JP2005000265A - Method for building health conditions-specific onset risk knowledge and health management equipment - Google Patents
Method for building health conditions-specific onset risk knowledge and health management equipment Download PDFInfo
- Publication number
- JP2005000265A JP2005000265A JP2003164519A JP2003164519A JP2005000265A JP 2005000265 A JP2005000265 A JP 2005000265A JP 2003164519 A JP2003164519 A JP 2003164519A JP 2003164519 A JP2003164519 A JP 2003164519A JP 2005000265 A JP2005000265 A JP 2005000265A
- Authority
- JP
- Japan
- Prior art keywords
- health
- morbidity
- onset
- knowledge
- risk
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Measuring And Recording Apparatus For Diagnosis (AREA)
- Complex Calculations (AREA)
- Medical Treatment And Welfare Office Work (AREA)
Abstract
Description
【0001】
【発明の属する技術分野】
健康状態と生活習慣病の発症リスクとの対応知識を構築する健康状態別の発症リスク知識構築方法及び健康状態別の発症リスク知識を活用して健康管理に寄与する健康管理装置に関する。
【0002】
【従来の技術】
健康管理装置においては、健康管理の動機付けを行うため、個人の特性を考慮することが重要である。従来、健康状態と健康度や発症リスクの対応知識を用いて健康管理に寄与する健康状態別の発症リスク知識構築方法及び健康管理装置に関する報告がある(例えば、特許文献1、特許文献2)。特許文献1では、多数のデータから疾病モデルと標準モデルを作成し、2つのモデルと個人の健診データを比較して個人の健康度を評価している。特許文献2では、薬物介入大規模試験の結果や、疫学調査結果により導出された方程式など、一定のルールを用いて健康データを発症リスクへ変換している。
【0003】
【特許文献1】
特開2002−63278号公報
【特許文献2】
特開2002−24401号公報
【0004】
【発明が解決しようとする課題】
上記の従来技術では、個人の特性を考慮した健康度又は発症リスクを提供できる。しかし、少数のデータから正確に発症リスクを算出できないため、健康データに健康度や発症リスクを対応させる知識が、健康度又は発症リスクが提供される利用者の地域性など、全国平均と異なる原因となる因子を反映することが難しいという問題と、健康状態のわずかな違いに対して正確に発症リスクの違いを求めることが難しいという問題の2つの問題があった。本発明はこのような事情を考慮してなされたものである。
【0005】
本発明の目的は、利用者の地域性などの全国平均と異なる原因となる因子を反映し、さらに、健康状態のわずかな違いに対しても正確に発症リスクの違いを求められる、健康状態別の発症リスク知識構築方法及び健康管理装置を提供することにある。
【0006】
【課題を解決するための手段】
(1)本発明の健康状態別の発症リスク知識構築方法は、健康状態と生活習慣病の発症リスクとの対応知識を構築する健康状態別の発症リスク知識構築方法において、以下の特徴を有している。性別や生年月日などの発症リスクに関わり生涯不変な基本情報である個人基本情報と、血圧や体重などの現在の健康状態を機器等を用いて定量的に測定した結果である検査結果と、食事内容やストレスなどの現在の生活習慣や健康状態を質問用紙記入や問診等を用いて収集した結果である問診結果と、現在の疾病の有無及び疾病名である罹患情報とを用いて、個人基本情報及び検査結果及び問診結果と罹患情報との関連性を個人別に分析して、具体的には、発症に関する知見を定式化した回帰式を用いて、罹患率又は発症率を算出する罹患率・発症率回帰ステップを有すること。
【0007】
(2)本発明の健康管理装置は、以下の特徴を有する。健康状態と生活習慣病の発症リスクとの対応知識を活用して健康管理に寄与する健康管理装置において、性別や生年月日などの発症リスクに関わり生涯不変な基本情報である個人基本情報と、血圧や体重などの現在の健康状態を機器等を用いて測定した結果である検査結果と、食事内容やストレスなどの現在の生活主観や健康状態を質問用紙記入や問診等を用いて収集した結果である問診結果と、現在の疾病の有無及び疾病名である罹患情報とを用いて、個人基本情報と検査結果と問診結果と罹患又は発症率との関係を算出する罹患率・発症率回帰部を有している。罹患率・発症率回帰部は、個人基本情報及び検査結果及び問診結果と罹患情報との関連性を個人別に分析して、具体的には、発症に関する知見を定式化した回帰式を用いて、罹患率又は発症率を算出する。
【0008】
上記(1)及び(2)において、以下の特徴を有する。
(イ)回帰式は、中年、老年など年齢区分に対応する複数の項を有し、各項のべき数がパラメータであるか、あるいはデータを元にして決定した定数である。
(ロ)L(t)を年齢tでの生存率、α1、α2を、例えば、100など、生存可能な年齢の上限値、A、B、Mをパラメータとするとき、回帰式は(数1)により表れされ、年齢tでの罹患率R(t)を表す。
【0009】
【数1】
【0010】
発症に関する知見を定式化した回帰式の使用により、少数のデータからも正確に罹患率又は発症率が算出可能になり、地域別あるいは健康状態別に分類して少数になったデータに対しても正確な罹患率あるいは発症率を算出可能になり、健康状態や地域性と発症リスクの詳細で正確な関係を得ることができる。この結果、健康状態別の発症リスク知識構築方法及び健康状態別の発症リスク知識を活用して健康管理に寄与する健康管理支援装置を提供できる。
【0011】
【発明の実施の形態】
本発明の健康状態別の発症リスク知識構築手方法は、性別や生年月日などの発症リスクに関わり生涯不変な基本情報である個人基本情報と、血圧や体重などの現在の健康状態を機器等を用いて定量的に測定した結果である検査結果と、食事内容やストレスなどの現在の生活習慣や健康状態を質問用紙記入や問診等を用いて収集した結果である問診結果と、現在の疾病の有無及び疾病名である罹患情報とを含む健康・罹患データを多数蓄積した蓄積健康・罹患データから、個人基本情報及び検査結果及び問診結果と罹患情報との関連性を個人別に分析して、罹患率など、発症リスクを算出する健康状態別の発症リスク知識構築方法であり、発症に関する知見を定式化した回帰式を用いて、罹患率又は発症率を算出する罹患率・発症率回帰ステップを有する。
【0012】
本発明の健康管理装置は、健康状態と生活習慣病の発症リスクとの対応知識を活用して健康管理に寄与する健康管理装置であって、上記の発症リスク知識構築方法を用いる。発症リスク知識の構築に用いるデータは装置を運用する施設に蓄積した健康・罹患データ又は装置の運用者が設定したデータであり、これらのデータを用いて上記の発症リスク知識構築方法により構築した健康状態別の発症リスク知識を施設独自の健康状態別の発症リスク知識として用いる。本発明の装置は、個人の健康・罹患データを入力すると、健康状態別の発症リスク知識を検索し、入力した健康・罹患データに対する発症リスクを取得して出力する。なお、本発明の健康管理装置の入力データは現在の罹患情報を含まない他は健康・罹患データと同様のデータである健康データでもよい。
【0013】
以下、本発明の発症リスク知識構築方法の一例を図面を用いて詳細に説明する。
(実施例1):健康状態別の発症リスク知識構築方法に関する説明。
【0014】
以下の説明では、説明を容易にするため、発症リスクは糖尿病の健康寿命H(t)で表す。糖尿病の健康寿命とは糖尿病を発症するまでの平均年数であり、糖尿病の罹患率から(数2)によって算出される量である。
【0015】
【数2】
【0016】
(数2)で、tは年齢、K(t)は年齢tにおける健康寿命、L(t’)は年齢t’における生存率、R(t’)は年齢t’における罹患率((数1)により示される)を表し、αは、例えば、100など、生存可能な年齢の上限値である。
【0017】
図2は、本発明のの実施例の発症リスク知識構築方法で使用される蓄積データの一例を示す図である。
【0018】
図2(a)は、個人の基本情報や健康状態と罹患情報を表す、蓄積健康・罹患データであり、性別、年齢など個人の基本情報(個人の属性を表す情報)210、検査日や検査施設などの検査基本情報(検査属性)220、身長、血圧、生理検査値などの検査結果(検査値の情報)230、生活習慣や既往歴、家族歴などの問診結果(問診の情報)240と、現在の罹患状態の情報250を含む。蓄積健康・罹患データは、通し番号である検査特定ID(212)として、例えば、“N0000001”を、個人特定ID(211)として、例えば、“P0000001”を付けて管理されており、検査特定IDにより一意に決定できる。個人特定IDと検査特定IDの関係は1対多対応である。即ち、個人特定ID“P0000001”のデータのうち検査特定IDが“N0000001”と“N0000002”の2つのデータがある。この1対多対応は、1人の人が複数回検査を受けた結果をも蓄積している結果である。
【0019】
図2(b)は、蓄積健康・罹患データを健康状態別に分類するため、又は、着目する健康状態にある健康・罹患データを抽出するための抽出条件であり、蓄積健康・罹患データの項目を用いて、例えば、個人の基本情報、検査結果、問診結果、各項目についての命題260、270、280の論理積で作成される。命題260は個人の属性を表す項目についての命題、命題270は検査値の情報の項目についての命題、命題280は問診の情報の項目についての命題を示す。抽出条件として、例えば、性別が男性、かつ、年齢が20歳以上30歳以下、かつ、脈拍が50以下、かつ、血糖値が90以下かつ1週間の運動量が2000kcal以上を一例とする条件を作成し、通し番号である抽出条件特定ID(222)として、例えば、“C0000001”を付けて管理している。
【0020】
図2(c)は健康状態と発症リスクの関係、即ち、抽出条件と健康寿命の対応関係を保持する健康状態別の発症リスク知識であり、健康状態を表す情報290、例えば、抽出条件の管理番号と、健康寿命295を含む。例えば、条件C0000001に従って検査特定IDが“N0000003”のデータや検査特定IDが“N0000004”のデータなど、多数のデータを抽出し、抽出したデータから、(数3)によって、罹患情報/糖尿病の欄が“治療中”のデータと“健康”のデータをカウントして年齢ti=25における年齢別罹患率Ri(25)を求め、条件C0000002、C0000003に従って同様に求めたRi(35)、Ri(45)とを合わせた3点を、(数1)により回帰して、例えば、パラメータA=0.3、B=0.1、M=2.2を得た後、(数2)により健康寿命を算出した結果を“55”、“68”、“79”と得ている。さらに同様に、他の健康状態を表す抽出条件“C0000004”以降を設定して、健康寿命を“51”…と得ている。
【0021】
【数3】
【0022】
ここで、(数1)、(数2)の年齢tと罹患率Rが添え字を持たず、(数3)の年齢tiと罹患率Riが添え字iを持つのは、前者が全ての年齢で値を持つのに対し、後者は回帰に用いるデータの数Nだけ値を持つためである。tiは(数3)の右辺に用いたデータの最大年齢と最小年齢の中間値、即ち、年齢階級の代表値である。なお、(数1)、(数2)で用いる年齢別生存率L(t)は、何らかの手段により算出された、健康寿命を提供する集団の死亡率でもよいし、平均的な値、例えば、厚生労働省の生命表から算出した値でもよい。
【0023】
図1は、本発明の実施例の発症リスク知識構築方法の処理フローの一例を示す図である。
【0024】
処理が開始されると(S110)、“20歳代の男性で血糖値が90未満”など、着目する健康状態を定義して、着目した健康状態にある蓄積健康・罹患データを抽出する抽出条件を設定し、この抽出条件を満たす蓄積健康・罹患データを抽出する(S120)。次に、年齢tiに対する年齢別罹患率Ri(ti)を(数3)により算出する(S130)。次に、回帰分析に用いる点Ri(ti)の数が充分であるかを判定し(S140)、充分になるまでS120とS130を繰り返す。このループは、回帰を行うには一般的に数個の点が必要であるため設けたもので、例えば、“20歳代の男性で血糖値が90未満”、“30歳代の男性で血糖値が90未満”、“40歳代の男性で血糖値が90未満”にあたる年齢別罹患率R(25)、R(35)、R(45)を算出する。
【0025】
判定S140を通過すると、(数1)により罹患率を表す回帰分析によりRi(ti)からパラメータA、B、Mを求めて、全年齢での罹患率R(t)を算出可能にし、健康寿命Kを算出するのに必要な罹患率R(t)を算出する(S150、なお、このステップを罹患率・発症率回帰ステップと呼ぶ)。次に、R(t)を用いて(数2)から健康寿命Kを算出し(S160)、健康状態を表す抽出条件と健康寿命Kを健康状態別の発症リスク知識に書きこむ(S170)。設定S120からS170までの一連の処理を終えると、他の抽出条件を設定する必要があるかを判定し(S180)、必要がなくなるまで、例えば、“20(30、40)歳代の男性で血糖値が90未満”、“20(30、40)歳代の男性で血糖値が90以上100未満”、“20(30、40)歳代の男性で血糖値が110以上120未満”のデータを処理し終わるまでS120からS170までの処理を繰り返し、処理を終了する(S190)。
【0026】
図3は、本発明の実施例で用いる回帰式をパラメータの値を3種類設定して(数1)をプロットした図である。図3(a)は、パラメータの値がA=0.05、B=0.05、M=3の場合に得られる(数1)の曲線310と、パラメータの値がA=0.05、B=0.2、M=3の場合に得られる(数1)の曲線320とを比較表示し、図3(b)は、曲線310と、パラメータの値がA=0.2、B=0.05、M=3の場合に得られる(数1)の曲線330とを比較表示し、図3(c)は、曲線310と、パラメータの値がA=0.05、B=0.05、M=10の場合に得られる(数1)の曲線340とを比較表示している。
【0027】
実施例1では、発病に関する知見を定式化した回帰式を用いることで、全年齢での罹患率がデータから求められない場合でも、全年齢での罹患率を求めることを可能にする。さらに、実施例1で使用する回帰式は、中年、老年など年齢区分に対応する複数の項を有することで、図3(a)の曲線320に示すように中年で罹患率が高い場合や、図3(b)の曲線330に示すように老年で罹患率が高い場合を表現でき、(数1)のパラメータMのように、各項のべき数にパラメータを含むことで、図3(c)の曲線340に示すように罹患率が急激に増加する場合を表現できるなど、罹患率の様々な変化を表現できる。よって、本発明の処理によれば、少数のデータからも全年齢での罹患率を正確に求めることができる。
【0028】
実施例1によれば、発症に関する知見を定式化した回帰式を使用することにより、少数のデータからも正確に罹患率又は発症率を算出可能になり、地域別あるいは健康状態別に分類して少数になったデータに対しても正確な罹患率あるいは発症率を算出可能になるので、健康状態や地域性と発症リスクの詳細で正確な関係を得ることができる健康状態別の発症リスク知識構築方法を提供できるという効果が得られる。
(実施例2)
図4は、本発明の実施例2の健康管理装置における機能構成の一例を表すブロック図である。
【0029】
実施例2では、健康管理装置は1個のサーバによって構成され、健康管理装置の運用者が操作して健康状態別の発症リスク知識を構築し、健康管理装置の利用者が操作して本人の健康状態に対する発症リスクを表示させると仮定する。
【0030】
図4において、410は、運用者と利用者がデータ入力を行うためのフロッピー(登録商標)ドライブ、キーボードなどの入力手段であり、運用者が蓄積健康・罹患データをデータベースに入力するための蓄積用健康・罹患データ入力手段411(後述する)と、自分の健康状態に対する発症リスクを知るために利用者が自分の健康・罹患データを検索手段に入力するための参照用健康・罹患データ入力手段412(後述する)から成る。420は、運用者の入力した健康・罹患データを蓄積するためのデータベースである蓄積健康・罹患データDBである。430は、実施例1で説明した発症リスク知識構築方法により健康状態別の発症リスク知識を構築するためのプログラムなどである健康状態別の発症リスク知識構築手段である。440は、健康状態別の発症リスク知識構築手段により構築した健康状態別の発症リスク知識をテーブル形式で主記憶装置に記憶したファイルなどである健康状態別の発症リスク知識である。450は、利用者が入力した健康・罹患データが示す健康状態に対応する発症リスクを得るために健康状態別の発症リスク知識を検索するためのプログラムなどである検索手段である。460は、検索手段が獲得した発症リスクを表示するためのモニタなどの表示手段である。
【0031】
蓄積用健康・罹患データ入力手段411は、蓄積健康・罹患データDB420に蓄積したい健康・罹患データを蓄積健康・罹患データDB420へ入力する。蓄積健康・罹患データDB420は、蓄積用健康・罹患データ入力手段411から入力された健康・罹患データを蓄積健康・罹患データとして蓄積する。発症リスク知識構築手段430は、実施例1で説明した発症リスク知識構築方法により、蓄積健康・罹患データDB420から一定の健康状態にあるデータを抽出して発症リスクを算出し、健康状態別の発症リスク知識440に書き込む。健康状態別の発症リスク知識440は、発症リスク知識構築手段430が算出した健康状態別の発症リスク知識を保持する。参照用健康・罹患データ入力手段412は、自分の健康状態に対する発症リスクを知りたい利用者の健康・罹患データを検索手段450へ入力する。検索手段450は、参照用健康・罹患データ入力手段412から入力された健康・罹患データの示す健康状態を判断し、健康状態別の発症リスク知識440を検索して、判断した健康状態に対応する発症リスクを読み出す。表示手段460は、検索手段450が健康状態別の発症リスク知識440から読み出した発症リスクを表示する。
【0032】
実施例2での処理の一例を説明する。まず、健康管理装置の運用者の行う処理を説明する。運用者は随時、例えば、健康診断ごとに蓄積用健康・罹患データ入力手段を用いて蓄積健康・罹患データDB420に健康・罹患データを入力し、蓄積健康・罹患データDB420を更新する。さらに、定期的、例えば、1年に1回、健康状態別の発症リスク知識構築手段430を起動して蓄積健康・罹患データDB420から一定の健康状態にあるデータを抽出して発症リスクを算出し、健康状態健康状態別の発症リスク知識440を作成又は更新する。
【0033】
次に、健康管理装置の利用者の行う処理を説明する。利用者は自分の健康状態に対する発症リスクを知りたい時、例えば、健康診断時に、参照用健康・罹患データ入力手段412から自分の健康・罹患データを検索手段450へ入力する。すると検索手段450が参照用健康・罹患データ入力手段412から入力された健康・罹患データの示す健康状態を判断し、健康状態別の発症リスク知識440を検索して、判断した健康状態に対応する発症リスクを読み出す。これを受けて表示手段460が検索手段450の読み出した発症リスクを表示する。
【0034】
実施例2によれば、実施例1で説明した発症リスク知識構築方法を用いて構築した健康状態別の発症リスク知識を活用することで、健康状態や地域性と発症リスクの詳細で正確な関係に基づいて健康管理に寄与する健康管理支援装置を提供できるという効果が得られる。
【0035】
【発明の効果】
本発明によれば、発症に関する知見を定式化した回帰式の使用により少数のデータからも正確に罹患率又は発症率を算出可能になり、地域別あるいは健康状態別に分類して少数になったデータに対しても正確な罹患率あるいは発症率を算出可能になるので、健康状態や地域性と発症リスクの詳細で正確な関係を得ることができる、健康状態別の発症リスク知識構築方法及び健康状態別の発症リスク知識を活用して健康管理に寄与する健康管理支援装置を提供できる。
【図面の簡単な説明】
【図1】本発明の実施例1の処理フローの一例を説明する図。
【図2】本発明の実施例1で使用される蓄積データの一例を示す図。
【図3】本発明の実施例1で用いる回帰式をパラメータの値を3種類設定してプロットした図。
【図4】本発明の実施例2の健康管理装置における機能構成の一例を表すブロック図。
【符号の説明】
210…個人の属性を表す情報、211…個人特定ID、212…検査特定ID、220…検査属性、222…抽出条件特定ID、230…検査値の情報、240…問診の情報、250…現在の罹患状態の情報、260…個人の属性を表す項目についての命題、270…検査値の情報の項目についての命題、280…問診の情報の項目についての命題、290…健康状態を表す情報、295…健康寿命、410…入力手段、411…蓄積用健康・罹患データ入力手段、412…参照用健康・罹患データ入力手段、420…蓄積健康・罹患データDB、430…健康状態別の発症リスク知識構築手段、440…健康状態別の発症リスク知識、450…検索手段、460…表示手段。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an onset risk knowledge construction method for each health condition that builds correspondence knowledge between the health condition and the risk of developing lifestyle-related diseases, and a health management device that contributes to health management by utilizing the onset risk knowledge for each health condition.
[0002]
[Prior art]
In a health management device, it is important to consider individual characteristics in order to motivate health management. Conventionally, there is a report on a method for constructing onset risk knowledge for each health state and a health management device that contribute to health management using knowledge of correspondence between the health state, the health degree, and the onset risk (for example,
[0003]
[Patent Document 1]
JP 2002-63278 A [Patent Document 2]
Japanese Patent Laid-Open No. 2002-24401
[Problems to be solved by the invention]
According to the above-described conventional technology, it is possible to provide a health degree or onset risk in consideration of individual characteristics. However, because the risk of onset cannot be calculated accurately from a small number of data, the cause of the difference between the health data and the risk of developing the disease from the national average, such as the locality of the user who is provided with the health or the risk of onset, is known. There were two problems: it was difficult to reflect the factors, and the problem that it was difficult to accurately determine the difference in risk of onset for slight differences in health status. The present invention has been made in consideration of such circumstances.
[0005]
The purpose of the present invention is to reflect factors that cause a difference from the national average such as the regional characteristics of users, and further to accurately determine the difference in risk of onset for even slight differences in health status. It is in providing the onset risk knowledge construction method and health management apparatus.
[0006]
[Means for Solving the Problems]
(1) The onset risk knowledge construction method for each health condition according to the present invention has the following characteristics in the onset risk knowledge construction method for each health condition that builds correspondence knowledge between the health condition and the onset risk of lifestyle-related diseases. ing. Personal basic information, which is basic information that is related to the onset risk such as gender and date of birth, and lifelong invariant information, and test results that are the result of quantitatively measuring the current health condition such as blood pressure and weight using equipment etc., Using the interview results, which are the results of collecting current lifestyle habits and health conditions, such as meal content and stress, using questionnaires and interviews, and the presence / absence of disease and disease information Analyzing the relationship between basic information, test results, interview results, and morbidity information for each individual, and specifically calculating the morbidity rate or incidence rate using a regression formula that formulates knowledge about the onset -Having an incidence regression step.
[0007]
(2) The health management device of the present invention has the following features. In the health management device that contributes to health management by utilizing knowledge of the correspondence between the health status and the risk of developing lifestyle-related diseases, basic personal information that is basic information that is invariant throughout life related to the onset risk such as gender and date of birth, Test results that are the results of measuring current health conditions such as blood pressure and weight using equipment, etc., and results of collecting current lifestyle and health conditions such as meal contents and stress using questionnaires and interviews The morbidity / onset rate regression unit calculates the relationship between basic personal information, test results, interrogation results, and morbidity or incidence, using the interrogation results and the presence / absence of the current disease have. The morbidity / onset rate regression unit analyzes the relationship between individual basic information, test results, interview results, and morbidity information for each individual, specifically, using a regression formula that formulates knowledge about onset, Calculate morbidity or incidence.
[0008]
The above (1) and (2) have the following characteristics.
(B) The regression equation has a plurality of terms corresponding to age categories such as middle age and old age, and the power of each term is a parameter or a constant determined based on data.
(B) When L (t) is the survival rate at age t, α1 and α2 are upper limit values of survivable ages, such as 100, and A, B, and M are parameters, the regression equation is ) And represents the morbidity R (t) at age t.
[0009]
[Expression 1]
[0010]
By using regression formulas that formulate knowledge about the onset, it is possible to accurately calculate the morbidity rate or incidence rate from a small number of data, and it is accurate even for data that has become a small number classified by region or health status It is possible to calculate a precise morbidity rate or onset rate, and to obtain a detailed and accurate relationship between the health status, regional characteristics, and onset risk. As a result, it is possible to provide a health management support apparatus that contributes to health management by utilizing the onset risk knowledge construction method for each health condition and the onset risk knowledge for each health condition.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
The onset risk knowledge construction method by health status of the present invention is based on the basic personal information that is related to the onset risk such as gender and date of birth, and the current health status such as blood pressure and weight, etc. The results of quantitative measurements using the test results, the results of interviews that are the results of collecting current lifestyle and health conditions such as dietary content and stress using questionnaires and interviews, and current diseases From the accumulated health / morbidity data that accumulated a lot of health / morbidity data including the presence / absence of the disease and the morbidity information that is the name of the disease, we analyzed the relationship between the individual basic information and test results and the inquiry results and morbidity information by individual, This is a method of constructing knowledge of onset risk by health condition, such as morbidity, to calculate the onset risk, and the morbidity / onset rate regression step to calculate the morbidity or incidence by using a regression formula that formulates knowledge about onset. Having.
[0012]
The health management device of the present invention is a health management device that contributes to health management by utilizing the correspondence knowledge between the health condition and the onset risk of lifestyle-related diseases, and uses the onset risk knowledge construction method described above. The data used for constructing the onset risk knowledge is the health / morbidity data accumulated in the facility where the device is operated or the data set by the operator of the device, and the health constructed by the onset risk knowledge construction method using these data Use the knowledge of the onset risk by condition as the onset risk knowledge by health status unique to the facility. When the personal health / morbidity data is input, the apparatus of the present invention searches for onset risk knowledge for each health condition, and acquires and outputs the onset risk for the input health / morbidity data. The input data of the health management device of the present invention may be health data that is the same data as the health / morbidity data except that it does not include current disease information.
[0013]
Hereinafter, an example of the onset risk knowledge construction method of the present invention will be described in detail with reference to the drawings.
(Example 1): Description of the onset risk knowledge construction method for each health condition.
[0014]
In the following description, for ease of explanation, the onset risk is represented by the healthy life span H (t) of diabetes. The healthy life span of diabetes is the average number of years until the onset of diabetes, and is an amount calculated from (Equation 2) from the prevalence of diabetes.
[0015]
[Expression 2]
[0016]
(Equation 2), t is age, K (t) is healthy life expectancy at age t, L (t ′) is survival rate at age t ′, R (t ′) is morbidity at age t ′ ((Equation 1 ), And α is the upper limit of viable age, such as 100, for example.
[0017]
FIG. 2 is a diagram showing an example of accumulated data used in the onset risk knowledge construction method according to the embodiment of the present invention.
[0018]
FIG. 2 (a) shows accumulated health / morbidity data representing basic personal information, health status and morbidity information. Basic personal information (information indicating individual attributes) 210 such as gender and age, examination date and examination Examination basic information (examination attributes) 220 such as facilities, examination results (examination information) 230 such as height, blood pressure, physiological examination values, interview results (interview information) 240 such as lifestyle habits, past histories, and family histories , Including current
[0019]
FIG. 2 (b) is an extraction condition for classifying the accumulated health / morbidity data by health state or for extracting the health / morbidity data in the health state of interest. For example, the basic information of the individual, the examination result, the inquiry result, and the
[0020]
FIG. 2C shows the relationship between the health condition and the onset risk, that is, the onset risk knowledge for each health condition that holds the correspondence between the extraction condition and the healthy life span, and
[0021]
[Equation 3]
[0022]
Here, the age t and the morbidity rate R in (Equation 1) and (Equation 2) have no subscript, and the age ti and the morbidity rate Ri in (Equation 3) have the subscript i. This is because the age has a value, whereas the latter has a value corresponding to the number N of data used for regression. ti is an intermediate value between the maximum age and the minimum age of the data used on the right side of (Equation 3), that is, a representative value of the age class. The age-specific survival rate L (t) used in (Equation 1) and (Equation 2) may be a mortality rate of a group providing a healthy life expectancy calculated by some means, or an average value, for example, It may be a value calculated from the life table of the Ministry of Health, Labor and Welfare.
[0023]
FIG. 1 is a diagram illustrating an example of a processing flow of the onset risk knowledge construction method according to the embodiment of the present invention.
[0024]
When the process is started (S110), the extraction condition for extracting the accumulated health / morbidity data in the health state of interest by defining the health state of interest, such as “a male in his twenties, whose blood glucose level is less than 90” And the accumulated health / morbidity data satisfying this extraction condition is extracted (S120). Next, the age-specific morbidity rate Ri (ti) with respect to the age ti is calculated by (Equation 3) (S130). Next, it is determined whether the number of points Ri (ti) used for the regression analysis is sufficient (S140), and S120 and S130 are repeated until it is sufficient. This loop is provided because several points are generally required to perform regression. For example, “blood glucose level is less than 90 for men in their 20s”, “blood glucose for men in their 30s” The morbidity rates R (25), R (35), and R (45) by age corresponding to “value is less than 90” and “blood glucose level is less than 90 for men in their 40s” are calculated.
[0025]
When the determination S140 is passed, parameters A, B, and M are obtained from Ri (ti) by regression analysis that represents the morbidity according to (Equation 1), and the morbidity R (t) at all ages can be calculated. The morbidity rate R (t) necessary to calculate K is calculated (S150, this step is called the morbidity / onset rate regression step). Next, the healthy life span K is calculated from (Equation 2) using R (t) (S160), and the extraction condition representing the health state and the healthy life span K are written in the onset risk knowledge for each health state (S170). When a series of processing from setting S120 to S170 is finished, it is determined whether other extraction conditions need to be set (S180). For example, a male in the age group “20 (30, 40)” Blood glucose level is less than 90 "," 20 (30, 40) men in their 20s, blood glucose level is 90 or more and less than 100 "," 20 (30, 40) men in their 20s, blood glucose level is 110 or more and less than 120 " Until the process is completed, the processes from S120 to S170 are repeated, and the process is terminated (S190).
[0026]
FIG. 3 is a diagram in which (Equation 1) is plotted by setting three types of parameter values for the regression equation used in the embodiment of the present invention. FIG. 3A shows a curve 310 (Equation 1) obtained when the parameter values are A = 0.05, B = 0.05, and M = 3, and the parameter values are A = 0.05, The
[0027]
In Example 1, by using a regression formula that formulates knowledge related to pathogenesis, it is possible to obtain the morbidity rate at all ages even when the morbidity rate at all ages cannot be obtained from the data. Furthermore, when the regression equation used in Example 1 has a plurality of terms corresponding to age categories such as middle age and old age, the morbidity rate is high in middle age as shown by the
[0028]
According to Example 1, it is possible to accurately calculate the morbidity rate or the incidence rate from a small number of data by using the regression formula that formulates the knowledge about the onset, and categorize it by region or health condition, Since it is possible to calculate an accurate morbidity rate or incidence rate even for data that has become, it is possible to obtain an accurate relationship between the health status and regional characteristics and the risk of onset, and a method for constructing risk knowledge by health status Can be provided.
(Example 2)
FIG. 4 is a block diagram illustrating an example of a functional configuration in the health management apparatus according to the second embodiment of the present invention.
[0029]
In the second embodiment, the health management device is configured by a single server, which is operated by the health management device operator to build onset risk knowledge for each health condition, and the health management device user operates the personal information. Suppose you want to display the risk of developing a health condition.
[0030]
In FIG. 4,
[0031]
The health / morbidity data input means 411 for accumulation inputs the health / morbidity data to be accumulated in the accumulated health /
[0032]
An example of processing in the second embodiment will be described. First, the process performed by the operator of the health management apparatus will be described. The operator inputs health / morbidity data to the accumulated health /
[0033]
Next, processing performed by the user of the health management device will be described. The user inputs his / her health / morbidity data from the reference health / morbidity data input means 412 to the search means 450 when he / she wants to know the onset risk with respect to his / her health condition, for example, during a health examination. Then, the
[0034]
According to Example 2, by using the onset risk knowledge for each health condition constructed using the onset risk knowledge construction method described in Example 1, detailed and accurate relationship between the health condition, regional characteristics, and onset risk Based on the above, it is possible to provide a health management support device that contributes to health management.
[0035]
【The invention's effect】
According to the present invention, it becomes possible to accurately calculate the morbidity rate or the incidence rate from a small number of data by using a regression formula that formulates knowledge about the onset, and the data that has been reduced to a small number by classification by region or health condition Since it is possible to calculate an accurate morbidity rate or incidence rate, it is possible to obtain an accurate relationship between the health status, regional characteristics, and risk of onset, and a method for constructing risk knowledge by health status and health status It is possible to provide a health management support device that contributes to health management by utilizing another onset risk knowledge.
[Brief description of the drawings]
FIG. 1 is a diagram illustrating an example of a processing flow according to a first embodiment of the present invention.
FIG. 2 is a diagram showing an example of accumulated data used in
FIG. 3 is a graph obtained by plotting the regression equation used in Example 1 of the present invention by setting three types of parameter values.
FIG. 4 is a block diagram illustrating an example of a functional configuration in the health management apparatus according to the second embodiment of the present invention.
[Explanation of symbols]
210 ... Information representing individual attributes, 211 ... Individual identification ID, 212 ... Examination identification ID, 220 ... Examination attribute, 222 ... Extraction condition identification ID, 230 ... Examination value information, 240 ... Interrogation information, 250 ... Current Information on disease state, 260 ... Proposition about item representing individual attribute, 270 ... Proposition about item of test value information, 280 ... Proposition about item of inquiry information, 290 ... Information representing health condition, 295 ... Healthy life, 410 ... Input means, 411 ... Health / morbidity data input means for accumulation, 412 ... Health / morbidity data input means for reference, 420 ... Accumulation health / morbidity data DB, 430 ... Development risk knowledge construction means by
Claims (4)
(数1)により年齢tでの罹患率R(t)を表す式であることを特徴とする健康状態別の発症リスク知識構築方法。3. The method for constructing knowledge of risk of onset according to health condition according to claim 2, wherein the regression equation is such that L (t) is a survival rate at age t, α1 and α2 are upper limit values for alive age, A, B, When M is a parameter,
A method for constructing knowledge of onset risk according to health condition, wherein the formula represents the morbidity rate R (t) at age t by (Equation 1).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003164519A JP2005000265A (en) | 2003-06-10 | 2003-06-10 | Method for building health conditions-specific onset risk knowledge and health management equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003164519A JP2005000265A (en) | 2003-06-10 | 2003-06-10 | Method for building health conditions-specific onset risk knowledge and health management equipment |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2005000265A true JP2005000265A (en) | 2005-01-06 |
Family
ID=34091261
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003164519A Pending JP2005000265A (en) | 2003-06-10 | 2003-06-10 | Method for building health conditions-specific onset risk knowledge and health management equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2005000265A (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006343792A (en) * | 2005-06-07 | 2006-12-21 | Hitachi Ltd | Health guidance support system |
JP2007072732A (en) * | 2005-09-06 | 2007-03-22 | Gamagoori Shoko Kaigisho | Health design system |
JP2007086906A (en) * | 2005-09-20 | 2007-04-05 | Terumo Corp | Blood pressure prediction device |
JP2007140683A (en) * | 2005-11-15 | 2007-06-07 | Terumo Corp | Device for predicting development of disease of circulatory organ |
JP2008176434A (en) * | 2007-01-17 | 2008-07-31 | Hitachi Medical Corp | Individual health guidance support system |
JP2009151404A (en) * | 2007-12-19 | 2009-07-09 | Hitachi Ltd | Support system for selecting subject of health guidance |
JP2010026855A (en) * | 2008-07-22 | 2010-02-04 | Omron Healthcare Co Ltd | Device for determining health condition |
JP2012194808A (en) * | 2011-03-16 | 2012-10-11 | Fujitsu Ltd | Infection notification method and infection notification device |
CN103790150A (en) * | 2014-01-20 | 2014-05-14 | 天津大学 | Settlement control method based on twin-well combined type recharge |
CN116269355A (en) * | 2023-05-11 | 2023-06-23 | 江西珉轩智能科技有限公司 | Safety monitoring system based on figure gesture recognition |
-
2003
- 2003-06-10 JP JP2003164519A patent/JP2005000265A/en active Pending
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006343792A (en) * | 2005-06-07 | 2006-12-21 | Hitachi Ltd | Health guidance support system |
JP4665615B2 (en) * | 2005-06-07 | 2011-04-06 | 株式会社日立製作所 | Health guidance support system |
JP2007072732A (en) * | 2005-09-06 | 2007-03-22 | Gamagoori Shoko Kaigisho | Health design system |
JP2007086906A (en) * | 2005-09-20 | 2007-04-05 | Terumo Corp | Blood pressure prediction device |
JP2007140683A (en) * | 2005-11-15 | 2007-06-07 | Terumo Corp | Device for predicting development of disease of circulatory organ |
JP2008176434A (en) * | 2007-01-17 | 2008-07-31 | Hitachi Medical Corp | Individual health guidance support system |
JP2009151404A (en) * | 2007-12-19 | 2009-07-09 | Hitachi Ltd | Support system for selecting subject of health guidance |
JP2010026855A (en) * | 2008-07-22 | 2010-02-04 | Omron Healthcare Co Ltd | Device for determining health condition |
JP2012194808A (en) * | 2011-03-16 | 2012-10-11 | Fujitsu Ltd | Infection notification method and infection notification device |
CN103790150A (en) * | 2014-01-20 | 2014-05-14 | 天津大学 | Settlement control method based on twin-well combined type recharge |
CN116269355A (en) * | 2023-05-11 | 2023-06-23 | 江西珉轩智能科技有限公司 | Safety monitoring system based on figure gesture recognition |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5054984B2 (en) | Individual health guidance support system | |
JP5038671B2 (en) | Inspection item selection device, inspection item selection method, and inspection item selection program | |
Baldwin et al. | Interpretation of occupational peak flow records: level of agreement between expert clinicians and Oasys-2 | |
JP2004288047A (en) | Medical examination support system and medical examination support program | |
CN108135548A (en) | For monitoring the method and system of pressure state | |
US20060259329A1 (en) | System and Method for Determining the Degree of Abnormality of a Patient's Vital Signs | |
Faulconer et al. | An eight-step method for assessing diagnostic data quality in practice: chronic obstructive pulmonary disease as an exemplar. | |
JP6999403B2 (en) | Medical examination result output device and its operation method and operation program | |
CN107430645A (en) | The system notified for the laboratory evaluation automated analysis in CICU and risk | |
US20210296001A1 (en) | Dementia risk presentation system and method | |
JP2005000265A (en) | Method for building health conditions-specific onset risk knowledge and health management equipment | |
CN114023440A (en) | Model and device capable of explaining layered old people MODS early death risk assessment and establishing method thereof | |
CN116993421A (en) | Patient evaluation system based on large language model | |
RU106013U1 (en) | Staging system DIFFERENTIAL DIAGNOSIS ACCORDING TO DIAGNOSIS, REFERENCE SYSTEM results of clinical studies for integration into automated medical information systems, Differentiation recording the results of clinical studies to integration into automated health information system and differential diagnostic matrix for integration into automated medical information systems | |
JP2005049960A (en) | Health guidance support system, and medium recorded with software therefor | |
CN116864062B (en) | Health physical examination report data analysis management system based on Internet | |
CN112598090B (en) | Method, device, equipment and system for health portrait | |
JP4895577B2 (en) | Health guidance support system | |
JP2011134106A (en) | Medical information collection system, medical information collection processing method and display control method for medical information collection screen | |
JP4729444B2 (en) | Health guidance support system | |
JP5033541B2 (en) | Waist circumference estimation device | |
Ketpupong et al. | Applying text mining for classifying disease from symptoms | |
JP6625840B2 (en) | Health management support device, health management support system, and health management support method | |
JP2023103763A (en) | Ai learning data creation assistance system, ai learning data creation assistance method, and ai learning data creation assistance program | |
EP2645273A1 (en) | System for differentiation and analysis of recorded clinical data |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20041115 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20060420 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070703 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20080108 |