JP2004521219A - Impingement cooling system for turbine bucket platform - Google Patents

Impingement cooling system for turbine bucket platform Download PDF

Info

Publication number
JP2004521219A
JP2004521219A JP2002551268A JP2002551268A JP2004521219A JP 2004521219 A JP2004521219 A JP 2004521219A JP 2002551268 A JP2002551268 A JP 2002551268A JP 2002551268 A JP2002551268 A JP 2002551268A JP 2004521219 A JP2004521219 A JP 2004521219A
Authority
JP
Japan
Prior art keywords
impingement
platform
holes
plate
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002551268A
Other languages
Japanese (ja)
Other versions
JP4738715B2 (en
JP2004521219A5 (en
Inventor
アブアウフ,ネシム
バーブ,ケビン・ジョセフ
チョプラ,サンジェイ
ケルヒャー,デビッド・マックス
ケロック,イアン・ロバートソン
レナハン,ディーン・トマス
ネリアン,サンカー
スタークウェザー,ジョン・ハワード
ループ,ダグラス・アーサー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Publication of JP2004521219A publication Critical patent/JP2004521219A/en
Publication of JP2004521219A5 publication Critical patent/JP2004521219A5/ja
Application granted granted Critical
Publication of JP4738715B2 publication Critical patent/JP4738715B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • F01D5/187Convection cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/80Platforms for stationary or moving blades
    • F05D2240/81Cooled platforms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/201Heat transfer, e.g. cooling by impingement of a fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/221Improvement of heat transfer
    • F05D2260/2214Improvement of heat transfer by increasing the heat transfer surface

Abstract

本発明は、ガスタービンバケットのプラットホーム区域の冷却に関する。タービンバケット(10)は、プラットホーム(14)から延び、高圧及び低圧側面(30、32)を有する翼形部(12)と、ホイール取付け部分(28)と、プラットホーム(14)とホイール取付け部分(28)との間の半径方向位置に配置された中空のシャンク部分(24)とを含み、プラットホームが底面(44)を有し、複数のインピンジメント冷却孔(48、50、52)を有するインピンジメント冷却プレート(38)が、該底面から間隔を置いて中空のシャンク部分の内部に配置され、更にクロスフローの崩壊及び局部的熱伝達率の低下を減少させるように設計された、インピンジメント区域を二叉に分けるリブが設けられている。The present invention relates to cooling a platform area of a gas turbine bucket. The turbine bucket (10) extends from the platform (14) and has an airfoil (12) having high and low pressure sides (30, 32), a wheel mounting portion (28), a platform (14) and a wheel mounting portion ( 28), wherein the platform has a bottom surface (44) and has a plurality of impingement cooling holes (48, 50, 52). An impingement area, wherein an impingement area is disposed within the hollow shank portion spaced from the bottom surface and further designed to reduce cross-flow collapse and local heat transfer rate degradation. Is provided.

Description

【技術分野】
【0001】
本発明は、ガスタービン部品の冷却に関し、より具体的には、ガスタービンバケットのプラットホーム区域の冷却に関する。
【背景技術】
【0002】
タービンバケットは、翼形部領域と、該翼形部とそれによってバケットがタービンロータホイールに固定されるダブテールのような組立体端部との間の半径方向位置にある中空の基部すなわちシャンク部分とを含む。比較的平坦なプラットホームが、翼形部の基部に置かれて、中空のシャンク部分の上側表面又は壁面を形成する。
【0003】
翼形部は、前縁及び後縁と、正圧側面及び負圧側面とを有する。翼形部は、高温の燃焼ガスに曝されるので、一般的に翼形部自体の内部の内部冷却回路が用いられるが、本発明の一部ではない。ここでは、関心があるのはバケットプラットホームの冷却である。
【0004】
低サイクル疲労(LCF)は、全てのガスタービン高圧バケットに共通の破損メカニズムの1つである。低サイクル疲労は、応力及び温度の両方の関数である。応力は、機械的負荷から生じる場合があり、或いは熱的に引き起こされる場合がある。最適の冷却方式を組み込むことによって温度勾配を減少させて部品のLCF寿命を増大させることが、ガスタービン部品の設計者が直面する課題である。
【発明の開示】
【発明が解決しようとする課題】
【0005】
バケットの外側ガス流路側のプラットホーム区域は、高温のガス温度に曝されているが、プラットホームの底面は、ラジアルピンを通して前方ロータホイール空間から漏洩する空気のために比較的低温に曝される。プラットホームの底面と上面との間のこの温度差により、大きな熱勾配及び高い応力場が生じることになるので、プラットホーム区域における熱応力を減少させる最適の冷却方式が必要となる。
【課題を解決するための手段】
【0006】
本発明は、バケットプラットホーム下方の中空のバケットシャンク内部に配置されたインピンジメントプレートを含む、バケットプラットホームの必要とされる冷却ハードウェアの設計における独特な方法に関する。インピンジメントプレートは、表面(すなわち、ターゲット表面)からほぼ均一な間隔を置いて配置され、かつリブによって分割された最適化されたインピンジメント冷却孔の配列を含み、それによってバケットプラットホームの正圧側面上にインピンジメント区域を形成する。
【0007】
この冷却方法は、ホイール空間の流れにより供給される空気から成り、該空気は、インピンジメント後の流れが、プラットホーム壁面を貫通して穿孔された最適に配置されたフィルム孔の列を通して吐出されるように、プレートの方向にかつ該プレートを通して、更にバケットの正圧側面上に圧送される。
【0008】
本発明は、孔の直径、孔の間隔、及びインピンジメントプレートの冷却されるプラットホーム底面からの最適な離間距離の最も効果的な組合せを系統的に形成することを含む。インピンジメント区域を二叉に分けるリブは、二次元クロスフローの崩壊が局部的な熱伝達率に与える影響を減少させるよう設計される。ターゲット表面を3つの異なるインピンジメント区域に細分割することは、以下の点にも役立つ。
【0009】
(a)インピンジメント後の領域内の静圧変化を制御すること。
【0010】
(b)噴流とクロスストリーム流との間の運動量フラックスを制御すること。
【0011】
(c)必要とされる熱伝達率の大きさをターゲット表面の熱応力分布の変化に基づいて最適化すること。
【0012】
インピンジメントプレートにおける冷却構成及び最適化された噴流口配列に加えて、プラットホーム壁面自体は、該壁面の厚さ構成が変化するように最適化される。プラットホームの正圧側面及び翼形部−プラットホーム間のフィレット区域における応力分布を均衡させるために、プラットホーム厚さは軸方向に沿って変化させられる。プラットホームの前縁側の厚さを一様により薄くしまたプラットホームの後縁の厚さを一様により厚くすることが、最良の構成であることが実験による検討に基づいて明らかになった。接線方向に沿ったプラットホームの厚さは、変化させてもよいし、変化させなくてもよい。
【0013】
従って、1つの態様において、本発明は、タービンバケットに関し、該バケットは、プラットホームから延び、高圧側面及び低圧側面を有する翼形部と、ホイール取付け部分と、プラットホームとホイール取付け部分との間の半径方向位置に配置された中空のシャンク部分とを含み、プラットホームが底面を有し、複数のインピンジメント冷却孔を有するインピンジメント冷却プレートが、該底面から間隔を置いて中空のシャンク部分の内部に配置されている。
【0014】
別の態様において、本発明は、ガスタービンバケットに関し、該ガスタービンバケットは、プラットホームから延び、高圧側面及び低圧側面を有する翼形部と、ホイール取付け部分と、底面を有するプラットホームとホイール取付け部分との間の半径方向位置に配置された中空のシャンク部分と、該底面のインピンジメント冷却を可能にするための手段と中空のシャンク部分から冷却空気を吐出するための手段とを含む。
【0015】
更に別の態様において、本発明は、翼形部と取付け部分との間の半径方向位置に配置され、かつ中空のシャンク部分の半径方向外側壁面を形成するタービンバケット・プラットホームを冷却する方法に関し、該方法は、複数のインピンジメント冷却孔を有するインピンジメント冷却プレートを、プラットホームの底面から間隔を置いて中空のシャンク部分の内部に固定する段階と、プラットホームに吐出孔を設ける段階と、インピンジメント冷却孔とプラットホームの吐出孔とを通してタービンホイール空間の空気流を導く段階とを含む。
【発明を実施するための最良の形態】
【0016】
図1及び図2を参照すると、タービンバケット10は、水平でほぼ平らなプラットホーム14から垂直方向上向きに延びる翼形部12を含む。翼形部分は、前縁15及び後縁17を有する。プラットホーム14の下方には、バケットの根元すなわちシャンク部分24の前縁側面20及び後縁側面22から反対方向に延びる2対のいわゆる「天使の翼」がある。プラットホーム14は、シャンク部分24に結合されかつ該シャンク部分の一部を形成し、該シャンク部分24はまた、側壁又はスカート26を含む。中空のシャンク部分の下方には、ダブテール28(一部のみが図示される)があり、該ダブテール28によってバケットがタービンホイール(好ましい実施形態において、ガスタービンの第1段又は第2段ホイール)に固定される。
【0017】
翼形部12は、高圧側面30及び低圧側面32を有し、従って、プラットホーム14もまた高圧側面34及び低圧側面36を有する。中空のシャンク部分26が、プラットホームのすぐ半径方向下方に配置され、この中空のシャンク部分の内部において、インピンジメントプレート38が、プラットホームの底面44上の、該プレートの外周に一致する一体の棚部又は肩部40、42(図4参照)に沿って、シャンク部分の内部に固定(ろう付け又は他の適当な手段により)される。図3に示すように、インピンジメントプレートは、プラットホーム14の底面44に比較的に近接し、また該底面44にほぼ一致しており、インピンジメントプレート38とプラットホーム14の底面44との間の間隔が、ほぼ一定に保たれるようになっている。
【0018】
インピンジメントプレート38は、その平面図を示す図3に最も良く見られる。プレート40は、その厚さがプラットホーム底面と該プレートとの間の間隔に一致している直立リブ46によりほぼ二叉に分けられている。このような間隔は、約0.10インチから0.30インチの間、好ましくは約0.20インチとすることができる。
【0019】
プレート38には、翼形部に最も近接するインピンジメント孔又は噴流口48の第1の配列又は区域と、翼形部から遠く離れたリブ46の他方側におけるインピンジメント孔又は噴流口50の第2の配列又は区域と、翼形部の後縁17の直近にあるプレート38のコーナ部におけるインピンジメント孔又は噴流口52の第3の配列又は区域とが形成される。図3から分かるように、これら3つの孔の配列は、プラットホーム14に形成されたフィルム冷却孔56の配列のすぐ下方に位置するプレートの空白域54を囲んでおり、このフィルム冷却孔56の配列は、プレート38のインピンジメント孔とプラットホーム14のフィルム孔との間の空間的関係の理解を容易にするために、図3において仮想線で示されている。図3には、インピンジメント孔の全てが示されているわけではなく、またそれら孔が一定の尺度で図示されてもいないことを理解されたい。それにもかかわらず、線58、60、及び62の配列は、それぞれの配列の各々における孔の列の中心線を表す。流れの矢印64は、インピンジメントプレート38を通過した後にプラットホームの底部に沿ってプラットホーム14のフィルム冷却孔56における吐出位置に向かう冷却空気の流れの方向を示す。
【0020】
各配列内の孔は、所定の列において「翼幅」方向に互いに間隔を置いて配置されると同時に、列自体は「流線」方向に間隔を置いて配置される。特定の用途に応じて、両方向における間隔を変えることができる。1つの実施例では、流線方向における列の間隔は、0.16から0.43インチの間で変えることができる。翼幅方向における孔の間隔は、0.14から0.27インチの間で変えることができる。
【0021】
インピンジメントプレートのインピンジメント冷却孔48、50、52の全てが、該プレートの上面及び下面に対して垂直に穿孔され、約0.020インチの直径を有することができる。フィルム冷却孔56は、ある角度で傾斜させてプラットホームを貫通して穿孔されて、プラットホーム表面への付着を促進し、従って付加的な冷却機能を与える。
【0022】
インピンジメント孔の直径、翼幅方向及び流線方向の両方向の間隔、並びにインピンジメントプレート38とプラットホーム14の底面44との間の最適な離間距離を賢明に選択することによって、幾つかの利点が得られる。例えば、インピンジメントプレートにわたる全圧力損失を、最小限にすることができ、また運動量フラックスを制御することによっても(噴流口の配列構成のクロスフローの崩壊への影響を減らすことにより)、ターゲット表面(すなわち底面44)における高い熱伝達率分布を達成することができる。
【0023】
更に、孔48、50、52のそれぞれの配列によって形成されるインピンジメント区域を二叉に分けるリブ46を組み込むことにより、二次元クロスフローの崩壊が局部的な熱伝達率に与える影響を減少させる。このことはまた、回転場の影響による遠心荷重だけでなく、プレート40にわたる圧力比による該プレートの変形を減少させるのにも役立つ。
【0024】
冷却構成及び最適化された噴流口配列及びインピンジメントプレート構成に加えて、プラットホーム14自体の壁面が、該壁面の厚さ構成を変化させることによって最適化される。プラットホームの正圧側面及び翼形部−プラットホーム間のフィレット区域における応力分布を均衡させるために、プラットホームの厚さが、図1に最も良く見られるように軸方向に沿って変化させられる。プラットホームの前縁側の厚さを一様により薄く(例えば、0.160インチ)し、プラットホームの後縁の厚さを一様により厚く(例えば、0.380インチ)し、プラットホームの中央部の周りではそれらの厚さの間で変化させることが、最良の構成であることが実験による検討に基づいて明らかになった。
【0025】
この特定のプラットホームの幾何学形状構成を上述の冷却配置に組み合わせることよって、最良のLCF寿命が得られると思われる。
【0026】
現在最も実用的かつ好ましい実施形態であると考えられるものに関して本発明を説明してきたが、本発明は、開示した実施形態に限定されるべきではなく、逆に、特許請求の範囲の技術思想及び技術的範囲内に含まれる様々な変更形態及び均等の構成を保護しようとするものであることを理解されたい。
【図面の簡単な説明】
【0027】
【図1】バケットの中空のシャンク部分内部のインピンジメントプレートを示す、ガスタービンバケットの一部断面の部分正面図。
【図2】バケットのシャンク部分内部のインピンジメントプレートを全体的に仮想線で示す、図1に示したバケットの平面図。
【図3】本発明によるインピンジメントプレートの平面図。
【図4】図2に示したバケットの部分側面断面図。
【符号の説明】
【0028】
10 タービンバケット
12 翼形部
14 プラットホーム
15 翼形部前縁
16、18 天使の翼
17 翼形部後縁
24 シャンク部分
26 スカート
28 ダブテール
38 インピンジメント冷却プレート
44 プラットホームの底面
46 リブ
50 インピンジメント冷却孔
【Technical field】
[0001]
The present invention relates to cooling gas turbine components, and more particularly, to cooling a platform area of a gas turbine bucket.
[Background Art]
[0002]
The turbine bucket includes an airfoil region and a hollow base or shank portion at a radial position between the airfoil and an assembly end, such as a dovetail, by which the bucket is secured to the turbine rotor wheel. including. A relatively flat platform is placed at the base of the airfoil to form the upper surface or wall of the hollow shank portion.
[0003]
The airfoil has a leading edge and a trailing edge, and a pressure side and a suction side. Because the airfoil is exposed to the hot combustion gases, an internal cooling circuit is typically used within the airfoil itself, but is not part of the present invention. Here, what is of interest is the cooling of the bucket platform.
[0004]
Low cycle fatigue (LCF) is one of the failure mechanisms common to all gas turbine high pressure buckets. Low cycle fatigue is a function of both stress and temperature. Stress may result from mechanical loading or may be thermally induced. Reducing the temperature gradient and increasing the LCF life of a component by incorporating an optimal cooling scheme is a challenge faced by gas turbine component designers.
DISCLOSURE OF THE INVENTION
[Problems to be solved by the invention]
[0005]
The platform area on the outer gas flow path side of the bucket is exposed to high gas temperatures, but the bottom surface of the platform is exposed to relatively low temperatures due to air leaking from the forward rotor wheel space through the radial pins. This temperature difference between the bottom and top surfaces of the platform results in large thermal gradients and high stress fields, requiring an optimal cooling scheme to reduce thermal stress in the platform area.
[Means for Solving the Problems]
[0006]
The present invention relates to a unique method in designing the required cooling hardware of a bucket platform, including an impingement plate located inside a hollow bucket shank below the bucket platform. The impingement plate is substantially uniformly spaced from the surface (i.e., the target surface) and includes an optimized array of impingement cooling holes separated by ribs, thereby providing a pressure side of the bucket platform. Form an impingement area on top.
[0007]
This cooling method consists of air supplied by a flow in the wheel space, the air after impingement being discharged through an optimally arranged row of film holes drilled through the platform wall. As such, it is pumped in the direction of and through the plate and onto the pressure side of the bucket.
[0008]
The present invention involves systematically forming the most effective combination of hole diameter, hole spacing, and optimal spacing of the impingement plate from the bottom of the cooled platform. The ribs that bifurcate the impingement area are designed to reduce the effect of the collapse of the two-dimensional crossflow on the local heat transfer coefficient. Subdividing the target surface into three different impingement areas also helps:
[0009]
(A) Controlling static pressure changes in the region after impingement.
[0010]
(B) controlling the momentum flux between the jet and the cross-stream flow;
[0011]
(C) Optimizing the required heat transfer coefficient based on the change in the thermal stress distribution on the target surface.
[0012]
In addition to the cooling arrangement and the optimized jet arrangement in the impingement plate, the platform wall itself is optimized such that the wall thickness configuration changes. The platform thickness is varied along the axial direction to balance the stress distribution in the pressure side of the platform and in the airfoil-platform fillet area. Experimental investigations have shown that the best configuration is to make the thickness of the leading edge side of the platform evenly thinner and the thickness of the trailing edge of the platform evenly thicker. The thickness of the platform along the tangential direction may or may not be changed.
[0013]
Accordingly, in one aspect, the present invention relates to a turbine bucket, the bucket extending from the platform, having an airfoil having high and low pressure sides, a wheel mounting portion, and a radius between the platform and the wheel mounting portion. An impingement cooling plate having a bottom surface and a plurality of impingement cooling holes disposed within the hollow shank portion spaced from the bottom surface. Have been.
[0014]
In another aspect, the invention relates to a gas turbine bucket, the gas turbine bucket extending from a platform, having an airfoil having high and low pressure sides, a wheel mounting portion, and a platform and wheel mounting portion having a bottom surface. And a means for allowing impingement cooling of the bottom surface and means for discharging cooling air from the hollow shank portion.
[0015]
In yet another aspect, the present invention relates to a method of cooling a turbine bucket platform disposed at a radial location between an airfoil and a mounting portion and forming a radially outer wall surface of a hollow shank portion. The method comprises the steps of: fixing an impingement cooling plate having a plurality of impingement cooling holes inside a hollow shank portion spaced from a bottom surface of the platform; providing a discharge hole in the platform; Directing airflow in the turbine wheel space through the holes and the discharge holes of the platform.
BEST MODE FOR CARRYING OUT THE INVENTION
[0016]
Referring to FIGS. 1 and 2, the turbine bucket 10 includes an airfoil 12 extending vertically upward from a horizontal, substantially flat platform 14. The airfoil has a leading edge 15 and a trailing edge 17. Beneath the platform 14 are two pairs of so-called "angel wings" extending in opposite directions from the leading edge side 20 and trailing edge side 22 of the bucket root or shank portion 24. Platform 14 is coupled to and forms a part of shank portion 24, which also includes a side wall or skirt 26. Below the hollow shank portion is a dovetail 28 (only part of which is shown) that allows the bucket to be attached to a turbine wheel (in a preferred embodiment, a first or second stage gas turbine wheel). Fixed.
[0017]
The airfoil 12 has a high pressure side 30 and a low pressure side 32, and thus the platform 14 also has a high pressure side 34 and a low pressure side 36. A hollow shank portion 26 is located just radially below the platform, inside which the impingement plate 38 has an integral ledge on the platform bottom surface 44 that conforms to the perimeter of the plate. Or fixed (by brazing or other suitable means) along the shoulders 40, 42 (see FIG. 4) inside the shank portion. As shown in FIG. 3, the impingement plate is relatively close to and substantially coincides with the bottom surface 44 of the platform 14, and a gap between the impingement plate 38 and the bottom surface 44 of the platform 14. , But is kept almost constant.
[0018]
The impingement plate 38 is best seen in FIG. 3, which shows a plan view thereof. Plate 40 is substantially bifurcated by upstanding ribs 46 whose thickness matches the spacing between the platform bottom surface and the plate. Such spacing may be between about 0.10 inches and 0.30 inches, preferably about 0.20 inches.
[0019]
Plate 38 includes a first array or section of impingement holes or jets 48 closest to the airfoil and a first array of impingement holes or jets 50 on the other side of rib 46 remote from the airfoil. A second array or section is formed, and a third array or section of impingement holes or jets 52 at the corners of the plate 38 immediately adjacent the trailing edge 17 of the airfoil. As can be seen from FIG. 3, the arrangement of these three holes surrounds a blank area 54 of the plate located immediately below the arrangement of film cooling holes 56 formed in the platform 14, and this arrangement of film cooling holes 56. Is shown in phantom in FIG. 3 to facilitate understanding of the spatial relationship between the impingement holes in plate 38 and the film holes in platform 14. It should be understood that not all of the impingement holes are shown in FIG. 3 and that the holes are not shown to scale. Nevertheless, the arrangement of lines 58, 60, and 62 represents the centerline of the row of holes in each of the respective arrangements. The flow arrow 64 indicates the direction of the flow of cooling air after passing through the impingement plate 38 and along the bottom of the platform toward a discharge location in the film cooling holes 56 of the platform 14.
[0020]
The holes in each array are spaced from one another in the "span" direction in a given row, while the rows themselves are spaced in the "streamline" direction. The spacing in both directions can be varied depending on the particular application. In one embodiment, the row spacing in the streamline direction can vary between 0.16 and 0.43 inches. The hole spacing in the span direction can vary between 0.14 and 0.27 inches.
[0021]
All of the impingement cooling holes 48, 50, 52 of the impingement plate are drilled perpendicular to the upper and lower surfaces of the plate and can have a diameter of about 0.020 inches. Film cooling holes 56 are drilled through the platform at an angle to facilitate adhesion to the platform surface and thus provide additional cooling.
[0022]
By judiciously choosing the diameter of the impingement holes, the spanwise and streamline spacing, and the optimal separation between the impingement plate 38 and the bottom surface 44 of the platform 14, several advantages are provided. can get. For example, the total pressure drop across the impingement plate can be minimized, and by controlling the momentum flux (by reducing the impact of the orifice arrangement on the cross-flow collapse), A high heat transfer coefficient distribution at (i.e., the bottom surface 44) can be achieved.
[0023]
Further, by incorporating a rib 46 that bifurcates the impingement area formed by the respective arrangement of the holes 48, 50, 52, the effect of the collapse of the two-dimensional crossflow on the local heat transfer coefficient is reduced. . This also helps to reduce the deformation of the plate due to the pressure ratio across the plate 40, as well as the centrifugal load due to the effects of the rotating field.
[0024]
In addition to the cooling configuration and the optimized orifice arrangement and impingement plate configuration, the walls of the platform 14 itself are optimized by varying the wall thickness configuration. In order to balance the stress distribution in the pressure side of the platform and the airfoil-to-platform fillet area, the thickness of the platform is varied along the axial direction, as best seen in FIG. The thickness of the leading edge of the platform is uniformly thinner (eg, 0.160 inches), the thickness of the trailing edge of the platform is uniformly thicker (eg, 0.380 inches), and the thickness around the center of the platform is reduced. Experiments have shown that varying between these thicknesses is the best configuration.
[0025]
Combining this particular platform geometry with the cooling arrangement described above would provide the best LCF life.
[0026]
Although the present invention has been described in terms of what is presently considered to be the most practical and preferred embodiments, the present invention should not be limited to the disclosed embodiments, but rather, the spirit and scope of the following claims. It is to be understood that various modifications and equivalent arrangements included within the technical scope are intended to be protected.
[Brief description of the drawings]
[0027]
FIG. 1 is a partial front view of a partial cross section of a gas turbine bucket showing an impingement plate inside a hollow shank portion of the bucket.
2 is a plan view of the bucket shown in FIG. 1, showing the impingement plate inside the shank portion of the bucket generally in phantom lines;
FIG. 3 is a plan view of an impingement plate according to the present invention.
FIG. 4 is a partial side sectional view of the bucket shown in FIG. 2;
[Explanation of symbols]
[0028]
10 Turbine bucket 12 Airfoil 14 Platform 15 Airfoil leading edge 16, 18 Angel wing 17 Airfoil trailing edge 24 Shank portion 26 Skirt 28 Dovetail 38 Impingement cooling plate 44 Platform bottom 46 Rib 50 Impingement cooling hole

Claims (15)

プラットホーム(14)から延び、高圧側面(30)及び低圧側面(32)を有する翼形部(12)と、
ホイール取付け部分(28)と、
前記プラットホーム(14)と前記ホイール取付け部分(28)との間の半径方向位置に配置された中空のシャンク部分(24)と、を含み、
前記プラットホームが底面(44)を有し、
複数のインピンジメント冷却孔(48、50、52)を有するインピンジメント冷却プレート(38)が、前記底面から間隔を置いて前記中空のシャンク部分の内部に配置されている、
ことを特徴とするタービンバケット(10)。
An airfoil (12) extending from the platform (14) and having a high pressure side (30) and a low pressure side (32);
A wheel mounting part (28),
A hollow shank portion (24) located at a radial position between said platform (14) and said wheel mounting portion (28);
Said platform has a bottom surface (44);
An impingement cooling plate (38) having a plurality of impingement cooling holes (48, 50, 52) disposed within the hollow shank portion spaced from the bottom surface;
A turbine bucket (10), characterized in that:
前記インピンジメントプレート(38)を複数のインピンジメント区域に分割する、前記底面(44)と該インピンジメントプレートとの間の細長いリブ(46)を更に含むことを特徴とする、請求項1に記載のタービンバケット。The method of any preceding claim, further comprising an elongated rib (46) between the bottom surface (44) and the impingement plate, dividing the impingement plate (38) into a plurality of impingement areas. Turbine bucket. 前記インピンジメントプレート(38)には、前記インピンジメント冷却孔の複数の分離した配列が形成されていることを特徴とする、請求項1に記載のタービンバケット。The turbine bucket according to claim 1, wherein the impingement plate (38) is formed with a plurality of separate arrays of the impingement cooling holes. 前記インピンジメント孔(48、50、52)が、前記インピンジメントプレート(38)の上面及び下面に対してほぼ垂直であることを特徴とする、請求項3に記載のタービンバケット。The turbine bucket according to claim 3, wherein the impingement holes (48, 50, 52) are substantially perpendicular to upper and lower surfaces of the impingement plate (38). 前記インピンジメントプレート(38)が、前記インピンジメント孔を備えていない空白域(54)を含み、前記プラットホームには、前記中空のシャンク部分(24)から空気を吐出するようになっているフィルム冷却孔(56)の配列が形成されており、該フィルム冷却孔(56)の配列が、前記インピンジメントプレート(38)の前記空白域(54)と実質的に整列されていることを特徴とする、請求項3に記載のタービンバケット。The impingement plate (38) includes a void area (54) without the impingement holes, and the platform has a film cooling adapted to discharge air from the hollow shank portion (24). An array of holes (56) is formed, the array of film cooling holes (56) being substantially aligned with the empty area (54) of the impingement plate (38). The turbine bucket according to claim 3. 前記インピンジメントプレート(38)が、前記プラットホームの底面(44)から約0.10インチから約0.30インチだけ間隔を置いて配置されていることを特徴とする、請求項1に記載のタービンバケット。The turbine of any preceding claim, wherein the impingement plate (38) is spaced from the bottom surface (44) of the platform by about 0.10 inches to about 0.30 inches. bucket. 前記インピンジメント冷却孔が、約0.020インチの直径を有することを特徴とする、請求項1に記載のタービンバケット。The turbine bucket according to claim 1, wherein said impingement cooling holes have a diameter of about 0.020 inches. 前記インピンジメントプレートが、前記翼形部(12)の前記高圧側面(30)の半径方向内側に配置されていることを特徴とする、請求項1に記載のタービンバケット。2. The turbine bucket according to claim 1, wherein the impingement plate is located radially inward of the high pressure side of the airfoil. 前記インピンジメントプレート(38)には、前記インピンジメント冷却孔の複数の分離した配列が形成され、また前記インピンジメントプレート(38)が、前記インピンジメント孔を備えていない空白域(54)を含み、前記プラットホームには、前記中空のシャンク部分(24)から空気を吐出するようになっているフィルム冷却孔(56)の配列が形成されており、該フィルム冷却孔(56)の配列が、前記インピンジメントプレート(38)の前記空白域(54)と実質的に整列され、更に前記インピンジメントプレートが、前記翼形部(12)の前記高圧側面(30)の半径方向内側に配置されていることを特徴とする、請求項1に記載のタービンバケット。The impingement plate (38) is formed with a plurality of separate arrays of the impingement cooling holes, and the impingement plate (38) includes a void area (54) that does not include the impingement holes. The platform is formed with an array of film cooling holes (56) adapted to discharge air from the hollow shank portion (24), and the array of film cooling holes (56) is Substantially aligned with the void area (54) of the impingement plate (38), and the impingement plate is located radially inward of the high pressure side (30) of the airfoil (12). The turbine bucket according to claim 1, wherein: プラットホーム(14)から延び、高圧側面(30)及び低圧側面(32)を有する翼形部(12)と、
ホイール取付け部分(28)と、
底面(44)を有する前記プラットホーム(14)と前記ホイール取付け部分(28)との間の半径方向位置に配置された中空のシャンク部分(24)と、
前記底面のインピンジメント冷却を可能にするための手段と前記中空のシャンク部分から冷却空気を吐出するための手段と、
を含むことを特徴とするガスタービンバケット(10)。
An airfoil (12) extending from the platform (14) and having a high pressure side (30) and a low pressure side (32);
A wheel mounting part (28),
A hollow shank portion (24) located at a radial position between the platform (14) having a bottom surface (44) and the wheel mounting portion (28);
Means for enabling impingement cooling of the bottom surface and means for discharging cooling air from the hollow shank portion,
A gas turbine bucket (10), comprising:
翼形部(12)と取付け部分(28)との間の半径方向位置に配置され、かつ中空のシャンク部分(24)の半径方向外側壁面を形成するタービンバケット・プラットホーム(14)を冷却する方法であって、
複数のインピンジメント冷却孔(48、50、52)を有するインピンジメント冷却プレート(38)を、前記プラットホームの底面(44)から間隔を置いて前記中空のシャンク部分(24)の内部に固定する段階と、
前記プラットホームに吐出孔(56)を設ける段階と、
前記インピンジメント冷却孔(48、50、52)と前記プラットホーム(14)の前記吐出孔(56)とを通してタービンホイールスペースの空気流を導く段階と、
を含むことを特徴とする方法。
A method for cooling a turbine bucket platform (14) located at a radial position between an airfoil (12) and a mounting portion (28) and forming a radially outer wall surface of a hollow shank portion (24). And
Securing an impingement cooling plate (38) having a plurality of impingement cooling holes (48, 50, 52) within the hollow shank portion (24) spaced from a bottom surface (44) of the platform. When,
Providing a discharge hole (56) in the platform;
Directing turbine wheel space airflow through the impingement cooling holes (48, 50, 52) and the discharge holes (56) of the platform (14);
A method comprising:
前記インピンジメントプレート(38)には、前記インピンジメント冷却孔の複数の分離した配列が形成されていることを特徴とする、請求項11に記載の方法。The method of claim 11, wherein the impingement plate (38) is formed with a plurality of discrete arrays of the impingement cooling holes. 前記インピンジメント孔(48、50、52)が、前記インピンジメントプレート(38)の上面及び下面に対してほぼ垂直であることを特徴とする、請求項11に記載の方法。The method of claim 11, wherein the impingement holes (48, 50, 52) are substantially perpendicular to upper and lower surfaces of the impingement plate (38). 前記インピンジメントプレート(38)が、前記インピンジメント孔を備えていない空白域(54)を含み、前記プラットホームには、前記中空のシャンク部分(24)から空気を吐出するようになっているフィルム冷却孔(56)の配列が形成されており、該フィルム冷却孔(56)の配列が、前記インピンジメントプレート(38)の前記空白域(54)と実質的に整列されていることを特徴とする、請求項12に記載の方法。The impingement plate (38) includes a void area (54) without the impingement holes, and the platform has a film cooling adapted to discharge air from the hollow shank portion (24). An array of holes (56) is formed, the array of film cooling holes (56) being substantially aligned with the empty area (54) of the impingement plate (38). The method of claim 12, wherein: 前記インピンジメントプレート(38)には、前記インピンジメント冷却孔の複数の分離した配列が形成され、また前記インピンジメントプレート(38)が、インピンジメント孔を備えていない空白域(54)を含み、前記プラットホームには、前記中空のシャンク部分(24)から空気を吐出するようになっているフィルム冷却孔(56)の配列が形成されており、該フィルム冷却孔(56)の配列が、前記インピンジメントプレート(38)の前記空白域(54)と実質的に整列され、更に前記インピンジメントプレートが、前記翼形部(12)の前記高圧側面(30)の半径方向内側に配置されていることを特徴とする、請求項14に記載の方法。The impingement plate (38) is formed with a plurality of discrete arrays of the impingement cooling holes, and the impingement plate (38) includes a void area (54) that does not have impingement holes. The platform is formed with an array of film cooling holes (56) for discharging air from the hollow shank portion (24), and the array of film cooling holes (56) is formed by the impingement. Being substantially aligned with the void area (54) of the impulse plate (38), and the impingement plate being located radially inward of the high pressure side (30) of the airfoil (12). The method according to claim 14, characterized in that:
JP2002551268A 2000-12-19 2001-08-20 Turbine bucket platform impingement cooling system Expired - Lifetime JP4738715B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US09/739,445 2000-12-19
US09/739,445 US6478540B2 (en) 2000-12-19 2000-12-19 Bucket platform cooling scheme and related method
PCT/US2001/025947 WO2002050402A1 (en) 2000-12-19 2001-08-20 Impingement cooling scheme for platform of turbine bucket

Publications (3)

Publication Number Publication Date
JP2004521219A true JP2004521219A (en) 2004-07-15
JP2004521219A5 JP2004521219A5 (en) 2008-10-09
JP4738715B2 JP4738715B2 (en) 2011-08-03

Family

ID=24972338

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002551268A Expired - Lifetime JP4738715B2 (en) 2000-12-19 2001-08-20 Turbine bucket platform impingement cooling system

Country Status (6)

Country Link
US (1) US6478540B2 (en)
EP (1) EP1346131B1 (en)
JP (1) JP4738715B2 (en)
KR (1) KR100814168B1 (en)
CZ (1) CZ300480B6 (en)
WO (1) WO2002050402A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006046339A (en) * 2004-07-30 2006-02-16 General Electric Co <Ge> Method and device for cooling gas turbine engine rotor blade
JP2009047177A (en) * 2005-05-27 2009-03-05 Mitsubishi Heavy Ind Ltd Gas turbine moving blade having platform and method for forming same
JP2012077749A (en) * 2010-09-30 2012-04-19 General Electric Co <Ge> Apparatus and method for cooling platform region of turbine rotor blade
JP2012097746A (en) * 2010-11-04 2012-05-24 General Electric Co <Ge> System and method for cooling turbine bucket
JP2019023465A (en) * 2017-06-13 2019-02-14 ゼネラル・エレクトリック・カンパニイ Platform cooling arrangement in turbine component, and method of creating platform cooling arrangement

Families Citing this family (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2395987B (en) * 2002-12-02 2005-12-21 Alstom Turbine blade with cooling bores
US6776583B1 (en) 2003-02-27 2004-08-17 General Electric Company Turbine bucket damper pin
US6805534B1 (en) 2003-04-23 2004-10-19 General Electric Company Curved bucket aft shank walls for stress reduction
US6945749B2 (en) 2003-09-12 2005-09-20 Siemens Westinghouse Power Corporation Turbine blade platform cooling system
US7600972B2 (en) * 2003-10-31 2009-10-13 General Electric Company Methods and apparatus for cooling gas turbine engine rotor assemblies
US7147440B2 (en) * 2003-10-31 2006-12-12 General Electric Company Methods and apparatus for cooling gas turbine engine rotor assemblies
US7097417B2 (en) * 2004-02-09 2006-08-29 Siemens Westinghouse Power Corporation Cooling system for an airfoil vane
US20050220618A1 (en) * 2004-03-31 2005-10-06 General Electric Company Counter-bored film-cooling holes and related method
US7198467B2 (en) * 2004-07-30 2007-04-03 General Electric Company Method and apparatus for cooling gas turbine engine rotor blades
US7189063B2 (en) * 2004-09-02 2007-03-13 General Electric Company Methods and apparatus for cooling gas turbine engine rotor assemblies
US7090466B2 (en) * 2004-09-14 2006-08-15 General Electric Company Methods and apparatus for assembling gas turbine engine rotor assemblies
US7186089B2 (en) * 2004-11-04 2007-03-06 Siemens Power Generation, Inc. Cooling system for a platform of a turbine blade
US7255536B2 (en) * 2005-05-23 2007-08-14 United Technologies Corporation Turbine airfoil platform cooling circuit
US7597536B1 (en) 2006-06-14 2009-10-06 Florida Turbine Technologies, Inc. Turbine airfoil with de-coupled platform
US7695247B1 (en) 2006-09-01 2010-04-13 Florida Turbine Technologies, Inc. Turbine blade platform with near-wall cooling
US7841828B2 (en) * 2006-10-05 2010-11-30 Siemens Energy, Inc. Turbine airfoil with submerged endwall cooling channel
US7927073B2 (en) * 2007-01-04 2011-04-19 Siemens Energy, Inc. Advanced cooling method for combustion turbine airfoil fillets
US7775769B1 (en) 2007-05-24 2010-08-17 Florida Turbine Technologies, Inc. Turbine airfoil fillet region cooling
US8016546B2 (en) 2007-07-24 2011-09-13 United Technologies Corp. Systems and methods for providing vane platform cooling
CH700687A1 (en) 2009-03-30 2010-09-30 Alstom Technology Ltd Chilled component for a gas turbine.
US8523527B2 (en) * 2010-03-10 2013-09-03 General Electric Company Apparatus for cooling a platform of a turbine component
US9630277B2 (en) * 2010-03-15 2017-04-25 Siemens Energy, Inc. Airfoil having built-up surface with embedded cooling passage
US8647064B2 (en) 2010-08-09 2014-02-11 General Electric Company Bucket assembly cooling apparatus and method for forming the bucket assembly
US9416666B2 (en) 2010-09-09 2016-08-16 General Electric Company Turbine blade platform cooling systems
US8814517B2 (en) 2010-09-30 2014-08-26 General Electric Company Apparatus and methods for cooling platform regions of turbine rotor blades
US8840369B2 (en) 2010-09-30 2014-09-23 General Electric Company Apparatus and methods for cooling platform regions of turbine rotor blades
US8851846B2 (en) 2010-09-30 2014-10-07 General Electric Company Apparatus and methods for cooling platform regions of turbine rotor blades
US8794921B2 (en) 2010-09-30 2014-08-05 General Electric Company Apparatus and methods for cooling platform regions of turbine rotor blades
US8777568B2 (en) 2010-09-30 2014-07-15 General Electric Company Apparatus and methods for cooling platform regions of turbine rotor blades
US8814518B2 (en) 2010-10-29 2014-08-26 General Electric Company Apparatus and methods for cooling platform regions of turbine rotor blades
US20120107135A1 (en) * 2010-10-29 2012-05-03 General Electric Company Apparatus, systems and methods for cooling the platform region of turbine rotor blades
RU2548226C2 (en) 2010-12-09 2015-04-20 Альстом Текнолоджи Лтд Fluid medium flow unit, in particular, turbine with axially passing heated gas flow
US8636471B2 (en) 2010-12-20 2014-01-28 General Electric Company Apparatus and methods for cooling platform regions of turbine rotor blades
US8753083B2 (en) 2011-01-14 2014-06-17 General Electric Company Curved cooling passages for a turbine component
US8550783B2 (en) 2011-04-01 2013-10-08 Alstom Technology Ltd. Turbine blade platform undercut
US8734111B2 (en) 2011-06-27 2014-05-27 General Electric Company Platform cooling passages and methods for creating platform cooling passages in turbine rotor blades
US8893507B2 (en) 2011-11-04 2014-11-25 General Electric Company Method for controlling gas turbine rotor temperature during periods of extended downtime
US8858160B2 (en) 2011-11-04 2014-10-14 General Electric Company Bucket assembly for turbine system
US8845289B2 (en) 2011-11-04 2014-09-30 General Electric Company Bucket assembly for turbine system
US8870525B2 (en) 2011-11-04 2014-10-28 General Electric Company Bucket assembly for turbine system
US8840370B2 (en) 2011-11-04 2014-09-23 General Electric Company Bucket assembly for turbine system
US9022735B2 (en) 2011-11-08 2015-05-05 General Electric Company Turbomachine component and method of connecting cooling circuits of a turbomachine component
US9482098B2 (en) * 2012-05-11 2016-11-01 United Technologies Corporation Convective shielding cooling hole pattern
US9121292B2 (en) 2012-12-05 2015-09-01 General Electric Company Airfoil and a method for cooling an airfoil platform
US9719362B2 (en) 2013-04-24 2017-08-01 Honeywell International Inc. Turbine nozzles and methods of manufacturing the same
US9810070B2 (en) 2013-05-15 2017-11-07 General Electric Company Turbine rotor blade for a turbine section of a gas turbine
SG11201508706RA (en) * 2013-06-10 2015-12-30 United Technologies Corp Turbine vane with non-uniform wall thickness
US11111801B2 (en) 2013-06-17 2021-09-07 Raytheon Technologies Corporation Turbine vane with platform pad
WO2015047576A1 (en) * 2013-09-26 2015-04-02 United Technologies Corporation Diffused platform cooling holes
US10001018B2 (en) 2013-10-25 2018-06-19 General Electric Company Hot gas path component with impingement and pedestal cooling
US10030523B2 (en) * 2015-02-13 2018-07-24 United Technologies Corporation Article having cooling passage with undulating profile
EP3124744A1 (en) * 2015-07-29 2017-02-01 Siemens Aktiengesellschaft Vane with impingement cooled platform
US10428666B2 (en) * 2016-12-12 2019-10-01 United Technologies Corporation Turbine vane assembly
US10539026B2 (en) 2017-09-21 2020-01-21 United Technologies Corporation Gas turbine engine component with cooling holes having variable roughness
US20190264569A1 (en) * 2018-02-23 2019-08-29 General Electric Company Turbine rotor blade with exiting hole to deliver fluid to boundary layer film

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4992415A (en) * 1972-09-05 1974-09-03
JPS63230906A (en) * 1987-02-27 1988-09-27 ウエスチングハウス・エレクトリック・コーポレーション Turbine
JPH11236805A (en) * 1998-02-23 1999-08-31 Mitsubishi Heavy Ind Ltd Platform of gas turbine rotor blade

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3936227A (en) 1973-08-02 1976-02-03 General Electric Company Combined coolant feed and dovetailed bucket retainer ring
US3967353A (en) 1974-07-18 1976-07-06 General Electric Company Gas turbine bucket-root sidewall piece seals
US4012167A (en) 1975-10-14 1977-03-15 United Technologies Corporation Turbomachinery vane or blade with cooled platforms
US4017213A (en) * 1975-10-14 1977-04-12 United Technologies Corporation Turbomachinery vane or blade with cooled platforms
US4244676A (en) 1979-06-01 1981-01-13 General Electric Company Cooling system for a gas turbine using a cylindrical insert having V-shaped notch weirs
US4531889A (en) 1980-08-08 1985-07-30 General Electric Co. Cooling system utilizing flow resistance devices to distribute liquid coolant to air foil distribution channels
US4712979A (en) * 1985-11-13 1987-12-15 The United States Of America As Represented By The Secretary Of The Air Force Self-retained platform cooling plate for turbine vane
US5415526A (en) * 1993-11-19 1995-05-16 Mercadante; Anthony J. Coolable rotor assembly
US5634766A (en) * 1994-08-23 1997-06-03 General Electric Co. Turbine stator vane segments having combined air and steam cooling circuits
JP3824324B2 (en) * 1994-10-31 2006-09-20 ウエスチングハウス・エレクトリック・コーポレイション Gas turbine blades with cooling platform
US5738489A (en) 1997-01-03 1998-04-14 General Electric Company Cooled turbine blade platform
US6176678B1 (en) 1998-11-06 2001-01-23 General Electric Company Apparatus and methods for turbine blade cooling
EP1028228A1 (en) * 1999-02-10 2000-08-16 Siemens Aktiengesellschaft Cooling device for a turbine rotor blade platform
US6158962A (en) 1999-04-30 2000-12-12 General Electric Company Turbine blade with ribbed platform
EP1087102B1 (en) * 1999-09-24 2010-09-29 General Electric Company Gas turbine bucket with impingement cooled platform

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4992415A (en) * 1972-09-05 1974-09-03
JPS63230906A (en) * 1987-02-27 1988-09-27 ウエスチングハウス・エレクトリック・コーポレーション Turbine
JPH11236805A (en) * 1998-02-23 1999-08-31 Mitsubishi Heavy Ind Ltd Platform of gas turbine rotor blade

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006046339A (en) * 2004-07-30 2006-02-16 General Electric Co <Ge> Method and device for cooling gas turbine engine rotor blade
JP2009047177A (en) * 2005-05-27 2009-03-05 Mitsubishi Heavy Ind Ltd Gas turbine moving blade having platform and method for forming same
JP2012077749A (en) * 2010-09-30 2012-04-19 General Electric Co <Ge> Apparatus and method for cooling platform region of turbine rotor blade
JP2012097746A (en) * 2010-11-04 2012-05-24 General Electric Co <Ge> System and method for cooling turbine bucket
JP2019023465A (en) * 2017-06-13 2019-02-14 ゼネラル・エレクトリック・カンパニイ Platform cooling arrangement in turbine component, and method of creating platform cooling arrangement

Also Published As

Publication number Publication date
EP1346131A1 (en) 2003-09-24
CZ20031542A3 (en) 2003-10-15
KR100814168B1 (en) 2008-03-14
EP1346131B1 (en) 2013-05-08
JP4738715B2 (en) 2011-08-03
US20020076324A1 (en) 2002-06-20
US6478540B2 (en) 2002-11-12
CZ300480B6 (en) 2009-05-27
KR20030076994A (en) 2003-09-29
WO2002050402A1 (en) 2002-06-27

Similar Documents

Publication Publication Date Title
JP2004521219A (en) Impingement cooling system for turbine bucket platform
JP4063938B2 (en) Turbulent structure of the cooling passage of the blade of a gas turbine engine
US7661930B2 (en) Central cooling circuit for a moving blade of a turbomachine
JP4576177B2 (en) Converging pin cooled airfoil
JP4800915B2 (en) Damper cooling turbine blade
US5813836A (en) Turbine blade
EP1079072B1 (en) Blade tip cooling
US8348612B2 (en) Turbine blade tip shroud
US6595748B2 (en) Trichannel airfoil leading edge cooling
EP1445424B1 (en) Hollow airfoil provided with an embedded microcircuit for tip cooling
US7255536B2 (en) Turbine airfoil platform cooling circuit
US8297926B2 (en) Turbine blade
US8057177B2 (en) Turbine blade tip shroud
US7946816B2 (en) Turbine blade tip shroud
US7946817B2 (en) Turbine blade tip shroud
JPH10274001A (en) Turbulence promotion structure of cooling passage of blade inside gas turbine engine
JP3111183B2 (en) Turbine airfoil
JP2002004805A (en) Method for cooling end rail of high-pressure and low- pressure turbine composite shroud
JP2001020702A (en) Cooling of separated leading edge of airfoil portion
US8613597B1 (en) Turbine blade with trailing edge cooling
US7387492B2 (en) Methods and apparatus for cooling turbine blade trailing edges
US20060120870A1 (en) Internally cooled airfoil for a gas turbine engine and method
US20180179905A1 (en) Component having impingement cooled pockets formed by raised ribs and a cover sheet diffusion bonded to the raised ribs
US20090180894A1 (en) Turbine blade tip shroud

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080818

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100803

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20101102

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20101102

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20101102

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20101111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110427

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4738715

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term