JP2004532656A - In situ bioartificial filler and method for in situ formation of bioartificial discs - Google Patents

In situ bioartificial filler and method for in situ formation of bioartificial discs Download PDF

Info

Publication number
JP2004532656A
JP2004532656A JP2002537171A JP2002537171A JP2004532656A JP 2004532656 A JP2004532656 A JP 2004532656A JP 2002537171 A JP2002537171 A JP 2002537171A JP 2002537171 A JP2002537171 A JP 2002537171A JP 2004532656 A JP2004532656 A JP 2004532656A
Authority
JP
Japan
Prior art keywords
void
disc
biopolymer
components
protein
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002537171A
Other languages
Japanese (ja)
Other versions
JP4202749B2 (en
Inventor
ウミット・ケイ・ユクセル
スティーヴン・ピー・ウォルシュ
カービー・エス・ブラック
Original Assignee
クライオライフ、インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by クライオライフ、インコーポレイテッド filed Critical クライオライフ、インコーポレイテッド
Publication of JP2004532656A publication Critical patent/JP2004532656A/en
Application granted granted Critical
Publication of JP4202749B2 publication Critical patent/JP4202749B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/3683Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix subjected to a specific treatment prior to implantation, e.g. decellularising, demineralising, grinding, cellular disruption/non-collagenous protein removal, anti-calcification, crosslinking, supercritical fluid extraction, enzyme treatment
    • A61L27/3691Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix subjected to a specific treatment prior to implantation, e.g. decellularising, demineralising, grinding, cellular disruption/non-collagenous protein removal, anti-calcification, crosslinking, supercritical fluid extraction, enzyme treatment characterised by physical conditions of the treatment, e.g. applying a compressive force to the composition, pressure cycles, ultrasonic/sonication or microwave treatment, lyophilisation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/18Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/22Polypeptides or derivatives thereof, e.g. degradation products
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/22Polypeptides or derivatives thereof, e.g. degradation products
    • A61L27/227Other specific proteins or polypeptides not covered by A61L27/222, A61L27/225 or A61L27/24
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/3604Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix characterised by the human or animal origin of the biological material, e.g. hair, fascia, fish scales, silk, shellac, pericardium, pleura, renal tissue, amniotic membrane, parenchymal tissue, fetal tissue, muscle tissue, fat tissue, enamel
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/3641Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix characterised by the site of application in the body
    • A61L27/3645Connective tissue
    • A61L27/3654Cartilage, e.g. meniscus
    • A61L27/3658Intervertebral discs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/40Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/44Joints for the spine, e.g. vertebrae, spinal discs
    • A61F2/442Intervertebral or spinal discs, e.g. resilient
    • A61F2002/4445Means for culturing intervertebral disc tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/44Joints for the spine, e.g. vertebrae, spinal discs
    • A61F2/442Intervertebral or spinal discs, e.g. resilient
    • A61F2002/445Intervertebral disc tissue harvest sites

Abstract

Bioprosthetic devices include an exterior biological tissue member which at least partly defines a cavity, and a proteinaceous biopolymer which fills the cavity, and intercalates and is chemically bound (fixed) to the tissue of the surrounding biological tissue member. In preferred forms, the bioprosthetic device is a bioprosthetic vertebral disc having a fibrillar outer annulus which surrounds and defines an interior cavity and is formed by removal of at least a substantial portion of the natural gelatinous core therefrom. The cavity defined by the fibrillar outer annulus may then be filled with a flowable proteinaceous biopolymer. Preferably, the proteinaceous biopolymer is a liquid mixture comprised of human or animal-derived protein material and a di- or polyaldehyde, which are allowed to react in situ to form a cross-linked biopolymer within the cavity. The liquid mixture may be formed in advance of being introduced into the cavity, or may be formed simultaneously during introduction into the cavity.

Description

【0001】
(関連出願のクロスレファレンス)
本出願は、同時に継続する米国仮出願第60/242,457、2000年10月24日出願、に基づくものであり、これによる米国特許法第110条(e)項に基づく国内優先権の利益を主張するものであり、その内容のすべてが、ここに参照として取りこまれるものである。
【0002】
【発明の属する技術分野】
本発明は、一般的に、生体人工器官に関する、特に、好ましい実施態様では、本発明は原位置で形成される生体人工器官に関する。
【0003】
【従来の技術】
椎間板は、脊椎の椎骨の間に位置する膠原性のスペーサーである。円板は、一般的に、固い線維性外輪(線維輪(annulus fibrosus))及び高水和化膠様コア(髄核(nucleus pulposus))から構成される。椎間板は、ショック吸収材として機能し、背中、並びに関節に負荷のかかる衝撃のエネルギーを消散し、ヒトの胴部の屈曲と伸長を可能にする。
【0004】
脊椎の腰椎部分の椎間板の変形は、35歳を過ぎた成人の衰弱性腰痛の主な原因である。椎間板変形疾患(DDD)は、髄核の脱水のために、又は線維輪の膨れにより、椎間板が徐々に崩壊することにより特徴付けられる。DDDは、輪内の裂の形成を早め、椎間板の核を突出させ(椎間板ヘルニア形成)、椎間板の高さの突然の縮みと、神経根及び/又は脊椎圧迫の可能性を招くこともある。椎間板ヘルニア形成は、座って激しく倒れ込むなどの脊椎の荷重圧迫に関連する外傷が原因でもおこる。
【0005】
慢性拡散性の腰痛は,椎間板崩壊のときの外側第3の椎間板輪と周囲の軟組織の痛みのレセプターの刺激から生じる。根の痛みは、突き出し又は膨れた椎間板組織により罹患した神経根の直接の圧迫から生じる。激しく広範囲の物理的治療と薬剤の治療が、衰弱性の背痛の最前線の治療である。許容される痛みが解決されないと、手術の介入が示される。
【0006】
DDDによる難治性の腰痛の治療のため伝統的な外科的手法は、罹患した椎間板の上下の椎骨の本体の融合、又は切開の外科的方法、ミクロの外科的方法、又は内視鏡の方法を通した核の物質除去を必要とする。最近、電気発熱カテーテル又はレーザー装置での膠性板の熱収縮を含む新しい方法が適用された。核の除去は、椎間板内部に空隙を残し、ショック吸収材として作用する粘弾性の流体を排除する。この空隙と粘弾性流体は、板が内部で崩壊する機会を創出し、椎間板の空間がさらに崩壊することを可能にする。椎間板空間の崩壊は、椎間板空間の崩壊の間、脊椎から広がる神経が締め付けられるので、運動性の損失と病的状態をもたらすことが可能である。
【0007】
多くの外科的技術と専門の装置が、椎間板の核排出から生じる進行性椎間板崩壊の問題を対抗するように作られている。収集した自己由来の骨は、核排出した椎間板空間の内部に位置して、2つの椎骨本体の間の骨をブリッジ又は融合させる。茎状ねじ及び他の脊椎の道具、例えばロッド及びプレートは、機械的に、椎骨本体が固定されており、椎骨を安定化し、さらなる崩壊を防止する。これらの、及び他の融合技術の問題は、修復のレベルの運動の予防であり、その結果、上下のレベルのストレスの移動である。これらのさらなる負荷のストレスは、不可避的に、これらの椎間板レベルの変形ももたらす。
【0008】
特許公報は、全椎間板の置換のためのいくつかの装置(すなわち、人工の椎間板)であって、それにより損傷した椎間板が除去され、損傷した椎間板の上下の椎骨に装置が固定されるものを開示している。そのような設計コンセプトの最終的なゴールは、天然の、椎骨−椎間板−椎骨の運動セグメントの運動性を維持し、又は再度取得することである。運動性の種々の程度は、異なるタイプの機械的椎間板置換をクレームしている。下記のものは、そのような米国特許公報の非網羅的リストである。PatilへのUSP4,309,777;ThalgottへのUSP5,865,845;ButtermannへのUSP5,827,328; BryanらへのUSP5,865,846;Buettner−JantzらへのUSP4,759,766;SteffeへのUS5,071,437;LeeらへのUSP4,911,718;及びKennaへのUSP4,714,469。これらの従来の設計の提案の使用は、主に、骨質の椎骨へ、可撓性の椎間板を適当にアンカリングできないことにより制限されている。
【0009】
損傷した又は疾患の椎間板の修復のための他のアプローチは、椎間板の空間に固い本体の挿入を通して、椎間板の崩壊を物理的に予防することである。さらに、その壁を通して開口部を含んで、装置を通して骨を成長させることができる、管状又は他の中空装置の挿入は、運動セグメントを、維持された椎間板空間と融合することを可能にする。これらの開口又は管状装置は、伝統的に移植可能な医療装置に合金(ステンレス鋼、チタン及びチタン合金)から、炭素繊維補強エンジニアリングサーモプレート(例えば、ポリエーテルエーテルケトン)から、又は機械化ヒト皮質骨から構築することができる。これらの装置は、例えば、RayらへのUSP4,961,740;MichelsonへのUSP5,015,247;BrosnahanへのUSP5,766,253;BrantiganへのUSP5,425,772;及びGrivasらへのUSP5,814,084に開示されている。これらの装置は、椎骨の間に適当なスペーシング(すなわち椎間板の高さ)を保持することができるが、それらは、2つの椎骨が融合するとき、椎骨−椎間板−椎骨エレメントを横切る運動が排除される欠点を有する。
【発明が解決しようとする課題】
【0010】
椎骨本体の分離の防止のための他の一般的な技術は、除去された椎間板核組織を、非融合、非剛性物質で置換することである。1つの従来の提案は、椎間板の高さを回復するように液体で充填することができる嚢を示唆している(FroningへのUSP3,875,595)。BaoらへのUSP5,534,028で開示されている他の1つの従来の提案は、プレ注型プレ成形ヒドロゲルが空隙に配置される。Baoら(’028)のこのタイプの装置の変形は、同様に、USP5,976,186、USP5,192,326、USP5,047,055に開示されている。キセロゲルプラスチックから、髄核置換物としてプレ成形した挿入物は、USP6,264,695でも開示されている。非拡張ケーシング内部に含まれる円筒形のヒドロゲルピローと、その関連の変形は、USP4,772,287、USP4,904,260、USP5,674,295、USP5,824,093、USP6,022,376に記載されている。この点について、USP6,022,376に示される装置は、脱水化ヒドロゲル樹脂として、椎間板内部に彫られるトンネルに挿入され、ひとたび挿入されると、再水和し、膨潤することが可能である。膨潤は、核排出椎間板の崩壊を防止しながら、装置の位置をささえる。しかしながら、装置は、化学的にも、機械的にも、その場所に固定されない。
【0011】
溶けたグッタペルカとその化合物が、髄核の潜在的な置換物として用いることができることは、USP6,183,581、6,206,921及び6,264,659に開示されている。
【0012】
【課題を解決するための手段】
一般的に、本発明は、少なくとも部分的に空隙の形を定める外部生物組織部材と、前記空隙を充填し、周囲の生物組織部材の間に挿入し、周囲の生物組織部材の組織に化学的結合する(連結する)タンパク様のバイオポリマーからなる、生体人工装置に関する。好適な態様では、生体人工装置は、内部の空隙を囲み形を規定し、そこから天然膠様コアの少なくとも実質的な部分を除去により形成される線維性外輪を有する生体人工椎間板である。線維性外輪から形を定められた空隙は、ついで、流動性のバイオポリマー物質で充填することができ、ついで、原位置で少なくとも部分的に固化させて(例えば最も好ましくは原位置架橋反応により)、空隙内にタンパク様バイオポリマーを形成することが可能である。
【0013】
流動性のバイオポリマー物質は、最も好ましくは、ヒト又は動物由来のタンパク質物質とジ又はポリアルデヒドからなる液体混合物である。したがって、空隙内に導入されるとき、液体混合物は、ついで、反応して、空隙内で原位置で架橋バイオポリマーを形成し、それによりそこで生体人工装置を形成することができる。液体混合物は、前もって、空隙内に導入されて形成されることができ、又は空隙内への導入の間に同時に形成されることができる。
【0014】
これらの、又は他の態様及び利点は、本発明の好ましい例示的な実施態様の以下の説明を注意深く考慮すれば、より明確となるであろう。
【0015】
【発明の実施の形態】
この明細書と請求項で用いられるとき、「生体人工装置」などの用語は、生物組織部材と、組織部材の組織に化学的に結合(連結)しているタンパク様バイオポリマーとの組合せを意味する。
【0016】
添付された図面は、本発明の生体人工椎間板10が、個々の椎骨Vの隣接するものの間に介在している、患者の脊柱VCのセグメントを示す。生体人工椎間板10は、必須に、膠様コアの除去の後、患者の天然椎間板の線維性外輪10−1を含む。線維性外輪10−1は、こうして、結合し、原位置でタンパク様バイオポリマー10−2が注入される内部空隙部の形を定める。タンパク様バイオポリマー(以下、通常、より単純に「バイオポリマー」と称する)10−2は、こうして完全に、患者の天然の椎間板の天然の膠様コアの除去の後に残る椎間板空間を充填する。バイオポリマー10−2は、こうして、除去された膠様コアに起因し得る天然機能に類似した、ショック吸収材等として機能する。
【0017】
実質上、あらゆる適当なタンパク様バイオポリマーを、本発明の実施に用いることができる。この点で、「タンパク様バイオポリマー」などの用語は、天然、合成、又は配列改変タンパク質又はポリペプチドから構成されるポリマー鎖に1以上の単位を含む重合性又は共重合性物質、及びそのような重合性及び/又は共重合性物質の混合物及び配合物を意味する。
【0018】
本発明の実施に用いることができる1つの特に好ましいバイオポリマー10−2は、最初に
パートA:混合物の約27−53重量%の水溶性タンパク様物質
パートB:混合物に存在するタンパク質20−69重量部当たり、1重量部の重量比で存在するジ−又はポリアルデヒド及び、任意に、非必須成分を含む水で組成物のバランスを構成するもの
から構成されるツーパート混合物の橋かけ反応産物である。
【0019】
混合物のパートAは、最も好ましくは、実質的に、ヒト又は動物由来のタンパク様物質の水溶液である。オボアルブミンを含むアルブミンは好ましいタンパク質である。ヒト又は動物由来の血清アルブミンは特に好ましい。タンパク様物質は、精製されたタンパク質又は、血清アルブミンなどのタンパク質が主成分である混合物とすることができる。例えば、血漿又は血清の、又は安定化血漿タンパク質の市販溶液の、脱水で得られる固体混合物を、パートAを調製するために用いることができる。これらの混合物は、一般的に血漿固体又は血清固体と称される、その主要な成分としてアルブミンを、50−90%のオーダーで含むことが知られている。ここで用いられるとき、「血漿」なる用語とは、遠心分離により、血球が除去された全血液をさす。「血清」なる用語は、さらに、フィブリノーゲン及び/又はフィブリン除去により、又はシトラート又はEDTAなどの試薬の添加によってフィブリンのクロット形成を阻害することにより、凝集を防止するように処理された血漿をさす。タンパク様物質は、ヘモグロビンの有効量を含むこともできる。
【0020】
パートBは、実質的に、ジ−又はポリアルデヒドの水溶液である。これらの物質は広範囲に存在し、それらの有用性は、多くは、利用可能性と、水中の溶解性で制限される。たとえば、水性グリオキサール(エタンジアール)は、有用であり、水性グルタルアルデヒド(ペンタンジアール)も有用である。ペリオデート、オゾンなどでの適当な炭水化物の酸化的開裂により調製されたジ−又はポリアルデヒドの水溶性混合物も有用である。グルタルアルデヒドは、パートBの好ましいジアルデヒド成分である。パートAとBを合わせるとき、得られる産物は、短い時間の混合で、通常15−30秒のオーターで、すばやく硬化し、強く、可撓性のある、革のような又はゴムのような物質になる。本発明の使用に最も好ましい物質は、”BIOGLUE”(登録商標)の名でKennesaw,GeorgiaのCryoLife,Inc.から市販されているものである(USP5,385,606も参照、その全内容はここに参照として取り込まれる)。
【0021】
上記の2つの成分AとBは、前もって混合してついで、適用するか、あるいは組織で形が定められた空隙の充填の間に、インラインの混合/ディスペンサーチップを介した混合と送達を同時に行なうかのいずれかである。2つの成分の反応で、得られる生体物質は、周囲の組織に接着し、周囲の組織の空隙に挿入するヒドロゲルであり、空間充填であり、機械的及び生物的にある期間安定である。物質は、みかけ上、固体又はスポンジ状でよい。さらに、得られる生体人工装置の物理的特性を改変するために有機又は無機の塩又は他の粒子状物質を含むことができる。好ましくは、バイオポリマー10−2は、少なくとも300kPa(好ましくは約300から約600kPa)の圧縮強度、2.5MPaの圧縮弾性率、1.0MPaのクリープ弾性率を示すであろう。バイオポリマー10−2の最終の圧縮強度は、タンパク質とクロスリンカー成分の組成を変えることにより及び/又は種々のフィラーの添加により調整することができる。
【0022】
すでに述べたように、本発明の実施に用いることができるタンパク様バイオポリマーは、反応可能な成分の上に、天然、合成又は配列改変(すなわちいわゆる「engineered」)ポリペプチドとして含まれることができる(例えば、USP6,018,030;USP5,374,431;USP5,606,019又はUSP5,817,303(これらはすべてここに参照として取り込まれる)により詳しく開示されているように)。こうして、下記の実施例の多くがアルブミンを用いているが、当業者には、他の反応可能な成分も満足できるように使用できることが理解されるであろう。反応可能な合成重合性成分、すなわち、架橋を起こす官能基を含むもの(例えば、アミン、スクシンイミジル、無水物、チオールなどの求電子性及び求核性基で誘導体化されたポリエチレン−グリコールポリマー)も、本発明の実施に用いることができる。この点について、USP6,166,130;USP6,051,648;又はUSP5,900,245を参照(その内容は全てここに参照として取り込まれる)。
【0023】
得られるわずかな圧縮機械的特性は、椎間板及び腰椎骨のそれに類似している。記載された生体物質10−2の圧縮特性は、ステンレス鋼、チタン、ポリアクリラート骨セメント、セラミクスまたは炭素繊維コンポジットなどの移植可能な構造成分として伝統的にもちいられた高剛性物質とは非常に異なり、こうして、選択された指示でよりよい生体物質適合性が得られる。例えば、本発明の生体人工椎間板は、生物の天然の椎間板に匹敵する可撓性を示す。より詳しくは、生体人工椎間板は、約0.85Mpaの負荷を少なくとも約500万サイクルかけた後で、生物天然椎間板に匹敵する可撓性を示す。
【0024】
バイオポリマー10−2の特別の特性は、特定の末端の使用に適して加工「engineered」されることができる。例えば、バイオポリマーは、それが生体適合性である限り、繊維状又は粒子状の補強材(「フィラー」)物質を含むことができる。
【0025】
こうして、天然又は合成の繊維、例えば、事実上あらゆる所望のデニールのポリエステル、ナイロン、ポリオレフィン、ガラスなどを、単一繊維の連続的な長さの形態(すなわちモノフィラメント)で、又は撚り糸の形態で、粗糸又は多数のフィラメントのロープの形態で、用いることができる。さらに、補強媒体は、撚り糸に紡糸されている所定の長さのステープル繊維の形態、所望のデニールと連続的長さの粗糸及び/又はロープの形態でもよい。モノ又はマルチフィラメントの補強物質は、織布又は不織布構造の形態でもよい。ここでは、事実上あらゆる物理的形態の繊維状補強物質、本発明の実施に満足できるように用いることができるといえば十分である。
【0026】
補強物質は、合成又は天然の有機及び無機粒子状補強物質などの粒子の形態とすることもできる。そのような粒子のいくつかの代表的な例には、炭酸カルシウム、リン酸カルシウム、ハイドロキシアパタイト骨チップ、セラミック粒子などが含まれる。
【0027】
下記の非限定的実施例を参照することにより、本発明をさらに説明する。
【0028】
【実施例】
[実施例1]
タンパク質溶液(血清アルブミン)とクロスリンカー(グルタルアルデヒド)から構成された配合物を、送達の装置の別のチェンバーに入れた。装置を始動するとき、2つの成分をその各々のチェンバーから放出して、混合チップに入れ、そこで2つの溶液が配合され、混合して、チップに存在する、静止の混合エレメントに運ばれる。医療用針が混合チップに装着され、配合物が、外植片のブタの脊柱の椎骨の遠位の空間に注入される。チップは、例えば、送達のための針、カテーテル、又は他の中空管状装置に装着することができる。30秒後、注入部位から針を引きぬいた。注入された物質は、そこで、重合し、針の孔からにじみ出なかった。2分後、椎間板−椎骨プレートを切断すると、生体物質の存在が見られた。
【0029】
[実施例2]:商業的な食肉処理場から子ウシの脊柱を得、鈍い解体と鋭い解体により、椎骨本体と椎間板を露出させた。椎間板に前面に4mmの孔をあけ、ドリルのビットを核の中心まで入れるようにした。核の物質を外科用鉗子とキューレットを用いて除いた。中空の空間を、実施例1で記載した配合物で充填した。注入された物質は、そこで、重合し、針の孔からにじみ出なかった。2分後、椎間板−椎骨プレートを切断すると、生体物質の存在が見られた。
【0030】
[実施例3]:商業的な食肉処理場から子ウシの脊柱を得、鈍い解体と鋭い解体により、椎骨本体と椎間板を露出させた。留仕口用定規を用いて中間の高さでm椎骨の上と下を互いに平行に切断し、骨/椎間板/骨運動セグメントを得た。椎間板に前面に4mmの孔をあけ、ドリルのビットを核の中心まで入れるようにした。核の物質を外科用鉗子とキューレットを用いて除いた。中空の空間を、実施例1で記載した配合物で充填した。注入された物質は、そこで、重合し、針の孔からにじみ出なかった。
【0031】
ひとたび重合がおこると、構成物は、前後軸で及び左右軸で、手で圧縮することができ、このセグメントの修復の後に、可撓性が保持されたことを示した。ついで、構成物を生体物質試験装置(Instron エレクトロメカニカルテストステーション)に入れ、構成物を状態化するために、反復的に700Nの負荷で圧縮した。その後、700Nの定常負荷を与え、圧縮クリープを測定した。負荷は、10分間保持した。この間に、重合された物質は、遠位の空間または孔からにじみ出なかった。700Nの力は、平均的な構造の人間が起立するときに腰部の椎間板が経験する負荷として刊行物に記載された値である。実験は5つの別個のサンプルについて繰り返した。
【0032】
この実施例では、核の除去の前、核の除去の後、生体物質での充填の後、及び負荷をかけてはずした後、運動セグメント高さを測定した。(1)核の除去が、物質の全体的な高さ、及び圧縮性を減少すること、及び(2)生体物質で重原することが椎間板高さと圧縮性を回復することが、見出された。
【0033】
[実施例4]:実施例1に記載された配合物を物質の容量を空隙型に注入することにより、形成された生体物質の椎間板を、最小ストレス200kPaと最高ストレス470又は800kPaのいずれかの間で(通常の腰の椎間板、断面積1500mm、300Nと700又は1200Nの負荷に相当する)圧縮速度100mm/分で100及び1000サイクルで圧縮した。椎間板エレメントは、破損や、永久的な変形を示さず、水和の損失も示さなかった(重量損失分析)。1200Nの力は、平均的な構造の人間が前方に曲げるときに、腰の脊柱の椎間板が経験する圧縮負荷として刊行物に記載された値である。
【0034】
[実施例5]:子ウシの脊柱を実施例3に記載したように取得し、調製した。この実施例では、髄核に前面又は後側面方向のいずれかからアクセスした。構成物は、ついで、5Hzで0.85MPaのサイクル負荷に置き、負荷を500万サイクルを超えて加えた。この間、構成物は、非定着性の殺菌剤を含む生理的食塩水中に保った。テスト期間の終了時に、構築物をはずし、椎間板を末端プレートと平行にスライスし、インプラントの状態を観察した。髄核の除去により形成された空隙に存在するインプラントは、そのままで可撓性を有していた。
【0035】
[実施例6]:生体物質のサンプルを実施例4に記載したように形成した。生体物質は、ついで、約2Hzで0.5MPaのサイクル負荷に置き、負荷を500万サイクルを超えて、又は1000万サイクルを超えて加えた。この間、構築物は、非定着性の殺菌剤を含む生理的食塩水中に保った。テストサンプルは、テストの持続する間そのままを維持し、高さの損失は最初の高さの10%未満であった。
【0036】
本発明を、現在最も実用的で好適な実施態様と考えられるものと関連させて記載してきたが、本発明は、開示された実施態様に限定されず、添付された請求項の精神と範囲内に含まれる、種々の変形や等価なアレンジをカバーする意図するものであることが理解されるものである。
【図面の簡単な説明】
【図1】隣接する椎骨の間に介在する、本願発明の、椎間板の生体人工器官を示す、患者の脊柱の部分を概略の図である。
【符号の説明】
10 生体人工装置
10−1 外部生物組織部材
10−2 タンパク様バイオポリマー
[0001]
(Cross reference of related application)
This application is based on co-pending US Provisional Application No. 60 / 242,457, filed Oct. 24, 2000, which gives the benefit of the national priority under 35 USC 110 (e). And all of its contents are incorporated herein by reference.
[0002]
TECHNICAL FIELD OF THE INVENTION
The present invention relates generally to bioprostheses, and in particular, in a preferred embodiment, the invention relates to bioprostheses formed in situ.
[0003]
[Prior art]
The disc is a collagenous spacer located between the vertebrae of the spine. The disc is generally composed of a rigid fibrous outer ring (annulus fibrosus) and a hyperhydrated glue-like core (nucleus pulposus). The intervertebral disc functions as a shock absorber, dissipating the energy of impacts on the back as well as the joints, allowing the human torso to flex and stretch.
[0004]
Disc deformation in the lumbar portion of the spine is a major cause of debilitating low back pain in adults over 35 years of age. Intervertebral disc deformity (DDD) is characterized by a gradual collapse of the disc due to dehydration of the nucleus pulposus or due to bulging of the annulus fibrosus. DDD accelerates the formation of fissures in the annulus, protrudes the nucleus of the disc (disc herniation), and may lead to sudden contraction of the disc height and possible nerve root and / or spinal compression. Herniated discs can also result from trauma associated with spinal load compression, such as sitting down and falling sharply.
[0005]
Chronic diffuse low back pain results from stimulation of pain receptors in the outer third disc annulus and surrounding soft tissue upon disc collapse. Root pain results from direct compression of nerve roots affected by protruding or swollen disc tissue. Intense and extensive physical and drug treatments are at the forefront of debilitating back pain. Failure to resolve acceptable pain indicates surgical intervention.
[0006]
Traditional surgical procedures for the treatment of intractable back pain with DDD include fusion of the bodies of the vertebrae above and below the affected disc, or incision, microsurgical, or endoscopic methods. Requires removal of nuclear material through Recently, new methods have been applied that involve heat shrinkage of the glue plate with an electrothermal catheter or laser device. Removal of the nucleus leaves a void inside the disc, eliminating viscoelastic fluids that act as shock absorbers. This void and viscoelastic fluid creates an opportunity for the disc to collapse internally, allowing the disc space to collapse further. Disintegration of the disc space can result in loss of motility and morbidity as nerves emanating from the spine are clamped during the collapse of the disc space.
[0007]
Many surgical techniques and specialized equipment have been created to combat the problem of progressive disc collapse resulting from nuclear ejection of the disc. The collected autologous bone is located inside the nucleated disc space and bridges or fuses the bone between the two vertebral bodies. Stem screws and other spinal tools, such as rods and plates, mechanically secure the vertebral body, stabilize the vertebrae and prevent further collapse. The problem with these and other fusion techniques is the prevention of exercise at the level of repair, and consequently the transfer of stress at the upper and lower levels. These additional loading stresses inevitably also result in these disc-level deformations.
[0008]
The patent publication discloses several devices for total disc replacement (i.e., artificial discs) whereby the damaged disc is removed and the device is secured to the vertebrae above and below the damaged disc. Has been disclosed. The ultimate goal of such a design concept is to maintain or reacquire the motility of the natural, vertebra-disc-vertebra motion segment. Various degrees of motility claim different types of mechanical disc replacement. The following is a non-exhaustive list of such US patent publications. USP 4,309,777 to Patil; USP 5,865,845 to Thalgot; USP 5,827,328 to Buttermann; USP 5,865,846 to Bryan et al. US 5,071,437 to Lee et al., USP 4,911,718; and US Pat. No. 4,714,469 to Kenna. The use of these conventional design proposals has been limited primarily by the inability to properly anchor flexible discs to the bony vertebrae.
[0009]
Another approach to repairing a damaged or diseased disc is to physically prevent disc collapse through insertion of a rigid body into the disc space. In addition, the insertion of a tubular or other hollow device, including an opening through its wall to allow bone to grow through the device, allows the motion segment to fuse with the maintained disc space. These orifices or tubular devices can be used in traditionally implantable medical devices from alloys (stainless steel, titanium and titanium alloys), carbon fiber reinforced engineering thermoplates (eg, polyetheretherketone), or mechanized human cortical bone. Can be built from These devices include, for example, USP 4,961,740 to Ray et al .; US Pat. No. 5,015,247 to Michelson; USP 5,766,253 to Brosnahan; USP 5,425,772 to Brantigan; , 814,084. Although these devices can maintain adequate spacing between vertebrae (i.e., disc height), they eliminate movement across the vertebra-disc-vertebral element when the two vertebrae fuse. Have disadvantages.
[Problems to be solved by the invention]
[0010]
Another common technique for preventing vertebral body separation is to replace the removed disc nucleus tissue with a non-fused, non-rigid material. One prior proposal suggests a sac that can be filled with fluid to restore disc height (USP 3,875,595 to Froning). Another prior proposal, disclosed in US Pat. No. 5,534,028 to Bao et al., Has a pre-cast pre-formed hydrogel placed in the void. Variations of this type of device of Bao et al. ('028) are also disclosed in USP 5,976,186, USP 5,192,326, USP 5,047,055. Inserts preformed from xerogel plastics as nucleus pulposus replacements are also disclosed in US Pat. No. 6,264,695. Cylindrical hydrogel pillows contained within non-expandable casings and related variants are described in USP 4,772,287, USP4,904,260, USP5,674,295, USP5,824,093, USP6,022,376. Has been described. In this regard, the device shown in US Pat. No. 6,022,376 is capable of being rehydrated and swelled once inserted as a dehydrated hydrogel resin into a tunnel carved inside the disc. The swelling supports the position of the device while preventing collapse of the nuclear emptying disc. However, the device is not fixed chemically or mechanically in place.
[0011]
It is disclosed in US Pat. Nos. 6,183,581, 6,206,921 and 6,264,659 that melted Gutta percha and its compounds can be used as potential replacements of the nucleus pulposus.
[0012]
[Means for Solving the Problems]
In general, the invention relates to an external biological tissue member that at least partially defines a void, and fills the void and inserts between the surrounding biological tissue members to chemically bond the tissue of the surrounding biological tissue member. The present invention relates to a bioartificial device made of a protein-like biopolymer to be bound (coupled). In a preferred aspect, the bioprosthetic device is a bioprosthetic disc having a fibrous outer annulus formed by defining and enclosing an internal cavity and removing at least a substantial portion of the natural glue-like core therefrom. The void defined from the fibrous outer ring can then be filled with a flowable biopolymer material and then at least partially solidified in situ (eg, most preferably by an in situ crosslinking reaction) It is possible to form a protein-like biopolymer in the void.
[0013]
The flowable biopolymer material is most preferably a liquid mixture of a protein material of human or animal origin and a di- or polyaldehyde. Thus, when introduced into the void, the liquid mixture can then react to form a crosslinked biopolymer in situ within the void, thereby forming a bioartificial device there. The liquid mixture can be formed previously introduced into the void or formed simultaneously during introduction into the void.
[0014]
These and other aspects and advantages will become more apparent upon careful consideration of the following description of preferred exemplary embodiments of the invention.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
As used herein and in the claims, terms such as "bioprosthetic device" refer to the combination of a biological tissue member and a proteinaceous biopolymer that is chemically bonded (coupled) to the tissue of the tissue member. I do.
[0016]
The accompanying drawings show a segment of the patient's spine VC with the bioprosthetic disc 10 of the present invention interposed between adjacent ones of the individual vertebrae V. Bioprosthetic disc 10 essentially includes the fibrous outer annulus 10-1 of the patient's natural disc after removal of the glue core. The fibrous outer ring 10-1 thus binds and defines the interior cavity into which the proteinaceous biopolymer 10-2 is injected in situ. The protein-like biopolymer (hereinafter, usually more simply referred to as "biopolymer") 10-2 thus completely fills the disc space remaining after removal of the natural glue-like core of the patient's natural disc. Biopolymer 10-2 thus functions as a shock absorber, etc., similar to the natural function that can be attributed to the removed glue-like core.
[0017]
Virtually any suitable proteinaceous biopolymer can be used in the practice of the present invention. In this regard, terms such as "protein-like biopolymer" refer to polymerizable or copolymerizable materials that include one or more units in a polymer chain composed of natural, synthetic, or sequence-modified proteins or polypeptides, and the like. Mixtures and blends of various polymerizable and / or copolymerizable substances.
[0018]
One particularly preferred biopolymer 10-2 that can be used in the practice of the present invention is initially Part A: about 27-53% by weight of the mixture of water-soluble proteinaceous substances Part B: Proteins 20-69 present in the mixture Cross-linking reaction product of a two-part mixture consisting of a di- or polyaldehyde present in a weight ratio of 1 part by weight per part by weight and optionally comprising water and a composition comprising non-essential components. is there.
[0019]
Part A of the mixture is most preferably substantially an aqueous solution of a proteinaceous substance of human or animal origin. Albumin, including ovalbumin, is a preferred protein. Serum albumin of human or animal origin is particularly preferred. The proteinaceous substance can be a purified protein or a mixture based on proteins such as serum albumin. For example, a solid mixture obtained by dehydration of plasma or serum, or a commercially available solution of stabilized plasma protein, can be used to prepare Part A. These mixtures are known to contain albumin as a major component thereof, commonly referred to as plasma solid or serum solid, on the order of 50-90%. As used herein, the term "plasma" refers to whole blood from which blood cells have been removed by centrifugation. The term “serum” further refers to plasma that has been treated to prevent aggregation by inhibiting fibrinogen and / or fibrin removal or by inhibiting the clot formation of fibrin by the addition of a reagent such as citrate or EDTA. The proteinaceous substance can also include an effective amount of hemoglobin.
[0020]
Part B is essentially an aqueous solution of a di- or polyaldehyde. These materials are widespread and their utility is often limited by their availability and solubility in water. For example, aqueous glyoxal (etandial) is useful, and aqueous glutaraldehyde (pentanedial) is also useful. Also useful are aqueous mixtures of di- or polyaldehydes prepared by oxidative cleavage of appropriate carbohydrates with periodates, ozone, and the like. Glutaraldehyde is the preferred dialdehyde component of Part B. When combining parts A and B, the resulting product is a fast-setting, strong, flexible, leather-like or rubber-like substance, with a short mixing time, usually 15-30 seconds. become. Most preferred materials for use in the present invention are CryoLife, Inc. of Kennesaw, Georgia under the name "BIOGLUE". (See also US Pat. No. 5,385,606, the entire contents of which are incorporated herein by reference).
[0021]
The two components A and B above are pre-mixed and then applied and simultaneously mixed and delivered via an in-line mixing / dispenser tip during filling of the tissue-shaped void. Either. In the reaction of the two components, the resulting biological material is a hydrogel that adheres to the surrounding tissue and inserts into the voids of the surrounding tissue, is space-filled, mechanically and biologically stable for a period of time. The substance may be apparently solid or spongy. Additionally, organic or inorganic salts or other particulate matter may be included to modify the physical properties of the resulting bioartificial device. Preferably, biopolymer 10-2 will exhibit a compressive strength of at least 300 kPa (preferably about 300 to about 600 kPa), a compressive modulus of 2.5 MPa, a creep modulus of 1.0 MPa. The final compressive strength of biopolymer 10-2 can be adjusted by changing the composition of the protein and crosslinker components and / or by adding various fillers.
[0022]
As already mentioned, proteinaceous biopolymers that can be used in the practice of the present invention can be included as natural, synthetic or sequence-modified (ie, so-called "engineered") polypeptides on a reactive component. (Eg, US Pat. No. 6,018,030; US Pat. No. 5,374,431; US Pat. No. 5,606,019 or US Pat. No. 5,817,303, all of which are hereby incorporated by reference). Thus, although many of the examples below use albumin, those skilled in the art will appreciate that other reactable components can be used satisfactorily. Reactive synthetic polymerizable components, that is, those containing functional groups that cause crosslinking (eg, polyethylene-glycol polymers derivatized with electrophilic and nucleophilic groups such as amines, succinimidyls, anhydrides, and thiols) are also included. , Can be used in the practice of the present invention. In this regard, see US Pat. No. 6,166,130; US Pat. No. 6,051,648; or US Pat. No. 5,900,245, the entire contents of which are incorporated herein by reference.
[0023]
The slight compression mechanical properties obtained are similar to those of the disc and lumbar vertebra. The compressive properties of the described biological material 10-2 are very similar to the rigid materials traditionally used as implantable structural components such as stainless steel, titanium, polyacrylate bone cement, ceramics or carbon fiber composites. Differently, this results in better biomaterial compatibility with the selected instructions. For example, the bioprosthetic discs of the present invention exhibit flexibility comparable to the natural discs of living organisms. More specifically, the bioprosthetic disc exhibits flexibility comparable to a biological natural disc after at least about 5 million cycles of a load of about 0.85 Mpa.
[0024]
The particular properties of biopolymer 10-2 can be engineered to suit the use of a particular end. For example, a biopolymer can include a fibrous or particulate reinforcement ("filler") material as long as it is biocompatible.
[0025]
Thus, natural or synthetic fibers, such as virtually any desired denier polyester, nylon, polyolefin, glass, etc., can be used in the form of continuous lengths of single fibers (ie, monofilaments) or in the form of twisted yarns. It can be used in the form of a roving or a multifilament rope. Further, the reinforcing medium may be in the form of staple fibers of a predetermined length spun into a twisted yarn, rovings and / or ropes of the desired denier and continuous length. The mono- or multi-filament reinforcing material may be in the form of a woven or non-woven structure. It is sufficient here to say that fibrous reinforcing materials in virtually any physical form can be used satisfactorily in the practice of the invention.
[0026]
The reinforcing material can also be in the form of particles, such as synthetic or natural organic and inorganic particulate reinforcing materials. Some representative examples of such particles include calcium carbonate, calcium phosphate, hydroxyapatite bone chips, ceramic particles, and the like.
[0027]
The present invention is further described by reference to the following non-limiting examples.
[0028]
【Example】
[Example 1]
The formulation composed of the protein solution (serum albumin) and the crosslinker (glutaraldehyde) was placed in another chamber of the delivery device. When the apparatus is started, the two components are discharged from their respective chambers and placed in a mixing chip, where the two solutions are blended, mixed and conveyed to a stationary mixing element present in the chip. A medical needle is attached to the mixing tip and the formulation is injected into the space distal to the vertebrae of the explant pig spine. The tip can be mounted, for example, on a needle, catheter, or other hollow tubular device for delivery. After 30 seconds, the needle was withdrawn from the injection site. The injected material then polymerized and did not ooze out of the needle hole. After 2 minutes, the disc-vertebral plate was cut and the presence of biological material was seen.
[0029]
Example 2: Calf spine was obtained from a commercial slaughterhouse and the vertebral body and discs were exposed by blunt dissection and sharp dissection. A 4 mm hole was drilled in the anterior surface of the disc so that the drill bit was inserted into the center of the nucleus. Nuclear material was removed using surgical forceps and a curette. The hollow space was filled with the formulation described in Example 1. The injected material then polymerized and did not ooze out of the needle hole. After 2 minutes, the disc-vertebral plate was cut and the presence of biological material was seen.
[0030]
Example 3 A calf spine was obtained from a commercial slaughterhouse and the vertebral body and intervertebral disc were exposed by blunt dissection and sharp dissection. The upper and lower m vertebrae were cut parallel to each other at mid-height using a ruler for the vestibule to obtain a bone / disc / bone motion segment. A 4 mm hole was drilled in the anterior surface of the disc so that the drill bit was inserted into the center of the nucleus. Nuclear material was removed using surgical forceps and a curette. The hollow space was filled with the formulation described in Example 1. The injected material then polymerized and did not ooze out of the needle hole.
[0031]
Once polymerization had occurred, the construct could be manually compressed in the anterior-posterior axis and in the left-right axis, indicating that flexibility was retained after repair of this segment. The composition was then placed in a biological material testing device (Instron electromechanical test station) and compressed repeatedly at a load of 700 N to condition the composition. Thereafter, a steady load of 700 N was applied, and compression creep was measured. The load was held for 10 minutes. During this time, the polymerized material did not ooze out of the distal space or hole. The force of 700 N is the value listed in the publication as the load experienced by the lumbar disc when an average structured human stands. The experiment was repeated on five separate samples.
[0032]
In this example, the motion segment height was measured before nucleus removal, after nucleus removal, after filling with biological material, and after unloading. It has been found that (1) removal of the nucleus reduces the overall height and compressibility of the material, and (2) overlaying with biological material restores disc height and compressibility. Was.
[0033]
[Example 4]: By injecting the volume of the substance described in Example 1 into the void volume of the substance, the intervertebral disc of the formed biological substance is subjected to a minimum stress of 200 kPa and a maximum stress of either 470 or 800 kPa. Compressed between 100 and 1000 cycles at a compression rate of 100 mm / min (normal lumbar intervertebral disc, cross-sectional area 1500 mm 2 , corresponding to a load of 300 N and 700 or 1200 N). The disc element did not show any breakage, permanent deformation, or loss of hydration (weight loss analysis). The 1200 N force is the value described in the publication as the compressive load experienced by the lumbar spinal disc when a person of average structure bends forward.
[0034]
Example 5: Calf spine was obtained and prepared as described in Example 3. In this example, the nucleus pulposus was accessed from either the anterior or posterior aspect. The constructs were then placed in a cyclic load of 0.85 MPa at 5 Hz and the load was applied for more than 5 million cycles. During this time, the composition was kept in saline containing a non-fixing fungicide. At the end of the test period, the construct was removed, the disc was sliced parallel to the end plate, and the condition of the implant was observed. The implants present in the voids formed by removal of the nucleus pulposus were flexible as such.
[0035]
Example 6: A sample of biological material was formed as described in Example 4. The biological material was then placed at a cycle load of 0.5 MPa at about 2 Hz and the load was applied for more than 5 million cycles or for more than 10 million cycles. During this time, the construct was kept in saline containing a non-fixing fungicide. The test sample remained intact for the duration of the test, with a height loss of less than 10% of the initial height.
[0036]
Although the present invention has been described in connection with what is presently considered to be the most practical and preferred embodiment, the present invention is not limited to the disclosed embodiment, but is within the spirit and scope of the appended claims. It is to be understood that the present invention is intended to cover various modifications and equivalent arrangements included in the above.
[Brief description of the drawings]
FIG. 1 is a schematic view of a portion of a patient's spine showing an intervertebral disc bioprosthesis of the present invention interposed between adjacent vertebrae.
[Explanation of symbols]
10 Bioartificial device 10-1 External biological tissue member 10-2 Protein-like biopolymer

Claims (42)

少なくとも部分的に空隙の形を定める外部生物組織部材と、前記空隙を充填し、周囲の生物組織部材の間に挿入し、周囲の生物組織部材の組織に化学的に結合する重合性物質からなる組合せ。An external biological tissue member that at least partially defines the void, and a polymerizable material that fills the void, is inserted between the surrounding biological tissue members, and chemically bonds to the tissue of the surrounding biological tissue member. combination. 前記重合性物質が、タンパク様バイオポリマーである請求項1記載の組合せ。The combination according to claim 1, wherein the polymerizable substance is a protein-like biopolymer. 前記重合性物質が、繊維状又は粒子状のフィラー物質を含む、請求項1記載の組合せ。The combination of claim 1 wherein the polymerizable material comprises a fibrous or particulate filler material. 前記バイオポリマーが、ヒト又は動物由来のタンパク質物質とジ−またはポリアルデヒドとの架橋反応産物である、請求項2記載の組合せ。3. The combination according to claim 2, wherein the biopolymer is a cross-linking reaction product of a protein material of human or animal origin with a di- or polyaldehyde. 前記タンパク質が、ウシまたはヒトの血清アルブミンまたはヘモグロビンである、請求項4記載の組合せ。5. The combination of claim 4, wherein said protein is bovine or human serum albumin or hemoglobin. 前記アルデヒドがグルタルアルデヒドである、請求項5記載の組合せ。The combination of claim 5, wherein said aldehyde is glutaraldehyde. 椎間板の形態である、請求項1乃至6のいずれか1項記載の組合せ。7. The combination according to any one of claims 1 to 6, wherein the combination is in the form of an intervertebral disc. 0.85MPaのサイクル負荷を500万サイクルかけた後に、前記椎間板がそのままで残り、可撓性を有する、請求項7記載の組合せ。The combination of claim 7, wherein the disc remains flexible after 5 million cycles of a 0.85 MPa cycle load. 前記タンパク様バイオポリマーが、少なくとも2の反応可能な成分の反応産物であり、成分のうちの一は天然、合成又は配列改変のポリペプチドを含むものである、請求項2記載の組合せ。3. The combination of claim 2, wherein the proteinaceous biopolymer is a reaction product of at least two reactable components, one of the components comprising a natural, synthetic or sequence-modified polypeptide. 前記重合性物質は、少なくとも2の反応可能な成分の反応産物であり、成分のうちの一は、架橋可能な官能基を含む、合成の重合性成分を含むものである、請求項1記載の組合せ。The combination of claim 1, wherein the polymerizable material is a reaction product of at least two reactable components, one of the components comprising a synthetic polymerizable component comprising a crosslinkable functional group. 前記合成の重合性成分は、求電子性及び/又は求核性基で誘導体化されたポリエチレングリコールポリマーを含む請求項10記載の組合せ。The combination of claim 10, wherein the synthetic polymerizable component comprises a polyethylene glycol polymer derivatized with an electrophilic and / or nucleophilic group. 前記求電子性及び/又は求核性基は、アミン、スクシンイミジル、無水物、及びチオール基から選択される少なくとも一を含む請求項11記載の組合せ。The combination according to claim 11, wherein the electrophilic and / or nucleophilic group comprises at least one selected from amine, succinimidyl, anhydride, and thiol groups. 生物天然椎間板から膠様コアを除去した後残るもので、それにより内部の空隙の形を定める線維性外輪と、前記空隙を充填し、線維性外輪の周囲の生物組織の間に挿入するタンパク様バイオポリマーからなる、生体人工椎間板。A fibrous outer ring that remains after removal of the glue-like core from the natural biological disc, thereby defining an internal void, and a protein-like material that fills the void and is inserted between biological tissues surrounding the fibrous outer ring. A bioartificial disc made of biopolymer. 生物の天然の椎間板に匹敵する可撓性を示す請求項13記載の生体人工椎間板。14. The bioprosthetic disc of claim 13, which exhibits flexibility comparable to a natural disc of an organism. 0.85MPaのサイクル負荷を500万サイクルかけた後に、生物の天然の椎間板に匹敵する可撓性を示す請求項14記載の生体人工椎間板。15. The bioprosthetic disc according to claim 14, which exhibits a flexibility comparable to a natural disc of an organism after 5 million cycles of a cyclic load of 0.85 MPa. 前記バイオポリマーが繊維状又は粒子状のフィラー物質を含む、請求項14記載の生体人工椎間板。15. The bioprosthetic disc of claim 14, wherein the biopolymer comprises a fibrous or particulate filler material. 前記バイオポリマーが、ヒト又は動物由来のタンパク質物質とジ−又はポリアルデヒドとの架橋反応産物である請求項13記載の生体人工椎間板。14. The bioprosthetic intervertebral disc according to claim 13, wherein the biopolymer is a cross-linking reaction product of a human or animal-derived protein substance with a di- or polyaldehyde. 前記タンパク質がウシ又はヒト血清アルブミン又はヘモグロビンである請求項17記載の生体人工椎間板。The bioartificial disc according to claim 17, wherein the protein is bovine or human serum albumin or hemoglobin. 前記アルデヒドがグルタルアルデヒドである、請求項17又は18記載の生体人工椎間板。19. The bioartificial disc according to claim 17 or 18, wherein the aldehyde is glutaraldehyde. 少なくとも部分的に周囲の生物組織物質により形を定められた空隙を、流動可能な重合性物質で、空隙内部の原位置で充填し、それにより生体人工器官を形成することを含む、生体人工器官の原位置形成の方法。A bioprosthesis, comprising filling an at least partially void defined by surrounding biological tissue material with a flowable polymerizable material in situ within the void, thereby forming a bioprosthesis. In-situ formation method. 前記空隙内に流動可能なタンパク様バイオポリマーを注入し、タンパク様バイオポリマーをその内部の原位置で少なくとも部分的に固化させることを含む、請求項20記載の方法。21. The method of claim 20, comprising injecting a flowable proteinaceous biopolymer into the void and at least partially solidifying the proteinaceous biopolymer in situ therein. 前記方法は、空隙内部の原位置で少なくとも2の反応可能なバイオポリマー成分を注入し、反応可能なバイオポリマー成分を、その間の架橋反応により少なくとも部分的に固化させることを含む請求項20記載の方法。21. The method of claim 20, wherein the method comprises injecting at least two reactive biopolymer components in situ within the void and allowing the reactive biopolymer components to at least partially solidify by a crosslinking reaction therebetween. Method. 前記の少なくとも2の反応可能な成分が、空隙に注入される前に、前もって混合される請求項21記載の方法。22. The method of claim 21, wherein the at least two reactive components are premixed before being injected into the void. 前記の少なくとも2の反応可能な成分が、空隙に注入されるのと同時に混合される請求項21記載の方法。22. The method of claim 21, wherein the at least two reactable components are mixed simultaneously with the injection into the void. 前記の少なくとも2の反応可能な成分が、ヒト又は動物由来のタンパク質物質及びジ−又はポリアルデヒドから構成される液体混合物を含み、該液体混合物に、空隙内部の原位置で架橋されたタンパク様バイオポリマー物質を形成させるものである請求項21記載の方法。Said at least two reactable components comprise a liquid mixture composed of a protein material of human or animal origin and a di- or polyaldehyde, wherein said liquid mixture is in situ crosslinked protein-like biomass inside the cavity. 22. The method of claim 21, wherein the method forms a polymeric material. 前記タンパク質物質と前記ジ−又はポリアルデヒドが、空隙に導入される前に、前もって混合される請求項25記載の方法。26. The method of claim 25, wherein the protein material and the di- or polyaldehyde are pre-mixed before being introduced into the void. 前記タンパク質物質と、前記ジ−又はポリアルデヒドが、空隙に導入されるのと同時に混合される、請求項25記載の方法。26. The method of claim 25, wherein the proteinaceous material and the di- or polyaldehyde are mixed at the same time as they are introduced into the void. 前記液体混合物中に繊維状又は粒子状フィラー物質を提供することを含む、請求項25記載の方法。26. The method of claim 25, comprising providing a fibrous or particulate filler material in the liquid mixture. 前記タンパク様バイオポリマーが、少なくとも2の反応可能な成分の反応産物であり、成分の一は、天然、合成又は配列改変のポリペプチドを含む請求項21記載の方法。22. The method of claim 21, wherein the proteinaceous biopolymer is a reaction product of at least two reactable components, one of the components comprising a natural, synthetic or sequence-modified polypeptide. 前記重合性物質は、少なくとも2の反応可能な成分の反応産物であり、成分の一は、架橋可能な官能基を含む合成の重合性成分を含む請求項20記載の方法。21. The method of claim 20, wherein the polymerizable material is a reaction product of at least two reactable components, one of the components comprising a synthetic polymerizable component that includes a crosslinkable functional group. 少なくとも一の反応可能な成分が、求電子性及び/又は求核性基で誘導体化されたポリエチレングリコールポリマーを含む請求項30記載の方法。31. The method of claim 30, wherein the at least one reactive component comprises a polyethylene glycol polymer derivatized with an electrophilic and / or nucleophilic group. 求電子性及び/又は求核性基は、アミン、スクシンイミジル、無水物、及びチオール基から選択される少なくとも一を含む、請求項31記載の方法。32. The method of claim 31, wherein the electrophilic and / or nucleophilic group comprises at least one selected from an amine, succinimidyl, anhydride, and a thiol group. (a)線維性外輪を有する椎間板を提供すること、この線維性外輪は、そこから膠様コアの少なくとも実質的な部分を除去することにより形成され、内部空隙を囲みかつその形を定めるものであり;
(b)流動可能な重合性物質で、線維性外輪により形を定められた空隙を充填すること;及び
(c)空隙内部の原位置で、重合性物質を少なくとも部分的に固化させること
を含む、生体人工椎間板の形成方法。
(A) Providing an intervertebral disc having a fibrous outer ring, the fibrous outer ring formed by removing at least a substantial portion of the glue-like core therefrom, surrounding and defining an internal cavity. Yes;
(B) filling the void defined by the fibrous outer ring with a flowable polymeric material; and (c) at least partially solidifying the polymeric material in situ within the void. , A method for forming a biological artificial disc.
前記重合性物質が、タンパク様バイオポリマーである請求項33記載の方法。The method according to claim 33, wherein the polymerizable substance is a protein-like biopolymer. 前記方法は、空隙内部の原位置で少なくとも2の反応可能なバイオポリマー成分を注入し、反応可能なバイオポリマー成分を、その間の反応により少なくとも部分的に固化させることを含む請求項33記載の方法。34. The method of claim 33, wherein the method comprises injecting at least two reactive biopolymer components in situ within the void and allowing the reactive biopolymer components to at least partially solidify by a reaction therebetween. . 前記の少なくとも2の反応可能な成分が、空隙に注入される前に、前もって混合される請求項35記載の方法。36. The method of claim 35, wherein the at least two reactive components are premixed before being injected into the void. 前記の少なくとも2の反応可能な成分が、空隙に注入されるのと同時に混合される請求項35記載の方法。36. The method of claim 35, wherein the at least two reactable components are mixed while being injected into the void. 前記の少なくとも2の反応可能な成分が、ヒト又は動物由来のタンパク質物質及びジ−又はポリアルデヒドからなる液体混合物を含み、該液体混合物に、空隙内部の原位置で架橋されたタンパク様バイオポリマー物質を形成させる請求項35記載の方法。The at least two reactable components comprise a liquid mixture of a protein material of human or animal origin and a di- or polyaldehyde, wherein the liquid mixture has an in situ cross-linked proteinaceous biopolymer material within the void space 36. The method of claim 35, wherein is formed. 前記タンパク質物質と前記ジ−又はポリアルデヒドが、空隙に導入される前に、前もって混合される請求項38記載の方法。39. The method of claim 38, wherein the protein material and the di- or polyaldehyde are pre-mixed before being introduced into the void. 前記タンパク質物質と、前記ジ−又はポリアルデヒドが、空隙に導入されるのと同時に混合される、請求項38記載の方法。39. The method of claim 38, wherein the protein material and the di- or polyaldehyde are mixed at the same time as they are introduced into the void. 前記液体混合物中に繊維状又は粒子状フィラー物質を提供することを含む、請求項38記載の方法。39. The method of claim 38, comprising providing a fibrous or particulate filler material in the liquid mixture. 工程(a)の前に、椎間板の膠様コアの実質的な部分を除去して内部空隙の形を定める線維性外輪を残す工程(a1)を行なう請求項33記載の方法。34. The method of claim 33, wherein step (a) is preceded by step (a1) of removing a substantial portion of the glue-like core of the disc to leave a fibrous outer annulus defining an internal void.
JP2002537171A 2000-10-24 2001-10-24 In-situ bioartificial filler and method for in-situ formation of bioartificial intervertebral disc in particular Expired - Fee Related JP4202749B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US24245700P 2000-10-24 2000-10-24
PCT/US2001/032632 WO2002034111A2 (en) 2000-10-24 2001-10-24 In situ bioprosthetic filler and methods, particularly for the in situ formation of vertebral disc bioprosthetics

Publications (2)

Publication Number Publication Date
JP2004532656A true JP2004532656A (en) 2004-10-28
JP4202749B2 JP4202749B2 (en) 2008-12-24

Family

ID=22914850

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002537171A Expired - Fee Related JP4202749B2 (en) 2000-10-24 2001-10-24 In-situ bioartificial filler and method for in-situ formation of bioartificial intervertebral disc in particular

Country Status (9)

Country Link
US (4) US20020049498A1 (en)
EP (1) EP1328220B1 (en)
JP (1) JP4202749B2 (en)
AT (1) ATE494014T1 (en)
AU (2) AU1538702A (en)
CA (1) CA2422884C (en)
DE (1) DE60143804D1 (en)
ES (1) ES2358498T3 (en)
WO (1) WO2002034111A2 (en)

Families Citing this family (101)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU7178698A (en) 1996-11-15 1998-06-03 Advanced Bio Surfaces, Inc. Biomaterial system for in situ tissue repair
AU3187000A (en) 1999-03-07 2000-09-28 Discure Ltd. Method and apparatus for computerized surgery
US7220281B2 (en) * 1999-08-18 2007-05-22 Intrinsic Therapeutics, Inc. Implant for reinforcing and annulus fibrosis
US20040010317A1 (en) * 1999-08-18 2004-01-15 Gregory Lambrecht Devices and method for augmenting a vertebral disc
US7972337B2 (en) 2005-12-28 2011-07-05 Intrinsic Therapeutics, Inc. Devices and methods for bone anchoring
US7717961B2 (en) 1999-08-18 2010-05-18 Intrinsic Therapeutics, Inc. Apparatus delivery in an intervertebral disc
US6821276B2 (en) * 1999-08-18 2004-11-23 Intrinsic Therapeutics, Inc. Intervertebral diagnostic and manipulation device
US20040044412A1 (en) * 1999-08-18 2004-03-04 Gregory Lambrecht Devices and method for augmenting a vertebral disc
CA2425951C (en) * 1999-08-18 2008-09-16 Intrinsic Therapeutics, Inc. Devices and method for nucleus pulposus augmentation and retention
WO2004100841A1 (en) 1999-08-18 2004-11-25 Intrinsic Therapeutics, Inc. Devices and method for augmenting a vertebral disc nucleus
US7998213B2 (en) 1999-08-18 2011-08-16 Intrinsic Therapeutics, Inc. Intervertebral disc herniation repair
US7553329B2 (en) 1999-08-18 2009-06-30 Intrinsic Therapeutics, Inc. Stabilized intervertebral disc barrier
US8323341B2 (en) 2007-09-07 2012-12-04 Intrinsic Therapeutics, Inc. Impaction grafting for vertebral fusion
WO2009033100A1 (en) 2007-09-07 2009-03-12 Intrinsic Therapeutics, Inc. Bone anchoring systems
US6805695B2 (en) 2000-04-04 2004-10-19 Spinalabs, Llc Devices and methods for annular repair of intervertebral discs
US6723335B1 (en) * 2000-04-07 2004-04-20 Jeffrey William Moehlenbruck Methods and compositions for treating intervertebral disc degeneration
AU1538702A (en) 2000-10-24 2002-05-06 Cryolife Inc In situ bioprosthetic filler and methods, particularly for the in situ formationof vertebral disc bioprosthetics
CA2425935C (en) 2000-11-07 2011-03-29 Cryolife, Inc. Expandable foam-like biomaterials and methods
DE60207902T2 (en) * 2001-01-30 2006-06-14 Nissan Chemical Ind Ltd Isocyanurate compound and process for its preparation
US7144393B2 (en) * 2001-05-15 2006-12-05 Dipoto Gene P Structure for receiving surgical instruments
US6812211B2 (en) * 2002-03-19 2004-11-02 Michael Andrew Slivka Method for nonsurgical treatment of the intervertebral disc and kit therefor
US20050209699A1 (en) * 2002-03-19 2005-09-22 Slivka Michael A Method for nonsurgical treatment of the nucleus pulposus of the intervertebral disc using genipin or proanthrocyanidin, and kit therefor
US7001433B2 (en) * 2002-05-23 2006-02-21 Pioneer Laboratories, Inc. Artificial intervertebral disc device
US8388684B2 (en) 2002-05-23 2013-03-05 Pioneer Signal Technology, Inc. Artificial disc device
US7744651B2 (en) * 2002-09-18 2010-06-29 Warsaw Orthopedic, Inc Compositions and methods for treating intervertebral discs with collagen-based materials
US20040054414A1 (en) * 2002-09-18 2004-03-18 Trieu Hai H. Collagen-based materials and methods for augmenting intervertebral discs
JP2006516199A (en) * 2002-09-24 2006-06-29 ボゴミール ゴレンセク Stabilization apparatus and method for intervertebral disc
US6932843B2 (en) 2002-09-25 2005-08-23 Medicinelodge, Inc. Apparatus and method for the in-situ formation of a structural prosthesis
NZ539779A (en) * 2002-11-05 2009-01-31 Spineology Inc A semi-biological intervertebral disc replacement system created by inserting tissue promoting material into a cavity in the disc
CN100394989C (en) * 2002-11-15 2008-06-18 华沙整形外科股份有限公司 Collagen-based materials and methods for augmenting intervertebral discs
US20040186471A1 (en) * 2002-12-07 2004-09-23 Sdgi Holdings, Inc. Method and apparatus for intervertebral disc expansion
CA2513680A1 (en) * 2003-01-17 2004-08-05 Psinergi Corporation Artificial nucleus pulposus and method of injecting same
KR20050092795A (en) * 2003-01-31 2005-09-22 짐머 오르쏘바이올로직스 인코포레이티드 Hydrogel compositions comprisign nucleus pulposus tissue
FR2854801B1 (en) * 2003-05-12 2006-09-01 Khorionyx INJECTABLE GLOBINE INSOLUBLE IMPLANT
DE602004031612D1 (en) * 2003-06-20 2011-04-14 Intrinsic Therapeutics Inc DEVICE FOR DISTRIBUTING AN IMPLANT THROUGH A RINGED DEFECT IN A RIBBON DISC
US20040260300A1 (en) * 2003-06-20 2004-12-23 Bogomir Gorensek Method of delivering an implant through an annular defect in an intervertebral disc
US20050071012A1 (en) * 2003-09-30 2005-03-31 Hassan Serhan Methods and devices to replace spinal disc nucleus pulposus
US7655012B2 (en) 2003-10-02 2010-02-02 Zimmer Spine, Inc. Methods and apparatuses for minimally invasive replacement of intervertebral discs
US9445916B2 (en) 2003-10-22 2016-09-20 Pioneer Surgical Technology, Inc. Joint arthroplasty devices having articulating members
US20050116400A1 (en) * 2003-11-14 2005-06-02 White Moreno J. Non-linear fiber/matrix architecture
EP1729672A2 (en) * 2004-01-08 2006-12-13 Spine Wave, Inc. Apparatus and method for injecting fluent material at a distracted tissue site
JP2008504895A (en) * 2004-06-29 2008-02-21 スパイン・ウェイブ・インコーポレーテッド Method for treating disc defects and injuries
US7235592B2 (en) 2004-10-12 2007-06-26 Zimmer Gmbh PVA hydrogel
JP4601051B2 (en) * 2004-12-20 2010-12-22 株式会社ユニバーサルエンターテインメント Gaming chips
WO2006091706A1 (en) * 2005-02-23 2006-08-31 Zimmer Technology, Inc. Blend hydrogels and methods of making
US7955339B2 (en) * 2005-05-24 2011-06-07 Kyphon Sarl Low-compliance expandable medical device
US7442210B2 (en) * 2005-06-15 2008-10-28 Jerome Segal Mechanical apparatus and method for artificial disc replacement
US8197545B2 (en) * 2005-10-27 2012-06-12 Depuy Spine, Inc. Nucleus augmentation delivery device and technique
EP1957124A2 (en) * 2005-12-07 2008-08-20 Zimmer Inc. Methods of bonding or modifying hydrogels using irradiation
US8017107B2 (en) 2005-12-22 2011-09-13 Zimmer, Inc. Perfluorocyclobutane crosslinked hydrogels
US7918889B2 (en) * 2006-02-27 2011-04-05 Warsaw Orthopedic, Inc. Expandable spinal prosthetic devices and associated methods
US8110242B2 (en) 2006-03-24 2012-02-07 Zimmer, Inc. Methods of preparing hydrogel coatings
US8137404B2 (en) * 2006-03-28 2012-03-20 Depuy Spine, Inc. Artificial disc replacement using posterior approach
US8282641B2 (en) 2006-03-28 2012-10-09 Depuy Spine, Inc. Methods and instrumentation for disc replacement
US20070233244A1 (en) * 2006-03-28 2007-10-04 Depuy Spine, Inc. Artificial Disc Replacement Using Posterior Approach
US20070233245A1 (en) * 2006-03-31 2007-10-04 Sdgi Holdings, Inc. Methods and instruments for delivering intervertebral devices
US20070255406A1 (en) * 2006-04-27 2007-11-01 Sdgi Holdings, Inc. Devices, apparatus, and methods for bilateral approach to disc augmentation
US8133279B2 (en) 2006-04-27 2012-03-13 Warsaw Orthopedic, Inc. Methods for treating an annulus defect of an intervertebral disc
US20070255286A1 (en) * 2006-04-27 2007-11-01 Sdgi Holdings, Inc. Devices, apparatus, and methods for improved disc augmentation
US20070276491A1 (en) * 2006-05-24 2007-11-29 Disc Dynamics, Inc. Mold assembly for intervertebral prosthesis
US8092536B2 (en) * 2006-05-24 2012-01-10 Disc Dynamics, Inc. Retention structure for in situ formation of an intervertebral prosthesis
US8399619B2 (en) * 2006-06-30 2013-03-19 Warsaw Orthopedic, Inc. Injectable collagen material
US20080004703A1 (en) * 2006-06-30 2008-01-03 Warsaw Orthopedic, Inc. Method of treating a patient using a collagen material
US8118779B2 (en) * 2006-06-30 2012-02-21 Warsaw Orthopedic, Inc. Collagen delivery device
US20080004431A1 (en) * 2006-06-30 2008-01-03 Warsaw Orthopedic Inc Method of manufacturing an injectable collagen material
US20080082104A1 (en) 2006-07-27 2008-04-03 Lanx, Llc Methods and apparatuses for facilitating percutaneous fusion
US7758649B2 (en) * 2006-08-04 2010-07-20 Integrity Intellect Inc. Reversibly deformable implant
US8357168B2 (en) * 2006-09-08 2013-01-22 Spine Wave, Inc. Modular injection needle and seal assembly
US8715350B2 (en) 2006-09-15 2014-05-06 Pioneer Surgical Technology, Inc. Systems and methods for securing an implant in intervertebral space
US8715352B2 (en) * 2006-12-14 2014-05-06 Depuy Spine, Inc. Buckling disc replacement
US20080269897A1 (en) * 2007-04-26 2008-10-30 Abhijeet Joshi Implantable device and methods for repairing articulating joints for using the same
US20080268056A1 (en) * 2007-04-26 2008-10-30 Abhijeet Joshi Injectable copolymer hydrogel useful for repairing vertebral compression fractures
US8864801B2 (en) * 2007-04-30 2014-10-21 Warsaw Orthopedic, Inc. Method of deformity correction in a spine using injectable materials
DE102007034580B4 (en) * 2007-07-13 2012-11-08 NMI Naturwissenschaftliches und Medizinisches Institut an der Universität Tübingen Biomaterial based on a hydrophilic polymeric carrier
US7731988B2 (en) 2007-08-03 2010-06-08 Zimmer, Inc. Multi-polymer hydrogels
US8062739B2 (en) 2007-08-31 2011-11-22 Zimmer, Inc. Hydrogels with gradient
US20090093852A1 (en) * 2007-10-05 2009-04-09 Hynes Richard A Spinal stabilization treatment methods for maintaining axial spine height and sagital plane spine balance
US7947784B2 (en) 2007-11-16 2011-05-24 Zimmer, Inc. Reactive compounding of hydrogels
US8034362B2 (en) 2008-01-04 2011-10-11 Zimmer, Inc. Chemical composition of hydrogels for use as articulating surfaces
DE102008008071A1 (en) * 2008-01-28 2009-08-06 NMI Naturwissenschaftliches und Medizinisches Institut an der Universität Tübingen Injectable biocompatible composition
US20090222096A1 (en) * 2008-02-28 2009-09-03 Warsaw Orthopedic, Inc. Multi-compartment expandable devices and methods for intervertebral disc expansion and augmentation
US20090297603A1 (en) * 2008-05-29 2009-12-03 Abhijeet Joshi Interspinous dynamic stabilization system with anisotropic hydrogels
US7976578B2 (en) * 2008-06-04 2011-07-12 James Marvel Buffer for a human joint and method of arthroscopically inserting
NL1035724C2 (en) * 2008-07-18 2010-01-22 Univ Eindhoven Tech Prosthesis comprising a core of a gel material with a woven envelope and a method for the manufacture thereof and the application thereof.
US9132207B2 (en) 2009-10-27 2015-09-15 Spine Wave, Inc. Radiopaque injectable nucleus hydrogel compositions
AU2011220834B2 (en) * 2010-02-23 2013-06-13 Cryolife, Inc. Applicator delivery tip extension
US9358122B2 (en) 2011-01-07 2016-06-07 K2M, Inc. Interbody spacer
WO2012131383A1 (en) 2011-03-31 2012-10-04 Isis Innovation Limited Intervertebral disc treatment apparatus
US20120276008A1 (en) * 2011-04-26 2012-11-01 Spine Wave, Inc. Radiopaque injectable nucleus hydrogel compositions
US9241807B2 (en) 2011-12-23 2016-01-26 Pioneer Surgical Technology, Inc. Systems and methods for inserting a spinal device
US10238771B2 (en) 2012-11-08 2019-03-26 Edwards Lifesciences Corporation Methods for treating bioprosthetic tissue using a nucleophile/electrophile in a catalytic system
US20140277467A1 (en) 2013-03-14 2014-09-18 Spinal Stabilization Technologies, Llc Prosthetic Spinal Disk Nucleus
WO2016073587A1 (en) 2014-11-04 2016-05-12 Spinal Stabilization Technologies Llc Percutaneous implantable nuclear prosthesis
PL3215067T3 (en) 2014-11-04 2020-11-02 Spinal Stabilization Technologies Llc Percutaneous implantable nuclear prosthesis
CA2997117A1 (en) 2015-09-01 2017-03-09 Spinal Stabilization Technologies Llc Implantable nuclear prosthesis
US11179493B2 (en) 2016-04-07 2021-11-23 Rowan University Methods and compositions for inducing multi-targeted healing of intervertebral disc defects
JP2020533070A (en) 2017-09-08 2020-11-19 パイオニア サージカル テクノロジー インコーポレイテッド Intervertebral implants, instruments, and methods
USD907771S1 (en) 2017-10-09 2021-01-12 Pioneer Surgical Technology, Inc. Intervertebral implant
JP7457712B2 (en) 2018-09-04 2024-03-28 スパイナル スタビライゼーション テクノロジーズ リミテッド ライアビリティ カンパニー Implantable nucleus pulposus prostheses, kits, and related methods
US11931525B2 (en) * 2018-10-04 2024-03-19 Edwards Lifesciences Corporation Stabilizer for a delivery system
CN110680559B (en) * 2019-09-27 2022-02-15 长沙晟天新材料有限公司 Chest lock integrated piece and preparation method thereof

Family Cites Families (66)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4309777A (en) 1980-11-13 1982-01-12 Patil Arun A Artificial intervertebral disc
US4472840A (en) * 1981-09-21 1984-09-25 Jefferies Steven R Method of inducing osseous formation by implanting bone graft material
US4394370A (en) * 1981-09-21 1983-07-19 Jefferies Steven R Bone graft material for osseous defects and method of making same
EP0164483B1 (en) * 1984-06-12 1989-08-16 Oscobal Ag Method of producing a bone replacement material
US4620327A (en) * 1984-07-05 1986-11-04 Caplan Arnold I Process of adapting soluble bone protein for use in stimulating osteoinduction
EP0176728B1 (en) 1984-09-04 1989-07-26 Humboldt-Universität zu Berlin Intervertebral-disc prosthesis
US4600533A (en) 1984-12-24 1986-07-15 Collagen Corporation Collagen membranes for medical use
US6018030A (en) 1986-11-04 2000-01-25 Protein Polymer Technologies, Inc. Peptides comprising repetitive units of amino acids and DNA sequences encoding the same
US4714469A (en) 1987-02-26 1987-12-22 Pfizer Hospital Products Group, Inc. Spinal implant
DE3734923C1 (en) 1987-10-15 1989-01-26 Biotest Pharma Gmbh Process for the preparation of a sterile plasma protein solution containing fibrinogen and coagulation factor XIII
US5606019A (en) 1987-10-29 1997-02-25 Protien Polymer Technologies, Inc. Synthetic protein as implantables
WO1989004646A1 (en) * 1987-11-13 1989-06-01 Jefferies Steven R Bone repair material and delayed drug delivery
US4911718A (en) 1988-06-10 1990-03-27 University Of Medicine & Dentistry Of N.J. Functional and biocompatible intervertebral disc spacer
US5213580A (en) 1988-08-24 1993-05-25 Endoluminal Therapeutics, Inc. Biodegradable polymeric endoluminal sealing process
US5510418A (en) * 1988-11-21 1996-04-23 Collagen Corporation Glycosaminoglycan-synthetic polymer conjugates
US5258028A (en) * 1988-12-12 1993-11-02 Ersek Robert A Textured micro implants
CA1318469C (en) 1989-02-15 1993-06-01 Acromed Corporation Artificial disc
JP2817966B2 (en) 1989-10-13 1998-10-30 旭光学工業株式会社 Hard tissue replenishing kneaded material with reduced irritation to living body and method for producing the same
US5385606A (en) * 1992-07-06 1995-01-31 Kowanko; Nicholas Adhesive composition and method
EP0621020A1 (en) * 1993-04-21 1994-10-26 SULZER Medizinaltechnik AG Intervertebral prosthesis and method of implanting such a prosthesis
US5373431A (en) 1993-08-31 1994-12-13 Cooper Industries, Inc. Ring/baffle element for a trim of a recessed lighting fixture
US5514180A (en) 1994-01-14 1996-05-07 Heggeness; Michael H. Prosthetic intervertebral devices
JP3127709B2 (en) 1994-04-25 2001-01-29 ブラザー工業株式会社 Recording device
US6140452A (en) * 1994-05-06 2000-10-31 Advanced Bio Surfaces, Inc. Biomaterial for in situ tissue repair
WO1995031946A1 (en) * 1994-05-24 1995-11-30 Smith & Nephew Plc Intervertebral disc implant
US5824093A (en) * 1994-10-17 1998-10-20 Raymedica, Inc. Prosthetic spinal disc nucleus
US5674296A (en) 1994-11-14 1997-10-07 Spinal Dynamics Corporation Human spinal disc prosthesis
US5900245A (en) 1996-03-22 1999-05-04 Focal, Inc. Compliant tissue sealants
US5817303A (en) 1995-05-05 1998-10-06 Protein Polymer Technologies, Inc. Bonding together tissue with adhesive containing polyfunctional crosslinking agent and protein polymer
US5766584A (en) * 1995-06-02 1998-06-16 Massachusetts Institute Of Technology Inhibition of vascular smooth muscle cell proliferation with implanted matrix containing vascular endothelial cells
US6099565A (en) * 1995-06-07 2000-08-08 Sakura, Jr.; Chester Y. Prosthetic tissue implant and filler therefor
EP0876165B1 (en) 1995-12-18 2006-06-21 Angiotech BioMaterials Corp. Crosslinked polymer compositions and methods for their use
US5865845A (en) 1996-03-05 1999-02-02 Thalgott; John S. Prosthetic intervertebral disc
US6066325A (en) * 1996-08-27 2000-05-23 Fusion Medical Technologies, Inc. Fragmented polymeric compositions and methods for their use
US5895426A (en) 1996-09-06 1999-04-20 Osteotech, Inc. Fusion implant device and method of use
US5827328A (en) 1996-11-22 1998-10-27 Buttermann; Glenn R. Intervertebral prosthetic device
IT1291210B1 (en) 1997-03-18 1998-12-29 Bridgestone Firestone Tech ANTI-STATIC TIRE.
US5800549A (en) * 1997-04-30 1998-09-01 Howmedica Inc. Method and apparatus for injecting an elastic spinal implant
US5906997A (en) * 1997-06-17 1999-05-25 Fzio Med, Inc. Bioresorbable compositions of carboxypolysaccharide polyether intermacromolecular complexes and methods for their use in reducing surgical adhesions
US6048346A (en) * 1997-08-13 2000-04-11 Kyphon Inc. Systems and methods for injecting flowable materials into bones
JP3695511B2 (en) 1998-07-03 2005-09-14 ニプロ株式会社 Bone regeneration material
KR100563476B1 (en) 1998-07-03 2006-03-27 이진용 Bone regeneration material
US6994686B2 (en) * 1998-08-26 2006-02-07 Neomend, Inc. Systems for applying cross-linked mechanical barriers
FR2787018B1 (en) * 1998-12-11 2001-03-02 Dimso Sa INTERVERTEBRAL DISC PROSTHESIS WITH LIQUID ENCLOSURE
DE60020526T2 (en) 1999-02-04 2006-05-11 SDGI Holdings, Inc., Wilmington OSTEOGENIC PASTE COMPOSITIONS AND THEIR USE
GB9902976D0 (en) 1999-02-11 1999-03-31 Giltech Ltd Composite
US6264659B1 (en) * 1999-02-22 2001-07-24 Anthony C. Ross Method of treating an intervertebral disk
US6206921B1 (en) 1999-02-22 2001-03-27 Peter A. Guagliano Method of replacing nucleus pulposus and repairing the intervertebral disk
WO2000049978A1 (en) * 1999-02-22 2000-08-31 Guagliano Peter A Method of treating an intervertebral disk
US6436143B1 (en) * 1999-02-22 2002-08-20 Anthony C. Ross Method and apparatus for treating intervertebral disks
US6428576B1 (en) * 1999-04-16 2002-08-06 Endospine, Ltd. System for repairing inter-vertebral discs
US6805697B1 (en) * 1999-05-07 2004-10-19 University Of Virginia Patent Foundation Method and system for fusing a spinal region
US6921412B1 (en) * 1999-05-18 2005-07-26 Cryolife, Inc. Self-supporting, shaped, three-dimensional biopolymeric materials and methods
US6425919B1 (en) 1999-08-18 2002-07-30 Intrinsic Orthopedics, Inc. Devices and methods of vertebral disc augmentation
US6264695B1 (en) 1999-09-30 2001-07-24 Replication Medical, Inc. Spinal nucleus implant
US6332894B1 (en) * 2000-03-07 2001-12-25 Zimmer, Inc. Polymer filled spinal fusion cage
US6723335B1 (en) * 2000-04-07 2004-04-20 Jeffrey William Moehlenbruck Methods and compositions for treating intervertebral disc degeneration
AU1538702A (en) 2000-10-24 2002-05-06 Cryolife Inc In situ bioprosthetic filler and methods, particularly for the in situ formationof vertebral disc bioprosthetics
DE60125973D1 (en) * 2000-11-15 2007-02-22 Biosyntech Canada Inc METHOD FOR RECOVERING A DAMAGED BAND DISC
US20060089721A1 (en) * 2001-01-17 2006-04-27 Muhanna Nabil L Intervertebral disc prosthesis and methods of implantation
US6936070B1 (en) * 2001-01-17 2005-08-30 Nabil L. Muhanna Intervertebral disc prosthesis and methods of implantation
US6488952B1 (en) * 2001-08-28 2002-12-03 John P. Kennedy Semisolid therapeutic delivery system and combination semisolid, multiparticulate, therapeutic delivery system
EP1448089A4 (en) * 2001-11-01 2008-06-04 Spine Wave Inc Devices and methods for the restoration of a spinal disc
CA2513680A1 (en) * 2003-01-17 2004-08-05 Psinergi Corporation Artificial nucleus pulposus and method of injecting same
US7183369B1 (en) 2003-02-14 2007-02-27 Iowa State University Research Foundation, Inc. Injectible bodily prosthetics employing methacrylic copolymer gels
CN1816357B (en) * 2003-04-30 2012-11-28 德崇大学 Thermogelling polymer blends for biomaterial applications

Also Published As

Publication number Publication date
AU2002215387B2 (en) 2005-09-29
EP1328220A4 (en) 2009-08-19
JP4202749B2 (en) 2008-12-24
CA2422884A1 (en) 2002-05-02
CA2422884C (en) 2009-05-19
ATE494014T1 (en) 2011-01-15
US20050102030A1 (en) 2005-05-12
US7621954B2 (en) 2009-11-24
US7896920B2 (en) 2011-03-01
ES2358498T3 (en) 2011-05-11
DE60143804D1 (en) 2011-02-17
EP1328220A2 (en) 2003-07-23
US20070093902A1 (en) 2007-04-26
US7621959B2 (en) 2009-11-24
US20080058942A1 (en) 2008-03-06
WO2002034111A3 (en) 2003-01-16
WO2002034111A2 (en) 2002-05-02
AU1538702A (en) 2002-05-06
EP1328220B1 (en) 2011-01-05
US20020049498A1 (en) 2002-04-25

Similar Documents

Publication Publication Date Title
JP4202749B2 (en) In-situ bioartificial filler and method for in-situ formation of bioartificial intervertebral disc in particular
AU2002215387A1 (en) In situ bioprosthetic filler and methods, particularly for the in situ formation of vertebral disc bioprosthetics
JP4125234B2 (en) Apparatus and method for pretreatment of endplates between discs
US6428576B1 (en) System for repairing inter-vertebral discs
EP0353936B1 (en) Prosthetic disc containing therapeutic material
EP1091776B1 (en) Implantable tissue repair device
US6632246B1 (en) Cartilage repair plug
US7988735B2 (en) Mechanical apparatus and method for delivering materials into the inter-vertebral body space for nucleus replacement
KR20050107426A (en) In-situ formed intervertebral fusion device and method
KR20170117424A (en) Treatment of spinal disc
CN101400381A (en) Composite implant material
WO2003073912A2 (en) Pre-fabricated tissue-engineered plug
Turner et al. Vertebroplasty using injectable calcium phosphate cement compared to polymethylmethacrylate in a unique canine vertebral body large defect model
NZ748139B2 (en) Devices for articular tissue repair
KR20080085089A (en) Device for compacting cancellous bone

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071211

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20080307

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20080314

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080609

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080909

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081009

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111017

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121017

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131017

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees