし、秋から冬季に殻胞子が放出されて葉体となる。
ノリ芽の生死の判別は肉眼でははっきりせず、非常に困難である。そこで本発明ではカキ殻糸状体から採苗したノリ芽を試験糸に着生させて、試験水に4日間曝露させた後の芽数を顕微鏡で測定する。そして試験糸からの脱落をノリ芽の致死と判断することで、試験開始時の値からの減少数から、ノリ芽の脱落率を算出して半数致死濃度(LC50)を求めた。
【0023】
ロ)アサリ(浮遊幼生)
アサリ稚貝は、周辺の環境が悪化すると閉殻してしまうため生死の判別が難しい。そこで、周辺の環境に対し感受性が高く殻が形成される前の状態である、アサリ成貝の受精卵からふ化して48時間程度の成長段階であるのD状幼生(約110μm)を使用する。この浮遊幼生を試験水に4日間曝露させて、実体顕微鏡下で遊泳行動の有無により生死を判別してLC50を求めた。
【0024】
ハ)アマモ
アマモは海産顕花植物の一種である。今回の試験では種子から発芽、生長した実生株(幼草体)を使用した。そして10日間の曝露後に葉の伸長量を測定する。この伸長量が試験水に曝露させたことで、有意な差があるか確認するため対象区と試験区の伸長量について、t検定により危険率(p)を求めた。その結果、試験区の伸長量は対象区と有意な差(p<0.05)が見られることが明確になった。そこで対象区の平均伸長量Xaから標準偏差σを引いた値をbとする。(b=Xa−σ)このbの値より伸長量が低い株を低成長株と定義して、低成長株の出現率から半数数影響濃度EC50を求めた。
【0025】
【発明の実施の形態】
次に、図面を参照して本発明の海産生物が生存する地域の地盤改良及びその安全性の評価方法を説明する。
【0026】
(実施例1:地盤改良)
滞留しているような港湾ないしその周辺の地盤、または流れが比較的穏やかな海岸における砂地盤、もしくは施工周辺の区画と地下水が連通していて海産生物が多く生息している軟弱な地盤に対して、本発明の地盤改良材を用いて深層混合処理工法、コンパクショングラウチング工法や管中混合固化処理工法などの地盤改良工事を実施した。
その際、施工中および施工後の周辺の海水を定期的に採取して、実施例2に示すノリ芽の急性毒性試験を行って安全性を確認するモニタリングを行った。
その結果、地盤改良によるpH上昇や六価クロム溶出等の水質悪化は見られず、LC50も実施例2の値を下回らなかったことから、地盤改良による水産生物に対する安全性が証明できた。さらに施工後、地盤の改良効果も損なわなかったことから、この地盤改良材を用いることによって、海域で安全に地盤改良工事を施工することが可能であることが確認された。
【0027】
(実施例2:安全性の評価方法)
1.固化材によるpHの変化の確認
本発明に適用できる固化材を選択するために、次の3種類の固化材を使用してpHの比較を行った。
【0028】
(1)試料
試料として次のものを準備した。
1)高炉B種セメントからなる固化材(通常タイプという)
2)軽焼マグネシア100重量部に対し、水溶態リン酸肥料5〜100重量部を含むもの。具体的には、軽焼マグネシア100重量部に対し、水溶態リン酸肥料50重量部を含むものを使用した(軽焼マグネシア+リン酸塩:タイプA)。
3)軽焼マグネシア100重量部に対し、有機炭酸化合物5〜30重量部を反応剤として含むもの。具体的には、軽焼マグネシア100重量部に対し、有機炭酸化合物15重量部を反応剤として含むものを使用した(軽焼マグネシア+炭酸塩:タイプB)。
【0029】
(2)水質の変化について
試験原液として、前記3種類の粉体状の固化材を200g/Lになるように施工海域より採取して濾過した海水を加え、6時間放置した後の上澄み液を試験原液とした。そしてこれを利用して海水中のpHの変化と六価クロム溶出状態を測定した。
【0030】
(3)試験結果
1)pH値の変化と六価クロムの溶出
図1は試験原液を海水で希釈した場合の希釈濃度とpHとの関係を示すものである。この図における試験原液は右端の希釈濃度が100%の位置に示している。この位置におけるpHの値は、線Aで示すタイプAが10.4で最も低く、次いで線Bで示すタイプBが11である。そして線Cで示す高炉B種セメントは、以前よりpH値の上昇が問題になっていたように13と最も高い値を示している。
【0031】
海上工事においては、海水が流動しているので、常時新鮮な海水で希釈されることを条件に、希釈濃度20%を基準値として、それ以外の値(最低値が約5%)を求めた。
【0032】
この実験における基準の希釈濃度である20%の場合のpH値について見ると、タイプAの固化材で8.9と最も低く、またタイプBの固化材が10.2であったのに対して高炉B種セメントは11であった。
【0033】
更に海水で希釈して濃度が最低の5%程度にすると、タイプAの固化材が8.4、高炉B種セメントが9.3であるのに対してタイプBがほぼ9.7となっている。
【0034】
また、30%希釈の場合のpH値は、タイプAの固化材が9.2、タイプBの固化材が10.4であり、更に高炉B種セメントが11.5であった。
【0035】
pHの高い液体を海水等で希釈するとOHイオン濃度が低下するため、通常、pHの値は低下する。しかし、本実験での試験原液(図1における右端)を海水で希釈すると希釈前のpH値が、タイプA<タイプB<高炉B種セメントであったものが、希釈後はタイプA<高炉B種セメント<タイプBとなり、高炉B種セメントとタイプBのpHの値が逆転するという驚くべき結果となった。これは海水とタイプBが何らかの化学反応を起こしてpHが上昇したためと考えられる。
【0036】
そして原液の希釈濃度が20%(海上工事の基準値)の側に変化すると、高炉B種セメントのpHが急激に上昇して最も高くなる。これに対してタイプBの固化材が横ばい状態となって10程度となり、更に、タイプAの固化材のpH値がタイプBのものよりもはるかに低い値となっている。
【0037】
さらに、六価クロムについて測定すると、タイプAとタイプBの固化材は共に検出されなかったが、高炉B種セメントでは六価クロムが0.2mg/Lの溶出が検出された。しかしながら、液体中に溶出される六価クロムの基準値は0.5mg/L程度であることから、前記高炉B種セメントはこの基準値より低い値を示し、一応は問題がないと判断される。
2)水産生物に対する定性的な安全性の評価試験
海域における地盤改良工事においては前記のように養殖場で養殖されている魚介類、港湾の中の魚介類、更に遠浅の海岸における海草や魚介類の養殖場などの水質と水産生物の生育状況との関係を知ることが重要である。そこで本発明においては以下のような簡易的な試験を行い、安全性への定性的な評価を行った。
【0038】
試験としては、図2に示すような内寸が31cm、長さが100cmのアクリル製カラム1を準備し、その下方から厚さが30cmの固結体層2、厚さが30cmの砂層3(海砂)、そして厚さが30cmの海水層4を三層に形成し、アサリ成貝5(平均殻長:31.4mm)を前記砂層3の上に配置した。固結体に用いた固化材はpH試験で最も値が低かったタイプAとし、固化材の配合量は160kg/mであった。また、固結体の性状はスラリー状態のもの、3日間養生したもの、7日養生のもの、更に固結体層を形成せず、砂層のみの4種類のものを準備した。
【0039】
アサリは1カラムに対して5個入れて10週間試験を行った。試験中の海水の交換頻度は1週間に2回行い、試験期間中の水温を23℃で一定に保持した。またカラム中の海水にはエアポンプにより常時エアレーションを行った。そしてアサリの生存数を3〜4日おきに確認すると共に、海水層4のpH、電導率、濁度、DOの変化と水温、塩分を毎日測定した。
a)水質
pH値は、各試験ケースともほぼ8.1〜8.4であり、施工前の海域より採取した海水と比較して大きな差は認められず、固化材の有無によるpHの変化はあまり見られなかった。他の項目についても同様に、固化材による水質の影響は殆ど見られなかった。ここで図1の試験では濾過海水に固化材を混入した試験原液を希釈しているため、pHの変動が見られた。しかし、本実験の場合、固結体からの溶出による水質の変化を測定しており、pHの変動はあまりないため、この実験結果は矛盾していない。
b)生育状況
アサリのへい死は見られず、アサリが砂に潜る割合を示す潜砂率(0%:衰弱している、100%:衰弱していない)についてもすべての試験ケースで100%と差異は見られなかった。
【0040】
さらに試験終了後に、アサリの成長の指標である肥満度(軟体部重量(g)/(殻長L(cm)×殻高H(cm)×殻幅W(cm)))を測定した。その結果、タイプAの固化材を使用した場合のアサリの肥満度は13.2であり、固化材が含まれていない砂のみの場合と殆ど差が認められなかった。また、一般的な肥満度である11.0〜15.0と比較しても、タイプAの固化材による成長阻害は無視できることが確認できた。従って、このタイプAの固化材で作成した固結体は、海産生物であるアサリ成貝に対して地盤改良材として問題なく使用できることが確認された。
3)水産生物に対する定量的な安全性の評価試験
タイプAとタイプB及び高炉B種セメントの3種類の固化材が海産生物(ノリ芽、アサリおよびアマモ)に対して如何なる影響を及ぼすかを定量的に確認するために本発明の新しい評価法である海産生物の急性毒性試験を行った。この3種類の供試生物のうち、最も感受性の高かったノリ芽についての試験結果を図3に示す。
【0041】
<ノリ芽の急性毒性試験>
海産生物に対する影響は、従来の淡水域での急性毒性試験法である、供試生物の生死で判定するLC50(半数致死濃度:供試生物の50%がへい死すると推定される濃度で、その値が低いほど高い毒性を示すことを意味する)又は呼吸、平衡感覚、成長等の致死に至らない影響で判定するEC50(半数影響濃度)による評価法を海産生物に適用できるよう改良した方法で検証した。
【0042】
固化材としてタイプA、Bの他に、比較のため高炉B種セメント(粉体)についてもノリ芽の急性毒性試験を行った。試験原液は3種類の固化材を200g/Lになるように濾過海水を加え、30分毎に2分間の攪拌を3時間繰り返した懸濁液の上澄みを、孔径1μmのグラスファイバーろ紙(GFP)でろ過したものとする。
【0043】
曲線Aで示すタイプAの固化材によるLC50値は2.90であるのに対して曲線Bで示すタイプBの固化材は0.08であった。また、比較のために試験を行った曲線Cで示す高炉B種セメントは0.20であった。
【0044】
この急性毒性試験において分かるように、ノリ芽の急性毒性試験においてはタイプBの固化材よりも高炉B種セメントの方が、固化材濃度の高い値を示している。そしてタイプAの固化材は前記固化材よりはるかに高い固化材濃度である2.90であり、pH試験と同様の結果となった。
【0045】
したがって、軽焼マグネシアを主成分とする固化材のうち、海域に限っては(軽焼マグネシア+リン酸塩)のタイプAが最も安全性の高い地盤改良材として使用できることが実証された。
【0046】
【発明の効果】
本発明にかかる地盤改良材は、海産生物が生存する地域の海底あるいは海岸の地盤を改良する材料であって、この地盤中に軽焼マグネシア100重量部に対して水溶性リン酸肥料5〜100重量部を含む固化材を地盤中に混入することを特徴としている。
【0047】
また本発明にかかる固化材の安全性の評価方法は、海域施工で使用する固化材を濾過海水で希釈して異なる濃度を準備した溶液に、海産生物であるノリ芽、アサリ浮遊幼生およびアマモを一定期間暴露させ、生物の半数がへい死または成長阻害を引き起こす固化材濃度を比較することで、海域施工における海産生物への安全性を評価することを特徴としている。
【0048】
前記のように3種類の固化材を使用した希釈濃度とpH値の変化の試験、アサリへの影響試験、更に海産生物の急性毒性試験において、軽焼マグネシア+リン酸塩タイプの固化材が海産生物の生存する地域や施工区域が海域に隣接し、施工区域と地下水が連通している地盤を改良するための固化材として好適に利用できる。
【図面の簡単な説明】
【図1】海水を添加した固化材の希釈濃度とpH値の変化の関係を示す図である。
【図2】アサリへの影響の試験装置の図である。
【図3】ノリ芽の急性毒性試験を示す図である。
【符号の説明】
2 固結体層
3 砂層
4 海水層
5 アサリ成貝
[0001]
BACKGROUND OF THE INVENTION
The present invention provides marine products in a port where the seawater moves little or stays or in the vicinity of the sea surface in the vicinity of the sea, or in the sand ground on the coast where the flow is relatively gentle, or in the area where the surrounding area is in communication with the surrounding area. The present invention relates to a ground improvement material that does not affect organisms and a safety evaluation method for marine products.
[0002]
[Prior art]
In recent years, coastal areas around the sea area have been developed, but in these areas the groundwater is high and the soil is deposited loosely, so there are many very soft grounds, and liquids such as deep mixing treatment method and CPG method are used. There is a need to take measures to make it easier.
In addition, a large amount of soft dredged soil has been generated in dredging work at harbors, etc., and securing the disposal site has become a problem. Work such as mixed solidification treatment method in pipes that reuse this dredged material as landfill material Much has been done. As a solidifying material used in these methods, blast furnace type B cement, ordinary Portland cement, and the like are generally used.
[0003]
However, these conventional solidifying materials have a property of generating Ca (OH) 2 during the curing process, and therefore have a high pH of 12 to 14 or more around the solidified body formed in the ground. The liquid is eluted. It has been confirmed that marine products adhere to the underwater structures from which liquids having a high pH are eluted, and it is difficult for them to propagate. It is. Furthermore, this solidified body has a problem that it always dissolves hexavalent chromium and adversely affects marine products.
[0004]
Therefore, in order to improve the ground where a structure such as a harbor or jetty is built, or the ground around the aquaculture farm that is installed near the seaside, as described above, fish and seaweed from the concrete structure and ground. Solidified material should be used that is free from leachables that adversely affect marine products such as shellfish and shellfish.
[0005]
Then, in order to construct the ground improvement work with little natural environmental load, the hydraulic hardened | cured material which has light-burning magnesia as a main component is proposed as a solidification material replaced with the conventional solidification material (for example, refer patent document 1).
[0006]
On the other hand, when performing ground improvement work around the sea area, the standard test method for freshwater organisms using Himedaka is the standard method for confirming the effects on living organisms inhabiting the surrounding area. Acute toxicity test "is used.
[0007]
[Patent Document 1]
Japanese Patent Laid-Open No. 2001-200252
[Problems to be solved by the invention]
The invention described in Patent Document 1 includes 1 to 100 parts by weight selected from gypsum, Portland cement and blast furnace slag with respect to 100 parts by weight of light-burned magnesia, and an oxycarboxylate salt as a setting retarder or It is a soil hardening material composition containing 0.1 to 1.0 part by weight of ketocarboxylic acid.
[0009]
The solidified material, which is this soil composition, mainly produces Mg (OH) 2 during the hardening process. However, the solubility at which Mg (OH) 2 is dissolved in water is very low as compared with Ca (OH) 2 generated from ordinary Portland cement and blast furnace type B cement as described above. Therefore, when this solidified material is used to improve the bottom of the seabed or a structure is produced, the pH eluted from the structure is lower than when conventional portland cement or blast furnace type B cement is used. Since it is low, seaweeds and shellfish are likely to adhere, and it is expected that there will be little adverse effects on sea products.
[0010]
However, since the patent document 1 does not specifically describe or suggest the influence of the solidified material on the sea product, it cannot be used for ground improvement in the area where the sea product survives unless it is clarified. There was a problem.
[0011]
On the other hand, the “acute toxicity test of freshwater organisms using Himedaka”, which is generally performed as a method for evaluating the safety of organisms, targets freshwater organisms and does not target marine organisms. Furthermore, since there is a difference in susceptibility to toxicity between freshwater organisms and marine products, it is necessary to establish a test method that can appropriately evaluate the safety of solidified materials when constructed in the sea area.
[0012]
Therefore, an object of the present invention is to provide an optimum ground improvement material using this solidified material by establishing a safety evaluation method for sea products and confirming the influence of the solidified material. .
[0013]
[Means for Solving the Problems]
In order to achieve the above object, the sea improvement product-safe ground improvement material and the safety evaluation method according to the present invention are configured as follows.
[0014]
(1) A material for improving the seabed or coastal ground in the area where sea products survive, and a solidified material containing 5 to 100 parts by weight of water-soluble phosphate fertilizer for 100 parts by weight of light-burned magnesia in the ground It is characterized by mixing in the ground.
[0015]
(2) The construction area is adjacent to the sea area, and the ground around the construction area communicates with the groundwater, and the ground from which the constituents can be eluted from the improved ground is 100% by weight of light-burned magnesia. It is characterized by not inducing contamination around the construction due to pH increase and elution of hexavalent chromium and the like by mixing and press-fitting a solidified material containing 5 to 100 parts by weight of phosphate fertilizer into the original ground.
[0016]
(3) Expose sea products such as laver buds, clams floating larvae and eelgrass for a period of time to solutions prepared by diluting the solidified material used in construction in the sea with filtered seawater to prepare different concentrations, and half of the organisms die or grow. It is characterized by evaluating the safety of marine products in marine construction by comparing the concentration of solidified material that causes inhibition.
[0017]
The present invention is improved by a method such as mixing and press-fitting of a solidified material containing light-burned magnesia as a main component to the seabed or coastal ground where sea products survive.
[0018]
There are a solidified material added with water-soluble phosphate as a releasable phosphoric acid component (referred to as type A) and a carbonate added (referred to as type B) to light-burned magnesia, which will be described later. Thus, the present invention is limited to type A.
[0019]
On the other hand, in order to properly evaluate the safety of the solidified material against sea products, it is necessary to develop an acute toxicity test method using sea products. For the test organisms, we selected the marine products that inhabit the coast of Japan that satisfy the following conditions.
1) A large number of individuals with the same size can be obtained.
2) Breeding is relatively easy.
3) High sensitivity to chemical substances.
[0020]
As a result, five species of eelgrass (floor sprout, laver) and clams (floating larvae, juveniles) that inhabit and distribute in many inner bays, and sea eels inhabiting inner bays with particularly clean seawater. A new evaluation method was developed. As a result of experiments, it was clarified that the sprouting shoots for Susabi-nori and the floating larvae were highly sensitive to chemicals for clams. Therefore, in actual tests, it is possible to evaluate the toxicity in the sea area by conducting tests on laver buds, clams floating larvae and sea eels.
[0021]
Specifically, with regard to laver buds, clams floating larvae and sea eels, the test organism is exposed to seawater in which the solidified material is dissolved for a predetermined period, and the test organisms die at a half quantity (half lethal concentration: LC 50 ) and A concentration at which half the growth inhibition is recognized (half influence concentration: EC 50 ) or the like is obtained. By this new evaluation method, it becomes possible to clearly express numerically the toxicity of the solidified material in the sea area, which has not been carried out conventionally, and it is possible to easily and appropriately determine and evaluate the safety for sea products. . Details of the test method are shown below.
[0022]
B) Susabinori
Susabinori, a kind of red algae, spends in the form of filamentous bodies sprouted into persimmon shells from the spring to summer, and the spores are released into leaves from autumn to winter.
It is very difficult to distinguish the life of a sprout bud with the naked eye. Therefore, in the present invention, pastes grown from oyster shell filaments are grown on test yarns, and the number of buds after exposure to test water for 4 days is measured with a microscope. Then, the dropout from the test yarn was judged to be lethality of the paste, and the dropout rate of the cutout was calculated from the number of decrease from the value at the start of the test to obtain the half-lethal concentration (LC 50 ).
[0023]
B) Clams (floating larvae)
The clams are difficult to distinguish between life and death because they close when the surrounding environment deteriorates. Therefore, D-shaped larvae (about 110 μm) that are hatched from fertilized eggs of adult clams, which are in a state that is highly sensitive to the surrounding environment and that have grown for about 48 hours, are used. . The floating larvae were exposed for 4 days in the test water were determined LC 50 to determine the life or death depending on the presence or absence of swimming behavior under a stereomicroscope.
[0024]
C) An Amazonia is a kind of marine flowering plant. In this test, seedlings (larvae) germinated from seeds and grown were used. Then, the amount of leaf elongation is measured after 10 days of exposure. In order to confirm whether or not there was a significant difference in the amount of extension exposed to the test water, the risk rate (p) was determined by t-test for the amount of extension between the subject group and the test group. As a result, it became clear that a significant difference (p <0.05) was found between the test group and the amount of extension in the test group. Therefore, a value obtained by subtracting the standard deviation σ from the average extension amount Xa of the target section is defined as b. (B = Xa−σ) A strain having a lower growth amount than the value of b was defined as a low-growth strain, and a half-effect concentration EC 50 was determined from the appearance rate of the low-growth strain.
[0025]
DETAILED DESCRIPTION OF THE INVENTION
Next, with reference to the drawings, the ground improvement in the region where the sea product of the present invention survives and the safety evaluation method will be described.
[0026]
(Example 1: Ground improvement)
For harbors that are stagnant or the surrounding ground, sandy ground on the coast where the flow is relatively gentle, or soft ground where a lot of marine products are inhabited, where the ground around the building is in communication with the surrounding area Thus, ground improvement work such as deep mixing treatment method, compaction grouting method and mixed solidification treatment method in pipe was carried out using the ground improvement material of the present invention.
At that time, seawater around the construction was periodically collected during and after construction, and monitoring was performed to confirm the safety by conducting an acute toxicity test of the glue bud shown in Example 2.
As a result, water quality deterioration such as pH increase and hexavalent chromium elution due to ground improvement was not observed, and LC50 was not lower than the value of Example 2, and thus the safety for aquatic products by ground improvement could be proved. Furthermore, since the ground improvement effect was not impaired after the construction, it was confirmed that the ground improvement work can be safely performed in the sea area by using this ground improvement material.
[0027]
(Example 2: Safety evaluation method)
1. Confirmation of pH Change by Solidifying Material In order to select a solidifying material applicable to the present invention, the pH was compared using the following three types of solidifying materials.
[0028]
(1) The following were prepared as sample samples.
1) Solidified material made of Blast Furnace Type B cement (usually called type)
2) What contains 5-100 weight part of water-soluble phosphate fertilizers with respect to 100 weight part of light-burning magnesia. Specifically, a mixture containing 50 parts by weight of a water-soluble phosphate fertilizer with respect to 100 parts by weight of light-burned magnesia was used (light-burned magnesia + phosphate: type A).
3) What contains 5-30 weight part of organic carbonic acid compounds as a reaction agent with respect to 100 weight part of light-burning magnesia. Specifically, those containing 15 parts by weight of an organic carbonic acid compound as a reactant with respect to 100 parts by weight of lightly burned magnesia were used (lightly burned magnesia + carbonate: type B).
[0029]
(2) Change in water quality As a test stock solution, add seawater that has been collected from the sea area of construction and filtered so that the three types of powdered solidified material become 200 g / L, and leave the supernatant for 6 hours. The test stock solution was used. And the change of pH in seawater and hexavalent chromium elution state were measured using this.
[0030]
(3) Test result 1) Change in pH value and elution of hexavalent chromium FIG. 1 shows the relationship between the dilution concentration and pH when the test stock solution is diluted with seawater. The test stock solution in this figure is shown at the position where the dilution concentration at the right end is 100%. The pH value at this position is lowest at 10.4 for type A indicated by line A, and then 11 for type B indicated by line B. The blast furnace type B cement indicated by the line C shows the highest value of 13 as the increase in pH value has been a problem.
[0031]
In the offshore construction, since seawater is flowing, the other value (the minimum value is about 5%) was obtained with a dilution concentration of 20% as a reference value on condition that the seawater is always diluted with fresh seawater. .
[0032]
Looking at the pH value at the standard dilution concentration of 20% in this experiment, the type A solidified material was the lowest at 8.9, whereas the type B solidified material was 10.2. Blast furnace type B cement was 11.
[0033]
Furthermore, when diluted with seawater to a concentration of about 5%, the type A solidified material is 8.4, the blast furnace type B cement is 9.3, and the type B is almost 9.7. Yes.
[0034]
Further, the pH value in the case of 30% dilution was 9.2 for the type A solidified material, 10.4 for the type B solidified material, and 11.5 for the blast furnace type B cement.
[0035]
When a liquid having a high pH is diluted with seawater or the like, the OH ion concentration decreases, so that the pH value usually decreases. However, when the test stock solution (right end in FIG. 1) in this experiment was diluted with seawater, the pH value before dilution was type A <type B <blast furnace B type cement, but after dilution, type A <blast furnace B Seed cement <Type B, and the surprising result was that the pH values of B type furnace B cement and Type B were reversed. This is presumably because seawater and type B caused some chemical reaction and the pH increased.
[0036]
When the dilution concentration of the undiluted solution changes to 20% (reference value for offshore construction), the pH of the blast furnace type B cement rapidly increases and becomes the highest. On the other hand, the solidified material of type B is leveled to about 10, and the pH value of the solidified material of type A is much lower than that of type B.
[0037]
Further, when hexavalent chromium was measured, neither type A nor type B solidified material was detected, but elution of hexavalent chromium of 0.2 mg / L was detected in the blast furnace type B cement. However, since the reference value of hexavalent chromium eluted in the liquid is about 0.5 mg / L, the blast furnace type B cement shows a value lower than this reference value, and it is judged that there is no problem for the time being. .
2) Evaluation of qualitative safety for aquatic products In the ground improvement work in the sea area, as described above, seafood cultured in the farm, seafood in the harbor, seaweed and seafood on the shallow coast It is important to know the relationship between the water quality of fish farms and the growth of aquatic products. Therefore, in the present invention, the following simple test was performed to qualitatively evaluate safety.
[0038]
As a test, an acrylic column 1 having an inner dimension of 31 cm and a length of 100 cm as shown in FIG. 2 was prepared, and a consolidated layer 2 having a thickness of 30 cm and a sand layer 3 having a thickness of 30 cm (from below) ( Sea sand) and a sea water layer 4 having a thickness of 30 cm were formed in three layers, and clams 5 (average shell length: 31.4 mm) were placed on the sand layer 3. The solidified material used for the consolidated body was type A, which had the lowest value in the pH test, and the amount of the solidified material blended was 160 kg / m 3 . The properties of the consolidated body were prepared in a slurry state, a three-day-cured one, a seven-day-cured one, and a four-layered one containing only a sand layer without forming a consolidated layer.
[0039]
Five clams were put into one column and tested for 10 weeks. The seawater exchange frequency during the test was performed twice a week, and the water temperature during the test period was kept constant at 23 ° C. The seawater in the column was always aerated by an air pump. Then, the number of clams alive was confirmed every 3 to 4 days, and the pH, conductivity, turbidity, DO change, water temperature, and salinity of the seawater layer 4 were measured every day.
a) The water quality pH value is approximately 8.1 to 8.4 in each test case, and there is no significant difference compared to seawater collected from the sea area before construction. I didn't see much. In the other items as well, the influence of water quality by the solidified material was hardly seen. Here, in the test of FIG. 1, since the test stock solution in which the solidified material was mixed in the filtered seawater was diluted, a change in pH was observed. However, in the case of this experiment, the change in water quality due to elution from the consolidated body is measured, and the pH does not fluctuate very much, so this experimental result is consistent.
b) Growth condition No clam mortality was observed, and the percentage of sand (0%: debilitating, 100%: not degrading) indicating the ratio of clams to the sand was 100% in all test cases. There was no difference.
[0040]
Further, after the test, the degree of obesity (soft body weight (g) / (shell length L (cm) × shell height H (cm) × shell width W (cm))), which is an index of clam growth, was measured. As a result, the clam obesity when using a type A solidified material was 13.2, and almost no difference was observed from the case of sand containing no solidified material alone. Moreover, even if compared with 11.0-15.0 which is a general obesity degree, it has confirmed that the growth inhibition by the type A solidification material could be disregarded. Therefore, it was confirmed that the solidified body produced with this type A solidified material can be used without problems as a ground improvement material for clams that are sea products.
3) Quantitative safety evaluation for aquatic products Quantification of the effects of three types of solidification materials, Type A and Type B, and Blast Furnace Type B Cement, on sea products (Paste, Clam and Amamo) In order to confirm this, an acute toxicity test was carried out on marine products, which is a new evaluation method of the present invention. FIG. 3 shows the test results of the most sensitive shoots among these three types of test organisms.
[0041]
<Acute toxicity test of Nori bud>
The impact on marine products is the LC 50 (half lethal concentration: 50% of test organisms estimated to be dead), which is the conventional acute toxicity test method in freshwater. A lower value means higher toxicity) or an improved EC 50 (half effect concentration) evaluation method that can be applied to marine products, judging by effects that do not lead to lethality such as respiration, equilibrium sensation, and growth It verified with.
[0042]
In addition to types A and B as solidification materials, for the purpose of comparison, blast furnace type B cement (powder) was also subjected to an acute toxicity test of paste. As the test stock solution, filtered seawater was added so that three kinds of solidified materials became 200 g / L, and the supernatant of the suspension obtained by repeating stirring for 2 minutes every 30 minutes for 3 hours was used for glass fiber filter paper (GFP) having a pore diameter of 1 μm. And filtered.
[0043]
The LC 50 value of the type A solidified material indicated by the curve A was 2.90, whereas the type B solidified material indicated by the curve B was 0.08. The blast furnace type B cement shown by curve C tested for comparison was 0.20.
[0044]
As can be seen from this acute toxicity test, the Blast Furnace Type B cement shows a higher value of the solidification material concentration than the Type B solidification material in the acute toxicity test of Nori sprout. The solidified material of type A was 2.90, which is a much higher solidified material concentration than the solidified material, and the same result as in the pH test was obtained.
[0045]
Therefore, among the solidified materials mainly composed of light-burned magnesia, it was proved that type A (light-burned magnesia + phosphate) can be used as the safest ground improvement material only in the sea area.
[0046]
【The invention's effect】
The ground improvement material according to the present invention is a material for improving the seabed or coastal ground in the region where the sea products are alive. The water-soluble phosphate fertilizer is 5 to 100 per 100 parts by weight of light-burned magnesia in the ground. It is characterized in that a solidified material including a weight part is mixed in the ground.
[0047]
In addition, the method for evaluating the safety of the solidified material according to the present invention includes adding the seafood products such as seaweed, clam floating larvae, and eelgrass to solutions prepared by diluting the solidified material used in marine construction with filtered seawater to prepare different concentrations. It is characterized by assessing the safety of marine products in marine construction by comparing the concentration of solidified material that causes exposure to a certain period of time and causes half of the organisms to die or inhibit growth.
[0048]
As mentioned above, light-burned magnesia + phosphate type solidification materials are used in marine products in tests of changes in dilution concentration and pH value using three types of solidification materials, tests on effects on clams, and acute toxicity tests on marine products. It can be suitably used as a solidifying material for improving the ground where living areas and construction areas are adjacent to sea areas and where the construction area and groundwater are in communication.
[Brief description of the drawings]
FIG. 1 is a diagram showing the relationship between the dilution concentration of a solidified material to which seawater has been added and the change in pH value.
FIG. 2 is a diagram of a test apparatus for effects on clams.
FIG. 3 is a diagram showing an acute toxicity test of a sprout bud.
[Explanation of symbols]
2 Solidified layer 3 Sand layer 4 Seawater layer 5 Clam adult

Claims (3)

海産生物が生存する地域の海底あるいは海岸の地盤を改良する材料であって、この地盤中に軽焼マグネシア100重量部に対して水溶性リン酸肥料5〜100重量部を含む固化材を地盤中に混入することを特徴とする海産生物に安全な地盤改良材。It is a material that improves the seabed or coastal ground in the area where marine products survive, and in this ground solidified material containing 5 to 100 parts by weight of water-soluble phosphate fertilizer for 100 parts by weight of light-burned magnesia A ground improvement material that is safe for marine products. 施工区域が海域に隣接しており、更に施工周辺の区画と地下水が連通し、改良地盤より構成物質が溶出可能な地盤に対して、軽焼マグネシア100重量部に対し、水溶態リン酸肥料5〜100重量部を含む固化材を原地盤に混合・圧入して地盤改良することによって、pH上昇及び六価クロム等の溶出による施工周辺の汚染を誘因しないようにしたことを特徴とする海産生物に安全な地盤改良材。The construction area is adjacent to the sea area, and the ground around the construction area communicates with the groundwater, and for the ground from which the constituents can be eluted from the improved ground, 100 parts by weight of light-burned magnesia, water-soluble phosphate fertilizer 5 A marine product characterized by not causing incentives for contamination around the construction due to pH rise and elution of hexavalent chromium, etc. by mixing and press-fitting solidified material containing ~ 100 parts by weight into the ground. Safe ground improvement material. 海域施工で使用する固化材を濾過海水で希釈して異なる濃度を準備した溶液に、海産生物であるノリ芽、アサリ浮遊幼生およびアマモを一定期間暴露させ、生物の半数がへい死または成長阻害を引き起こす固化材濃度を比較することを特徴とする、海域施工における海産生物への安全性の評価方法。When the solidified material used in marine construction is diluted with filtered seawater and prepared at different concentrations, sea products such as seaweed buds, clams floating larvae and sea eels are exposed for a certain period of time, causing half of the organisms to die or inhibit growth A method for evaluating the safety of sea products in marine construction, characterized by comparing solidifying material concentrations.
JP2003166207A 2003-06-11 2003-06-11 Soil improving material safe for marine organism and method for evaluating safety thereof Pending JP2005002190A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003166207A JP2005002190A (en) 2003-06-11 2003-06-11 Soil improving material safe for marine organism and method for evaluating safety thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003166207A JP2005002190A (en) 2003-06-11 2003-06-11 Soil improving material safe for marine organism and method for evaluating safety thereof

Publications (1)

Publication Number Publication Date
JP2005002190A true JP2005002190A (en) 2005-01-06

Family

ID=34092434

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003166207A Pending JP2005002190A (en) 2003-06-11 2003-06-11 Soil improving material safe for marine organism and method for evaluating safety thereof

Country Status (1)

Country Link
JP (1) JP2005002190A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104685130A (en) * 2012-09-11 2015-06-03 株式会社东亚地质 Device for preventing turbid water for underwater soil improvement apparatus
CN112967078A (en) * 2021-01-26 2021-06-15 南方科技大学 Method, device, electronic device and medium for evaluating seabed and subsoil resource value

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001200252A (en) * 2000-01-18 2001-07-24 Natl Res Inst Of Agricultural Engineering Soil hardener composition and production method therefor
JP2002206090A (en) * 2000-11-09 2002-07-26 Matsuda Giken Kogyo Kk Neutral soil-solidifying agent and method of improving ground and the like, and means for preventing elution of heavy metal
JP2002249774A (en) * 2001-02-26 2002-09-06 Matsuda Giken Kogyo Kk Soil solidification agent

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001200252A (en) * 2000-01-18 2001-07-24 Natl Res Inst Of Agricultural Engineering Soil hardener composition and production method therefor
JP2002206090A (en) * 2000-11-09 2002-07-26 Matsuda Giken Kogyo Kk Neutral soil-solidifying agent and method of improving ground and the like, and means for preventing elution of heavy metal
JP2002249774A (en) * 2001-02-26 2002-09-06 Matsuda Giken Kogyo Kk Soil solidification agent

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104685130A (en) * 2012-09-11 2015-06-03 株式会社东亚地质 Device for preventing turbid water for underwater soil improvement apparatus
CN112967078A (en) * 2021-01-26 2021-06-15 南方科技大学 Method, device, electronic device and medium for evaluating seabed and subsoil resource value

Similar Documents

Publication Publication Date Title
Hall et al. Effects of biologically treated bleached kraft mill effluent on cold water stream productivity in experimental stream channels
JP2016508721A (en) Methods and matrices for promoting the growth of fauna and flora
McIntyre et al. Effects of nutrient enrichment from sewage in the sea
Meyer et al. An experimental assessment of the effectiveness of gravel cleaning operations in improving hyporheic water quality in potential salmonid spawning areas
KR102063310B1 (en) Seaweed growth catalyst and the mixing devices
JP2005002190A (en) Soil improving material safe for marine organism and method for evaluating safety thereof
KR101361919B1 (en) Method of composition for shellfish farm
JP2018051458A (en) Sediment improving material and sediment improving method
JP2007185149A (en) Examination method for benthic animal and examination base used for the same
KR101067702B1 (en) Method for restoration of coastal wet land using a pipe type structure
JP2007151416A (en) Artificial bottom-of-water base for epizoism/growth of aquatic animal or cleaning of culture site bottom
Dethlefsen et al. Problems with dumping of red mud in shallow waters. A critical review of selected literature
CN113307459A (en) Method for spongy transformation of protected river
JP2006288323A (en) Artificial water bottom base
Waajen Eco-engineering for clarity: clearing blue-green ponds and lakes in an urbanized area
Santiago Turbidity and seawater intrusion in Laguna de Bay
Kant et al. Impact of anthropogenic activities on physicochemical properties of water and sediment soil of a perennial pond of Godda District (Santal Pargana), Jharkhand
JP3087925B2 (en) Seedling method and seedling vessel for seaweeds using ultra-rigid concrete
JP7389618B2 (en) Methods for treating and using soil containing living organisms, and methods for producing soil that can be used in a wide range of areas
Riedi Carbonate production by two New Zealand serpulids: skeletal allometry, mineralogy, growth and calcification of Galeolaria hystrix and Spirobranchus cariniferus (Polychaeta: Serpulidae), southern New Zealand
Mearns Toxicity studies of chromium
JPH104818A (en) Marine life propagating medium and marine farming yard utilizing the same
JP2018143907A (en) Water quality improvement method and shellfish growth promotion method
JPH07275841A (en) Method for improving quality of bottom and water contacting the bottom
Quick Jr et al. Experimental Extensive Culture Of Penaeid Shrimp In A Simulated Dredged Material Disposal Area 1

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071106

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080311