JP2004517524A - 通信網のための障害管理システム - Google Patents

通信網のための障害管理システム Download PDF

Info

Publication number
JP2004517524A
JP2004517524A JP2002553802A JP2002553802A JP2004517524A JP 2004517524 A JP2004517524 A JP 2004517524A JP 2002553802 A JP2002553802 A JP 2002553802A JP 2002553802 A JP2002553802 A JP 2002553802A JP 2004517524 A JP2004517524 A JP 2004517524A
Authority
JP
Japan
Prior art keywords
circuit
network
fault
test
probability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002553802A
Other languages
English (en)
Inventor
マックスウェル、リチャード
フレッチャー、ブライアン・アーサー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
British Telecommunications PLC
Original Assignee
British Telecommunications PLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by British Telecommunications PLC filed Critical British Telecommunications PLC
Publication of JP2004517524A publication Critical patent/JP2004517524A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M3/00Automatic or semi-automatic exchanges
    • H04M3/22Arrangements for supervision, monitoring or testing
    • H04M3/26Arrangements for supervision, monitoring or testing with means for applying test signals or for measuring
    • H04M3/28Automatic routine testing ; Fault testing; Installation testing; Test methods, test equipment or test arrangements therefor
    • H04M3/30Automatic routine testing ; Fault testing; Installation testing; Test methods, test equipment or test arrangements therefor for subscriber's lines, for the local loop
    • H04M3/302Automatic routine testing ; Fault testing; Installation testing; Test methods, test equipment or test arrangements therefor for subscriber's lines, for the local loop using modulation techniques for copper pairs
    • H04M3/303Automatic routine testing ; Fault testing; Installation testing; Test methods, test equipment or test arrangements therefor for subscriber's lines, for the local loop using modulation techniques for copper pairs and using PCM multiplexers, e.g. pair gain systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M3/00Automatic or semi-automatic exchanges
    • H04M3/22Arrangements for supervision, monitoring or testing
    • H04M3/26Arrangements for supervision, monitoring or testing with means for applying test signals or for measuring
    • H04M3/28Automatic routine testing ; Fault testing; Installation testing; Test methods, test equipment or test arrangements therefor
    • H04M3/30Automatic routine testing ; Fault testing; Installation testing; Test methods, test equipment or test arrangements therefor for subscriber's lines, for the local loop
    • H04M3/305Automatic routine testing ; Fault testing; Installation testing; Test methods, test equipment or test arrangements therefor for subscriber's lines, for the local loop testing of physical copper line parameters, e.g. capacitance or resistance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q3/00Selecting arrangements
    • H04Q3/0016Arrangements providing connection between exchanges
    • H04Q3/0062Provisions for network management
    • H04Q3/0075Fault management techniques
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M2201/00Electronic components, circuits, software, systems or apparatus used in telephone systems
    • H04M2201/18Comparators

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Monitoring And Testing Of Exchanges (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)
  • Maintenance And Management Of Digital Transmission (AREA)
  • Monitoring And Testing Of Transmission In General (AREA)
  • Small-Scale Networks (AREA)

Abstract

通信網の一部を形成するアクセス網用の障害管理システムを動作する方法が説明される。該アクセス網では、銅線の対の形を取る終端回線がローカルスイッチ(10)から一連のノードを通ってネットワークのユーザのために備えられる端末装置へと伸張する。該障害管理システムは、テストヘッド(104)及びアクセス網管理システム(102)を含む。テストヘッド(104)は、毎晩終端回路のそれぞれで一連の試験を実行する。該試験の結果はアクセス網管理(102)に送信される。試験結果は、次に、例えば1年という所定の期間内に関連する回線に障害が発生するだろうことを示す特性を識別するために一式のパラメータに関して分析される。それから、障害が実際に発生する、及び/またはネットワークの地下部分あるいは地上部分のどちらかにおいて分析された潜在的な障害が発生するだろう確率を確立するために追加の分析を実施できる。

Description

【0001】
本発明は、通信網の終端回路内における障害を管理するための障害管理システムに関わり、このような障害管理システムを運用する方法にも関わる。
【0002】
従来の通信網は、比較的少数の相互接続されたメインスイッチ、及びそれぞれが1つまたは複数のメインスイッチに接続されるはるかに多数のローカルスイッチ(local switch)を備える。該ローカルスイッチは、ネットワークの終端回路に接続され、これらの回線の遠端はネットワークのユーザに提供される電話機器などの端末装置に接続される。メインスイッチ及びローカルスイッチから形成されるネットワークはコアネットワークとして知られているが、終端回路から形成されるネットワークはアクセス網または加入回線としていろいろに知られている。本明細書においては、それはアクセス網と呼ばれるだろう。いくつかの終端回路は、交換機能を備える場合もあれば備えない場合もあるリモートコンセントレータに接続されている。次に、リモートコンセントレータはローカルスイッチに接続される。本明細書では、用語「ローカルスイッチ」は、ローカルスイッチとリモートコンセントレータの両方をカバーすると解釈されるべきである。
【0003】
従来のアクセス網においては、各終端回路は1対の銅線から形成されている。典型的には、銅線の各対はローカルスイッチと端末装置間の一連のノード(つまりネットワーク要素)を通過する。このようなノードの例が、一次交差接続点、二次交差接続点、分配点(DP)、ケーブルノード及びジョイントである。
【0004】
最近では、アクセス網内で終端回路を運ぶためには光ファイバが使用されている。近代的なアクセス網では、銅線と光ファイバの両方の対が終端回路を運ぶために使用される。終端回路が光ファイバで運ばれる場合、回線は、典型的にはローカルスイッチと端末装置間の複数のノードを通過するだろう。各ノードにおいて、ローカルスイッチからの入信ファイバは、さまざまな方向へ分岐する発信ファイバのグループに分割される。終端回路がローカルスイッチからの光ファイバにより運ばれる場合、回線の最後の部分は1対の銅線により運ばれてよい。残念なことに、終端回路は障害を被りがちである。1対の銅線により運ばれる終端回路の場合、このような障害の例は断線、1対のワイヤの2本のワイヤの間での短絡、及びワイヤと接地の間の短絡である。複数の対のワイヤから形成される従来のアクセス網の場合では、障害の原因はノード内への水の進入及びノードに対する物理的な損傷を含む。
【0005】
カスタマが障害を報告すると、終端回路は、障害の原因を識別できるように試験されてよい。それから障害を修復することができる。ただし、障害が修復されるまで、ユーザはサービスの損失を被る。
【0006】
日常的に、例えば夜間にアクセス網の各終端回路で一式の回線試験を実行する方法は既知である。このような定期試験は終端回路上の障害を検出できる。次におそらく終端回路のユーザがサービスの損失に気付く前に該障害を修復することができる。アクセス網の個々のノードの運用品質を測定することも既知である。ノードの運用品質が悪い場合、障害がノードを通過する終端回路内で進展するものと考えられる。しかしながら、ノードの運用品質を測定することは可能であるが、現在のシステムはネットワーク管理者に、運用品質がいつ受け入れがたいほど低くなると思われるのかを示すための情報を提供しない。
【0007】
本発明のある態様に従って、通信網のための障害管理システムを運用する方法が提供され、前記通信網は交換機及び通信網のユーザに提供される端末装置に前記交換機を接続する1つまたは複数の終端回路のアクセス網を含み、前記終端回路の各々は、前記交換機とそのそれぞれの端末装置間の1つまたは複数のノードを通過し、前記障害管理システムは、
前記終端回路について回路試験を実行するように配置される回路試験装置と、
前記終端回路及び前記ノードに関係するデータを記憶する記憶部を含む、前記回路試験装置を制御するコンピュータシステムと、を備え、
前記方法は、前記コンピュータシステムにより実行される以下の工程を具備し、
以下の工程は、
前記終端回路の少なくとも一部の該回路または各回路について回路試験を実行して、このように試験された該回路または各回路の、それぞれが試験データの1つまたは複数の要素を備える試験結果を作成するように前記回線試験装置に対して命令する工程と、
前記回路または各回路に対する試験データの1つまたは複数の要素を、所定期間内に障害を起こす可能性のある回路の特性を定める一式のパラメータと比較する工程と、
前記要素または各要素が前記パラメータ内にある場合に、前記関連付けられた回路を所定期間内に障害を起こす可能性を有するとして分類する工程と、を備える。
【0008】
回路がいつ障害を起こすと思われるのかの表示を提供することにより、事前に、つまり潜在的な障害が実際に発生する前にネットワークを修復することが可能である。この機能は、ネットワークの保守の計画にも役立つ。
【0009】
本発明の別の態様に従って、交換機及び前記交換機を通信網のユーザのために提供される端末装置に接続する、各々が前記交換機とそのそれぞれの端末装置間の一連のノードを通過する終端回路のアクセス網を含む通信網のための障害管理システムが提供され、前記障害管理システムは、
前記終端回路についての回路試験を実行して、試験結果を作成するように配置された回路試験装置と、
前記終端回路に関係するデータを含む記憶装置と、
前記または各回路に対する前記試験結果の1つまたは複数の要素を、所定の期間内に障害を起こす可能性がある回路の特性を定めるパラメータの集合と比較する手段と、
前記要素または各要素がパラメータ内にある場合に、前記関連付けられた回路を、所定期間内に障害を起こす可能性を有するとして分類するために動作する手段と、を備える。
【0010】
ここで図1を参照すると、ローカルスイッチ10及び該ローカルスイッチ10に接続される従来のアクセス網12が示されている。ローカルスイッチ10及びアクセス網12は、通信網の一部を形成する。ローカルスイッチ10は、終端回路つまりアクセス網12の回線に接続されている。典型的には、ローカルスイッチは、数千の終端回路に接続されている。各終端回路または回線はそのそれぞれの端末装置に到達する前に複数のノードを通過する。これらのノードは一次交差接続点、二次交差接続点、分配点(DP)、及びジャンクションを有し、これらのノードの例は後述される。
【0011】
図1に図示される従来のアクセス網12では、各終端回路又は回線は1対の銅線から形成されている。該銅線はローカルスイッチ10を1本または複数本のケーブルの形で離れる。これらのケーブルの内の1本が図1に図示され、参照番号14で示されている。交換機10からのケーブル14の遠端は、街路の筐体または地下のジャンクションボックスの中に収容されることがある一時交差接続点16に接続されている。一次交差接続点16から、終端回線はケーブルとして複数の方向に分岐する。簡略さのために、図1では、3本のケーブル18、20及び22だけが図示されている。ケーブル18の遠端はジョイント19に接続されている。該ジョイント19はケーブル21により二次交差接続点24に接続される。ケーブル20と22の遠端はそれぞれ二次交差接続点26と28に接続される。簡略さのために、終端回線の二次交差接続点24と26を超える続行は図示されていない。二次交差接続点24、26、及び28は地上または地下に位置してよいジャンクションボックス内に収容される。
【0012】
二次交差接続点28から、終端回線はケーブルの形を取り、再び複数の方向に分岐する。実例として、図1は、二次交差接続点28を離れるケーブル40、42、及び44を示している。ケーブル40及び44は、それぞれジョイント46と48に接続される。ジョイント46と48はそれぞれ、遠端が分配点54と56に接続されているケーブル50と52に接続される。ケーブル42の遠端はジョイント60に接続される。ジョイント60は、ケーブル62によって分配点64に接続される。簡略さのために、分配点54と56を超える終端回線は図示されていない。
【0013】
分配点は、典型的には電話線電柱に位置しているジャンクションボックスとして実現される。各分配点から、終端回線は、ネットワークのユーザのために提供される端末装置が位置する単一の銅線対として分岐する。図1は、分配点64を離れる2つの単一銅線対70、72を示している。銅線対70と72の遠端は、それぞれ端末装置74、76に接続されている。周知であるように、端末装置は多様な形を取ってよい。例えば、端末装置は電話ボックス内に位置する電話、家庭または事務所に位置する電話機器、あるいはカスタマの敷地内に位置するファックス機またはコンピュータであってよい。図1に示されている例では、ジョイント19、46、48、及び60の各々が2本のケーブルをまとめて接続するために使用されている。ジョイントは、2本または3本以上の小型のケーブルをさらに大型のケーブルに接続するためにも使用されてよい。
【0014】
各終端回線では、各対の2本のワイヤは、ワイヤAとワイヤBと表される。ローカルスイッチ10では、回線に電流を供給するため、50Vというバイアス電圧がワイヤAとワイヤB間に印加される。バイアス電圧が電池を使用して早期交換器内で印加されたので、バイアス電圧は依然として電池電圧として既知である。端末装置では、ワイヤAとワイヤBはコンデンサにより接続され、コンデンサの存在は、端末装置が使用されていないときに検出されてよい。
【0015】
アクセス網10内の終端回線は障害を被りがちである。これらの障害の主要な原因は、終端回線がローカルスイッチ10と端末装置間で通過するノードに対する水の進入及び物理的な損傷である。ノード内に起因する原因のために発生する5つの主要な障害がある。これらの障害は切断、短絡、障害蓄電池電圧、接地障害及び低絶縁抵抗である。切断は、終端回線がローカルスイッチと端末装置の間で割り込まれる場合に発生する。短絡は、回線のワイヤAとワイヤBがいっしょに接続される場合に発生する。終端回線のワイヤAまたはワイヤBが別の回線のワイヤBに短絡接続を有する場合に障害のある蓄電池電圧が生じる。接地障害は、ワイヤAまたはワイヤBが接地、つまり別の回線のワイヤAに接続されると生じる。低絶縁抵抗は、ワイヤAとワイヤBの間、あるいはワイヤの内の1本と接地の間、あるいはワイヤの内の1本と別の回線のワイヤの間の抵抗が許容値を下回る場合に生じる。
【0016】
アクセス網12の終端回線内での障害を検出するために、ローカルスイッチ10には加入者回線試験装置80が具備される。加入者回線試験装置80は、ローカルスイッチ10から、あるいはさらに詳しく後述されるように遠隔地から操作されてよい。加入者試験装置80は多様な試験を実行することができ、その例が後述されるだろう。ローカルスイッチ用の多様な型の加入者回線試験装置が市販されている。この例では、加入者回線試験装置はテラダイン(Teradyne)試験装置あるいはヴァンダーホフ(Vanderhoff)試験装置のどちらかである。両方の型の試験装置を使用してよい場合もある。回線に関して抵抗、容量、及び電圧の測定データを生じさせるだけではなく、装置のこれらの部品は「ベルループ(Bell Loop)」、「マスタジャックループ(Master Jack Loop)」、及び「ブリッジ(Bridged)」などの終端ステートメントと呼ばれるデータも助長する。これらの終端ステートメントは、装置が検出するように装置される特殊回線状態である。
【0017】
ここで図2を参照すると、ローカルスイッチ10及びアクセス網12に障害管理システムを提供する通信網の構成部品が図示されている。これらの構成部品は、加入者回線試験装置80、通信網用のカスタマサービスシステム100、及びアクセス網管理システム102を有する。加入者回線試験装置80はテストヘッド104を備える。加入者回線試験装置80は、物理的に加入者回線試験を行うための電子装置を含むテストヘッド104、及び該テストヘッド104用の制御装置106を備える。制御装置106はコンピュータの形を取る。制御装置106は、それに接続され、ローカルスイッチ10に設けられるワークステーション108から操作できる。また、制御装置106はカスタマサービスシステム100とアクセス網管理システム102の両方に接続され、カスタマサービスシステム100またはアクセス網管理システム102のどちらかに接続されるワークステーションにより操作できる。
【0018】
カスタマサービスシステム100はコンピュータでもあり、それは、それに接続されている数多くのワークステーションの任意の1つから操作できる。図3では、1つのこのようなワークステーションが図示され、参照番号110によって示される。カスタマサービスシステム100は、ネットワークのカスタマと接触する通信網のオペレータにより使用される。これらのオペレータとともに、カスタマサービスシステムは多様なサービスをカスタマに提供することを担当する。
【0019】
アクセス網管理システム102もコンピュータであり、それは数多くのワークステーションの1つから操作できる。これらのワークステーションの1つは図3に図示され、参照番号112で示されている。アクセス網管理システム102は、アクセス網ネットワーク12と同じ一般的な地理的地域内の数多くの他のアクセス網だけではなくアクセス網12を管理することも担当する。アクセス網管理システムは、それが管理するアクセス網の各々の多様な動作を管理する。これらの動作は、新規装置の提供、ネットワーク内でエンジニアにより実行される作業に関するデータのロギング、各アクセス網の障害の検出及び管理の終端回線及びノードに関するデータの管理を含む。アクセス網管理システム102に接続されるワークステーションも、カスタマサービスシステム100に接続される。図3に図示されるように、カスタマサービスシステム100及びアクセス網管理システム102はともに接続されている。
【0020】
アクセス網12内での障害の検出及び管理を除くカスタマサービスシステム100及びアクセス網管理システム102により実行される動作は、本発明の一部を形成しないので、さらに詳しく説明しない。
【0021】
この例においてアクセス網12のための障害管理システムは加入者回線試験装置80、カスタマサービスシステム100及びアクセス網管理システム102から形成されているが、障害管理システムを単独でただ加入者回線試験装置80によって提供することも可能だろう。これを達成するために、制御装置106を形成するコンピュータに適切なソフトウェアを追加することも必要となるだろう。小規模ネットワークでは、これは障害管理システムを提供するという適切な形となる可能性がある。しかしながら、大規模ネットワークでは、障害管理システムをカスタマサービスシステム100及びアクセス網管理システム102に統合することも有利である。
【0022】
制御装置106は、テストヘッド104にアクセス網12の各終端回路で毎晩一連の定期試験を実行させるようにプログラミングされている。これらの試験は、図3に図示されている回路図に関して説明されるだろう。
【0023】
回線を試験するために、それは交換機10から切断され、テストヘッド104に接続される。図3は試験されている回線300を示している。回線300はワイヤA302とワイヤB304を有している。交換機10から遠い回線300の端部は端末装置306に接続されている。回線302、304の各々は、その直径及びローカルスイッチから端末装置306までの距離に依存する抵抗を有する。ワイヤ302、304の各々は絶縁材で被覆される。絶縁材の機能は、各ワイヤと隣接するワイヤの間に絶縁を実現することである。絶縁材に対する損傷、あるいはワイヤの金属の酸化により、2本の隣接するワイヤ間の抵抗が低下することがある。
【0024】
ワイヤ302、304間の絶縁の効果は、ワイヤA302とワイヤB304の間の抵抗R1、及びワイヤB304とワイヤA302の間の抵抗R2を測定することにより突き止めることができる。抵抗R1とR2は、ダイオードD1とD2によって示されるような整流作用のために異なる場合がある。良好な状態の回路の場合、抵抗R1とR2は高く、1メガオームより大きい。絶縁材に対する損傷または酸化により、抵抗R1、R2は、損傷または酸化の重大度に応じる量、低下する。ワイヤAとワイヤBが物理的に互いに接触するように絶縁材が完全に破壊される場合、抵抗R1、R2の値はテストヘッド80と損傷の点の間の距離に左右されるだろうが、典型的には0から1500オームの範囲となるだろう。酸化により、ワイヤが事実上互いに接触する結果となる場合がある。
【0025】
試験されている回線300のワイヤAとワイヤB302、304だけが切断される。他の回線では、50ボルトというバイアス電圧がワイヤAとワイヤBの間に印加される。図3では、他の回線のワイヤAが、交換機10で接地に接続されるワイヤ310によって集合的に示されている。他の回線のワイヤBは、交換機で−50ボルトという電位に接続されるワイヤ312により集合的に示されている。
【0026】
隣接するワイヤAまたはワイヤBの1本からワイヤA302またはワイヤB304を分離する絶縁材が損傷を受ける場合、あるいはワイヤの内の1本が酸化を被る場合、電流は流れてよい。ワイヤA302、ワイヤB304と隣接するワイヤAとBの間の絶縁の効果は、ワイヤA302と隣接するワイヤA310間の抵抗R3、ワイヤA302と隣接するワイヤB312間の抵抗R4、ワイヤB304と隣接するワイヤA310間の抵抗R5、及びワイヤB304と隣接するワイヤB312の間の抵抗R6を測定することにより確認できる。
【0027】
良好な回路の場合、抵抗R3、R4、R5、R6は高く、1メガオームより大きい。絶縁材に対する損傷は、抵抗R3、R4、R5、R6の内の1つまたは複数を、損傷の重大度に応じる量、低下させることがある。ワイヤA302またはワイヤB304と隣接するワイヤの間の絶縁材が、2本のワイヤが物理的に互いに接触するように完全に破壊される場合、2本の接触するワイヤの間の抵抗はテストヘッド80と損傷点の間の距離に左右されるが、典型的には0から1500オームの範囲となるだろう。酸化により、2本のワイヤが事実上互いに接触する結果となる場合もある。
【0028】
ワイヤAとB、302、304及びそれらの間の絶縁材はコンデンサの役割を果たす。図3では、ワイヤAとワイヤBの間の静電容量は値C1を有するとして図示されている。回線のワイヤAとワイヤBの間の静電容量の値は回線の長さに左右されるだろう。回線300での断線は、テストヘッド80から測定されるような静電容量C1の値を削減するだろう。図3は、ワイヤA302と接地の間の静電容量C2及びワイヤB304と接地の間の静電容量C3も示す。
【0029】
毎晩、制御装置106は、アクセス網12の終端回線ごとに、テストヘッド80に抵抗R1、R2、R3、R4、R5、R6及び静電容量C1、C2、C3を測定させる。制御装置106は、テストヘッド80に、回線の端部に接続している端末装置があるかどうかもチェックさせる。端末装置は標準的な静電容量値を有する。端末装置が接続されているとき、その静電容量の値は静電容量C1を得るためにテストヘッドにより測定される静電容量から差し引かれる。各終端回線ごとに、試験結果がアクセス網管理システム102内のそのディレクトリ番号と対照して記憶される。
【0030】
制御装置106はアクセス網管理システム102に試験結果を送信する。アクセス網管理システム102は、疑わしい障害が存在しないか、終端回線ごとに一連の試験の結果を調べる。考えられる障害は、切断、短絡、障害蓄電池電圧、接地障害及び低絶縁抵抗を含む。障害が疑われるとき、回線に関する障害の名称及び試験の結果が、回線と関連付けられる交換器内でのそのディレクトリ番号または識別子に対照してアクセス網管理システム102内に記憶される。毎晩検出される疑わしい障害の詳細は、アクセス網管理システム102のオペレータによって検討されてよい。適切な場合には、オペレータは修復される障害について指示を出してよい。
【0031】
ネットワーク管理システム102は、夜間試験から収集されるデータの追加処理も実施するように装置される。この追加処理は、適切な場合には、カスタマにより障害が検出される前に矯正作業を実施できるように、実際の障害よりむしろ潜在的な障害を試験するように設計されている。これらの試験は、指定回線が指定時間期間内に障害を起こす確率の表示を与えるために、前記に注記された抵抗及び静電容量を使用する。試験は、障害が地下であるネットワークの部分内にあると思われるのか、あるいは架空であるネットワークの部分内にあると思われるのかの表示も出す。障害が地下であるのか、あるいは架空であるのかは、障害の修復費用に多大な影響を及ぼすため、数多くの潜在的な障害の内のどれに最初に対処する必要があるのかを評価する上で重要な要因である。
【0032】
ここでネットワーク管理システム102により実施される処理の概要が、図4に関して示され、処理の詳細な例も以下に示される。処理は、適切なデータの受信に応えて自動的に、あるいは人間のオペレータによってのどちらかでステップ401で開始され、処理はステップ403に進む。ステップ403では、既知の方法(以下に詳細に説明する)を使用し、問題のすべての回線の試験データが既存の障害を識別するために分析される。これらは「ハードフォルト」と呼ばれ、2つのカテゴリ、つまり切断障害及び整流ループ障害に分けられ、それらを前記に注記されたように認識できるようにする識別可能な電気特性を有する。
【0033】
いったんこれらのハードフォルトが識別されると、処理は、そのポイントで残りの試験データがさらに分析されるステップ405に進む。この分析は、ハードフォルトが所定期間内に発生すると思われることを示す特性で回線を識別するために試験データの追加の検査を必要とする。これを決定するためのパラメータは履歴データから引き出される。
【0034】
ステップ407では、ハードフォルトを予想していたとして識別された回線のデータが、指定期間(本発明では1年である)内で障害が発生する確率を評価するためにさらに分析される。前記ステップ405でのように、この分析は、履歴データに基づき回線ごとに実施され、試験されている各回線に帰するスコアを生じさせる結果となる。次に、ステップ409では、障害がネットワークの架空(OH)または地下(UG)で発生する確率の表示を出すためにデータがさらに分析され、スコアつまりそれらの領域のそれぞれで障害が発生する確率を示す。次に、ステップ411で、UGスコア及びOHスコアが、予想される障害が十中八九UGであるのかあるいはOHであるのかを判断するために使用されるジョイントスコアを示すために結合される。
【0035】
最後に、ステップ413で、要素のスコアを示すために、つまり次の年に要素でハードフォルトが発生する確率を示すために、各回線がDPまたはケーブルノードなどのネットワーク要素を通過するためのスコアがともに加算される。次に、ネットワーク要素は、そのUGスコア、そのOHスコア、及び/またはその結合されたスコアに基づいて記録することができる。次に、例えば、予防保守を最も必要としているそれらの要素を決定するために、指定の地理的地域内のネットワーク要素などのネットワーク要素のグループを配列することができる。
【0036】
本発明はここで、さらに、図4に関して前記に概略された方法で処理されている1つの共通のDPを通る回線の集合からの試験データを示す作業された例によってさらに説明されるだろう。図5は、該DPを通る9つの回線ごとの試験データを示す。回線ごとに、試験データはワイヤAと接地の間、ワイヤAとワイヤBの間(現在の測定値と過去の測定値の両方)、及びワイヤBと接地の間の静電容量を備える。また、該データは、回線ごとの距離測定値、及びワイヤA、ワイヤB、電池及び接地の各組み合わせの間の一連の抵抗測定値も備える。これらは、図3に関して前述された静電容量C1、C2、C3及び抵抗R1、R2、R3、R4、R5、R6に一致する。加えて、ワイヤAとワイヤB間の過去の静電容量読み取り値及びヴァンダーホフ装置及び/またはテラダイン装置によって指定される終端フラグ(Term)がある。
【0037】
前記に注記されたように、処理の最初のステップはハードフォルトの識別である。これは、回線ごとに試験データを順番に分析し、試験データが以下の図6に述べられるようなパラメータの集合に該当するかどうかを設定することにより実施される。図5の中の試験データの要素の各々について、図6は、要素がそれを上回る場合にその回線に関して切断ハードフォルトの存在を示してよい閾値を定める。図5からの回線の試験データの各要素は、図6のパラメータに対照して規則に従って比較される。該規則は以下のとおりである。
【0038】
IF 接地に対する抵抗A>=VD3
AND 接地に対する抵抗B>=VD4
AND 電池に対する抵抗A>=VD5
AND 電池に対する抵抗B>=VD6
AND Bに対する抵抗A>=VD7
AND Bに対する抵抗A>=VD8
AND (((A−B静電容量低下>過去の値からのVD1)AND
(A−B静電容量<VD2))
OR (静電容量バランス(>VD9)
OR (MIN(静電容量A−接地、静電容量B−接地)<VD10))
AND (「終了なし」に対する終了ステートメント)
OR (ヴァンダーホフ「ベルループ」から)
OR (ヴァンダーホフ「マスタジャックループ」から
OR (テラダイン「ブリッジ」から)
THEN 回路はハードフォルトを有する。
【0039】
前記の図5に図示される回線1のデータを採取し、前記図6のパラメータを使用すると、抵抗測定値のすべてがパラメータを上回っている(つまり、700,000オームのすべての抵抗測定値が11メガオームという閾値を上回っている)こと、3つの静電容量測定値の内の2つが指定範囲に入り、テラダインの「ブリッジ」フラグが満たされていることが分かる。その結果、回線1上での切断ハードフォルトの存在を示す規則の各条項が満たされる。
【0040】
前記に注記された処理の次のステップは、整流ループハードフォルトを識別するための試験データの分析である。図7は、再びデータにパラメータを適用するための規則を使用して、整流ループハードフォルトを識別する上で使用される試験データのパラメータを示す。整流ループ検出の規則は以下のとおりである。
【0041】
脚B対脚A最小がMIN=MIN(脚Aに対する脚B抵抗、脚Bに対する脚A抵抗)、AND
脚B対脚A最大がMAX=MAX(脚Aに対する脚B抵抗、脚Bに対する脚A抵抗)の場合、
その場合IF 脚B対脚A最小<=TR1オーム
AND 脚B対脚A最小>TR2
AND 脚B対脚A最小がTR4とTR3の間ではない
AND 脚B対脚A最大>TR5×脚B対脚A最小
AND (電池に対する抵抗A<=TR7
OR 電池に対する抵抗B<=TR8
OR 接地に対する抵抗B<=TR9
OR 接地に対する抵抗B<=TR10)
THEN 回路は整流ループハードフォルトを有する。
【0042】
図7は、図5の中の試験データの要素ごとに、該要素がそれを上回るとその回線に関して整流ループハードフォルトの存在を示す可能性がある閾値を設定する。図5の回線の試験データの各要素が、図7のパラメータに対照して公式(以下に述べられる)に従って比較される。前記図5の回線2のデータを採取し、規則を適用すると、規則の各条項が満たされている、つまりB対脚A最小抵抗が、700オームから5000オームの範囲内ではなく、10キロオームと30キロオームの間にあり、B対脚A最大抵抗がB対脚A最小の2倍以上であり、接地または電池に対する抵抗Aまたは抵抗Bの少なくとも一方が400キロオーム以下であることが分かるだろう。したがって、回線2は整流ループハードフォルトを有すると見なされる。
【0043】
いったん全回線の試験データがハードフォルトを識別するために分析されると、試験データの処理は前記に注記されたようにデータがさらに分析される次の段階に進む。この追加分析の目的は、それらがまだハードフォルトを進展していないが、指定期間内に障害を起こすと思われることを示唆する特性を有するそれらの回線を識別することである。再びデータは図8に述べられるような一式の閾値に対照して規則に従い分析される。
【0044】
予想されるハードフォルトを識別するための規則は、次々に試験データの各要素をチェックし、それが図8に定められる各要素の2つの閾値に入るかどうかを確立する。閾値に入る要素数が数えられ、これが追加閾値を上回ると、回線は予想されるハードフォルトを有すると見なされる。規則は以下のとおりである。
【0045】
N=AHF1からAHF19の場合
IF 閾値1(N)<試験読み取り(N)<閾値2(N)
THEN 予想ハードフォルト=予想ハードフォルト+1(カウント)
END IFAHF2<=予想ハードフォルト
THEN 回路は予想ハードフォルトを有する。
【0046】
抵抗及び静電容量の測定値に加えて、試験装置を一式の電圧測定値を生じさせるように装置することもできる。それらは、回線Aと負/正接地、回線Bと負/正接地、及び回線Bが負であるとき、及びそれが正であるときの回線Aと回線Bの間の6つのDC電圧測定値を備える。電圧測定値は、回線Aと回線Bの間、及び各回線と接地の間の3つのAC電圧測定値も備える。これらの電圧測定値は、予想されるハードフォルトを識別するための処理で使用することができ、詳細な例はこれに基づいて説明されるだろう。ただし電圧測定値の使用はオプションであり、それらを使用しなくても処理を実施できる。現在の例の回線2の電圧測定値は、図8の表の「実際」の欄に図示されている。他の回線の電圧測定値は図示されていない。
【0047】
図5の回線2の試験データを採取すると、A対B及びB対Aの抵抗測定値はともに、電圧測定値AHF8、9及び12が指定されるように指定される範囲内にある。その結果、5つのパラメータが、閾値パラメータを超える全体的なスコアに寄与し、回線2は予想されるハードフォルトを有すると見なされる結果となる。
【0048】
回線2は予想ハードフォルトとして示される、つまり1年という指定時間期間内にハードフォルトを示すと予想されるため、処理の次の段階はそのイベントが発生する確率を突き止めることである。言い換えると、回線の電気特性の劣化の確率は、回線の品質が影響を及ぼされると思われる範囲内に続行する。再び、処理は以下のとおりである1組の規則と組み合わされ図9に述べられるパラメータの集合を使用する。
【0049】
その場合、電気特性の故障の確率は以下のとおりである。
【0050】
n=PB1からPB19の場合
A−IF下限(n)<上限(n)
AND上限(n)>試験読み取り(n)=下限(n)THEN
故障(n)の確率=最小(1,(上限(n)−試験読み取り(n))/(上限(n)−下限(n)))
ELSE故障(n)の確率=0.0
B−IF下限(n)>上限(n)
AND上限(n)<=試験読み取り(n)<下限(n)THEN
故障(n)の確率=最小(1,(試験読み取り(n)−上限(n))/(下限(n)−上限(n)))
ELSE故障(n)の確率(n)=0.0
前記のどれもデフォルトを満たさなかった場合は、故障の確率=0.0である。
【0051】
図9のパラメータは、試験データの要素ごとに、試験データの特定の要素が、ハードフォルトが1年以内に発生するだろう範囲内にあるかどうかを明らかにするために前記規則が使用する一式の制限を備える。要素がこの範囲外にある場合は、それに割り当てられる故障の確率はゼロである。要素が範囲内に入る場合、これは1年以内にハードフォルトが発生する確率があることを示す。この場合、前記規則は、試験データの要素と図9に定められるようなその要素の上限と下限の間の相対的な差異に基づいている。言い換えると、上限は、ハードフォルトがa年時間内に発生すると思われるレベルにあり、下限はハードフォルトが差し迫っているレベルにあるため、確率は、試験データの要素が、上限を基準にして下限に対しどの程度近いのかにより求められる。
【0052】
前記の2つの規則、規則Aと規則Bは、同じ計算を実施するために使用されるが、規則Aはパラメータ範囲が正であるときに使用するために作られ、一方規則Bは、パラメータ範囲が負であるときに使用するために作られる。どの規則をいつ使用する必要があるのかは、図9の「型」の欄に型Aまたは型Bのどちらかとして示される。
【0053】
回線2−PB1の試験データの第1要素を採取すると、22700オームという抵抗測定値は上限閾値と下限閾値に入り、0.98という確率を生じさせる。同様にPB6−351,656オームという抵抗測定値は0.64という確立を生じさせる。
【0054】
試験データの要素ごとにいったん確率が計算されたら、処理の次の段階は、要素がネットワークの地上部分での障害を示すことが予想されるのか、あるいは地下部分での障害を示すことが予想されるのかに応じて各確率を修正する。これは、ある電気特性を、ケーブルの特定の物理的な環境に起因するケーブルの特定の種類の劣化と相関付けることができるために可能である。修正プロセスは、地下(UG)のための加重で、及び地上(OG)のための加重でそれぞれの確率を乗算することにより実施され、データ要素ごとに2つの改正された確率を生じさせる。それから、UG確率のすべてがともに加算され、OH確率のすべてがともに加算され、回線のOHスコア及び回線のUGスコアを示す。これらのスコアを計算する公式は以下のとおりである。
【0055】
【数1】
Figure 2004517524
図10は、38.85というUGスコア及び49.39というOHスコアを提供する回線2から試験データのこれらの計算を示す。これらのスコアは、前記規則に従ってともに加算された試験データの各要素の確率にUGとOHの加重係数を適用した結果である。図10から、抵抗測定値の場合、加重係数の一方がゼロであることが分かる。つまり、関係する要素は、障害のそのカテゴリ(OHまたはUG)に対して、障害の重要な表示を示していないため、その確率はゼロに加重される。適用される加重のレベルは、経験的な証拠に、つまり発生した実際の障害のデータに依存している。
【0056】
処理の次の段階では、回線の総合的なUGスコアとOHスコアから、予想されるハードフォルトの最もありそうな場所、つまり障害がOHネットワークにあるのか、あるいはUGネットワークにあるのかの表示を示すために、閾値に比較される結合されたスコアを決定する。以下の規則が、回線のOHスコアとUGスコアを結合するために使用される。
【0057】
【数2】
Figure 2004517524
次に、以下の規則が閾値角度に対照して結合されたOHスコアとUGスコアの「角度」を比較するために使用される。結合されたスコア角度が閾値より大きい場合には、予想される障害は架空であると予想され、それが閾値角度未満である場合には、障害は地下であると予想される。これを突き止めるための規則は以下に述べられる。
【0058】
角度>=正弦(ANG3)である場合、
THEN 予想される障害は架空ネットワークに位置する。
【0059】
角度<制限(ANG3)である場合、
THEN 予想される障害は地下ネットワークに位置する。
【0060】
(ANG1、ANG2及びANG3は、ANG1とANG2がこの例では整数1に、ANG3が45度に設定される変数である。これらの変数は前記アルゴリズムの性能を整備するために使用できる。)
前記から例を続けると、38.85というOHスコア及び49.39というUGスコアが前記の公式に従って結合され、62.86という結合スコアを示す。その場合、これは0.7867である、つまり正弦(45)=0.7071より大きい角度を計算するために使用され、予想される障害が架空ネットワークで発生すると予想されることを示す。
【0061】
試験データの処理は、調査中のすべての回線が前述されたように処理され、ハードフォルト、予想されるハードフォルトとして、あるいはフォルトなしとして識別されるまで続行する。ハードフォルトを予想した回線は、それらの架空スコア、地下スコア、あるいは結合スコアに関して配列される、つまり並べられる。したがって、これにより予想されるハードフォルトの先行型の修復には、最もすぐにハードフォルトになると思われるもので優先順位を付けることができるが、障害の場所によっても優先順位を付けることができる。修復者の技能及び修復の費用は通常、地下の障害と地上の障害で非常に異なるため、障害の場所は修復を予定する上で有するための重要な知識である。
【0062】
前記に注記されたように、ネットワークの回線はDPまたはケーブルノードなどの相互接続点を通過する。一般的には、これらはケーブルが物理的に互いに接合される場所であり、したがって接続または絶縁が破壊し、障害を引き起こす最も有望な場所であるために、障害が発生するのはこれらの点においてである。したがって、指定のDPまたは他のネットワーク要素を通過する全回線の試験データが前述されたように処理される場合、それはネットワーク要素のスコアを示すために結合できる。ネットワーク要素を通過するUGスコア、OHスコア及び結合スコアは、全体としての要素にスコアを与えるためにともに加算される。
【0063】
要素自体にスコアを付けることは、先行型のネットワーク保守を実施または計画するときに追加の優位点となる。例えば、すべてのDPは、指定される障害を修復するエンジニアの必須技能セットの適切な識別を可能にするそのOHスコアまたはそのUGスコアで評価される。さらに、スコア(UG、OH、及び結合)は、ハードフォルトのある数多くの要素の内のどれが最初に修復されなければならないのかを決定する際に使用できる。例えば、それぞれが2つのハードフォルトを有するが、一方がはるかに高いUG、OHまたは結合のスコアを有する2つのDPは、それにより近い将来十中八九追加のハードフォルトを示すと思われるDPをより緊急に修復できるようにする。
【0064】
ネットワーク管理システム102は、さらに、所定の時間期間にネットワークに将来の起こりそうな修復費用の表示を示す結果を提供するために、夜間試験から収集されるデータを処理するように装置できる。この処理は、予想されるハードフォルトだけではなく、認識されたハードフォルトの両方とも考慮に入れる。この処理の概要は、ここで図11に関して示され、さらに詳細な例も以下に示される。処理は、適切なデータの受信に応えて自動的に、あるいは人間のオペレータによってのどちらかによりステップ1101で開始され、処理はステップ1103に移動する。ステップ1103では、ハードフォルトは、図4のステップ403に関して前述されたのと同じように(切断または整流ループとして)識別及び分類され、予想されたハードフォルトはステップ405と同様に識別される。また、試験データの各パラメータの故障確率は、図4のステップ407に関して前述されたステップに従って計算される。
【0065】
ステップ1105では、各確率が、それが関係する回線の最終スコアを計算する上でのその重要性に応じて加重され、それから(加重されたような)各要素の確率がなんらかの追加係数とともに加算され、AFSスコアとして知られる全体としての回線のスコアを示す。このスコアは、ステップ1103で回線がハードフォルト及び/または予想される障害を有しているとしても識別されるかどうかに応じてさらに加重される。ステップ1103と1105は、試験データが収集された回線ごとに実施される。次のステップ1107では、回線の1つまたは複数が見失われる場合、処理の結果が歪められないように見失われたデータを補償する効果を有する円滑化アルゴリズムが適用される。
【0066】
次に、ステップ1109で、前記図4のステップ409と411と同様に存在するデータがあるネットワーク要素の各回線について、UG、OH及び結合の確率が計算される。予想される障害がUGであるのか、あるいはOHであるのかの判定も前記ステップ411でのように計算される。次に、ステップ1113では、蓄積されるデータはDPの総合的なスコアを示すために3つの別個の公式に従って結合される。これらの3つの公式は、特定の種類の障害を修理する相対的な費用を考慮に入れ、その結果としてAFSスコアは所定期間にネットワーク要素を保守する費用を概算または予測するために使用できる。ステップ1115で、UGスコア、OHスコア及び結合スコアは、他のDP及びネットワーク要素の同等なスコアに対照して現在のDPを評価するために使用される。相対的な費用によるネットワーク要素の評価は、翌年の修復費用を概算できるため予算作成時にネットワーク管理者を補助する。評価されたデータは、予防保守を向けなければならないネットワークの点も浮き彫りにする。
【0067】
本発明は、ここで図11に関して前記に概略された方法で処理されるDPを通過する回線の集合からの試験データを示す作業例によって説明される。図5の同じ試験データ例は、図4に関して処理を説明するのに使用されたのと同様に使用されるだろう。処理の最初のステップはハードフォルト、予想されるハードフォルト、及びそれらの確率を、図4のステップ403、405及び407に関して前述されたのと同様に識別することである。それから、図12に述べられるように、確率は、それ以後の処理について抵抗測定値AFS1−6を事実上選択する加重係数で乗算される。次に、結果として生じる確立は以下の公式に従い合計される。
【0068】
【数3】
Figure 2004517524
Figure 2004517524
前記公式から分かるように、データの各要素の合計された確率に加え、2つの追加の加重が加算される。第1の加重は、回線がステップ1103においてハードフォルトを有していると識別された場合に加算され、第2はステップ1103において回線が予想されるハードフォルトとしても識別された場合に加算される。次にAFSスコアは、それがただちに修復されたならばその回線で回避されるだろう障害の数に相当するAFS値を示すために、図13に示される値の表と比較される。AFSスコアは、調査中の回線のそれぞれについて計算される。図12の回線2の例を取ると、加重された確率の合計は4.51であり、それはそれから5というハードフォルト重みと3という予想障害重みを加算され、合計12.51を示す。このAFSスコアは、次の規則に従って、及び1という実際のAFS値の結果で図13の表に比較される。
【0069】
n=SC1対SC12の場合(図13の表を参照すること)
IF 下部間隔(n)<=AFSスコア<上部間隔(n)
THEN 実際のAFFS=回路AFS
ELSE AFS=0
AFSスコアが調査中の各回線について計算されると、処理の次の段階は、回線の1つまたは複数について試験データを取得できない状況を補償するために、円滑化アルゴリズムを適用することである。図5のデータを使用する現在の例では、DPのすべてのデータが存在する。しかしながら、回線3と7のデータが見失われていた場合には、円滑化アルゴリズムが適用されるだろう。円滑化アルゴリズムは、データが見失われているDPのAFSスコアが他のDPのAFSスコアと有意義に比較できるように設計されている。円滑化アルゴリズムは以下のとおりである。
【0070】
【数4】
Figure 2004517524
前記規則は、円滑化パラメータに1を足したもの、あるいは調査中の総回線と試験データが実際に取得された回線の割合のどちらかから最小値を採取する。円滑化パラメータは0.6として設定され、円滑化パラメータの上限が調整できるように提供される。例を続行すると、7つの考えられる回線の内の7つだけの試験データが入手可能な場合に、円滑化係数が、1.28である、1.6(1=0.6)と1.28(7/9)の最小として計算されるだろう。この円滑化係数は、次に、ネットワーク要素、例えばDPまたはケーブルノードのAFSスコアのそれ以降の計算で使用されるだろう。
【0071】
図14は、これまで説明されたステップに従って図5のデータの処理の結果を示す。これらの結果の検査から、回線1と6から9に障害がないことが分かる。前述されたような回線2は、架空ネットワークでのハードフォルトと予想されるハードフォルトの両方として分類された。回線2は、1というAFSスコアも達成した。回線3から5はすべて考えられる障害を示すいくつかの特性を有するが、そのどれもハードフォルトではなく、そのどれも予想されるハードフォルトとして考えられるほど重要ではない。しかしながら、表示は非常に重要であり、このような障害が本当に発生する場合はそれが地下のネットワーク内だろうことを示すことができる。依然として障害が発生する可能性があるという事実も、それぞれ0.3、0.3及び0.4というAFSスコアを示すこれらの回線のそれぞれについてAFSスコアで反映される。言い換えると、これらの回線で識別される実際の障害はなく、それらは一年以内に障害を起こすと予想されていないが、それにも関わらずその年の内に障害が起きる依然としてなんらかの確率がある。
【0072】
各回線のスコアは、DPの合計OH、UG及び結合スコア及び地下ネットワークのハードフォルト及び予想されるハードフォルトの合計を示す図14の表の下半分に要約される。さらに、地下ネットワークで示されるものと、架空ネットワークで示されるもので再び分けられる起こりそうな障害数の合計とAFSスコア合計がある。
【0073】
処理の次のステップは、全体としてDPのスコア(UG、OH及び結合)を計算するために図14の表からデータを使用することである。これは3つの公式に従って行われる。DPの架空スコアを計算するための公式は図15に示される。架空ネットワーク内の潜在的な障害または実際の障害として示されるデータの各回線ごとに、公式は合計OHスコア、予想されるハードフォルトの総数、ハードフォルトの総数、及び回路の総数を加算する。これから差し引かれるのは、DP内の回路総数とOHである回路数の差異である。データのこれらの要素のそれぞれも、(DPを通過する回線ごとに存在するデータがあるため、この例では1である)円滑化係数で乗算される。また、各要素は、図15の下半分にある表の中で述べられるようなランキング値で乗算される。該ランキング値は、前記で合計される5つの値のどれか1つがDPの全体的なOHスコアに対して及ぼす影響を修正するために使用される。図15に述べられるようなこれらの計算の結果は、181.04というDPの総OHスコアである。
【0074】
図16と図17は、DPのUGスコアとDPの結合スコアの計算のための同等な公式及びランキングパラメータを示す。UG公式の差異は、OH公式がOHスコア及びOH回路を採取し、UG公式がUGスコア及びUG回路を採取するところである。結合スコア公式は、DP内の全回路、ハードフォルト、予想されウハードフォルト及び疑わしい回路のすべての結合されたスコアを取る。
【0075】
図15から図17の3つの公式に従った処理の結果は、DPに関して181.04というUGスコア、209.10というOHスコア、及び261.10という結合スコアである。当業者により理解されるように、図15、16及び17で述べられる公式は、それを通過する100本の回線を有する可能性があるケーブルノードなどの、それらを通るさらに多くの回線を有する可能性がある他のネットワーク要素にスコアを提供するために修正することができる。
【0076】
データの処理の最終ステップは、(前述されたような単一回路とは対照的に)全体としてのDPの年間障害退避(AFS)スコアを計算することである。このために使用される公式は図18に述べられている。UG AFSの場合、この例で1.0(回線3、4、及び5から、つまり0.3+0.3+0.4)というDPのUG AFSを示すDP内の各回路のAFSが加算される。DPのOH AFSも(回線2のAFSから)1.0である。結合AFSスコアは2.0になる。
【0077】
前述されたAFSスコアは、単独回線(または回線)のため、あるいはDPまたはケーブルノードなどのネットワーク要素のためのどちらかのために確立できる。AFSスコアは、指定時間期間内に発生する障害の確率を、障害が万一発生した場合の障害の修復費用と結合する。さらに、修復費用は、障害が地下ネットワークにあると予想されるのか、あるいは架空ネットワークにあると予想されるのかを考慮に入れる。AFSは、ネットワーク管理者が、回線単位で、あるいはネットワーク要素単位でネットワークからの試験データを配列できるようにする。ランキングがネットワーク要素に基づいて実行される場合、AFSスコアは、データがたとえ見失われていても、及び/または比較されている要素がそれらを通過する異なる数の回線を有しているときも、要素を有意義に比較できるように計算される。AFSスコアは結合要素だけではなくUG要素とOH要素も有するため、AFSスコアは、(全体だけではなく)地下ネットワークまたは地上ネットワークのどちらかの視点から試験データを配列するために使用できる。これらの特徴のすべては、ネットワーク管理者が試験データをさらに容易に分析、処理できるようにし、ネットワーク保守費用を引き下げ、効率を高めるのに役立つ。
【0078】
図6から図10、図12、図13及び図15から図17に関して前述されたパラメータは、すべて、試験され、監視されているネットワークの特性に依存している。結果がネットワーク性能をさらに正確に測定するように試験データの処理を調整するためにパラメータを修正することができる。閾値の大部分は、障害履歴またはログと組み合わせて履歴電気特性の分析から入手できる。これらは、その後、ネットワークのそれ以降の性能に比較し、必要に応じて調整できる閾値の初期値を確立するために使用できる。
【0079】
図19は、通信網の一部を形成するアクセス網におけるノードでのなんらかの実験的な作業の結果を示す。ノードスコアは、多数のノードについて評価された。それから、各ノードが以後3ヶ月の間のカスタマからの障害レポートについて監視された。図11では、これらのノードについて、ノードスコア評価後3ヶ月の間に受信された障害レポートに対照してノードスコアがプロットされる。これらの実験結果は、ノードスコアと障害レポート数の間の強力な相関関係を示す。
【0080】
本発明は、各回路が1本の銅線により運ばれるアクセス網に関して説明されてきたが、それは光ファイバにより運ばれる終端回路にも使用されてよい。
【0081】
本発明を具体化する装置は、試験データの分析及び/または処理を提供するように装置されたソフトウェアを備える汎用コンピュータである場合があることが当業者により理解されるだろう。コンピュータは、単一のコンピュータまたはコンピュータのグループとなる場合があり、ソフトウェアは単一のプログラムまたはプログラムの集合となる場合があるだろう。さらに、本発明を実現するために使用されるソフトウェアのどれかまたはすべては、プログラムを1台または複数台の汎用コンピュータにロードできる、あるいは適切な伝送媒体を使用してコンピュータネットワークでダウンロードできるように、フロッピーディスク、CD−ROMあるいは磁気テープなどの多様な伝送及び/または記憶媒体に記憶することができる。
【0082】
明らかに文脈が別を必要としない限り、説明及び請求項を通して、ワード「備える」、「備えている」等は、排他的あるいは網羅的な意味に対照的に包括的に、すなわち、「含むが、に限られない」の意味で解釈されるべきである。
【図面の簡単な説明】
ここで本発明は、添付図面に関して一例として説明されるだろう。
【図1】
本発明が使用されてよい通信網の一部を形成するアクセス網及び関連付けられるローカルスイッチのブロック図である。
【図2】
図1のアクセス網のために本発明を具体化する障害管理システムを提供するために使用される通信網の構成要素を示すブロック図である。
【図3】
終端回路を試験するときに行われる測定のいくつかを図解する回路図である。
【図4】
ネットワーク内で障害を識別する際に障害管理システムで実行される処理を図解する流れ図である。
【図5】
データとパラメータ、及び図4に図解される処理で使用されるデータの表である。
【図6】
データとパラメータ、及び図4に図解される処理で使用されるデータの表である。
【図7】
データとパラメータ、及び図4に図解される処理で使用されるデータの表である。
【図8】
データとパラメータ、及び図4に図解される処理で使用されるデータの表である。
【図9】
データとパラメータ、及び図4に図解される処理で使用されるデータの表である。
【図10】
データとパラメータ、及び図4に図解される処理で使用されるデータの表である。
【図11】
ネットワーク内の障害に関する参照データを取得するために障害管理システムで実行される工程のフローチャートである。
【図12】
データとパラメータ、及び図11に図解される処理で使用されるデータの表である。
【図13】
データとパラメータ、及び図11に図解される処理で使用されるデータの表である。
【図14】
データとパラメータ、及び図11に図解される処理で使用されるデータの表である。
【図15】
データとパラメータ、及び図11に図解される処理で使用されるデータの表である。
【図16】
データとパラメータ、及び図11に図解される処理で使用されるデータの表である。
【図17】
データとパラメータ、及び図11に図解される処理で使用されるデータの表である。
【図18】
データとパラメータ、及び図11に図解される処理で使用されるデータの表である。
【図19】
通信システムでの本発明の使用からデータを示すグラフである。

Claims (11)

  1. 通信網用の障害管理システムを動作する方法であって、前記通信網は、交換機、及び該通信網のユーザのために提供される端末装置に前記交換機を接続する1つまたは複数の終端回路のアクセス網を含み、前記終端回路または各終端回路が前記交換機とそのそれぞれの端末装置の間の1つまたは複数のノードを通過し、
    前記終端回路の少なくとも一部の前記回路または各回路について回路試験を実行し、このように試験された前記回路または各回路の、試験データの1つまたは複数の要素を含む試験結果を作成する工程と、
    前記回路または各回路に対する試験データの1つまたは複数の要素を、所定期間内に障害を起こす可能性がある回路の特性を定める一式のパラメータと比較する工程と、
    前記要素または各要素が前記パラメータ内にある場合には、前記関連付けられる回路を所定期間内に障害を起こす可能性を有するとして分類する工程と、
    を備える方法。
  2. 各分類された回路に対して、前記回路が所定期間内に障害を起こす確率を求める工程をさらに備える、請求項1記載の方法。
  3. 前記回路が障害を起こす確率は、ネットワークの地下部分で発生する障害の確率を示す要素と、ネットワークの地上部分で発生する障害の確率を示す要素とを備える、請求項2記載の方法。
  4. 障害がネットワークの架空部分で発生すると考えられるのか、あるいはネットワークの地下部分で発生すると考えられるのかを計算するために、2つの確率が結合される、請求項2記載の方法。
  5. 前記ネットワーク要素内の各回路に対する確率及び/または分類が、全体としてのネットワーク要素に対する確率及び/または分類を提供するために結合される、請求項1から4のいずれか1つに記載の方法。
  6. 交換機、及び通信網のユーザに提供される端末装置に前記交換機を接続する終端回路のアクセス網を含む通信網のための障害管理装置であって、前記終端回路が前記交換機とそのそれぞれの端末装置の間の一連のノードを通過し、前記障害管理装置は、
    前記終端回路で回路試験を実行し、試験結果を作成するように装置される回路試験装置と、
    前記終端回路に関係するデータを記憶する記憶装置と、
    前記または各要素に対する試験結果の1つまたは複数の要素を、所定の期間内に障害を起こす可能性のある回路の特性を定める一式のパラメータと比較する手段と、
    該要素または各要素が前記パラメータ内にある場合に、所定期間内に障害を起こす可能性を有するとして前記関連付けられる回路を分類するために動作可能な手段と、
    を備える障害管理装置。
  7. 各分類された回路について前記回路が所定期間内に障害を起こす確率を決定する手段をさらに備える、請求項6記載の装置。
  8. 前記回路が障害を起こす確率が、前記ネットワークの地下部分で発生する障害の確率を示す要素と、前記ネットワークの地上部分で発生する障害の確率を示す要素を備える、請求項7記載の装置。
  9. 障害が前記ネットワークの地上部分で発生するのか、あるいは前記ネットワークの地下部分で発生するのかを計算するために前記2つの確率が結合される、請求項7記載の装置。
  10. ネットワーク要素内の各回路に対する確率及び/または分類が、全体としてのネットワーク要素に対する確率及び/または分類を提供するために結合される、請求項6〜9のいずれか1つに記載の装置。
  11. 汎用コンピュータまたはこのようなコンピュータのグループに、請求項1〜5のいずれか1つに記載の方法を実施させるべく、あるいは請求項6〜10のいずれか1つに記載の装置を提供するべく用意されたコンピュータプログラムまたはコンピュータプログラムの集合。
JP2002553802A 2000-12-22 2001-12-17 通信網のための障害管理システム Pending JP2004517524A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GBGB0031531.7A GB0031531D0 (en) 2000-12-22 2000-12-22 Fault management system for a communications network
PCT/GB2001/005564 WO2002052822A2 (en) 2000-12-22 2001-12-17 Fault management system for a communications network

Publications (1)

Publication Number Publication Date
JP2004517524A true JP2004517524A (ja) 2004-06-10

Family

ID=9905802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002553802A Pending JP2004517524A (ja) 2000-12-22 2001-12-17 通信網のための障害管理システム

Country Status (11)

Country Link
US (1) US7240245B2 (ja)
EP (1) EP1344378B1 (ja)
JP (1) JP2004517524A (ja)
CN (1) CN100426820C (ja)
AT (1) ATE325500T1 (ja)
AU (1) AU2002222236B2 (ja)
CA (1) CA2429692C (ja)
DE (1) DE60119373T2 (ja)
ES (1) ES2263549T3 (ja)
GB (1) GB0031531D0 (ja)
WO (1) WO2002052822A2 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8542574B2 (en) * 2005-06-29 2013-09-24 Honeywell International Inc. Apparatus and method for network error prevention
US8065554B2 (en) * 2006-07-06 2011-11-22 Gryphonet Ltd. Communication device and a method of self-healing thereof
US9037917B2 (en) * 2012-12-05 2015-05-19 At&T Intellectual Property I, L.P. Automated line test action and monitoring system
US20150331980A1 (en) * 2014-05-15 2015-11-19 Applied Materials, Inc. Apparatus and method for classifying context types for multivariate modeling
US20170070397A1 (en) * 2015-09-09 2017-03-09 Ca, Inc. Proactive infrastructure fault, root cause, and impact management
CN111861191B (zh) * 2020-07-16 2024-01-23 云南电力技术有限责任公司 一种馈线自动化现场测试技术的评价系统及方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1229149A (ja) * 1969-07-28 1971-04-21
US5392328A (en) * 1993-02-04 1995-02-21 Bell Communications Research, Inc. System and method for automatically detecting root causes of switching connection failures in a telephone network
NZ322111A (en) 1995-11-20 1999-10-28 British Telecomm Fault management system for a telecommunications network, circuit testers at local switch
US5771274A (en) * 1996-06-21 1998-06-23 Mci Communications Corporation Topology-based fault analysis in telecommunications networks
US6519723B1 (en) * 1996-09-27 2003-02-11 Applied Digital Access, Inc. Firewall performance monitoring and limited access system
DE69724989T2 (de) * 1996-11-13 2004-07-22 British Telecommunications Public Ltd. Co. Fehlerverwaltungssystem für ein fernmeldenetz
US6038288A (en) * 1997-12-31 2000-03-14 Thomas; Gene Gilles System and method for maintenance arbitration at a switching node
US6321187B1 (en) * 1998-12-22 2001-11-20 Hamilton Sundstrand Corporation System reliability assessment tool
US6857013B2 (en) * 1999-01-29 2005-02-15 Intermec Ip.Corp. Remote anomaly diagnosis and reconfiguration of an automatic data collection device platform over a telecommunications network
US6349268B1 (en) * 1999-03-30 2002-02-19 Nokia Telecommunications, Inc. Method and apparatus for providing a real time estimate of a life time for critical components in a communication system
US6424930B1 (en) * 1999-04-23 2002-07-23 Graeme G. Wood Distributed processing system for component lifetime prediction
US6490543B1 (en) * 1999-07-13 2002-12-03 Scientific Monitoring Inc Lifeometer for measuring and displaying life systems/parts
US6615367B1 (en) * 1999-10-28 2003-09-02 General Electric Company Method and apparatus for diagnosing difficult to diagnose faults in a complex system
US6396904B1 (en) * 1999-11-01 2002-05-28 Lucent Technologies Inc. Method and apparatus for determining whether the immediate state of a telecommunications switch is adequate for a software upgrade
US7237138B2 (en) * 2000-05-05 2007-06-26 Computer Associates Think, Inc. Systems and methods for diagnosing faults in computer networks
US7031950B2 (en) * 2000-12-14 2006-04-18 Siemens Corporate Research, Inc. Method and apparatus for providing a virtual age estimation for remaining lifetime prediction of a system using neural networks
US6735549B2 (en) * 2001-03-28 2004-05-11 Westinghouse Electric Co. Llc Predictive maintenance display system

Also Published As

Publication number Publication date
GB0031531D0 (en) 2001-02-07
EP1344378A2 (en) 2003-09-17
DE60119373T2 (de) 2007-04-19
EP1344378B1 (en) 2006-05-03
ATE325500T1 (de) 2006-06-15
WO2002052822A3 (en) 2003-01-03
CA2429692A1 (en) 2002-07-04
CA2429692C (en) 2008-01-08
US20040039957A1 (en) 2004-02-26
CN1481639A (zh) 2004-03-10
ES2263549T3 (es) 2006-12-16
AU2002222236B2 (en) 2006-02-16
DE60119373D1 (de) 2006-06-08
US7240245B2 (en) 2007-07-03
WO2002052822A2 (en) 2002-07-04
CN100426820C (zh) 2008-10-15

Similar Documents

Publication Publication Date Title
JP4149514B2 (ja) 遠隔通信ネットワーク用の故障管理システム
JP4482045B2 (ja) 通信網における回線障害を排除するためのフォルトマネジメントシステム
JP4350802B2 (ja) 遠隔通信網用の欠陥管理システム
AU2002222229B2 (en) Fault management system for a communications network
AU2002222229A1 (en) Fault management system for a communications network
JP2004526371A (ja) 通信網における回線障害を排除するためのフォルトマネジメントシステム
AU2002222236B2 (en) Fault management system for a communications network
AU2002241095A1 (en) Fault management system for a communications network
AU2002222236A1 (en) Fault management system for a communications network
CA2236786C (en) Fault management system for a telecommunications network

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041007

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070904

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20071204

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20071211

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080916

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20081212

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20081219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090728

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091222