JP2005000827A - Apparatus and method for recovering carbon dioxide - Google Patents

Apparatus and method for recovering carbon dioxide Download PDF

Info

Publication number
JP2005000827A
JP2005000827A JP2003167965A JP2003167965A JP2005000827A JP 2005000827 A JP2005000827 A JP 2005000827A JP 2003167965 A JP2003167965 A JP 2003167965A JP 2003167965 A JP2003167965 A JP 2003167965A JP 2005000827 A JP2005000827 A JP 2005000827A
Authority
JP
Japan
Prior art keywords
carbon dioxide
absorption
absorption liquid
liquid
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003167965A
Other languages
Japanese (ja)
Inventor
Kentaro Matsunaga
健太郎 松永
Tetsuo Yoshimitsu
哲夫 吉満
Michihiko Koyama
充彦 小山
Hideshige Moriyama
英重 森山
Nobukazu Suzuki
信和 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2003167965A priority Critical patent/JP2005000827A/en
Publication of JP2005000827A publication Critical patent/JP2005000827A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Landscapes

  • Treating Waste Gases (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a carbon-dioxide recovery apparatus capable of efficiently separating carbon dioxide from a carbon dioxide-containing gas discharged from plants or the like, and capable of performing a biological fixation on the same. <P>SOLUTION: The apparatus is provided with an absorption part in which carbon-dioxide is absorbed into an absorption-liquid by performing a gas-liquid contact between the carbon dioxide-containing gas and the absorption-liquid, and a biomass-cultivation part in which a photosynthetic organism is used to recover a reaction-product generated in the absorbing reaction of carbon-dioxide from the absorption-liquid having absorbed carbon-dioxide. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、各種プラントから排出される排気ガス等から二酸化炭素を回収する二酸化炭素回収装置および回収方法に係り、特に二酸化炭素を含有する気体から効率的に二酸化炭素を分離し、生物的固定を行う二酸化炭素回収装置および回収方法に関する。
【0002】
【従来の技術】
近年の地球温暖化現象の主要原因の1つとして、産業活動における化石燃料の燃焼に由来する二酸化炭素の排出が指摘されている。二酸化炭素の排出抑制方法としては、燃料を改質して含有炭素量を減少させ、燃焼により生成する二酸化炭素量を抑制する方法と、燃焼により生成した二酸化炭素を排ガスから分離して回収する方法の2つの方法が検討されている。
【0003】
後者の排気ガスから二酸化炭素を回収する方法としてはこれまでに様々な方法が検討され、吸収媒体としてアルコールやジメチルエーテル等を用いた物理吸収プロセスや、吸収媒体としてアミン化合物を用いた化学吸収プロセスを用いたものが実用化されている。
【0004】
現在は吸収効率を重視しアミン化合物を吸収媒体に用いたプラント(例えば、特許文献1参照。)が多いが、このようなものについては吸収媒体を再生する際の熱消費量がやや大きくなるという技術的課題が残されている。
【0005】
また、アミン化合物には毒性を有するものがあるため、極力その使用を控えることが好ましい。さらに、回収された二酸化炭素の固定およびその再利用等についても有効な解決方法は見いだされていない。
【0006】
【特許文献1】
特開平11−267442号公報
【0007】
【発明が解決しようとする課題】
本発明は上記従来の課題を解決するためになされたものであり、二酸化炭素の吸収媒体として毒性の低いものを用いると共に、低エネルギーかつ高効率で二酸化炭素の固定および回収が可能な二酸化炭素回収装置および回収方法を提供することを目的としている。
【0008】
【課題を解決するための手段】
本発明の二酸化炭素回収装置は、二酸化炭素含有気体をアルカリ性の吸収液に気液接触させて、前記二酸化炭素を前記吸収液に吸収させる吸収部と、前記二酸化炭素を吸収させた吸収液から、前記二酸化炭素の吸収反応により生成した反応生成物を光合成生物を用いて回収するバイオマス培養部とを具備することを特徴とする。
【0009】
また本発明の二酸化炭素回収装置は、二酸化炭素含有気体をアルカリ性の吸収液に気液接触させて、前記二酸化炭素を前記吸収液に吸収させる吸収部と、前記吸収部から送られた吸収液から二酸化炭素を回収して再び前記吸収部へ戻す回収部とからなる吸収液循環部と、前記吸収液循環部から一部の吸収液を取り出し、その吸収液から二酸化炭素の吸収反応により生成した反応生成物を光合成生物を用いて回収するバイオマス培養部とを具備することを特徴とする。
【0010】
前記吸収液は炭酸カリウム水溶液および炭酸ナトリウム水溶液から選ばれた少なくとも1種から主としてなるもの、または、これに特性劣化を抑制するための劣化抑制成分が添加されたものであることが好ましい。
【0011】
前記吸収部は前記二酸化炭素含有気体の流れに沿って複数のセクションからなるものとしてもよく、この場合には前記二酸化炭素含有気体の流れに対して下流側のセクションの吸収液を上流側のセクションの吸収液よりもアルカリ性が高くかつ平均温度が低くなるようにすることが好ましい。
【0012】
また、前記吸収部を複数のセクションからなるものとする場合において、前記二酸化炭素含有気体の流れに対して下流側のセクションから上流側のセクションに順に前記吸収液を循環させる場合には、前記複数のセクションの中から選ばれる少なくとも1つのセクションに流入する吸収液に新規な吸収液または前記回収部で二酸化炭素を回収した後二酸化炭素を吸収させていない吸収液を加えるようにしてもよい。
【0013】
前記吸収液循環部には、前記吸収液中での反応生成物の結晶化を抑制する結晶化抑制手段として、吸収液の温度を上昇させる加熱手段および反応生成物の濃度を下げる低濃度化手段のうちの少なくとも1つの手段を設けることが好ましい。
【0014】
前記結晶化抑制手段の制御は、例えば前記吸収液循環部に前記吸収液の温度ならびに吸収液中の炭酸イオン濃度および炭酸水素イオン濃度の中から選ばれる少なくとも1つを測定するセンサを設け、このセンサの出力に基づいて行うことが好ましい。また前記吸収液循環部には、前記吸収液中で結晶化した反応生成物を除去するための結晶化物回収手段を設けることが好ましい。
【0015】
前記回収部における二酸化炭素の回収は、例えば熱交換器を用いた吸収液の加熱によるものとし、前記加熱の熱源として前記吸収部に導入する前の二酸化炭素含有気体の熱またはこれを排出するプラントの熱を用いることが好ましい。また、前記回収部には、回収された二酸化炭素をドライアイス化するためのドライアイス化手段を設けてもよい。
【0016】
本発明の二酸化炭素回収方法は、二酸化炭素含有気体をアルカリ性の吸収液に気液接触させて、前記二酸化炭素を前記吸収液に吸収させた後、この二酸化炭素の吸収反応により生成した反応生成物を光合成生物を用いて回収することを特徴とする。
【0017】
【発明の実施の形態】
以下、本発明の二酸化炭素回収装置について、図面を参照して説明する。
【0018】
図1は本発明の二酸化炭素回収装置の一例を示した概略図である。本発明の二酸化炭素回収装置は、少なくとも吸収部1とバイオマス培養部2とを有するものである。
【0019】
火力発電所等のプラントから排出された二酸化炭素含有気体は気体供給ライン3を通して吸収部1へ送られる。吸収部1にはアルカリ性の吸収液が例えば吸収液貯蔵槽4から吸収液供給ライン5を通じて送られており、二酸化炭素含有気体と吸収液とは気液接触させられ、二酸化炭素が吸収液に吸収される。
【0020】
そして、吸収液と接触させた後の気体は、気体排出ライン6を通して吸収部1外へと排出する。また、二酸化炭素を吸収させた吸収液は吸収液排出ライン7を通してバイオマス培養部2へと送られる。
【0021】
本発明において二酸化炭素の吸収に用いられるアルカリ性の吸収液としては、例えば炭酸カリウム水溶液や炭酸ナトリウム水溶液からなるものが好適に用いられ、これらは単独で用いてもよいし両者を併用してもよい。このような炭酸カリウム水溶液や炭酸ナトリウム水溶液は毒性が低く、二酸化炭素の吸収量も多いので、二酸化炭素の回収を安全かつ効率的に行うことができる。このような吸収液には特性劣化を抑制するため、劣化抑制成分としてグリシン等のアミン化合物を添加してもよい。
【0022】
吸収液として例えば炭酸カリウム水溶液、炭酸ナトリウム水溶液を用いた場合の二酸化炭素の吸収は以下のような反応式で示される。
CO + CO + HO → 2KHCO
NaCO + CO + HO → 2NaHCO
【0023】
具体的な吸収液としては、例えば20%〜40%、好ましくは25%〜35%の炭酸カリウム水溶液または炭酸ナトリウム水溶液に、劣化抑制成分としてグリシン等のアミン化合物を0.1g/L〜0.8g/L、好ましくは0.4g/L〜0.6g/Lで添加した水溶液を用いることができる。
【0024】
上述したような濃度の吸収液を用いることによって二酸化炭素の効率的な吸収が可能になると共に、バイオマス培養部2での微細藻類等の光合成生物の効率的な培養も可能となる。また、上述したような濃度の劣化抑制成分を加えることで吸収液の特性劣化を有効に抑制することが可能となる。
【0025】
本発明における吸収部1は二酸化炭素含有気体と上述したような吸収液とを高効率で接触させるのに適当な構造であればよく、例えばスプレー塔、気泡塔、ベンチュリー・スクラバー、ジェット・スクラバー、サイクロン・スクラバー等を用いることができる。このような吸収部1は単一のセクションからなるものとしてもよいし、複数のセクションからなるものとしてもよく、条件に合わせて適宜選択することが好ましい。
【0026】
吸収部1を複数のセクションからなるものとする場合、二酸化炭素含有気体の流れに対して下流側のセクションを循環する吸収液が、上流側のセクションを循環する吸収液よりもアルカリ性が高く、平均温度が低くなるようにすることが好ましい。吸収部1を流れる吸収液のアルカリ性、平均温度をこのようなものとすることで、下流側のセクションにおいても二酸化炭素含有気体から二酸化炭素を効率的に吸収させることができる。
【0027】
二酸化炭素含有気体の流れに対して下流側のセクションを循環する吸収液のアルカリ性を高く、平均温度を低くする方法の一例を図2に示す。なお、図中垂直方向の矢印は二酸化炭素含有気体の流れ8を示したものである。
【0028】
吸収部1において、セクション1a、1bは二酸化炭素含有気体の流れ8に沿って下流側から順に配置される。吸収液9は二酸化炭素含有気体の流れ8に対して下流側のセクション1aから上流側のセクション1bへと流した後、吸収部1外へと排出する。
【0029】
このように二酸化炭素含有気体の流れ8に対して下流側のセクション1aから上流側のセクション1bへと吸収液9を流すことで、二酸化炭素含有気体の流れ8に対して下流側のセクション1aの吸収液9のアルカリ性を上流側のセクション1bの吸収液9のアルカリ性よりも高くすることができる。
【0030】
そして、下流側のセクション1aの吸収液の平均温度を上流側のセクション1bの吸収液の平均温度よりも低くするためには、例えば各セクション1a、1bに熱交換器10、11を設け、個別に平均温度の調整を行うことで可能となる。
【0031】
吸収部1における吸収液9の温度は、二酸化炭素の吸収により生成する炭酸水素カリウムや炭酸水素ナトリウム等の反応生成物の結晶化抑制と二酸化炭素の吸収効率との兼ね合いから、例えば60℃〜100℃程度とすることが好ましい。
【0032】
例えば、図2に示すように吸収部1が2つのセクション1a、1bからなるときは、下流側のセクション1aの吸収液9の温度を60℃〜80℃程度、上流側のセクション1bの吸収液9の温度を80℃〜100℃程度とすることが好ましい。このような平均温度とすることで、複数のセクションからなるものにおいても効率的な二酸化炭素の吸収等が可能となる。
【0033】
上述したように吸収部1が複数のセクションからなるものにおいて下流側のセクションから上流側のセクションに順に吸収液9を流した場合、吸収液9のアルカリ性は各セクションを通過するごとに低下し、上流側のセクションのアルカリ性は過度に低下してしまうことがある。このため吸収液9のアルカリ性が過度に低下するセクションについては、そこに流入する吸収液9にそれよりもアルカリ性の高い吸収液9を加えてアルカリ性を高くしてもよい。
【0034】
例えば図3に示すように、吸収部1が3つのセクション1a、1b、1cからなるものにおいては、上流側のセクション1cに流入する吸収液9のアルカリ性が最も低下する。このためセクション1bからセクション1cに流入する吸収液9に、例えば吸収液貯蔵槽4から供給されるアルカリ性の高い吸収液9を分岐させて加えてもよい。
【0035】
上述したようにして二酸化炭素を吸収させた吸収液9は、吸収部1から吸収液排出ライン7を通してバイオマス培養部2へと送られる。
【0036】
バイオマス培養部2では、光合成生物の培養により二酸化炭素の吸収により生成した反応生成物、すなわち炭酸水素カリウムや炭酸水素ナトリウム等の炭酸塩が栄養源として消費され、吸収液9から反応生成物が取り除かれ、実質的に二酸化炭素の回収が行われる。
【0037】
バイオマス培養部2は、吸収部1から送られた吸収液9を貯留する水槽と、その中に分散された光合成生物とから主としてなる。光合成生物は、二酸化炭素の吸収により生成した反応生成物を栄養源として培養可能なものであれば特に制限されるものではないが、二酸化炭素の効率的な処理という観点から増殖速度の高いものであれば好ましい。
【0038】
本発明に用いられる光合成生物としては、例えばクロレラ、スピルリナ等の微細藻類、より具体的にはSynechocystis sp.PCC6803、Anabaena Cylindrica等の微細藻類を用いることができる。また、微細藻類のような水中で分散培養するものの代わりに、ホテイアオイ等の大型の植物を水上で培養するような形態としてもよいし、あるいは、トマト等の農作物を水耕栽培のような形態で培養してもよい。
【0039】
バイオマス培養部2においては、培養対象となる光合成生物の増殖速度を高くするため吸収液9の温度やpH等を調整することが好ましい。吸収液9の温度やpH等は光合成生物の種類により異なるが、例えばクロレラでは20〜30℃、pH4〜8程度、スピルニナでは30〜40℃、pH9〜12程度とすることが好ましい。
【0040】
本発明では、上述したようなバイオマス培養部2に加えて、二酸化炭素を直接的に回収するような回収部を併用してもよい。このような回収部をバイオマス培養部2と併用することで、バイオマス培養部2で処理しきれない吸収液9があっても回収部で処理することが可能となり、二酸化炭素の効率的な回収が可能となる。
【0041】
図4は、一例としてバイオマス培養部2に加え、二酸化炭素を回収する回収部12を吸収部1に接続した二酸化炭素回収装置を示したものである。吸収部1と回収部12とは吸収液9が循環可能なように循環ライン13、14により接続され吸収液循環部15を形成する。
【0042】
吸収部1において二酸化炭素を吸収させた吸収液9は一方の循環ライン13を通して回収部12へ送られ、そこで吸収液9から二酸化炭素を回収して再生する。二酸化炭素が回収された吸収液9は二酸化炭素を吸収する前の状態とほぼ同様の状態に再生される。このようにして再生された吸収液9は再び二酸化炭素の吸収に用いるため、他方の循環ライン14を通して吸収部1へと送られる。
【0043】
また、吸収液循環部15において二酸化炭素を吸収させた吸収液9が通る循環ライン13には吸収液排出ライン7が接続され、その端部にはバイオマス培養部2が接続される。吸収部1において二酸化炭素を吸収させた吸収液9の一部はこの吸収液排出ライン7により取り出され、バイオマス培養部2へと送られ処理される。
【0044】
バイオマス培養部2へ吸収液9を排出することで、吸収液循環部15を循環する吸収液9は減少する。このような吸収液循環部15における吸収液9の減少分は、例えば吸収液貯蔵槽4から吸収液供給ライン5を通して吸収液9を供給することにより補うことができる。この際、吸収液供給ライン5は回収部12で再生された吸収液9が通る循環ライン14に接続されていることが好ましい。
【0045】
回収部12における吸収液9からの二酸化炭素の回収は、例えば上述したような二酸化炭素の吸収反応と逆の過程で行われる。すなわち、吸収液9を110℃〜130℃程度に加熱することにより、吸収液9から二酸化炭素を分離させて回収する。回収部12における加熱は、例えば図5に示されるように熱交換器やヒータ等の加熱手段16を設けて吸収液9を加熱することにより行う。
【0046】
熱交換器を用いる場合には、その熱源として吸収部1に入る前の二酸化炭素含有気体の熱を利用してもよいし、このような二酸化炭素含有気体を排出する火力発電所等のプラントで発生した熱を利用してもよい。このようなものを熱源として用いれば、エネルギーの有効利用が可能となり、新たな二酸化炭素の発生も抑制することができる。
【0047】
本発明では吸収液9としてアルカリ性の水溶液、例えば炭酸カリウム水溶液や炭酸ナトリウム水溶液を用いているため、上述したような吸収液9から二酸化炭素を分離する際の熱消費量が少なく、低エネルギーで効率的に二酸化炭素を分離、回収することが可能である。また、上述した加熱による二酸化炭素の分離、回収は、吸収液9を二酸化炭素の吸収に再利用できるため好ましい。
【0048】
回収部12で回収された二酸化炭素は気体状態のまま貯蔵槽17で貯蔵してもよいし、例えばドライアイス化する手段18を用いて固体状態とした後に貯蔵槽19で貯蔵してもよい。
【0049】
本発明における回収部12としては上述したような吸収液9を加熱して二酸化炭素を分離、回収するものの他に、例えば吸収液9を冷却して炭酸水素カリウムや炭酸水素ナトリウム等の炭酸塩からなる反応生成物を結晶化させて、フィルタ等で回収するものであってもかまわない。
【0050】
吸収液循環部15には、二酸化炭素の吸収により生成した反応生成物、例えば炭酸水素カリウムや炭酸水素ナトリウム等が結晶化して吸収液の流れを妨げないように、図6に示すように結晶化抑制手段20を設けることが好ましい。結晶化抑制手段20は反応生成物が多く含まれ結晶化しやすい部分、例えば吸収部1で二酸化炭素を吸収させた吸収液9が通る循環ライン13に設けることが好ましい。
【0051】
結晶化抑制手段20としては、例えば吸収液9の温度を上昇させて結晶化を抑制する加熱手段、反応生成物の濃度を低下させて結晶化を抑制する低濃度化手段が挙げられる。加熱手段としては例えばヒータあるいは火力発電所等のプラントで発生した熱を熱源とする熱交換器が挙げられる。また、低濃度化手段としては二酸化炭素を吸収させる前の吸収液9や強アルカリ性水溶液を加えるものが挙げられる。
【0052】
このような結晶化抑制手段20の制御は、例えば循環ライン13、14に吸収液の温度、炭酸イオン濃度あるいは炭酸水素イオン濃度を測定するセンサ21を設け、このセンサ21の出力に基づいて制御を行う制御手段22により行う。
【0053】
例えば、吸収部1から回収部12へ向かう循環ライン13において、吸収液の温度60℃〜100℃、炭酸イオン濃度0.1[mol/l]〜0.8[mol/l]となるように結晶化抑制手段20を制御することで、循環ライン13における反応生成物の結晶化を有効に抑制することができる。
【0054】
また吸収液循環部15には結晶化抑制手段20と共に、またはこれに代えて結晶化物回収手段23を設けてもよい。このような結晶化物回収手段23を設けて吸収液9中に発生した結晶化物を除去(回収)することで、結晶化抑制手段20での結晶化抑制が不十分で結晶化してしまった場合であっても吸収液9の流れを維持することが可能となる。
【0055】
結晶化物回収手段23は結晶化抑制手段20と同様に反応生成物が多く含まれ結晶化しやすい部分、例えば吸収部1で二酸化炭素を吸収させた吸収液9が通る循環ライン13の途中に設けることが好ましい。結晶化物回収手段23としては例えばフィルタ等を用いることができ、回収した結晶化物はバイオマス培養槽2で光合成生物の栄養源として用いてもよい。
【0056】
【発明の効果】
本発明によれば、二酸化炭素の吸収にアルカリ性の吸収液を用い、このような吸収液に二酸化炭素を吸収させたものを光合成生物の培養に用いることで、多量の二酸化炭素を効率的に生物的固定することが可能となる。
【図面の簡単な説明】
【図1】本発明の二酸化炭素回収装置の一例を示した図。
【図2】本発明における吸収部の一例を示した図。
【図3】本発明における吸収部の他の例を示した図。
【図4】吸収液循環部を有する二酸化炭素回収装置の一例を示した図。
【図5】本発明における回収部の一例を示した図。
【図6】吸収液循環部を有する二酸化炭素回収装置の他の例を示した図。
【符号の説明】
1…吸収部 1a、1b、1c…セクション 2…バイオマス培養部 3…気体供給ライン 4…吸収液貯蔵槽 5…吸収液供給ライン 6…気体排出ライン7…吸収液排出ライン 8…二酸化炭素含有気体の流れ 9…吸収液 12…回収部 13、14…循環ライン 15…吸収液循環部 18…ドライアイス化手段 20…結晶化抑制手段 21…センサ 22…制御手段 23…結晶化物回収手段
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a carbon dioxide recovery device and a recovery method for recovering carbon dioxide from exhaust gas discharged from various plants, and in particular, efficiently separates carbon dioxide from a gas containing carbon dioxide and performs biological fixation. The present invention relates to a carbon dioxide recovery device and a recovery method.
[0002]
[Prior art]
As one of the main causes of the global warming phenomenon in recent years, the emission of carbon dioxide derived from the combustion of fossil fuels in industrial activities has been pointed out. Carbon dioxide emission suppression methods include reforming fuel to reduce the amount of carbon contained, suppressing the amount of carbon dioxide produced by combustion, and separating and recovering carbon dioxide produced by combustion from exhaust gas These two methods have been studied.
[0003]
Various methods for recovering carbon dioxide from the latter exhaust gas have been studied so far, including physical absorption processes using alcohol, dimethyl ether, etc. as an absorption medium, and chemical absorption processes using an amine compound as an absorption medium. The one used is in practical use.
[0004]
At present, there are many plants that use an amine compound as an absorption medium with emphasis on absorption efficiency (see, for example, Patent Document 1), but the heat consumption when regenerating the absorption medium is slightly increased for such a plant. Technical challenges remain.
[0005]
Moreover, since some amine compounds have toxicity, it is preferable to refrain from using them as much as possible. Furthermore, no effective solution has been found for fixing the recovered carbon dioxide and reusing it.
[0006]
[Patent Document 1]
Japanese Patent Laid-Open No. 11-267442
[Problems to be solved by the invention]
The present invention has been made in order to solve the above-described conventional problems, and uses a low-toxicity carbon dioxide absorption medium, and can capture and recover carbon dioxide with low energy and high efficiency. An object is to provide an apparatus and a recovery method.
[0008]
[Means for Solving the Problems]
The carbon dioxide recovery device of the present invention comprises a gas-liquid contact with a carbon dioxide-containing gas in an alkaline absorbent, and an absorbent that absorbs the carbon dioxide in the absorbent, and an absorbent that has absorbed the carbon dioxide. And a biomass culture section that collects a reaction product generated by the carbon dioxide absorption reaction using a photosynthetic organism.
[0009]
Moreover, the carbon dioxide recovery device of the present invention comprises an absorption part that makes a carbon dioxide-containing gas in gas-liquid contact with an alkaline absorption liquid and absorbs the carbon dioxide in the absorption liquid, and an absorption liquid sent from the absorption part. Absorption liquid circulation part consisting of a recovery part that recovers carbon dioxide and returns it to the absorption part again, and a reaction produced by taking out a part of the absorption liquid from the absorption liquid circulation part and absorbing carbon dioxide from the absorption liquid And a biomass culture section for recovering the product using a photosynthetic organism.
[0010]
It is preferable that the absorbing liquid is mainly composed of at least one selected from an aqueous potassium carbonate solution and an aqueous sodium carbonate solution, or a solution to which a deterioration suppressing component for suppressing characteristic deterioration is added.
[0011]
The absorption section may be composed of a plurality of sections along the flow of the carbon dioxide-containing gas. In this case, the absorption liquid in the downstream section with respect to the flow of the carbon dioxide-containing gas is used as the upstream section. It is preferable that the alkalinity is higher than that of the absorbent and the average temperature is low.
[0012]
Further, in the case where the absorption part is composed of a plurality of sections, when the absorption liquid is circulated sequentially from the downstream section to the upstream section with respect to the flow of the carbon dioxide-containing gas, A novel absorbent or an absorbent that has not absorbed carbon dioxide after it has been recovered by the recovery unit may be added to the absorbent that flows into at least one section selected from the above sections.
[0013]
The absorption liquid circulation section includes a heating means for increasing the temperature of the absorption liquid and a concentration reduction means for reducing the concentration of the reaction product as crystallization suppression means for suppressing crystallization of the reaction product in the absorption liquid. It is preferable to provide at least one means.
[0014]
The control of the crystallization suppression means includes, for example, a sensor that measures at least one selected from the temperature of the absorption liquid and the carbonate ion concentration and the bicarbonate ion concentration in the absorption liquid in the absorption liquid circulation unit, This is preferably performed based on the output of the sensor. Moreover, it is preferable to provide a crystallization product recovery means for removing the reaction product crystallized in the absorption liquid in the absorption liquid circulation section.
[0015]
The recovery of the carbon dioxide in the recovery unit is, for example, by heating of the absorption liquid using a heat exchanger, and the heat of the carbon dioxide-containing gas before being introduced into the absorption unit as the heat source of the heating or a plant that discharges this It is preferable to use this heat. Further, the recovery unit may be provided with dry ice converting means for converting the recovered carbon dioxide into dry ice.
[0016]
In the carbon dioxide recovery method of the present invention, the carbon dioxide-containing gas is brought into gas-liquid contact with an alkaline absorption liquid, and the carbon dioxide is absorbed into the absorption liquid, and then the reaction product generated by the carbon dioxide absorption reaction. Is recovered using a photosynthetic organism.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the carbon dioxide recovery device of the present invention will be described with reference to the drawings.
[0018]
FIG. 1 is a schematic view showing an example of a carbon dioxide recovery device of the present invention. The carbon dioxide recovery device of the present invention has at least an absorption part 1 and a biomass culture part 2.
[0019]
Carbon dioxide-containing gas discharged from a plant such as a thermal power plant is sent to the absorption unit 1 through the gas supply line 3. For example, an alkaline absorption liquid is sent to the absorption unit 1 from the absorption liquid storage tank 4 through the absorption liquid supply line 5, and the carbon dioxide-containing gas and the absorption liquid are brought into gas-liquid contact, so that the carbon dioxide is absorbed by the absorption liquid. Is done.
[0020]
And the gas after making it contact with absorption liquid is discharged | emitted out of the absorption part 1 through the gas discharge line 6. FIG. In addition, the absorbent that has absorbed carbon dioxide is sent to the biomass culture section 2 through the absorbent discharge line 7.
[0021]
In the present invention, as the alkaline absorbing liquid used for carbon dioxide absorption, for example, a potassium carbonate aqueous solution or a sodium carbonate aqueous solution is preferably used, and these may be used alone or in combination. . Such an aqueous potassium carbonate solution or an aqueous sodium carbonate solution has low toxicity and a large amount of carbon dioxide absorbed, so that carbon dioxide can be recovered safely and efficiently. An amine compound such as glycine may be added to such an absorbing solution as a deterioration suppressing component in order to suppress characteristic deterioration.
[0022]
The absorption of carbon dioxide when, for example, an aqueous potassium carbonate solution or an aqueous sodium carbonate solution is used as the absorbing solution is represented by the following reaction formula.
K 2 CO 3 + CO 2 + H 2 O → 2KHCO 3
Na 2 CO 3 + CO 2 + H 2 O → 2NaHCO 3
[0023]
Specific examples of the absorbing solution include 20% to 40%, preferably 25% to 35% potassium carbonate aqueous solution or sodium carbonate aqueous solution, and 0.1 g / L to 0. An aqueous solution added at 8 g / L, preferably 0.4 g / L to 0.6 g / L can be used.
[0024]
By using the absorption liquid having the concentration as described above, it is possible to efficiently absorb carbon dioxide, and it is also possible to efficiently cultivate photosynthetic organisms such as microalgae in the biomass culture section 2. Moreover, it becomes possible to effectively suppress the characteristic deterioration of the absorbing liquid by adding the above-described concentration deterioration inhibiting component.
[0025]
The absorption part 1 in the present invention may have any structure suitable for bringing the carbon dioxide-containing gas into contact with the absorption liquid as described above, for example, a spray tower, a bubble tower, a venturi scrubber, a jet scrubber, A cyclone scrubber or the like can be used. Such an absorption part 1 may be composed of a single section or may be composed of a plurality of sections, and is preferably selected as appropriate according to conditions.
[0026]
When the absorption part 1 is composed of a plurality of sections, the absorption liquid circulating in the downstream section with respect to the flow of the carbon dioxide-containing gas is higher in alkalinity than the absorption liquid circulating in the upstream section, and the average It is preferable to lower the temperature. By setting the alkalinity and average temperature of the absorption liquid flowing through the absorption unit 1 as described above, carbon dioxide can be efficiently absorbed from the carbon dioxide-containing gas even in the downstream section.
[0027]
FIG. 2 shows an example of a method for increasing the alkalinity of the absorption liquid circulating in the downstream section relative to the flow of the carbon dioxide-containing gas and lowering the average temperature. In addition, the arrow of the vertical direction in a figure shows the flow 8 of a carbon dioxide containing gas.
[0028]
In the absorber 1, the sections 1 a and 1 b are sequentially arranged from the downstream side along the flow 8 of the carbon dioxide-containing gas. The absorption liquid 9 flows from the downstream section 1 a to the upstream section 1 b with respect to the flow 8 of the carbon dioxide-containing gas, and then is discharged out of the absorption section 1.
[0029]
In this way, by flowing the absorbing liquid 9 from the downstream section 1a to the upstream section 1b with respect to the carbon dioxide-containing gas flow 8, the downstream section 1a of the carbon dioxide-containing gas flow 8 flows. The alkalinity of the absorbent 9 can be made higher than the alkaline of the absorbent 9 in the upstream section 1b.
[0030]
And in order to make the average temperature of the absorption liquid of the downstream section 1a lower than the average temperature of the absorption liquid of the upstream section 1b, for example, the sections 1a and 1b are provided with heat exchangers 10 and 11, respectively. This can be achieved by adjusting the average temperature.
[0031]
The temperature of the absorption liquid 9 in the absorption unit 1 is, for example, 60 ° C. to 100 ° C. in view of the balance between the suppression of crystallization of reaction products such as potassium hydrogen carbonate and sodium hydrogen carbonate generated by absorption of carbon dioxide and the absorption efficiency of carbon dioxide. It is preferable that the temperature be about 0C.
[0032]
For example, as shown in FIG. 2, when the absorption part 1 consists of two sections 1a and 1b, the temperature of the absorption liquid 9 in the downstream section 1a is about 60 ° C. to 80 ° C., and the absorption liquid in the upstream section 1b. It is preferable to set the temperature of 9 to about 80 ° C to 100 ° C. By setting such an average temperature, it is possible to efficiently absorb carbon dioxide and the like even in the case of a plurality of sections.
[0033]
As described above, in the case where the absorption part 1 is composed of a plurality of sections, when the absorption liquid 9 is caused to flow in order from the downstream section to the upstream section, the alkalinity of the absorption liquid 9 decreases every time it passes through each section. The alkalinity of the upstream section may be excessively reduced. For this reason, about the section where the alkalinity of the absorbent 9 is excessively lowered, the alkalinity may be increased by adding the absorbent 9 having higher alkalinity to the absorbent 9 flowing into the section.
[0034]
For example, as shown in FIG. 3, in the case where the absorption section 1 is composed of three sections 1a, 1b, and 1c, the alkalinity of the absorption liquid 9 flowing into the upstream section 1c is the lowest. For this reason, for example, the highly alkaline absorbing liquid 9 supplied from the absorbing liquid storage tank 4 may be branched and added to the absorbing liquid 9 flowing into the section 1c from the section 1b.
[0035]
The absorption liquid 9 that has absorbed carbon dioxide as described above is sent from the absorption section 1 to the biomass culture section 2 through the absorption liquid discharge line 7.
[0036]
In the biomass culture section 2, reaction products generated by absorption of carbon dioxide by cultivation of photosynthetic organisms, that is, carbonates such as potassium hydrogen carbonate and sodium hydrogen carbonate are consumed as nutrient sources, and the reaction products are removed from the absorbent 9 As a result, carbon dioxide is substantially recovered.
[0037]
The biomass culture unit 2 mainly includes a water tank that stores the absorption liquid 9 sent from the absorption unit 1 and photosynthetic organisms dispersed therein. The photosynthetic organism is not particularly limited as long as it can be cultured using the reaction product generated by absorption of carbon dioxide as a nutrient source, but it has a high growth rate from the viewpoint of efficient treatment of carbon dioxide. If there is, it is preferable.
[0038]
Examples of the photosynthetic organisms used in the present invention include microalgae such as chlorella and spirulina, and more specifically Synechocystis sp. Microalgae such as PCC6803 and Anabaena Cylindrica can be used. Moreover, it is good also as a form which culture | cultivates large plants, such as a water hyacinth, on water instead of what carries out dispersion culture in water like a micro algae, or a crop like tomato etc. in a form like hydroponics. It may be cultured.
[0039]
In the biomass culture part 2, it is preferable to adjust the temperature, pH, etc. of the absorption liquid 9 in order to increase the growth rate of the photosynthetic organisms to be cultured. Although the temperature, pH, and the like of the absorbing solution 9 vary depending on the type of photosynthetic organism, for example, chlorella preferably has a temperature of about 20 to 30 ° C. and a pH of about 4 to 8, and spirulina preferably has a temperature of about 30 to 40 ° C. and a pH of about 9 to 12.
[0040]
In the present invention, in addition to the biomass culture unit 2 as described above, a recovery unit that directly recovers carbon dioxide may be used in combination. By using such a recovery unit in combination with the biomass culture unit 2, even if there is an absorbent 9 that cannot be processed by the biomass culture unit 2, it can be processed by the recovery unit, and efficient recovery of carbon dioxide can be achieved. It becomes possible.
[0041]
FIG. 4 shows, as an example, a carbon dioxide recovery device in which a recovery unit 12 that recovers carbon dioxide is connected to the absorption unit 1 in addition to the biomass culture unit 2. The absorption part 1 and the recovery part 12 are connected by circulation lines 13 and 14 so that the absorption liquid 9 can be circulated to form an absorption liquid circulation part 15.
[0042]
The absorption liquid 9 having absorbed carbon dioxide in the absorption section 1 is sent to the collection section 12 through one circulation line 13, where the carbon dioxide is recovered from the absorption liquid 9 and regenerated. The absorbing liquid 9 from which carbon dioxide has been recovered is regenerated to a state that is substantially the same as that before the carbon dioxide is absorbed. The absorbent 9 regenerated in this way is sent again to the absorber 1 through the other circulation line 14 for use in absorbing carbon dioxide again.
[0043]
Moreover, the absorption liquid discharge line 7 is connected to the circulation line 13 through which the absorption liquid 9 having absorbed carbon dioxide in the absorption liquid circulation section 15 passes, and the biomass culture section 2 is connected to the end thereof. A part of the absorption liquid 9 having absorbed carbon dioxide in the absorption part 1 is taken out by the absorption liquid discharge line 7 and sent to the biomass culture part 2 for processing.
[0044]
By discharging the absorption liquid 9 to the biomass culture part 2, the absorption liquid 9 circulating through the absorption liquid circulation part 15 decreases. Such a decrease in the absorption liquid 9 in the absorption liquid circulation section 15 can be compensated by supplying the absorption liquid 9 from the absorption liquid storage tank 4 through the absorption liquid supply line 5, for example. At this time, it is preferable that the absorbent supply line 5 is connected to a circulation line 14 through which the absorbent 9 regenerated by the recovery unit 12 passes.
[0045]
The recovery of carbon dioxide from the absorbing liquid 9 in the recovery unit 12 is performed in the reverse process of the carbon dioxide absorption reaction as described above, for example. That is, by heating the absorbing liquid 9 to about 110 ° C. to 130 ° C., carbon dioxide is separated from the absorbing liquid 9 and recovered. For example, as shown in FIG. 5, heating in the recovery unit 12 is performed by heating the absorbent 9 by providing a heating means 16 such as a heat exchanger or a heater.
[0046]
When using a heat exchanger, the heat of the carbon dioxide-containing gas before entering the absorber 1 may be used as its heat source, or in a plant such as a thermal power plant that discharges such carbon dioxide-containing gas. The generated heat may be used. If such a thing is used as a heat source, energy can be used effectively and generation of new carbon dioxide can be suppressed.
[0047]
In the present invention, an alkaline aqueous solution, for example, a potassium carbonate aqueous solution or a sodium carbonate aqueous solution is used as the absorbing liquid 9, so that the heat consumption when separating carbon dioxide from the absorbing liquid 9 as described above is small, and it is efficient with low energy. In particular, it is possible to separate and recover carbon dioxide. Further, the above-described separation and recovery of carbon dioxide by heating is preferable because the absorbent 9 can be reused for carbon dioxide absorption.
[0048]
The carbon dioxide recovered by the recovery unit 12 may be stored in the storage tank 17 in a gaseous state, or may be stored in the storage tank 19 after being converted into a solid state using, for example, dry ice means 18.
[0049]
As the recovery unit 12 in the present invention, in addition to the above-described heating of the absorption liquid 9 to separate and recover carbon dioxide, for example, the absorption liquid 9 is cooled to form carbonates such as potassium hydrogen carbonate and sodium hydrogen carbonate. The reaction product may be crystallized and recovered with a filter or the like.
[0050]
As shown in FIG. 6, the absorption liquid circulation section 15 is crystallized as shown in FIG. 6 so that reaction products generated by absorption of carbon dioxide, for example, potassium hydrogen carbonate and sodium hydrogen carbonate, do not obstruct the flow of the absorption liquid. It is preferable to provide the suppression means 20. The crystallization suppressing means 20 is preferably provided in a portion containing a large amount of reaction products and easily crystallized, for example, in the circulation line 13 through which the absorption liquid 9 having absorbed carbon dioxide in the absorption section 1 passes.
[0051]
Examples of the crystallization suppressing unit 20 include a heating unit that suppresses crystallization by increasing the temperature of the absorbing liquid 9 and a low concentration unit that suppresses crystallization by decreasing the concentration of the reaction product. Examples of the heating means include a heat exchanger that uses heat generated in a plant such as a heater or a thermal power plant as a heat source. Further, as a means for reducing the concentration, there may be mentioned a method of adding an absorbing solution 9 before absorbing carbon dioxide or a strong alkaline aqueous solution.
[0052]
Such control of the crystallization suppression means 20 is provided, for example, by providing a sensor 21 for measuring the temperature of the absorption liquid, the carbonate ion concentration or the bicarbonate ion concentration in the circulation lines 13 and 14, and the control based on the output of the sensor 21. This is performed by the control means 22 for performing.
[0053]
For example, in the circulation line 13 from the absorption unit 1 to the recovery unit 12, the temperature of the absorption liquid is 60 ° C. to 100 ° C., and the carbonate ion concentration is 0.1 [mol / l] to 0.8 [mol / l]. By controlling the crystallization suppressing means 20, crystallization of the reaction product in the circulation line 13 can be effectively suppressed.
[0054]
Further, the absorption liquid circulating unit 15 may be provided with a crystallized substance recovery unit 23 together with or instead of the crystallization suppressing unit 20. By providing (crystallizing) the crystallization product generated in the absorption liquid 9 by providing such a crystallization product recovery means 23, the crystallization suppression by the crystallization suppression means 20 is insufficient and crystallization occurs. Even if it exists, it becomes possible to maintain the flow of the absorbing liquid 9.
[0055]
The crystallized product recovery means 23 is provided in the middle of the circulation line 13 through which the absorption liquid 9 in which carbon dioxide is absorbed by the absorption part 1 passes, for example, a part that contains a large amount of reaction products and is easy to crystallize. Is preferred. For example, a filter or the like can be used as the crystallized product recovery means 23, and the recovered crystallized product may be used as a nutrient source for photosynthetic organisms in the biomass culture tank 2.
[0056]
【The invention's effect】
According to the present invention, an alkaline absorbing liquid is used for carbon dioxide absorption, and carbon dioxide is absorbed in such an absorbing liquid for use in the cultivation of photosynthetic organisms. Can be fixed.
[Brief description of the drawings]
FIG. 1 is a diagram showing an example of a carbon dioxide recovery device of the present invention.
FIG. 2 is a view showing an example of an absorption section in the present invention.
FIG. 3 is a view showing another example of the absorbing portion in the present invention.
FIG. 4 is a diagram showing an example of a carbon dioxide recovery device having an absorbing liquid circulation unit.
FIG. 5 is a diagram showing an example of a collection unit in the present invention.
FIG. 6 is a view showing another example of a carbon dioxide recovery device having an absorption liquid circulation unit.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Absorption part 1a, 1b, 1c ... Section 2 ... Biomass culture part 3 ... Gas supply line 4 ... Absorption liquid storage tank 5 ... Absorption liquid supply line 6 ... Gas discharge line 7 ... Absorption liquid discharge line 8 ... Carbon dioxide containing gas 9 ... Absorbing liquid 12 ... Recovery unit 13, 14 ... Circulation line 15 ... Absorbing liquid circulating unit 18 ... Dry ice conversion means 20 ... Crystallization suppression means 21 ... Sensor 22 ... Control means 23 ... Crystallized substance recovery means

Claims (11)

二酸化炭素含有気体をアルカリ性の吸収液に気液接触させて、前記二酸化炭素を前記吸収液に吸収させる吸収部と、
前記二酸化炭素を吸収させた吸収液から、前記二酸化炭素の吸収反応により生成した反応生成物を光合成生物を用いて回収するバイオマス培養部と
を具備することを特徴とする二酸化炭素回収装置。
An absorption part that makes a gas-liquid contact of a carbon dioxide-containing gas with an alkaline absorption liquid and absorbs the carbon dioxide in the absorption liquid;
A carbon dioxide recovery apparatus comprising: a biomass culture section that recovers a reaction product generated by an absorption reaction of carbon dioxide from an absorbing solution that has absorbed carbon dioxide using a photosynthetic organism.
二酸化炭素含有気体をアルカリ性の吸収液に気液接触させて、前記二酸化炭素を前記吸収液に吸収させる吸収部と、前記吸収部から送られた吸収液から二酸化炭素を回収して再び前記吸収部へ戻す回収部とからなる吸収液循環部と、
前記吸収液循環部から一部の吸収液を取り出し、その吸収液から二酸化炭素の吸収反応により生成した反応生成物を光合成生物を用いて回収するバイオマス培養部と
を具備することを特徴とする二酸化炭素回収装置。
An absorption part that makes a carbon dioxide-containing gas in gas-liquid contact with an alkaline absorption liquid and absorbs the carbon dioxide in the absorption liquid; and carbon dioxide is recovered from the absorption liquid sent from the absorption part and the absorption part again An absorption liquid circulation part comprising a recovery part to return to
A biomass culture section, comprising a biomass culture section that takes out a part of the absorbent from the absorbent circulation section and collects a reaction product generated by an absorption reaction of carbon dioxide from the absorbent using a photosynthetic organism. Carbon recovery device.
前記吸収液は炭酸カリウム水溶液および炭酸ナトリウム水溶液から選ばれた少なくとも1種から主としてなるもの、または、これに特性劣化を抑制するための劣化抑制成分が添加されたものであることを特徴とする請求項2記載の二酸化炭素回収装置。The absorption liquid is mainly composed of at least one selected from an aqueous potassium carbonate solution and an aqueous sodium carbonate solution, or to which a deterioration suppressing component for suppressing characteristic deterioration is added. Item 2. The carbon dioxide recovery device according to Item 2. 前記吸収部を前記二酸化炭素含有気体の流れに沿って複数のセクションからなるものとし、前記二酸化炭素含有気体の流れに対して下流側のセクションの吸収液を上流側のセクションの吸収液よりもアルカリ性が高くかつ平均温度が低くなるようにしたことを特徴とする請求項2または3記載の二酸化炭素回収装置。The absorption part is composed of a plurality of sections along the flow of the carbon dioxide-containing gas, and the absorption liquid in the downstream section is more alkaline than the absorption liquid in the upstream section with respect to the flow of the carbon dioxide-containing gas. The carbon dioxide recovery apparatus according to claim 2 or 3, wherein the temperature is high and the average temperature is low. 前記吸収部を前記二酸化炭素含有気体の流れに沿って複数のセクションからなるものとし、前記二酸化炭素含有気体の流れに対して下流側のセクションから上流側のセクションに順に前記吸収液を循環させると共に、前記複数のセクションの中から選ばれる少なくとも1つのセクションに流入する吸収液に新規な吸収液または前記回収部で二酸化炭素を回収した後二酸化炭素を吸収させていない吸収液を加えたことを特徴とする請求項2または3記載の二酸化炭素回収装置。The absorption part is composed of a plurality of sections along the flow of the carbon dioxide-containing gas, and the absorption liquid is circulated in order from the downstream section to the upstream section with respect to the flow of the carbon dioxide-containing gas. The absorption liquid flowing into at least one section selected from the plurality of sections is added with a novel absorption liquid or an absorption liquid that has not absorbed carbon dioxide after the carbon dioxide is recovered by the recovery unit. The carbon dioxide recovery device according to claim 2 or 3. 前記吸収液循環部に、前記吸収液中での反応生成物の結晶化を抑制する結晶化抑制手段として、吸収液の温度を上昇させる加熱手段および反応生成物の濃度を下げる低濃度化手段のうちの少なくとも1つの手段を設けたことを特徴とする請求項2乃至5のいずれか1項記載の二酸化炭素回収装置。As the crystallization suppressing means for suppressing the crystallization of the reaction product in the absorbing liquid, a heating means for increasing the temperature of the absorbing liquid and a concentration reducing means for reducing the concentration of the reaction product are provided in the absorbing liquid circulation section The carbon dioxide recovery device according to any one of claims 2 to 5, wherein at least one means is provided. 前記吸収液循環部に前記吸収液の温度ならびに吸収液中の炭酸イオン濃度および炭酸水素イオン濃度の中から選ばれる少なくとも1つを測定するセンサを設け、このセンサの出力に応じて前記結晶化抑制手段の出力を制御するようにしたことを特徴とする請求項6記載の二酸化炭素回収装置。A sensor that measures at least one selected from the temperature of the absorbing liquid and the carbonate ion concentration and the bicarbonate ion concentration in the absorbing liquid is provided in the absorbing liquid circulation unit, and the crystallization suppression is performed according to the output of the sensor. 7. The carbon dioxide recovery apparatus according to claim 6, wherein the output of the means is controlled. 前記吸収液循環部に、前記吸収液中で結晶化した反応生成物を除去するための結晶化物回収手段を設けたことを特徴とする請求項2乃至7のいずれか1項記載の二酸化炭素回収装置。The carbon dioxide recovery according to any one of claims 2 to 7, wherein a crystallization product recovery means for removing a reaction product crystallized in the absorption liquid is provided in the absorption liquid circulation section. apparatus. 前記回収部における二酸化炭素の回収を熱交換器を用いた吸収液の加熱によるものとし、前記加熱の熱源として前記吸収部に導入する前の二酸化炭素含有気体の熱またはこれを排出するプラントの熱を用いたことを特徴とする請求項2乃至8のいずれか1項記載の二酸化炭素回収装置。The recovery of carbon dioxide in the recovery unit is performed by heating the absorption liquid using a heat exchanger, and the heat of the carbon dioxide-containing gas before being introduced into the absorption unit as the heat source of the heating or the heat of the plant that discharges it. The carbon dioxide recovery device according to claim 2, wherein the carbon dioxide recovery device is used. 前記回収部に、回収された二酸化炭素をドライアイス化するためのドライアイス化手段を設けたことを特徴とする請求項2乃至9のいずれか1項記載の二酸化炭素回収装置。The carbon dioxide recovery device according to any one of claims 2 to 9, wherein the recovery unit is provided with dry ice conversion means for converting the recovered carbon dioxide into dry ice. 二酸化炭素含有気体をアルカリ性の吸収液に気液接触させて、前記二酸化炭素を前記吸収液に吸収させた後、この二酸化炭素の吸収反応により生成した反応生成物を光合成生物を用いて回収することを特徴とする二酸化炭素回収方法。The carbon dioxide-containing gas is brought into gas-liquid contact with an alkaline absorption liquid, and the carbon dioxide is absorbed into the absorption liquid, and then the reaction product generated by the carbon dioxide absorption reaction is recovered using a photosynthetic organism. A carbon dioxide recovery method characterized by the above.
JP2003167965A 2003-06-12 2003-06-12 Apparatus and method for recovering carbon dioxide Pending JP2005000827A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003167965A JP2005000827A (en) 2003-06-12 2003-06-12 Apparatus and method for recovering carbon dioxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003167965A JP2005000827A (en) 2003-06-12 2003-06-12 Apparatus and method for recovering carbon dioxide

Publications (1)

Publication Number Publication Date
JP2005000827A true JP2005000827A (en) 2005-01-06

Family

ID=34093610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003167965A Pending JP2005000827A (en) 2003-06-12 2003-06-12 Apparatus and method for recovering carbon dioxide

Country Status (1)

Country Link
JP (1) JP2005000827A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006326570A (en) * 2005-05-24 2006-12-07 Korea Electric Power Corp Acidic gas absorbent, and method for separating acidic gas from mixture gas
JP2010083731A (en) * 2008-10-02 2010-04-15 Hitachi Zosen Corp Method for recovering carbon dioxide from exhaust gas
JP2010284120A (en) * 2009-06-12 2010-12-24 Ihi Corp System and method for treating biomass
WO2012046290A1 (en) * 2010-10-04 2012-04-12 豊田通商株式会社 Oil production cluster complex
JP2012170414A (en) * 2011-02-23 2012-09-10 Nitto Boseki Co Ltd Method for promoting photosynthesis of photosynthetic organism
KR101236506B1 (en) 2011-07-20 2013-02-21 주식회사 삼에스코리아 Device of reducting carbon dioxide with the microalgae and methode of reducting carbon dioxide using the same
US10457019B2 (en) 2010-02-15 2019-10-29 Productive Research Llc Light weight composite material systems, polymeric materials, and methods
CN117105223A (en) * 2023-08-11 2023-11-24 江西农业大学 N, P-rich biomass hierarchical porous carbon derived from water hyacinth and preparation method and application thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02111414A (en) * 1988-08-19 1990-04-24 Basf Ag Removal of co2 and, according to circumstances, h2s from gas
JPH0356121A (en) * 1989-07-24 1991-03-11 Fujita Corp Method for removing carbon dioxide gas
JPH04350303A (en) * 1991-05-27 1992-12-04 Jgc Corp Carbon dioxide gas recovery type thermal power generation system
JPH09276648A (en) * 1996-04-17 1997-10-28 Mitsubishi Heavy Ind Ltd Recycling of carbon dioxide
JPH1057745A (en) * 1996-08-16 1998-03-03 Nippon Steel Corp Recovering and fixing method of carbon dioxide
JPH11243985A (en) * 1998-02-27 1999-09-14 Ajinomoto Co Inc Recovery of carbon dioxide in fermentation of l-glutamic acid
JPH11258160A (en) * 1998-03-09 1999-09-24 Kansai Electric Power Co Inc:The Method for measuring decarboxylation absorption liquid and measuring instrument
JP2000247604A (en) * 1999-02-25 2000-09-12 Toshiba Corp Hydrogen producing device and method thereof

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02111414A (en) * 1988-08-19 1990-04-24 Basf Ag Removal of co2 and, according to circumstances, h2s from gas
JPH0356121A (en) * 1989-07-24 1991-03-11 Fujita Corp Method for removing carbon dioxide gas
JPH04350303A (en) * 1991-05-27 1992-12-04 Jgc Corp Carbon dioxide gas recovery type thermal power generation system
JPH09276648A (en) * 1996-04-17 1997-10-28 Mitsubishi Heavy Ind Ltd Recycling of carbon dioxide
JPH1057745A (en) * 1996-08-16 1998-03-03 Nippon Steel Corp Recovering and fixing method of carbon dioxide
JPH11243985A (en) * 1998-02-27 1999-09-14 Ajinomoto Co Inc Recovery of carbon dioxide in fermentation of l-glutamic acid
JPH11258160A (en) * 1998-03-09 1999-09-24 Kansai Electric Power Co Inc:The Method for measuring decarboxylation absorption liquid and measuring instrument
JP2000247604A (en) * 1999-02-25 2000-09-12 Toshiba Corp Hydrogen producing device and method thereof

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006326570A (en) * 2005-05-24 2006-12-07 Korea Electric Power Corp Acidic gas absorbent, and method for separating acidic gas from mixture gas
JP4566889B2 (en) * 2005-05-24 2010-10-20 韓国電力公社 Method for separating acid gas from mixed gas
JP2010083731A (en) * 2008-10-02 2010-04-15 Hitachi Zosen Corp Method for recovering carbon dioxide from exhaust gas
JP2010284120A (en) * 2009-06-12 2010-12-24 Ihi Corp System and method for treating biomass
US10457019B2 (en) 2010-02-15 2019-10-29 Productive Research Llc Light weight composite material systems, polymeric materials, and methods
WO2012046290A1 (en) * 2010-10-04 2012-04-12 豊田通商株式会社 Oil production cluster complex
JP2012170414A (en) * 2011-02-23 2012-09-10 Nitto Boseki Co Ltd Method for promoting photosynthesis of photosynthetic organism
KR101236506B1 (en) 2011-07-20 2013-02-21 주식회사 삼에스코리아 Device of reducting carbon dioxide with the microalgae and methode of reducting carbon dioxide using the same
CN117105223A (en) * 2023-08-11 2023-11-24 江西农业大学 N, P-rich biomass hierarchical porous carbon derived from water hyacinth and preparation method and application thereof

Similar Documents

Publication Publication Date Title
Song et al. Absorption-microalgae hybrid CO2 capture and biotransformation strategy—A review
Thomas et al. Carbon dioxide capture strategies from flue gas using microalgae: a review
US9861933B2 (en) Method and apparatus for extracting carbon dioxide from air
US20110011261A1 (en) Wet scrubber for carbon dioxide collection
KR101113803B1 (en) Method for cultivation of microalgae combined with CO2 capture process from flue gas using ammonia water
CN103638780B (en) A kind of carbon dioxide capture solution intensifying regenerating System and method for
JP2005000827A (en) Apparatus and method for recovering carbon dioxide
RU2013126536A (en) CLEANING THE SOLUTION SULFUR DIRTED IN THE APPLICATION OF SULFUR OXIDES
WO2018034565A1 (en) Production of algae using co2-containing gas
WO2013034947A1 (en) Upgrading of biogas to marketable purified methane exploiting microalgae farming
EP2258463B1 (en) Liquid-phase gas collection
CN109012110B (en) Method for capturing carbon dioxide by using sodium hydroxide and sodium carbonate
JPH1057745A (en) Recovering and fixing method of carbon dioxide
Aslam et al. A review on microalgae to achieve maximal carbon dioxide (CO2) mitigation from industrial flue gases
CN109012089B (en) Method for capturing carbon dioxide by using potassium hydroxide and potassium carbonate
CN201603511U (en) Carbon dioxide trapping system in coal-fired power plant smoke
CN104630065A (en) Combined method of microalgae culture and waste gas denitration
JPH03169324A (en) Method for recovering and fixing carbon dioxide
KR101443236B1 (en) Method and apparatus for supplying gas for combustion apparatus
TWI829556B (en) Production method of inorganic nutrient source and production system thereof
TWI243205B (en) A bioreactor for converting carbon dioxide into biomass
JP2016144402A (en) Algae culture apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071002

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080212