JP2004517489A - Systems and methods for electrically induced breakdown of nanostructures - Google Patents
Systems and methods for electrically induced breakdown of nanostructures Download PDFInfo
- Publication number
- JP2004517489A JP2004517489A JP2002554893A JP2002554893A JP2004517489A JP 2004517489 A JP2004517489 A JP 2004517489A JP 2002554893 A JP2002554893 A JP 2002554893A JP 2002554893 A JP2002554893 A JP 2002554893A JP 2004517489 A JP2004517489 A JP 2004517489A
- Authority
- JP
- Japan
- Prior art keywords
- nanotube
- nanotubes
- metallic
- semiconductive
- current
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 52
- 230000015556 catabolic process Effects 0.000 title abstract description 14
- 239000002086 nanomaterial Substances 0.000 title abstract description 5
- 239000002071 nanotube Substances 0.000 claims abstract description 125
- 239000002109 single walled nanotube Substances 0.000 claims abstract description 82
- 239000002048 multi walled nanotube Substances 0.000 claims abstract description 54
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 36
- 239000000758 substrate Substances 0.000 claims abstract description 26
- 239000002041 carbon nanotube Substances 0.000 claims abstract description 18
- 229910021393 carbon nanotube Inorganic materials 0.000 claims abstract description 18
- 239000000969 carrier Substances 0.000 claims abstract description 17
- 230000005669 field effect Effects 0.000 claims abstract description 11
- 230000006378 damage Effects 0.000 claims description 18
- 239000000203 mixture Substances 0.000 claims description 18
- 230000000779 depleting effect Effects 0.000 claims description 7
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 2
- 238000010586 diagram Methods 0.000 abstract 1
- 229910052799 carbon Inorganic materials 0.000 description 16
- 239000004020 conductor Substances 0.000 description 9
- 238000005259 measurement Methods 0.000 description 7
- 230000004888 barrier function Effects 0.000 description 6
- 239000010410 layer Substances 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002131 composite material Substances 0.000 description 5
- 239000007789 gas Substances 0.000 description 5
- 230000003647 oxidation Effects 0.000 description 5
- 238000007254 oxidation reaction Methods 0.000 description 5
- 239000000523 sample Substances 0.000 description 5
- 239000004065 semiconductor Substances 0.000 description 5
- 230000007704 transition Effects 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- 230000003993 interaction Effects 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 230000035882 stress Effects 0.000 description 4
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 230000001419 dependent effect Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 229910002804 graphite Inorganic materials 0.000 description 3
- 239000010439 graphite Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 230000035945 sensitivity Effects 0.000 description 3
- 238000012512 characterization method Methods 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 230000001066 destructive effect Effects 0.000 description 2
- 230000001747 exhibiting effect Effects 0.000 description 2
- 239000012212 insulator Substances 0.000 description 2
- 238000001459 lithography Methods 0.000 description 2
- 125000004433 nitrogen atom Chemical group N* 0.000 description 2
- 230000000750 progressive effect Effects 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 230000002547 anomalous effect Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 238000009529 body temperature measurement Methods 0.000 description 1
- 150000001721 carbon Chemical group 0.000 description 1
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 238000007385 chemical modification Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000004925 denaturation Methods 0.000 description 1
- 230000036425 denaturation Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000011066 ex-situ storage Methods 0.000 description 1
- 230000006355 external stress Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 238000005442 molecular electronic Methods 0.000 description 1
- 239000002070 nanowire Substances 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 230000008707 rearrangement Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000004626 scanning electron microscopy Methods 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 238000004627 transmission electron microscopy Methods 0.000 description 1
- 230000005641 tunneling Effects 0.000 description 1
Images
Classifications
-
- H01L29/78—
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y10/00—Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K10/00—Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
- H10K10/40—Organic transistors
- H10K10/46—Field-effect transistors, e.g. organic thin-film transistors [OTFT]
- H10K10/462—Insulated gate field-effect transistors [IGFETs]
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K10/00—Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
- H10K10/40—Organic transistors
- H10K10/46—Field-effect transistors, e.g. organic thin-film transistors [OTFT]
- H10K10/462—Insulated gate field-effect transistors [IGFETs]
- H10K10/466—Lateral bottom-gate IGFETs comprising only a single gate
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/20—Carbon compounds, e.g. carbon nanotubes or fullerenes
- H10K85/221—Carbon nanotubes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C2213/00—Indexing scheme relating to G11C13/00 for features not covered by this group
- G11C2213/10—Resistive cells; Technology aspects
- G11C2213/17—Memory cell being a nanowire transistor
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C2213/00—Indexing scheme relating to G11C13/00 for features not covered by this group
- G11C2213/10—Resistive cells; Technology aspects
- G11C2213/18—Memory cell being a nanowire having RADIAL composition
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S977/00—Nanotechnology
- Y10S977/70—Nanostructure
- Y10S977/734—Fullerenes, i.e. graphene-based structures, such as nanohorns, nanococoons, nanoscrolls or fullerene-like structures, e.g. WS2 or MoS2 chalcogenide nanotubes, planar C3N4, etc.
- Y10S977/742—Carbon nanotubes, CNTs
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S977/00—Nanotechnology
- Y10S977/84—Manufacture, treatment, or detection of nanostructure
- Y10S977/842—Manufacture, treatment, or detection of nanostructure for carbon nanotubes or fullerenes
- Y10S977/845—Purification or separation of fullerenes or nanotubes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S977/00—Nanotechnology
- Y10S977/84—Manufacture, treatment, or detection of nanostructure
- Y10S977/842—Manufacture, treatment, or detection of nanostructure for carbon nanotubes or fullerenes
- Y10S977/847—Surface modifications, e.g. functionalization, coating
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S977/00—Nanotechnology
- Y10S977/84—Manufacture, treatment, or detection of nanostructure
- Y10S977/888—Shaping or removal of materials, e.g. etching
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S977/00—Nanotechnology
- Y10S977/84—Manufacture, treatment, or detection of nanostructure
- Y10S977/89—Deposition of materials, e.g. coating, cvd, or ald
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S977/00—Nanotechnology
- Y10S977/84—Manufacture, treatment, or detection of nanostructure
- Y10S977/895—Manufacture, treatment, or detection of nanostructure having step or means utilizing chemical property
- Y10S977/896—Chemical synthesis, e.g. chemical bonding or breaking
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S977/00—Nanotechnology
- Y10S977/902—Specified use of nanostructure
- Y10S977/932—Specified use of nanostructure for electronic or optoelectronic application
- Y10S977/936—Specified use of nanostructure for electronic or optoelectronic application in a transistor or 3-terminal device
- Y10S977/938—Field effect transistors, FETS, with nanowire- or nanotube-channel region
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Nanotechnology (AREA)
- Materials Engineering (AREA)
- Theoretical Computer Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Thin Film Transistor (AREA)
- Carbon And Carbon Compounds (AREA)
- Manufacture Of Switches (AREA)
- Electrodes Of Semiconductors (AREA)
- Superconductors And Manufacturing Methods Therefor (AREA)
Abstract
【課題】ナノストラクチャの電気誘発性破壊のためのシステムおよび方法を提供すること。
【解決手段】デバイスを形成する方法を提供する。この方法では、ソース電極、ドレイン電極およびゲート電極を含む絶縁基板を用意する。この方法ではさらに、基板と接触した金属性および半導電性コンポーネント・ナノチューブを含むカーボン・ナノチューブ束を形成する。この方法ではさらに、ゲート電極に電圧を印加して、半導電性コンポーネント・ナノチューブのキャリアを枯渇させ、ナノチューブを通してソース電極からドレイン電極に電流を流し、少なくとも1つの金属性コンポーネント・ナノチューブを破壊して、電界効果トランジスタを形成する。カーボン・ナノチューブ束は、多壁ナノチューブまたは単壁ナノチューブ・ロープとすることができる。
【選択図】図16A system and method for electrically induced breakdown of a nanostructure are provided.
A method for forming a device is provided. In this method, an insulating substrate including a source electrode, a drain electrode, and a gate electrode is prepared. The method further forms a carbon nanotube bundle that includes metallic and semi-conductive component nanotubes in contact with the substrate. The method further includes applying a voltage to the gate electrode to deplete the carriers of the semiconductive component nanotubes, passing current from the source electrode to the drain electrode through the nanotubes, and destroying at least one metallic component nanotube. To form a field effect transistor. The carbon nanotube bundle can be a multi-wall nanotube or a single-wall nanotube rope.
[Selection diagram] FIG.
Description
【0001】
【発明の属する技術分野】
本発明はナノストラクチャに関し、詳細には、ナノストラクチャの電気誘発性破壊のためのシステムおよび方法に関する。
【0002】
【従来の技術】
分子ナノエレクトロニクスの分野では、ナノチューブ、特に直径数オングストロームのグラファイトの中空円筒を含むカーボン・ナノチューブほど有望な材料は少ない。その電気特性に応じてナノチューブを、ダイオード、トランジスタなどの小型電子デバイスとすることができる。ナノチューブは独特のサイズ、形状および物理性を有する。カーボン・ナノチューブの構造は、六方格子の炭素を巻いて円筒形にしたものに似ている。
【0003】
低温で興味深い量子的な振舞いを示す他に、カーボン・ナノチューブは少なくとも2つの重要な特性を示す。ナノチューブは、そのキラリティ(すなわち配座幾何形状)に応じて金属性または半導電性となりうる。金属性ナノチューブは、一定の抵抗率で極めて大きな電流密度を運ぶことができる。半導電性ナノチューブは、電界効果トランジスタ(FET)としてオン/オフを電気的に切り替えることができる。この2つのタイプを、共有結合的に接合する(電子を共有する)ことができる。これらの特性は、ナノメートル・サイズの半導体回路を製作するのにナノチューブが優れた材料であることを示している。
【0004】
ナノチューブを研究する現行の方法は、金属性および半導電性ナノチューブのランダム形成に依存する。特定の特性を有するナノチューブを高い信頼性で製造する方法は知られておらず、トランジスタ、ダイオードなどのような接合的な振舞いを示すナノチューブを製造する方法はなおさら知られていない。また、選択的合成またはポスト合成によってナノチューブを分離する方法で、それなりの成功を収めた方法も知られていない。これまでナノチューブは、金属性ナノチューブと半導電性ナノチューブから成る混合物から個別に分離するか、または研究対象の電極上にランダムに配置するかしなければならなかった。しかし、このような方法に注目すべき整合性はない。
【0005】
【発明が解決しようとする課題】
このような制御の欠如が、束になりやすいナノチューブの傾向と相まって、ナノチューブの物理的研究の妨げとなっており、ナノチューブ・ベースのエレクトロニクス技術を含むナノチューブ開発の主要な障害であると見られている。したがって、所望の特性を有するナノチューブを製造するシステムおよび方法が求められている。
【0006】
【課題を解決するための手段】
従って、本発明は、基板を用意する段階と、基板と接触した複数のナノチューブを形成する段階と、電流を使用してナノチューブを選択的に破壊する段階を含むデバイス形成方法を提供する。この方法はさらに、半導電性ナノチューブのキャリアを枯渇させる段階を含むことが好ましい。
【0007】
半導電性ナノチューブの複数のキャリアを枯渇させる段階はさらに、基板上のゲート電極に電圧を印加する段階を含むことが好ましい。この方法は、ナノチューブを通してソース電極からドレイン電極に電流を流す段階を含むことが好ましい。
【0008】
複数のナノチューブは、金属性および半導電性ナノチューブを含む多壁ナノチューブであることが好ましい。この方法の選択的に破壊する段階は、外側の金属性ナノチューブを破壊する段階を含むことが好ましい。
【0009】
複数のナノチューブは、金属性および半導電性ナノチューブを含む単壁ナノチューブ・ロープであり、破壊する段階が、少なくとも1つの金属性のナノチューブを破壊する段階を含むことが好ましい。
【0010】
ナノチューブは、単層と被覆率1/10パーセントの間の密度で提供されることが好ましい。
【0011】
基板は絶縁体であって、金属パッド・アレイを含むことが好ましい。
【0012】
基板はシリカ・ベースの基板であって、金属パッド・アレイを含むことが好ましい。
【0013】
それぞれのパッドは、ソース電極、ドレイン電極およびゲート電極のうちの1つを含むことが好ましい。
【0014】
基板を用意する段階は、リソグラフィを使用してパッド・アレイを形成することによって実施され、それぞれのパッドは絶縁基板上に対応する電極を含むことが好ましい。
【0015】
ナノチューブはカーボン・ナノチューブであることが好ましい。
【0016】
この方法はさらに、複数の迷走ナノチューブを破壊する段階を含むことが好ましい。
【0017】
別の態様によれば、本発明は、ナノチューブの少なくとも1つの特性を変更する方法であって、ナノチューブの混合物を用意する段階と、混合物に電流を流して、ナノチューブ混合物の選択的破壊を誘発させる段階とを含む方法を提供する。この方法はさらに、半導電性ナノチューブからキャリアを除去する段階を含むことが好ましい。
【0018】
電流は、金属性ナノチューブを選択的に破壊することが好ましい。混合物に適用される電力は約500μWであることが好ましい。
【0019】
ナノチューブは、多壁ナノチューブおよび単壁ナノチューブ・ロープのうちの1つであることが好ましい。
【0020】
特性は、直径、密度およびコンダクタンスのうちの1つであることが好ましい。
【0021】
混合物は、金属性および半導電性ナノチューブを含むことが好ましい。
【0022】
電流密度は109A/cm2よりも大きいことが好ましい。
【0023】
別の態様によれば、本発明は、ソース電極、ドレイン電極およびゲート電極を含む絶縁基板を用意し、基板と接触した金属性および半導電性のコンポーネント・ナノチューブを含むカーボン・ナノチューブ束を形成し、ナノチューブは、被覆率約1パーセントの密度で提供され、本発明はさらに、ゲート電極に電圧を印加して半導電性コンポーネント・ナノチューブのキャリアを枯渇させ、ナノチューブを通してソース電極からドレイン電極に電流を流し、少なくとも1つの金属性コンポーネント・ナノチューブを破壊して、電界効果トランジスタを形成するデバイス形成方法を提供する。
【0024】
カーボン・ナノチューブ束は、多壁ナノチューブまたは単壁ナノチューブ・ロープとすることができることが好ましい。
【0025】
次に、本発明の好ましい実施形態を添付図面を参照して詳細に説明する。
【0026】
【発明の実施の形態】
本発明によれば、多壁ナノチューブ(MWNT)あるいは単壁ナノチューブ(SWNT)ロープまたは束を永久に変性する方法が提供される。ナノチューブは、そのキラリティ(すなわち立体配座)に応じ、金属性または半導電性となりうる。MWNTおよびSWNTには両方の種類が見られる。本発明に基づく方法は、電流誘発性の電気破壊を使用して、特定の特性を有する個々のナノチューブを除去する。この方法は、コンポーネント・ナノチューブの割合を変更することによって複合ナノチューブの特性を調整することができる。炭素ベースのナノチューブを使用して本発明を説明するが、本明細書で例示する方法は、特定の表面に電流を選択的に適用することができる任意の分子構造に適用可能であることに留意されたい。例えば本発明を、窒化ホウ素(BN)および金属ジカルコニド(MX2)ベースのナノストラクチャで使用することができる。
【0027】
カーボン・ナノチューブは、109A/cm2を超える電流密度に耐えることができる。これは1つには、炭素−炭素結合の強さによる(例えば、1つのC−C結合の結合強度は約347kJ/モルである)。最終的にはしかし、十分に大きな電流でナノチューブは破壊される。例えばMWNTでは、空気中での破壊があるしきい値電力、例えば約500μWで起こり、これよりも大きな電力では、最も外側のカーボン・シェルの急速な酸化が始まる。電力は、電流に電位差(すなわち電圧)をかけたものに等しい。欠陥のないグラファイトの熱誘発性酸化は極めて高い温度、例えば>2000℃でしか進まないので、本発明に基づく破壊開始の主たる要因は電流誘発性の欠陥生成であり、自己加熱が第2の効果である。
【0028】
図1を参照する。ナノチューブ102は、炭素または他の分子の六方格子を含む。炭素の場合には、互いに共有結合した6個の炭素を含む環104が構築される。図2に個々の炭素環を示す。それぞれの交点106が個々の炭素原子を示し、結合が107で示されている。代替構造の1つが窒化ホウ素環であり、その一形態を図3に示す。窒化ホウ素環は、3つの窒素原子、例えば108と交互に結合した3つのホウ素原子、例えば110を含むことができる。
【0029】
電流誘発性の欠陥形成を利用することによって、本発明に基づく方法は、電流が流れているナノチューブを選択的に破壊する。並行するナノチューブがほとんどまたは全く電流を流さない場合には、並行するこれらのナノチューブに影響は及ばない。例えば、図4に示すMWNTでは最も外側のシェル102が選択的に破壊される。これはこのシェルが、外部電極(例えばソースおよびドレイン)と直接に接触しているためである。この電流分布は、電流誘発性酸化の間、電流をほとんどまたは全く流さない最も内側のシェル群を保護し、これらが後に残る。図5に示すSWNTロープでは、個々のナノチューブ(例えば102)が平行に配置される。SWNTロープの個々のナノチューブは外部電極と同時に良好な接触を形成することができるので、SWNTロープを通る電流の分布はMWNTを通る電流の分布よりも均一である。
【0030】
一般に、あるSWNTよりも他のSWNTのほうを電流が好んで流れる理由はないが、本発明の一実施形態によれば、静電的に結合されたゲート電極によって、コンポーネント半導電性ナノチューブのキャリアを選択的に枯渇させることができる。言い換えると、ソース電極とドレイン電極の間にかかるSWNTまたはMWNTでは、対応するゲート電極に電圧を印加することによって、コンポーネント半導電性ナノチューブからキャリアを枯渇させることができる。枯渇後は、半導電性ナノチューブは損傷から保護され、ソース電極によってSWNTまたはMWNTに適用した高電流密度を使用して、コンポーネント金属性ナノチューブの酸化を開始させることができる。したがってこれらの方法では、SWNTロープの半導電性ナノチューブ、ならびにMWNTの外側半導電性シェルを保護することができる。
【0031】
これらの複合導体からのカーボン・ナノチューブの除去は、電気的な方法と顕微鏡法の両方で観察することができる。電気的には、1本のカーボン・ナノチューブが破壊されると、一般に数ミリ秒で完了する部分的なコンダクタンスの低下が起きる。十分に高いバイアスでストレスを加えると、カーボン・シェルが次々と破壊されるので、独立した複数の低下が起こる。この破壊で使用する電子回路は破壊されるナノチューブの数を制御することができる。電流の低下、例えば約19μAの電流低下をセンスすると、この電子回路は、破壊プロセスを中断させ、これによって示される特性を制御することができる。
【0032】
図6を参照すると、一定電圧ストレス下でのMWNTの部分電気破壊は、8層から成るMWNTの個々の層の損失に対応する一連の離散的ステップで進行している。これらの結果は、電力約450μW、電位差約2ボルトで得られたものである。図6ではさらに、1シェルあたり電流約19μAの規則的な破壊が見られる。部分的に破壊されたMWNTの半径の低減は、シェル間の間隔(0.34nm)に完了した破壊ステップ数を掛けたものに等しい。同様の細線化をSWNT束で達成することができ、金属性SWNTが選択的に破壊され、半導電性SWNTだけが残る。
【0033】
比較的に小さな電界および電流が個々の分子に影響するので、外部ストレスに対するナノチューブの感度がこの破壊を支援する。例えば、直径1nmの半導電性ナノチューブの電気キャリアを、数百ナノメートル離れたゲート電極によって静電的に枯渇させることができる。電流密度(ナノチューブの破壊に影響を及ぼすのに十分な電流密度)は、ナノチューブと周囲のガスとの間の化学反応を開始させる触媒の働きをする。例えば、空気中のカーボン・ナノチューブではこの反応を以下のように書くことができる:C(ナノチューブ)+O2(ガス)→CO2(ガス)。
【0034】
本発明はさらに、電流によって支援された非破壊性の反応によって特定のナノチューブを化学的に変性させることができる他の環境を企図する。その結果得られるデバイスは、電気的スイッチングと化学的感度の両方を取り込むことができよう。例えば、さまざまなガスに対するナノチューブの感度を使用して、ナノセンサ(ナノチューブ)の導電率の変化が特定のガスの存在を知らせる化学的ナノセンサの文脈でこの化学的変性を使用することができる。
【0035】
ナノチューブの制御された破壊によって、(金属性および半導電性SWNTを含む)SWNTの混合物から半導電性SWNTを分離すること、およびナノチューブ・ベースの電界効果トランジスタ(FET)を製造することができる。また、本明細書に開示した方法を使用して、トランジスタ(例えばFET)、ダイオードおよび抵抗器を、ナノチューブの特性および基板の設計に応じて製造することができることに留意されたい。
【0036】
基本的には、このプロセスによって、MWNTおよびSWNTロープの複雑な電子構造および輸送特性の研究が容易になる。個々のコンダクタンス・ステップのところでストレス(電流)を取り除くことによって、それぞれの構成導体(ナノチューブ)の損失後に、これらの複合ナノワイヤの特性を再評価することができる。この特性評価は例えば、破壊プロセスのある段階から他の段階へのMWNTまたはSWNTロープのコンダクタンス特性を指す。複数の相補的な輸送測定によって例えば、MWNTの内側のシェルへより深く調べることができ、それぞれのシェルを通した輸送の特性評価ならびに直接の比較が可能になる。
【0037】
MWNTでは、金属性シェルと半導電性シェルがランダムに交互に起こると推定される。このことは、制御された破壊を使用し、続いて、MWNTの最も外側のシェルを調べる低バイアスまたは低温測定を実施することによって、直接に試験することができる。SWNTに関する先の測定に従って、ゲート電圧Vgに対するコンダクタンスGを、10mVという比較的に小さなソース−ドレイン・バイアスを使用して測定することによって、半導電性シェルと金属性シェルを区別することができる。金属性シェルは、Vgから独立した、またはほぼ独立したGを特徴とし、一方、半導電性シェルは、ゲートによってキャリアを静電的に枯渇させることができる。
【0038】
図7を参照する。それぞれの破壊事象時にストレスを停止させることによって、それぞれ構成シェルの損失の後にMWNTの特性を評価することができる。図7に、それぞれの破壊段階での最も外側のシェルの荷電特性に起因する、半導体的振舞い(例えば402および406)と金属的振舞い(例えば404)との間の低バイアス・コンダクタンス(G(Vg))の交替を示す。図8では、最後の金属性シェル(n−9)を除去したときに、残りの半導電性シェルを完全に枯渇させて、ゼロ・コンダクタンスの領域を得ることができる。コンダクタンスおよび価電子バンド端に対応する矢印で指示したG(Vg)のピークをとると、異なるシェルのバンド・ギャップを、定数または比例関係として決定することができる。この相対的な幅は、図9に示すように、予想される直径依存性に基づく計算結果と一致する。この計算は、チューブの最初の直径と隣接するシェル間の間隔0.34nmだけをパラメータとする。
【0039】
図7は、MWNTのさまざまな異なる層に対する室温でのG(Vg)を示す。MWNTは当初、9.5nmの直径、n層のシェルおよび金属性のG(Vg)を有する。図7には、3つのシェルを除去した後に観察されたG(Vg)402の強い変調が示されている。第4の層を除去すると金属性のG(Vg)404となり、第6のシェルを除去すると半導電性の別のG(Vg)406となる。この変動は、除去しているカーボン・シェルの特性の交替性をあらわすものであると解釈される。
【0040】
特定の半導電性シェルに対してGがゼロまで下がらないのは、導電を続ける内側の金属性シェルの寄与による。シェルn−3およびn−4がこのことを証明している。シェルn−3のG(Vg)曲線の空乏化の最小値はその下のシェルn−4 408のコンダクタンスと一致している。この場合、外側の半導電性シェルn−3はゲートによって完全に空乏化するが、測定されたコンダクタンスはその下の金属性シェルを通した漏れを含んでいる。追加の測定によれば、この漏れは低温で凍結され、この低バイアス限界値は、シェル間の結合が熱によって活性化されることを示している。MWNTおよびSWNTロープの漸進的な細線化は、例えば原子力および走査電子顕微鏡法を使用して解像することができ、破壊ステップ数と見かけの直径の変化とは線形対応する。
【0041】
10番目のカーボン・シェルを除去すると、MWNTは、キャリアの完全な枯渇に起因するゼロ・コンダクタンスの領域を室温であっても有する完璧なイントリンシック電界効果トランジスタ(FET)のように振る舞い始める(例えば図8)。同様の特性が、個々の半導電性SWNTでも見られる。ただし、使用したSWNTは強いp型であり、対称G(Vg)特性を示さなかった。MWNTの完全な空乏化は、金属性シェルが残っていないことを指示し、この振舞いは、14番目のカーボン・シェルを除去するまで続き、この時点でMWNT回路はオープンした。ほぼ0.34nmである既知のシェル間の間隔を基にすれば、この直径のMWNTのシェル数はせいぜい14であり、これはシェルごとの計数と一致する。
【0042】
図8は、最後の半導電性シェルを除去したときのゼロ・コンダクタンス領域の漸進的な増大を示す。この領域の幅は、半導体のバンド・ギャップ(結合を破壊するのに必要なエネルギー)に比例し、このギャップの上および下での導通はそれぞれ、電子およびホール様キャリアに起因する。高電圧パルスを使用してシェルを破壊するため、捕獲された電荷のある再配列がその下のSiO2基板で起こる。シェル間の比較を単純にするため、図8に示した曲線はその中心をVg=0の近くにした。半導電性カーボン・ナノチューブの特徴は、バンド・ギャップ・エネルギーが直径に反比例することであり、そのため、小さなカーボン・シェルほど大きなバンド・ギャップを示し、バンド・ギャップの幅が材料のタイプ(導体、半導体、絶縁体)を決定する。MWNTの初期直径とシェル間の間隔だけを使用して、最も内側のシェル群の予想されるバンド・ギャップ間の比を計算することができる。図9に示すように、これらの比は、コンダクタンス・ギャップの両側のコンダクタンス・ピークによって定義される図9に示した実験に基づく比と一致する。
【0043】
次に図10を参照する。個々のシェルの損失の後にMWNTの特性を再評価することによって、I−Vに対するそれぞれのシェルの寄与を決定することができる。均一な間隔の一連のI−Vに基づいて、それぞれのシェルは同じ電流で飽和し、全てのシェルは、中および高バイアスでの導通に寄与する。破線は、得られなかったI−Vの位置を指示する。選択したI−Vの半対数プロットは、最も内側のシェル群ではこれらと外部電極の間の有効なバリアのため、I−Vが指数関数的になる傾向を指示している。最も外側のシェルを除く全てのシェルでおそらく同様のバリアがその役割を果たし、いくつかのMWNTで観察された非線形性を説明する。
【0044】
図10に、n、n−1、n−2などのシェルを有するMWNTの特性を単一のシェルだけが残るまで効果的に再評価する一連の高バイアス電圧電流特性(I−V)を示す。破壊性の酸化を抑えるため高バイアスI−Vは、高真空、例えば<1ミリバールの真空または不活性環境で得なければならない。単一のカーボン・シェルを制御可能に除去するため、それぞれの曲線間で、MWNTを空気にさらした。それぞれのナノチューブへの接触抵抗(Rc)を監視するため、4プローブ測定と2プローブ測定を定期的に比較した。ここに示したデータは、この一連の測定を通じて、数キロオームの定数Rcを示しているサンプルに対するものである。高いRcを有するサンプルは、本明細書で説明したシェルごとの機構に反して、接触のところで破壊する傾向がある。それぞれのI−Vはバイアスの増大につれて、個々のSWNTで観察されるものと同様の電流飽和を示すが、電流ははるかに大きい。MWNTからのそれぞれのシェルの除去は、図6と一致した約20μAの固定量だけ、この飽和レベルを低下させるように見える。この段階的減少は高バイアスを示し、全てのMWNTシェルが輸送および飽和に等しく寄与することを明らかに指す。
【0045】
電流飽和値の低下の他に、図10の一連のI−Vは、シェルを除去したときの非線形性の増大を示す。選択したI−Vの半対数プロットは、線形I−VからI=A exp(V/Vo)、Vo=0.50Vの形態の指数関数特性に向かう傾向を示す。明らかにトンネリング・バリアが、最も内側のシェル群のI−Vを支配している。これはおそらく、これらのシェルが、多くのグラファイト層から成るバリアを通さないと外部電極に結合することができないためである。電極と直接に接触していない中間シェルでは、測定されたI−Vの異常な形状を、ナノチューブの固有の縦のI−V特性と直列の深さに依存したバリアによるものと定性的に理解することができる。この直列バリアは、図10に示した電流飽和に達するのに必要なバイアスの漸進的な増大を説明する。さらに、ここで観察された線形のI−Vから非線形のI−Vへの移行、および文献で豊富に報告されている同様の非線形I−Vは、輸送実験がしばしば、MWNTの電流通過カーボン・シェルと直接には接触せず、むしろ、透過電子顕微鏡法によって一般に観察される部分的または不完全なシェルと接触することを示唆している。
【0046】
図7ないし10は、MWNTシェルの可変性を確認し、これらのシェル間の結合に定量的に言及し、全体コンダクタンスに対する1つのシェルの寄与を分離しようと試みた図である。現在まで、これらの問題に関して理論および実験は割れている。一方でMWNTは、理論的に実際にモデル化するにはあまりに複雑であり、他方、内側のカーボン・シェルを直接に調べることができる実験は知られていない。本明細書で導入した制御された破壊の技法は、これらの複雑な導体の輸送特性に新たな洞察をもたらす可能性を有する。さらに、異なるバンド・ギャップを有する金属と半導体の間でMWNTを選択的に変換されることができる。
【0047】
MWNTに対して説明した方法をSWNTロープに適用することができる。MWNTおよびSWNTはともに複合ナノチューブであるけれども、SWNTはいくつかの違いを示す。例えば、1本のSWNTロープの複数のSWNTが、潜在的に酸化性の環境と接触する可能性があり、そのため、MWNTで観察されるシェルごとの均一な破壊(例えば図6)とは異なり、多数のカーボン・シェルが同時に破壊される可能性がある。さらに、1本のロープのSWNTは、MWNTのシェルほどには互いを効果的に静電シールドしない。その結果、半導電性SWNTのキャリアを枯渇させることによって、1本のロープに対する破壊で、金属性SWNTだけを破壊することができる(この場合、主にp型のSWNTのキャリアを枯渇させるためVgはストレスの間、+10Vに保持される)。炭素ベースのSWNTのキャリア密度は、約100から約1000電子/μmとすることができる。他の違いは、小さなロープのそれぞれのSWNTが外部電極に独立に接続することである。したがって、全体コンダクタンスG(Vg)=Gm+Gs(Vg)を有する独立した平行な導体としてSWNTロープを、MWNTよりも容易にモデル化することができる。上式で、Gmは金属性ナノチューブの寄与であり、Gsは、半導電性ナノチューブのゲート依存コンダクタンスである。
【0048】
図11および12を参照する。半導電性SWNTと金属性SWNTの混合物を含むSWNTロープにストレスを加え、同時にこのSWNT束をゲートすることによって、金属性SWNTの選択破壊においてこの半導体のキャリアは枯渇する。最初のSWNT束602および606は、金属性SWNTと半導電性SWNTの両方を含み、細線化されたSWNT束604および608は、はるかに高い割合の半導電性SWNTを含む。同様に、SWNTに対するものと同様の方法を使用してシェルのキャリアの枯渇させることによって、MWNTの半導電性ナノチューブ・シェルを効果的に絶縁することができる。したがって、MWNTの破壊を制御して、所望の特性(例えば金属性または半導電性)を得ることができる。複合ナノチューブの選択破壊は、金属性および半導電性ナノチューブのゲート電圧に対する相対的な依存性によって説明することができる。金属性ナノチューブのコンダクタンスは、ゲート電圧に対する依存性をほとんど示さないが、半導電性ナノチューブのコンダクタンスはゲート電圧に対して強い依存性を示す。
【0049】
したがって図11および12に示すように、正のゲート電圧ではSWNTのコンダクタンスはゼロに近づき、負のゲート電圧では、キャリアが追加されるにつれてコンダクタンスは増大する。図11および12は、2本の小さなSWNTロープの制御された破壊の前後のG(Vg)を示す。これらの乱されていないサンプルのコンダクタンスは、MWNTの場合とよく似た方法でゲート電極によって部分的に変調することができる。ロープの金属性SWNTが破壊されると、その下のコンダクタンスGmはゼロまで低下する。対照的に、変調の程度Gsは変化しない。この測定は、破壊プロセスの間に半導電性SWNTのキャリアを枯渇させることによって、半導電性SWNTを損傷から効果的に保護することができることを示している。この結果は、1本のロープの異なるSWNT間に電子的相互作用がほとんどないことを示唆している。G(Vg)の温度依存性の変化を測定することによってこの相互作用の問題に対処することができ、もしあるとすれば、このような相互作用がどんなエネルギー範囲で重要となるかを決定することができる。
【0050】
半導電性SWNTは影響を受けないので、金属性SWNTの寄与に従ってG(Vg)曲線は厳格に下方へシフトする。図13を参照する。数百のSWNTを含む非常に大きなロープであっても、これらのサンプルを効果的にFETに変換することができる。しかしこの場合、Gmの漸減はゼロに達する前に停止する。おそらくこれは、ロープのコアの金属性SWNTが半導電性SWNTによって覆われているためである。これらの弱く結合した金属性SWNTの破壊にはより高い電圧が必要となり、周囲のいくつかの半導電性SWNTが犠牲となる可能性がある。その結果、多くの半導電性チャネルおよびGs>10μsの大きな初期変調を有するロープだけが、Gs〜1μsのFETになることができる。
【0051】
MWNTおよびSWNTの相互作用の研究に有用であるほかに、この制御された破壊技法は、ナノチューブ・ベースの電子デバイスの製造に極めて有用である。現在まで、SWNT FETは個別に製造されている。一般に、非常に低い表面被覆率のため、せいぜい1本のSWNTでしかこの密度でソース/ドレイン電極が接続されず、ほとんどの潜在的な回路は接続されないまま残り、そのいくつかは金属性SWNTを組み込み、その他は半導電性SWNTを有する。
【0052】
この技法が、SWNT特性の初期評価に有用であることは証明されたが、実用的な応用には、平行して多くのデバイスの信頼性の高い生成が必要である。高密度にパックされたFETを達成するには、所望の全ての位置を相互接続するため、例えば、純粋に半導電性のSWNTが十分な密度で必要である。ナノチューブは、化学蒸着によるin−situ成長、ex−situで成長させ、付着させるなど、既知の技法によって提供することができる。高い表面密度では、WNT特性の可変性のために、半導電性チャネルとして役立たない金属性チューブによって支配された複数のSWNTおよびSWNTロープのほうが好ましい。現在、純粋に半導電性のSWNTを合成する方法も、SWNT混合物から半導電性SWNTを分離する方法も知られていない。
【0053】
図15を参照する。この図は、標準のリソグラフィを使用して製造した独立にアドレス可能なSWNT FETの小さなアレイを示す。金属パッド(例えば701)のアレイが提供されており、それぞれのパッドは、ソース704、ドレイン706またはゲート電極702を含む。これらのパッドの基板は任意の絶縁材料とすることができるが、シリカ・ベースの基板であることが好ましい。この基板と金属パッドの組合せを、ナノチューブ用基板と呼ぶ。それぞれのFETは、ソース、ドレイン、ゲート、およびソースとドレインを接続する少なくとも1本のナノチューブを含む。ナノチューブは、それぞれのソースを対応するドレインに接続するように形成される。次に図16を参照する。ゲート酸化物708がゲート702を電極(704、706)から分離している。SWNTの密度は、少なくとも1本のロープ(例えば710)がそれぞれの電極セットを短絡し、一方でデバイス間の不要な接続が最小化されるように調整することができる。ナノチューブの密度は厚さを持たない、例えば単層または被覆率100%未満であることが好ましい。いくつかの結果によれば、少なくとも1本のナノチューブによってそれぞれのソース−ドレイン対を接続するのには1パーセントよりも小さい密度で十分だが、基板の約1/10パーセントのという低い密度でも、アレイのそれぞれのソース−ドレイン対の接続を提供することができる。ソース電極とドレイン電極の間のロープ(例えば710)は、金属性ナノチューブを選択的に破壊することによってFETに変換される。一方、迷走ナノチューブは完全な破壊によって完全に除去される。
【0054】
これらのロープは当初、それらの金属性構成要素のため、スイッチングをほとんどまたは全く示さないが、図14に示すように、良好なFET特性を有する最終的なデバイスを高い信頼性で達成することができる。いくつかの結果によれば、無秩序な出発材料から90%を超える確実性でSWNT FETを生成することができる。図14は、1本または数本のSWNTロープが組み込まれた32のデバイスについての結果をまとめたものである。変性前(例えば610)では、ロープ・サイズの分布および接触効果のため、個々のロープのコンダクタンスは広範囲にわたり、ゲートによって実質的に極めて少ないデバイスしか枯渇させることができない。
【0055】
金属性SWNTを破壊すると、それぞれのロープのコンダクタンスは減少し、残りのチャネルは半導電性だけになって、キャリアを完全に枯渇させることができる。結果として生じるデバイスは、主として接触抵抗によって制限された適度なFET特性を有する。接触抵抗については別個に取り組まれている。複数の小さなSWNT束は、化学気相成長によって生成させることができ、大きな束で遭遇する困難を軽減することができ、優れた導電率およびスイッチング比を有するFETが得られる。
【0056】
本願は、特定のカーボン・ナノチューブ系を焦点に置いたけれども、同じ原理を、さまざまな分子エレクトロニクス系に広く適用することができる。一般に、分子デバイス・アレイは、外部電気手段を使用した設計によって、ナノメートル・スケールでの実際の制御を必要とすることなく生成することができる。自由裁量の変更によって、ランダム混合物から有用な電子素子を画定することができる。この解決策を、カーボン・ナノチューブに固有の変動の問題の解決に適用したが、本明細書の開示を考慮した当業者ならば、他の分子の混合物を使用して同様の結果を達成することができよう。
【0057】
電気破壊を使用してカーボン・ナノチューブおよびナノチューブ回路を製作するシステムおよび方法の実施形態を説明してきたが、当業者が以上の教示を考慮すれば修正および変形を実施することができることに留意されたい。したがって、開示した発明の特定の実施形態に、添付の請求項によって定義される本発明の範囲および趣旨に含まれる変更を加えることができることを理解されたい。したがって、特許法が求める詳細および特殊性とともに本発明を説明したが、特許証によって権利を主張し、保護を求める内容は添付の請求項に記載されている。
【図面の簡単な説明】
【図1】
ナノチューブを示す図である。
【図2】
ナノチューブを構成する六角環を示す図である。
【図3】
ナノチューブを構成する六角環を示す図である。
【図4】
多壁ナノチューブを示す図である。
【図5】
単壁ナノチューブ・ロープを示す図である。
【図6】
時間的に一定の電圧での多壁ナノチューブの部分的な電気破壊を示すグラフである。
【図7】
破壊の各段階での多壁ナノチューブの最外殻の電荷特性に起因する、半導体的振舞いと金属的振舞いとの間の低バイアス・コンダクタンスの交替を示すグラフである。
【図8】
多壁ナノチューブから最後の金属性シェルを取り除いた後に残った半導電性シェルのコンダクタンスを示すグラフである。
【図9】
シェル番号、直径、相対バンド・ギャップ・エネルギーの関係を示す表である。
【図10】
多壁ナノチューブのそれぞれのシェルの電圧に対する電流(I)を示すグラフである。
【図11】
分子性導体(ナノチューブ)のランダム混合物から半導電性電界効果トランジスタへの移行を示す図である。
【図12】
分子性導体(ナノチューブ)のランダム混合物から半導電性電界効果トランジスタへの移行を示す図である。
【図13】
分子性導体(ナノチューブ)のランダム混合物から半導電性電界効果トランジスタへの移行を示す図である。
【図14】
分子性導体(ナノチューブ)のランダム混合物から半導電性電界効果トランジスタへの移行を示す図である。
【図15】
電極アレイを示す図である。
【図16】
ソース、ドレインおよびゲートを含む単壁ナノチューブ・ロープ・ベースの電界効果トランジスタを示す図である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to nanostructures, and in particular, to systems and methods for electrically induced breakdown of nanostructures.
[0002]
[Prior art]
In the field of molecular nanoelectronics, few materials are as promising as nanotubes, especially carbon nanotubes, which include hollow cylinders of graphite several Angstroms in diameter. Nanotubes can be made into small electronic devices such as diodes and transistors according to their electrical properties. Nanotubes have unique sizes, shapes and physical properties. The structure of carbon nanotubes resembles a hexagonal lattice of carbon wound into a cylinder.
[0003]
Besides exhibiting interesting quantum behavior at low temperatures, carbon nanotubes exhibit at least two important properties. Nanotubes can be metallic or semiconductive depending on their chirality (ie, conformational geometry). Metallic nanotubes can carry very high current densities at a constant resistivity. Semiconductive nanotubes can be electrically switched on and off as field effect transistors (FETs). The two types can be covalently joined (shared electrons). These properties indicate that nanotubes are an excellent material for making nanometer-sized semiconductor circuits.
[0004]
Current methods of studying nanotubes rely on the random formation of metallic and semiconducting nanotubes. There is no known method for producing nanotubes having specific characteristics with high reliability, and there is even less known a method for producing nanotubes exhibiting a junctional behavior such as transistors, diodes, and the like. Also, there has been no known method of separating nanotubes by selective synthesis or post-synthesis with a certain success. Until now, nanotubes had to be individually separated from a mixture of metallic and semiconducting nanotubes or randomly placed on the electrode under study. However, there is no notable consistency in such a method.
[0005]
[Problems to be solved by the invention]
This lack of control, combined with the tendency for nanotubes to be bundled, has hindered the physical study of nanotubes, and has been seen as a major impediment to nanotube development, including nanotube-based electronics. I have. Accordingly, there is a need for a system and method for producing nanotubes having desired properties.
[0006]
[Means for Solving the Problems]
Accordingly, the present invention provides a device forming method including providing a substrate, forming a plurality of nanotubes in contact with the substrate, and selectively destroying the nanotubes using an electric current. Preferably, the method further comprises the step of depleting the carriers of the semiconductive nanotube.
[0007]
Preferably, the step of depleting the plurality of carriers of the semiconducting nanotube further comprises applying a voltage to a gate electrode on the substrate. Preferably, the method includes passing a current from the source electrode to the drain electrode through the nanotube.
[0008]
Preferably, the plurality of nanotubes are multi-wall nanotubes, including metallic and semi-conductive nanotubes. Preferably, selectively destroying the method comprises destroying an outer metallic nanotube.
[0009]
Preferably, the plurality of nanotubes are single-walled nanotube ropes including metallic and semi-conductive nanotubes, and the breaking comprises breaking at least one metallic nanotube.
[0010]
Preferably, the nanotubes are provided in a density between the monolayer and 1/10 percent coverage.
[0011]
The substrate is an insulator and preferably includes an array of metal pads.
[0012]
The substrate is a silica-based substrate and preferably includes a metal pad array.
[0013]
Each pad preferably includes one of a source electrode, a drain electrode, and a gate electrode.
[0014]
The step of providing a substrate is performed by forming a pad array using lithography, with each pad preferably including a corresponding electrode on an insulating substrate.
[0015]
Preferably, the nanotubes are carbon nanotubes.
[0016]
Preferably, the method further comprises destroying the plurality of stray nanotubes.
[0017]
According to another aspect, the invention is a method of modifying at least one property of a nanotube, comprising providing a mixture of nanotubes, and passing an electrical current through the mixture to induce selective destruction of the nanotube mixture. And a method comprising: Preferably, the method further comprises the step of removing carriers from the semiconductive nanotube.
[0018]
Preferably, the current selectively destroys the metallic nanotube. Preferably, the power applied to the mixture is about 500 μW.
[0019]
Preferably, the nanotube is one of a multi-wall nanotube and a single-wall nanotube rope.
[0020]
Preferably, the characteristic is one of diameter, density and conductance.
[0021]
Preferably, the mixture comprises metallic and semiconductive nanotubes.
[0022]
Current density is 10 9 A / cm 2 It is preferably larger than.
[0023]
According to another aspect, the present invention provides an insulating substrate including a source electrode, a drain electrode and a gate electrode, forming a carbon nanotube bundle comprising metallic and semiconductive component nanotubes in contact with the substrate. The nanotubes are provided at a density of about 1 percent coverage, and the present invention further applies a voltage to the gate electrode to deplete the carriers of the semiconductive component nanotubes and to pass a current from the source electrode to the drain electrode through the nanotube. A method for forming a device for flowing and destroying at least one metallic component nanotube to form a field effect transistor is provided.
[0024]
Preferably, the carbon nanotube bundle can be a multi-wall nanotube or a single-wall nanotube rope.
[0025]
Next, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.
[0026]
BEST MODE FOR CARRYING OUT THE INVENTION
According to the present invention, there is provided a method for permanently modifying multi-walled nanotubes (MWNT) or single-walled nanotubes (SWNT) ropes or bundles. Nanotubes can be metallic or semiconductive, depending on their chirality (ie, conformation). Both types are found in MWNT and SWNT. The method according to the present invention uses current-induced electrical breakdown to remove individual nanotubes with specific properties. This method can tune the properties of composite nanotubes by changing the percentage of component nanotubes. Although the present invention is described using carbon-based nanotubes, it is noted that the methods illustrated herein are applicable to any molecular structure that can selectively apply an electric current to a particular surface. I want to be. For example, the invention can be used with boron nitride (BN) and metal dichalconide (MX2) based nanostructures.
[0027]
Carbon nanotubes are 10 9 A / cm 2 Can withstand current densities exceeding. This is in part due to the strength of the carbon-carbon bonds (eg, the bond strength of one CC bond is about 347 kJ / mol). Ultimately, however, the nanotubes will be destroyed by a sufficiently large current. For example, in MWNTs, breakdown in air occurs at some threshold power, eg, about 500 μW, at higher powers a rapid oxidation of the outermost carbon shell begins. Power is equal to current multiplied by the potential difference (ie, voltage). Since the thermally induced oxidation of defect-free graphite proceeds only at very high temperatures, for example> 2000 ° C., the main factor in the initiation of breakdown according to the invention is current-induced defect formation, and self-heating has a second effect. It is.
[0028]
Please refer to FIG. The
[0029]
By utilizing current-induced defect formation, the method according to the present invention selectively destroys nanotubes that are carrying current. If the parallel nanotubes carry little or no current, they have no effect. For example, in the MWNT shown in FIG. 4, the
[0030]
In general, there is no reason for current to flow preferentially through one SWNT over another, but according to one embodiment of the present invention, the carrier of the component semiconducting nanotube is provided by an electrostatically coupled gate electrode. Can be selectively depleted. In other words, in a SWNT or MWNT applied between a source electrode and a drain electrode, carriers can be depleted from the component semiconductive nanotube by applying a voltage to the corresponding gate electrode. After depletion, the semiconducting nanotubes are protected from damage and the high current density applied to the SWNT or MWNT by the source electrode can be used to initiate oxidation of the component metallic nanotubes. Thus, these methods can protect the semiconductive nanotubes of the SWNT rope, as well as the outer semiconductive shell of the MWNT.
[0031]
Removal of carbon nanotubes from these composite conductors can be observed both electrically and microscopically. Electrically, the destruction of a single carbon nanotube results in a partial decrease in conductance, which is typically completed in a matter of milliseconds. Stressing with a sufficiently high bias causes multiple independent drops as the carbon shells break down one after another. The electronic circuitry used in this destruction can control the number of destructed nanotubes. Upon sensing a current drop, eg, about 19 μA, the electronics can interrupt the breakdown process and control the characteristics exhibited thereby.
[0032]
Referring to FIG. 6, the partial electrical breakdown of the MWNT under constant voltage stress proceeds in a series of discrete steps corresponding to the loss of individual layers of the eight-layer MWNT. These results were obtained at a power of about 450 μW and a potential difference of about 2 volts. FIG. 6 also shows a regular breakdown with a current of about 19 μA per shell. The radius reduction of the partially broken MWNT is equal to the spacing between shells (0.34 nm) multiplied by the number of completed breaking steps. Similar thinning can be achieved with SWNT bundles, with metallic SWNTs selectively destroyed, leaving only semiconductive SWNTs.
[0033]
Since relatively small electric fields and currents affect individual molecules, the sensitivity of the nanotubes to external stress assists in this destruction. For example, 1 nm diameter semiconductive nanotube electrical carriers can be electrostatically depleted by gate electrodes several hundred nanometers apart. The current density (current density sufficient to affect the destruction of the nanotube) acts as a catalyst to initiate a chemical reaction between the nanotube and the surrounding gas. For example, for a carbon nanotube in air, the reaction can be written as: C (nanotube) + O 2 (Gas) → CO 2 (gas).
[0034]
The present invention further contemplates other environments in which certain nanotubes can be chemically modified by current-assisted non-destructive reactions. The resulting device could incorporate both electrical switching and chemical sensitivity. For example, using the sensitivity of nanotubes to various gases, this chemical modification can be used in the context of chemical nanosensors, where a change in the conductivity of the nanosensor (nanotube) signals the presence of a particular gas.
[0035]
The controlled destruction of nanotubes can separate semi-conductive SWNTs from a mixture of SWNTs (including metallic and semi-conductive SWNTs) and produce nanotube-based field effect transistors (FETs). Also note that using the methods disclosed herein, transistors (eg, FETs), diodes, and resistors can be manufactured depending on the properties of the nanotubes and the design of the substrate.
[0036]
Basically, this process facilitates the study of the complex electronic structure and transport properties of MWNT and SWNT ropes. By removing the stress (current) at the individual conductance steps, the properties of these composite nanowires can be re-evaluated after loss of the respective constituent conductor (nanotube). This characterization refers, for example, to the conductance characteristics of the MWNT or SWNT rope from one stage of the fracture process to another. A plurality of complementary transport measurements can, for example, probe deeper into the shells inside the MWNT, allowing characterization as well as direct comparison of transport through each shell.
[0037]
In MWNTs, it is assumed that the metallic shell and the semiconductive shell occur alternately at random. This can be tested directly by using controlled breakdown, followed by performing a low bias or low temperature measurement that examines the outermost shell of the MWNT. According to the previous measurement for SWNTs, a distinction can be made between semiconductive and metallic shells by measuring the conductance G to the gate voltage Vg using a relatively small source-drain bias of 10 mV. Metallic shells feature G independent or nearly independent of Vg, while semiconductive shells can electrostatically deplete carriers by the gate.
[0038]
Please refer to FIG. By stopping the stress during each failure event, the properties of the MWNT can be evaluated after each loss of the constituent shell. FIG. 7 shows the low bias conductance (G (Vg) between semiconducting (eg, 402 and 406) and metallic (eg, 404) behavior due to the charging properties of the outermost shell at each breakdown stage. )). In FIG. 8, when the last metallic shell (n-9) is removed, the remaining semiconductive shell can be completely depleted to obtain a region of zero conductance. Taking the G (Vg) peaks indicated by the arrows corresponding to the conductance and valence band edges, the band gap of the different shells can be determined as a constant or a proportional relationship. This relative width is consistent with the calculated result based on the expected diameter dependence, as shown in FIG. This calculation is only parameterized by the initial diameter of the tube and the spacing between adjacent shells of 0.34 nm.
[0039]
FIG. 7 shows G (Vg) at room temperature for various different layers of MWNT. MWNTs initially have a diameter of 9.5 nm, an n-layer shell and metallic G (Vg). FIG. 7 shows the strong modulation of G (Vg) 402 observed after removal of the three shells. Removing the fourth layer results in metallic G (Vg) 404, and removing the sixth shell results in another semiconductive G (Vg) 406. This variation is interpreted as representing the interchangeability of the properties of the carbon shell being removed.
[0040]
The reason that G does not drop to zero for a particular semiconductive shell is due to the contribution of the inner metallic shell that remains conductive. Shells n-3 and n-4 prove this. The minimum value of depletion in the G (Vg) curve of shell n-3 is consistent with the conductance of shell n-4 408 below. In this case, the outer semiconducting shell n-3 is completely depleted by the gate, but the measured conductance includes leakage through the underlying metallic shell. According to additional measurements, the leak is frozen at low temperatures, and this low bias limit indicates that the bond between the shells is activated by heat. The progressive thinning of the MWNT and SWNT ropes can be resolved using, for example, nuclear and scanning electron microscopy, with a linear correspondence between the number of failure steps and the change in apparent diameter.
[0041]
Upon removal of the tenth carbon shell, the MWNT begins to behave like a perfect intrinsic field effect transistor (FET) having a region of zero conductance due to complete depletion of carriers even at room temperature (eg, (FIG. 8). Similar properties are found with individual semiconductive SWNTs. However, the SWNT used was a strong p-type and did not show symmetric G (Vg) characteristics. Complete depletion of the MWNT indicated that no metallic shell remained, and this behavior continued until the 14th carbon shell was removed, at which point the MWNT circuit was open. Based on the known shell-to-shell spacing of approximately 0.34 nm, the number of shells for a MWNT of this diameter is at most 14, which is consistent with the per-shell count.
[0042]
FIG. 8 shows the progressive increase in the zero conductance region when the last semiconductive shell is removed. The width of this region is proportional to the band gap of the semiconductor (the energy required to break the bond), and conduction above and below this gap is due to electron and hole-like carriers, respectively. Because high voltage pulses are used to break the shell, the rearrangement of the trapped charge causes the
[0043]
Next, reference is made to FIG. By re-evaluating the properties of the MWNTs after individual shell losses, the contribution of each shell to IV can be determined. Based on a series of uniformly spaced IVs, each shell saturates with the same current and all shells contribute to conduction at medium and high bias. The dashed line indicates the position of IV that was not obtained. The semi-log plot of the selected IV indicates that the IV tends to be exponential due to the effective barrier between these and the outer electrodes in the innermost shell group. A similar barrier probably plays a role in all but the outermost shell, explaining the nonlinearity observed with some MWNTs.
[0044]
FIG. 10 shows a series of high bias voltage-current characteristics (IV) that effectively re-evaluate the characteristics of a MWNT having shells such as n, n-1, n-2, etc., until only a single shell remains. . A high bias IV must be obtained in a high vacuum, for example, a vacuum of <1 mbar or an inert environment to suppress destructive oxidation. The MWNTs were exposed to air between each curve to controllably remove a single carbon shell. In order to monitor the contact resistance (Rc) to each nanotube, 4-probe measurements and 2-probe measurements were periodically compared. The data shown is for a sample that exhibits a constant Rc of several kilohms through this series of measurements. Samples with high Rc tend to break at the point of contact, contrary to the per-shell mechanism described herein. Each IV shows a similar current saturation as observed for individual SWNTs with increasing bias, but the current is much higher. Removal of each shell from the MWNTs appears to reduce this saturation level by a fixed amount of about 20 μA, consistent with FIG. This gradual decrease indicates a high bias, clearly indicating that all MWNT shells contribute equally to transport and saturation.
[0045]
In addition to decreasing the current saturation value, the series IV in FIG. 10 shows an increase in non-linearity when the shell is removed. The semi-log plot of the selected IV is from the linear IV to I = A exp (V / V o ), V o = 0.50V shows a tendency toward exponential function characteristics. Apparently, the tunneling barrier dominates the IV of the innermost shell group. This is probably because these shells can only be bonded to external electrodes through a barrier consisting of many graphite layers. In the middle shell, which is not in direct contact with the electrode, qualitatively understands the anomalous shape of the measured IV due to the inherent vertical IV characteristics of the nanotube and the depth-dependent barrier in series can do. This series barrier accounts for the gradual increase in bias required to reach the current saturation shown in FIG. In addition, the transition from the linear IV to the non-linear IV observed here, and similar non-linear IVs that are well documented in the literature, indicate that transport experiments often result in current passing carbon It does not directly contact the shell, but rather suggests contact with a partial or incomplete shell commonly observed by transmission electron microscopy.
[0046]
Figures 7 to 10 confirm the variability of the MWNT shells, quantitatively refer to the coupling between these shells, and attempt to separate the contribution of one shell to the overall conductance. To date, theories and experiments have been cracked on these issues. On the one hand, MWNTs are too complex to model in theory, and on the other hand, no experiments are known that can directly probe the inner carbon shell. The controlled destruction technique introduced herein has the potential to provide new insights into the transport properties of these complex conductors. Further, MWNTs can be selectively converted between metals and semiconductors having different band gaps.
[0047]
The method described for MWNTs can be applied to SWNT ropes. Although MWNTs and SWNTs are both composite nanotubes, SWNTs show some differences. For example, multiple SWNTs of a single SWNT rope can come into contact with a potentially oxidizing environment, thus, unlike the uniform shell-to-shell failure observed with MWNTs (eg, FIG. 6). Many carbon shells can be destroyed simultaneously. In addition, the single rope SWNTs do not electrostatically shield each other as effectively as the MWNT shell. As a result, by depleting the carrier of the semiconductive SWNT, it is possible to destroy only the metallic SWNT by destruction on one rope (in this case, Vg is mainly used to deplete the carrier of the p-type SWNT). Is maintained at +10 V during stress). The carrier density of carbon-based SWNTs can be from about 100 to about 1000 electrons / μm. Another difference is that each SWNT of the small rope connects independently to the external electrode. Therefore, the total conductance G (Vg) = G m + G s SWNT ropes as independent parallel conductors with (Vg) can be modeled more easily than MWNTs. In the above formula, G m Is the contribution of metallic nanotubes and G s Is the gate-dependent conductance of the semiconducting nanotube.
[0048]
Please refer to FIG. 11 and FIG. By stressing the SWNT rope comprising a mixture of semiconductive and metallic SWNTs while simultaneously gating the SWNT bundle, the semiconductor carriers are depleted in the selective destruction of metallic SWNTs. Initial SWNT bundles 602 and 606 include both metallic and semi-conductive SWNTs, and thinned SWNT bundles 604 and 608 include a much higher percentage of semi-conductive SWNTs. Similarly, the semiconductive nanotube shell of the MWNT can be effectively insulated by depleting the carrier of the shell using methods similar to those for SWNTs. Thus, the desired properties (eg, metallic or semiconductive) can be obtained by controlling the destruction of the MWNT. The selective destruction of composite nanotubes can be explained by the relative dependence of metallic and semiconducting nanotubes on gate voltage. The conductance of metallic nanotubes shows little dependence on gate voltage, whereas the conductance of semiconducting nanotubes shows a strong dependence on gate voltage.
[0049]
Thus, as shown in FIGS. 11 and 12, at positive gate voltages, the conductance of SWNT approaches zero, and at negative gate voltages, the conductance increases as carriers are added. FIGS. 11 and 12 show G (Vg) before and after controlled breaking of two small SWNT ropes. The conductance of these undisturbed samples can be partially modulated by the gate electrode in a manner very similar to that of the MWNT. When the metallic SWNT of the rope is destroyed, the conductance G beneath it m Drops to zero. In contrast, the degree of modulation G s Does not change. This measurement indicates that by depleting the carrier of the semiconductive SWNT during the breakdown process, the semiconductive SWNT can be effectively protected from damage. This result suggests that there is little electronic interaction between the different SWNTs of one rope. Measuring the temperature-dependent change in G (Vg) can address this interaction problem, and determine in what energy range such an interaction, if any, is important. be able to.
[0050]
Since the semiconductive SWNTs are not affected, the G (Vg) curve shifts strictly downward according to the contribution of the metallic SWNTs. Please refer to FIG. Even very large ropes containing hundreds of SWNTs can effectively convert these samples to FETs. But in this case, G m Stops before it reaches zero. Perhaps this is because the metallic SWNTs in the core of the rope are covered by semi-conductive SWNTs. Higher voltages are required to destroy these weakly bonded metallic SWNTs, and some surrounding semiconductive SWNTs may be sacrificed. As a result, many semiconducting channels and G s Only ropes with a large initial modulation of> 10 μs have G s It can be an FET of FET1 μs.
[0051]
Besides being useful for studying the interaction of MWNTs and SWNTs, this controlled destruction technique is extremely useful for the fabrication of nanotube-based electronic devices. To date, SWNT FETs have been manufactured individually. In general, due to very low surface coverage, at most one SWNT will have source / drain electrodes connected at this density and most potential circuits will remain unconnected, some of which will have metallic SWNTs. Embedded, others have semi-conductive SWNTs.
[0052]
Although this technique has proven useful for the initial evaluation of SWNT properties, practical applications require the reliable generation of many devices in parallel. Achieving densely packed FETs requires, for example, purely semiconductive SWNTs of sufficient density to interconnect all desired locations. Nanotubes can be provided by known techniques, such as in-situ growth by chemical vapor deposition, ex-situ growth and attachment. At high surface densities, multiple SWNTs and SWNT ropes dominated by metallic tubes that do not serve as semi-conductive channels are preferred due to variability in WNT properties. Currently, neither a method of synthesizing purely semiconductive SWNTs nor a method of separating semiconductive SWNTs from a SWNT mixture is known.
[0053]
Please refer to FIG. This figure shows a small array of independently addressable SWNT FETs manufactured using standard lithography. An array of metal pads (eg, 701) is provided, each pad including a
[0054]
These ropes initially show little or no switching due to their metallic components, but can reliably achieve the final device with good FET characteristics, as shown in FIG. it can. According to some results, SWNT FETs can be produced from disordered starting materials with greater than 90% certainty. FIG. 14 summarizes the results for 32 devices incorporating one or several SWNT ropes. Prior to denaturation (e.g., 610), the conductance of the individual ropes is extensive due to rope size distribution and contact effects, and substantially very few devices can be depleted by the gate.
[0055]
Upon destruction of the metallic SWNTs, the conductance of each rope decreases and the remaining channels become only semi-conductive, allowing the carriers to be completely depleted. The resulting device has modest FET characteristics limited primarily by contact resistance. Contact resistance is being addressed separately. Multiple small SWNT bundles can be produced by chemical vapor deposition, which can reduce the difficulties encountered with large bundles, resulting in FETs with excellent conductivity and switching ratio.
[0056]
Although the present application focuses on specific carbon nanotube systems, the same principles can be widely applied to various molecular electronics systems. In general, molecular device arrays can be created by design using external electrical means without the need for actual control at the nanometer scale. By varying the discretion, useful electronic components can be defined from random mixtures. Although this solution has been applied to solving the problem of variability inherent in carbon nanotubes, those skilled in the art in view of the present disclosure will achieve similar results using mixtures of other molecules. I can do it.
[0057]
While embodiments of systems and methods for fabricating carbon nanotubes and nanotube circuits using electrical breakdown have been described, it should be noted that modifications and variations can be made by those skilled in the art in light of the above teachings. . Therefore, it is to be understood that changes may be made in particular embodiments of the disclosed invention that fall within the scope and spirit of the invention as defined by the appended claims. Thus, while the present invention has been described in detail with the particularity and particularity required by the Patent Act, what is claimed and protected by Letters Patent is set forth in the appended claims.
[Brief description of the drawings]
FIG.
It is a figure showing a nanotube.
FIG. 2
It is a figure showing a hexagonal ring which constitutes a nanotube.
FIG. 3
It is a figure showing a hexagonal ring which constitutes a nanotube.
FIG. 4
It is a figure showing a multi-wall nanotube.
FIG. 5
FIG. 2 shows a single-wall nanotube rope.
FIG. 6
4 is a graph showing partial electrical breakdown of a multi-wall nanotube at a constant voltage over time.
FIG. 7
Figure 4 is a graph showing the alternation of low bias conductance between semiconducting and metallic behavior due to the outermost charge properties of the multi-wall nanotube at each stage of destruction.
FIG. 8
FIG. 5 is a graph showing the conductance of the semiconductive shell remaining after removing the last metallic shell from the multi-wall nanotube.
FIG. 9
It is a table | surface which shows the relationship of a shell number, a diameter, and a relative band gap energy.
FIG. 10
5 is a graph showing current (I) versus voltage of each shell of a multi-wall nanotube.
FIG. 11
FIG. 2 illustrates the transition from a random mixture of molecular conductors (nanotubes) to a semiconductive field effect transistor.
FIG.
FIG. 2 illustrates the transition from a random mixture of molecular conductors (nanotubes) to a semiconductive field effect transistor.
FIG. 13
FIG. 2 illustrates the transition from a random mixture of molecular conductors (nanotubes) to a semiconductive field effect transistor.
FIG. 14
FIG. 2 illustrates the transition from a random mixture of molecular conductors (nanotubes) to a semiconductive field effect transistor.
FIG.
It is a figure showing an electrode array.
FIG.
FIG. 2 illustrates a single-wall nanotube rope-based field effect transistor including a source, a drain and a gate.
Claims (12)
前記基板と接触した複数のナノチューブを形成する段階と、
電流を使用してナノチューブを選択的に破壊する段階
を含むデバイス形成方法。Preparing a substrate,
Forming a plurality of nanotubes in contact with the substrate;
A method for forming a device, comprising selectively destroying nanotubes using an electric current.
ナノチューブの混合物を用意する段階と、
前記混合物に電流を流して、前記ナノチューブ混合物の選択的破壊を誘発させる段階
を含む方法。A method of modifying at least one property of a nanotube, comprising:
Providing a mixture of nanotubes;
Passing a current through said mixture to induce selective destruction of said nanotube mixture.
前記基板と接触した金属性および半導電性コンポーネント・ナノチューブを含む複数のカーボン・ナノチューブ束を、被覆率約1パーセントの密度で提供する段階と、
前記ゲート電極に電圧を印加して、前記半導電性コンポーネント・ナノチューブの複数のキャリアを枯渇させる段階と、
前記ナノチューブを通してソース電極からドレイン電極に電流を流す段階と、
少なくとも1つの金属性コンポーネント・ナノチューブを破壊して、電界効果トランジスタを形成する段階
を含むデバイス形成方法。Providing an insulating substrate including a source electrode, a drain electrode and a gate electrode;
Providing a plurality of carbon nanotube bundles comprising metallic and semiconductive component nanotubes in contact with the substrate at a density of about 1 percent coverage;
Applying a voltage to the gate electrode to deplete the plurality of carriers of the semiconductive component nanotube;
Flowing a current from the source electrode to the drain electrode through the nanotube;
A method for forming a device, comprising the step of destroying at least one metallic component nanotube to form a field effect transistor.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/753,845 US6423583B1 (en) | 2001-01-03 | 2001-01-03 | Methodology for electrically induced selective breakdown of nanotubes |
PCT/GB2001/005715 WO2002054505A2 (en) | 2001-01-03 | 2001-12-21 | System and method for electrically induced breakdown of nanostructures |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004517489A true JP2004517489A (en) | 2004-06-10 |
JP4099063B2 JP4099063B2 (en) | 2008-06-11 |
Family
ID=25032396
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002554893A Expired - Fee Related JP4099063B2 (en) | 2001-01-03 | 2001-12-21 | Device formation method using nanotubes |
Country Status (11)
Country | Link |
---|---|
US (2) | US6423583B1 (en) |
EP (1) | EP1350277B1 (en) |
JP (1) | JP4099063B2 (en) |
KR (1) | KR100621444B1 (en) |
CN (1) | CN100347874C (en) |
AT (1) | ATE526690T1 (en) |
CA (1) | CA2431064C (en) |
IL (2) | IL156523A0 (en) |
MY (1) | MY127407A (en) |
TW (1) | TW523797B (en) |
WO (1) | WO2002054505A2 (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003338621A (en) * | 2002-05-20 | 2003-11-28 | Fujitsu Ltd | Semiconductor device and manufacturing method therefor |
JP2004179564A (en) * | 2002-11-29 | 2004-06-24 | Sony Corp | Pn junction element and its manufacture |
JP2005170787A (en) * | 2003-12-11 | 2005-06-30 | Internatl Business Mach Corp <Ibm> | Selective synthesis of semiconducting carbon nanotube |
JP2007173428A (en) * | 2005-12-21 | 2007-07-05 | Fujitsu Ltd | Carbon nanotube transistor array and method of manufacturing same |
US7253431B2 (en) | 2004-03-02 | 2007-08-07 | International Business Machines Corporation | Method and apparatus for solution processed doping of carbon nanotube |
US7374793B2 (en) | 2003-12-11 | 2008-05-20 | International Business Machines Corporation | Methods and structures for promoting stable synthesis of carbon nanotubes |
JP2009278104A (en) * | 2008-05-16 | 2009-11-26 | Qinghua Univ | Thin film transistor |
JP2010515283A (en) * | 2008-01-22 | 2010-05-06 | コリア リサーチ インスティテュート オブ ケミカル テクノロジー | Carbon nanotube transistor manufacturing method and carbon nanotube transistor using the same |
JP2013144627A (en) * | 2012-01-16 | 2013-07-25 | Industry-Academic Cooperation Foundation At Namseoul Univ | Method of growing carbon nanotube laterally, and lateral interconnection using the same and field effect transistor using the same |
JP2015095564A (en) * | 2013-11-12 | 2015-05-18 | 独立行政法人産業技術総合研究所 | Field effect transistor using carbon nanotube aggregate |
JP2015095557A (en) * | 2013-11-12 | 2015-05-18 | 独立行政法人産業技術総合研究所 | Field effect transistor using carbon nanotube aggregate |
Families Citing this family (267)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2382718B (en) * | 2000-07-18 | 2004-03-24 | Lg Electronics Inc | Field effect transistor using horizontally grown carbon nanotubes |
US6515339B2 (en) * | 2000-07-18 | 2003-02-04 | Lg Electronics Inc. | Method of horizontally growing carbon nanotubes and field effect transistor using the carbon nanotubes grown by the method |
EP2273552A3 (en) * | 2001-03-30 | 2013-04-10 | The Regents of the University of California | Methods of fabricating nanstructures and nanowires and devices fabricated therefrom |
JP2002341060A (en) * | 2001-05-11 | 2002-11-27 | Seiko Instruments Inc | Composite electric component, main plate structure body and electronic timepiece using it |
JP2003017508A (en) * | 2001-07-05 | 2003-01-17 | Nec Corp | Field effect transistor |
US6919592B2 (en) | 2001-07-25 | 2005-07-19 | Nantero, Inc. | Electromechanical memory array using nanotube ribbons and method for making same |
US7259410B2 (en) * | 2001-07-25 | 2007-08-21 | Nantero, Inc. | Devices having horizontally-disposed nanofabric articles and methods of making the same |
US6574130B2 (en) * | 2001-07-25 | 2003-06-03 | Nantero, Inc. | Hybrid circuit having nanotube electromechanical memory |
US6643165B2 (en) | 2001-07-25 | 2003-11-04 | Nantero, Inc. | Electromechanical memory having cell selection circuitry constructed with nanotube technology |
US6835591B2 (en) | 2001-07-25 | 2004-12-28 | Nantero, Inc. | Methods of nanotube films and articles |
US7563711B1 (en) * | 2001-07-25 | 2009-07-21 | Nantero, Inc. | Method of forming a carbon nanotube-based contact to semiconductor |
US7566478B2 (en) * | 2001-07-25 | 2009-07-28 | Nantero, Inc. | Methods of making carbon nanotube films, layers, fabrics, ribbons, elements and articles |
US6706402B2 (en) | 2001-07-25 | 2004-03-16 | Nantero, Inc. | Nanotube films and articles |
US7385262B2 (en) * | 2001-11-27 | 2008-06-10 | The Board Of Trustees Of The Leland Stanford Junior University | Band-structure modulation of nano-structures in an electric field |
US6784028B2 (en) | 2001-12-28 | 2004-08-31 | Nantero, Inc. | Methods of making electromechanical three-trace junction devices |
KR100837393B1 (en) * | 2002-01-22 | 2008-06-12 | 삼성에스디아이 주식회사 | Electronic device comprising electrodes made of metal that is familiar with carbon |
US20030186059A1 (en) * | 2002-02-08 | 2003-10-02 | Masukazu Hirata | Structure matter of thin film particles having carbon skeleton, processes for the production of the structure matter and the thin-film particles and uses thereof |
EP1341184B1 (en) * | 2002-02-09 | 2005-09-14 | Samsung Electronics Co., Ltd. | Memory device utilizing carbon nanotubes and method of fabricating the memory device |
US6515325B1 (en) * | 2002-03-06 | 2003-02-04 | Micron Technology, Inc. | Nanotube semiconductor devices and methods for making the same |
US9269043B2 (en) | 2002-03-12 | 2016-02-23 | Knowm Tech, Llc | Memristive neural processor utilizing anti-hebbian and hebbian technology |
US8156057B2 (en) * | 2003-03-27 | 2012-04-10 | Knowm Tech, Llc | Adaptive neural network utilizing nanotechnology-based components |
US20040039717A1 (en) * | 2002-08-22 | 2004-02-26 | Alex Nugent | High-density synapse chip using nanoparticles |
US7412428B2 (en) * | 2002-03-12 | 2008-08-12 | Knowmtech, Llc. | Application of hebbian and anti-hebbian learning to nanotechnology-based physical neural networks |
US6889216B2 (en) | 2002-03-12 | 2005-05-03 | Knowm Tech, Llc | Physical neural network design incorporating nanotechnology |
US7392230B2 (en) * | 2002-03-12 | 2008-06-24 | Knowmtech, Llc | Physical neural network liquid state machine utilizing nanotechnology |
US7398259B2 (en) * | 2002-03-12 | 2008-07-08 | Knowmtech, Llc | Training of a physical neural network |
US6891227B2 (en) * | 2002-03-20 | 2005-05-10 | International Business Machines Corporation | Self-aligned nanotube field effect transistor and method of fabricating same |
US6872645B2 (en) * | 2002-04-02 | 2005-03-29 | Nanosys, Inc. | Methods of positioning and/or orienting nanostructures |
DE10217362B4 (en) * | 2002-04-18 | 2004-05-13 | Infineon Technologies Ag | Targeted deposition of nanotubes |
US7752151B2 (en) * | 2002-06-05 | 2010-07-06 | Knowmtech, Llc | Multilayer training in a physical neural network formed utilizing nanotechnology |
JP3933664B2 (en) * | 2002-08-01 | 2007-06-20 | 三洋電機株式会社 | Optical sensor, optical sensor manufacturing method and driving method, and optical intensity detection method |
US7827131B2 (en) * | 2002-08-22 | 2010-11-02 | Knowm Tech, Llc | High density synapse chip using nanoparticles |
CN100411979C (en) * | 2002-09-16 | 2008-08-20 | 清华大学 | Carbon nano pipe rpoe and preparation method thereof |
US7051945B2 (en) * | 2002-09-30 | 2006-05-30 | Nanosys, Inc | Applications of nano-enabled large area macroelectronic substrates incorporating nanowires and nanowire composites |
JP4669784B2 (en) * | 2002-09-30 | 2011-04-13 | ナノシス・インコーポレイテッド | Integrated display using nanowire transistors |
US7619562B2 (en) * | 2002-09-30 | 2009-11-17 | Nanosys, Inc. | Phased array systems |
US7067867B2 (en) * | 2002-09-30 | 2006-06-27 | Nanosys, Inc. | Large-area nonenabled macroelectronic substrates and uses therefor |
US7135728B2 (en) * | 2002-09-30 | 2006-11-14 | Nanosys, Inc. | Large-area nanoenabled macroelectronic substrates and uses therefor |
CA2499950A1 (en) * | 2002-09-30 | 2004-04-15 | Nanosys, Inc. | Applications of nano-enabled large area macroelectronic substrates incorporating nanowires and nanowire composites |
EP1547139A4 (en) * | 2002-09-30 | 2009-08-26 | Nanosys Inc | Large-area nanoenabled macroelectronic substrates and uses therefor |
US7253434B2 (en) | 2002-10-29 | 2007-08-07 | President And Fellows Of Harvard College | Suspended carbon nanotube field effect transistor |
US7466069B2 (en) | 2002-10-29 | 2008-12-16 | President And Fellows Of Harvard College | Carbon nanotube device fabrication |
JP4251268B2 (en) * | 2002-11-20 | 2009-04-08 | ソニー株式会社 | Electronic device and manufacturing method thereof |
US6933222B2 (en) * | 2003-01-02 | 2005-08-23 | Intel Corporation | Microcircuit fabrication and interconnection |
KR100881201B1 (en) * | 2003-01-09 | 2009-02-05 | 삼성전자주식회사 | Memory device having side gate and method of manufacturing the same |
US9574290B2 (en) | 2003-01-13 | 2017-02-21 | Nantero Inc. | Methods for arranging nanotube elements within nanotube fabrics and films |
AU2003205098A1 (en) * | 2003-01-13 | 2004-08-13 | Nantero, Inc. | Methods of using thin metal layers to make carbon nanotube films, layers, fabrics, ribbons, elements and articles |
US7666382B2 (en) * | 2004-12-16 | 2010-02-23 | Nantero, Inc. | Aqueous carbon nanotube applicator liquids and methods for producing applicator liquids thereof |
US7858185B2 (en) * | 2003-09-08 | 2010-12-28 | Nantero, Inc. | High purity nanotube fabrics and films |
US8937575B2 (en) | 2009-07-31 | 2015-01-20 | Nantero Inc. | Microstrip antenna elements and arrays comprising a shaped nanotube fabric layer and integrated two terminal nanotube select devices |
US6762073B1 (en) | 2003-02-24 | 2004-07-13 | Donald P. Cullen | Method of fabricating electronic interconnect devices using direct imaging of dielectric composite material |
GB0304623D0 (en) * | 2003-02-28 | 2003-04-02 | Univ Surrey | Methods for the fabrication of nanoscale structures and semiconductor devices |
US7641863B2 (en) * | 2003-03-06 | 2010-01-05 | Ut-Battelle Llc | Nanoengineered membranes for controlled transport |
US7335344B2 (en) * | 2003-03-14 | 2008-02-26 | Massachusetts Institute Of Technology | Method and apparatus for synthesizing filamentary structures |
WO2004088719A2 (en) * | 2003-03-28 | 2004-10-14 | Nantero, Inc. | Nanotube-on-gate fet structures and applications |
US7294877B2 (en) | 2003-03-28 | 2007-11-13 | Nantero, Inc. | Nanotube-on-gate FET structures and applications |
CA2526946A1 (en) * | 2003-05-14 | 2005-04-07 | Nantero, Inc. | Sensor platform using a non-horizontally oriented nanotube element |
US7274064B2 (en) * | 2003-06-09 | 2007-09-25 | Nanatero, Inc. | Non-volatile electromechanical field effect devices and circuits using same and methods of forming same |
CA2528804A1 (en) | 2003-06-09 | 2005-01-06 | Nantero, Inc | Non-volatile electromechanical field effect devices and circuits using same and methods of forming same |
WO2005008787A1 (en) * | 2003-07-18 | 2005-01-27 | Japan Science And Technology Agency | Optical sensor |
US7426501B2 (en) * | 2003-07-18 | 2008-09-16 | Knowntech, Llc | Nanotechnology neural network methods and systems |
JP2007500669A (en) * | 2003-07-29 | 2007-01-18 | ウィリアム・マーシュ・ライス・ユニバーシティ | Selective functionalization of carbon nanotubes |
US7115960B2 (en) * | 2003-08-13 | 2006-10-03 | Nantero, Inc. | Nanotube-based switching elements |
US7583526B2 (en) | 2003-08-13 | 2009-09-01 | Nantero, Inc. | Random access memory including nanotube switching elements |
EP1665278A4 (en) * | 2003-08-13 | 2007-11-07 | Nantero Inc | Nanotube-based switching elements with multiple controls and circuits made from same |
US7289357B2 (en) | 2003-08-13 | 2007-10-30 | Nantero, Inc. | Isolation structure for deflectable nanotube elements |
US7375369B2 (en) | 2003-09-08 | 2008-05-20 | Nantero, Inc. | Spin-coatable liquid for formation of high purity nanotube films |
US7416993B2 (en) * | 2003-09-08 | 2008-08-26 | Nantero, Inc. | Patterned nanowire articles on a substrate and methods of making the same |
US7242041B2 (en) * | 2003-09-22 | 2007-07-10 | Lucent Technologies Inc. | Field-effect transistors with weakly coupled layered inorganic semiconductors |
US7347981B2 (en) * | 2003-09-25 | 2008-03-25 | The Penn State Research Foundation | Directed flow method and system for bulk separation of single-walled tubular fullerenes based on helicity |
US7378715B2 (en) | 2003-10-10 | 2008-05-27 | General Electric Company | Free-standing electrostatically-doped carbon nanotube device |
US6890780B2 (en) * | 2003-10-10 | 2005-05-10 | General Electric Company | Method for forming an electrostatically-doped carbon nanotube device |
GB0324189D0 (en) * | 2003-10-16 | 2003-11-19 | Univ Cambridge Tech | Short-channel transistors |
US6921684B2 (en) * | 2003-10-17 | 2005-07-26 | Intel Corporation | Method of sorting carbon nanotubes including protecting metallic nanotubes and removing the semiconducting nanotubes |
JP3944155B2 (en) * | 2003-12-01 | 2007-07-11 | キヤノン株式会社 | Electron emitting device, electron source, and manufacturing method of image display device |
US20060214192A1 (en) * | 2003-12-08 | 2006-09-28 | Matsushita Electric Industrial Co., Ltd. | Field effect transistor, electrical device array and method for manufacturing those |
US7211844B2 (en) * | 2004-01-29 | 2007-05-01 | International Business Machines Corporation | Vertical field effect transistors incorporating semiconducting nanotubes grown in a spacer-defined passage |
US20050167655A1 (en) * | 2004-01-29 | 2005-08-04 | International Business Machines Corporation | Vertical nanotube semiconductor device structures and methods of forming the same |
US7528437B2 (en) * | 2004-02-11 | 2009-05-05 | Nantero, Inc. | EEPROMS using carbon nanotubes for cell storage |
US7829883B2 (en) * | 2004-02-12 | 2010-11-09 | International Business Machines Corporation | Vertical carbon nanotube field effect transistors and arrays |
CA2561277A1 (en) * | 2004-03-26 | 2005-10-13 | Foster-Miller, Inc. | Carbon nanotube-based electronic devices made by electronic deposition and applications thereof |
US7508039B2 (en) * | 2004-05-04 | 2009-03-24 | State Of Oregon Acting By And Through The State Board Of Higher Education On Behalf Of Portland State University | Carbon nanotube (CNT) multiplexers, circuits, and actuators |
WO2005124888A1 (en) * | 2004-06-08 | 2005-12-29 | President And Fellows Of Harvard College | Suspended carbon nanotube field effect transistor |
US7709880B2 (en) * | 2004-06-09 | 2010-05-04 | Nantero, Inc. | Field effect devices having a gate controlled via a nanotube switching element |
US7164744B2 (en) | 2004-06-18 | 2007-01-16 | Nantero, Inc. | Nanotube-based logic driver circuits |
US7329931B2 (en) * | 2004-06-18 | 2008-02-12 | Nantero, Inc. | Receiver circuit using nanotube-based switches and transistors |
US7161403B2 (en) | 2004-06-18 | 2007-01-09 | Nantero, Inc. | Storage elements using nanotube switching elements |
US7330709B2 (en) * | 2004-06-18 | 2008-02-12 | Nantero, Inc. | Receiver circuit using nanotube-based switches and logic |
US7288970B2 (en) * | 2004-06-18 | 2007-10-30 | Nantero, Inc. | Integrated nanotube and field effect switching device |
US7167026B2 (en) * | 2004-06-18 | 2007-01-23 | Nantero, Inc. | Tri-state circuit using nanotube switching elements |
US7652342B2 (en) | 2004-06-18 | 2010-01-26 | Nantero, Inc. | Nanotube-based transfer devices and related circuits |
US7109546B2 (en) * | 2004-06-29 | 2006-09-19 | International Business Machines Corporation | Horizontal memory gain cells |
JP2006049435A (en) * | 2004-08-02 | 2006-02-16 | Sony Corp | Carbon nanotube and its arrangement method, field effect transistor using the same and its manufacturing method, and semiconductor device |
US7345296B2 (en) | 2004-09-16 | 2008-03-18 | Atomate Corporation | Nanotube transistor and rectifying devices |
US7776307B2 (en) * | 2004-09-16 | 2010-08-17 | Etamota Corporation | Concentric gate nanotube transistor devices |
US8471238B2 (en) | 2004-09-16 | 2013-06-25 | Nantero Inc. | Light emitters using nanotubes and methods of making same |
US7462890B1 (en) | 2004-09-16 | 2008-12-09 | Atomate Corporation | Nanotube transistor integrated circuit layout |
US7943418B2 (en) * | 2004-09-16 | 2011-05-17 | Etamota Corporation | Removing undesirable nanotubes during nanotube device fabrication |
WO2006132658A2 (en) * | 2004-09-21 | 2006-12-14 | Nantero, Inc. | Resistive elements using carbon nanotubes |
US7233071B2 (en) * | 2004-10-04 | 2007-06-19 | International Business Machines Corporation | Low-k dielectric layer based upon carbon nanostructures |
US7345307B2 (en) * | 2004-10-12 | 2008-03-18 | Nanosys, Inc. | Fully integrated organic layered processes for making plastic electronics based on conductive polymers and semiconductor nanowires |
US20070246784A1 (en) * | 2004-10-13 | 2007-10-25 | Samsung Electronics Co., Ltd. | Unipolar nanotube transistor using a carrier-trapping material |
US7473943B2 (en) * | 2004-10-15 | 2009-01-06 | Nanosys, Inc. | Gate configuration for nanowire electronic devices |
US20100147657A1 (en) * | 2004-11-02 | 2010-06-17 | Nantero, Inc. | Nanotube esd protective devices and corresponding nonvolatile and volatile nanotube switches |
EP1807919A4 (en) * | 2004-11-02 | 2011-05-04 | Nantero Inc | Nanotube esd protective devices and corresponding nonvolatile and volatile nanotube switches |
WO2006057818A2 (en) | 2004-11-24 | 2006-06-01 | Nanosys, Inc. | Contact doping and annealing systems and processes for nanowire thin films |
US7560366B1 (en) | 2004-12-02 | 2009-07-14 | Nanosys, Inc. | Nanowire horizontal growth and substrate removal |
US8362525B2 (en) * | 2005-01-14 | 2013-01-29 | Nantero Inc. | Field effect device having a channel of nanofabric and methods of making same |
US7598544B2 (en) * | 2005-01-14 | 2009-10-06 | Nanotero, Inc. | Hybrid carbon nanotude FET(CNFET)-FET static RAM (SRAM) and method of making same |
US7502769B2 (en) * | 2005-01-31 | 2009-03-10 | Knowmtech, Llc | Fractal memory and computational methods and systems based on nanotechnology |
US7409375B2 (en) * | 2005-05-23 | 2008-08-05 | Knowmtech, Llc | Plasticity-induced self organizing nanotechnology for the extraction of independent components from a data stream |
US20100065820A1 (en) * | 2005-02-14 | 2010-03-18 | Atomate Corporation | Nanotube Device Having Nanotubes with Multiple Characteristics |
EP1858805A4 (en) * | 2005-03-04 | 2012-05-09 | Univ Northwestern | Separation of carbon nanotubes in density gradients |
US7824946B1 (en) | 2005-03-11 | 2010-11-02 | Nantero, Inc. | Isolated metal plug process for use in fabricating carbon nanotube memory cells |
US8000127B2 (en) | 2009-08-12 | 2011-08-16 | Nantero, Inc. | Method for resetting a resistive change memory element |
US9287356B2 (en) | 2005-05-09 | 2016-03-15 | Nantero Inc. | Nonvolatile nanotube diodes and nonvolatile nanotube blocks and systems using same and methods of making same |
US8941094B2 (en) | 2010-09-02 | 2015-01-27 | Nantero Inc. | Methods for adjusting the conductivity range of a nanotube fabric layer |
US9390790B2 (en) | 2005-04-05 | 2016-07-12 | Nantero Inc. | Carbon based nonvolatile cross point memory incorporating carbon based diode select devices and MOSFET select devices for memory and logic applications |
CN102183630A (en) | 2005-04-06 | 2011-09-14 | 哈佛大学校长及研究员协会 | Molecular characterization with carbon nanotube control |
US8183665B2 (en) * | 2005-11-15 | 2012-05-22 | Nantero Inc. | Nonvolatile nanotube diodes and nonvolatile nanotube blocks and systems using same and methods of making same |
US8008745B2 (en) * | 2005-05-09 | 2011-08-30 | Nantero, Inc. | Latch circuits and operation circuits having scalable nonvolatile nanotube switches as electronic fuse replacement elements |
US7394687B2 (en) * | 2005-05-09 | 2008-07-01 | Nantero, Inc. | Non-volatile-shadow latch using a nanotube switch |
TWI324773B (en) * | 2005-05-09 | 2010-05-11 | Nantero Inc | Non-volatile shadow latch using a nanotube switch |
US9196615B2 (en) * | 2005-05-09 | 2015-11-24 | Nantero Inc. | Nonvolatile nanotube diodes and nonvolatile nanotube blocks and systems using same and methods of making same |
US8513768B2 (en) * | 2005-05-09 | 2013-08-20 | Nantero Inc. | Nonvolatile nanotube diodes and nonvolatile nanotube blocks and systems using same and methods of making same |
US7479654B2 (en) | 2005-05-09 | 2009-01-20 | Nantero, Inc. | Memory arrays using nanotube articles with reprogrammable resistance |
US9911743B2 (en) | 2005-05-09 | 2018-03-06 | Nantero, Inc. | Nonvolatile nanotube diodes and nonvolatile nanotube blocks and systems using same and methods of making same |
US8013363B2 (en) * | 2005-05-09 | 2011-09-06 | Nantero, Inc. | Nonvolatile nanotube diodes and nonvolatile nanotube blocks and systems using same and methods of making same |
US7782650B2 (en) * | 2005-05-09 | 2010-08-24 | Nantero, Inc. | Nonvolatile nanotube diodes and nonvolatile nanotube blocks and systems using same and methods of making same |
US7835170B2 (en) * | 2005-05-09 | 2010-11-16 | Nantero, Inc. | Memory elements and cross point switches and arrays of same using nonvolatile nanotube blocks |
US7781862B2 (en) | 2005-05-09 | 2010-08-24 | Nantero, Inc. | Two-terminal nanotube devices and systems and methods of making same |
US8217490B2 (en) * | 2005-05-09 | 2012-07-10 | Nantero Inc. | Nonvolatile nanotube diodes and nonvolatile nanotube blocks and systems using same and methods of making same |
US7598127B2 (en) | 2005-05-12 | 2009-10-06 | Nantero, Inc. | Nanotube fuse structure |
TWI264271B (en) * | 2005-05-13 | 2006-10-11 | Delta Electronics Inc | Heat sink |
US7575693B2 (en) * | 2005-05-23 | 2009-08-18 | Nantero, Inc. | Method of aligning nanotubes and wires with an etched feature |
US7928521B1 (en) | 2005-05-31 | 2011-04-19 | Nantero, Inc. | Non-tensioned carbon nanotube switch design and process for making same |
US7915122B2 (en) * | 2005-06-08 | 2011-03-29 | Nantero, Inc. | Self-aligned cell integration scheme |
US7541216B2 (en) * | 2005-06-09 | 2009-06-02 | Nantero, Inc. | Method of aligning deposited nanotubes onto an etched feature using a spacer |
US7420396B2 (en) * | 2005-06-17 | 2008-09-02 | Knowmtech, Llc | Universal logic gate utilizing nanotechnology |
US20060292716A1 (en) * | 2005-06-27 | 2006-12-28 | Lsi Logic Corporation | Use selective growth metallization to improve electrical connection between carbon nanotubes and electrodes |
US7538040B2 (en) * | 2005-06-30 | 2009-05-26 | Nantero, Inc. | Techniques for precision pattern transfer of carbon nanotubes from photo mask to wafers |
US7599895B2 (en) | 2005-07-07 | 2009-10-06 | Knowm Tech, Llc | Methodology for the configuration and repair of unreliable switching elements |
US7687841B2 (en) * | 2005-08-02 | 2010-03-30 | Micron Technology, Inc. | Scalable high performance carbon nanotube field effect transistor |
WO2007018542A1 (en) * | 2005-08-08 | 2007-02-15 | The Regents Of The University Of California | Local manipulation of nanostructures |
EP1922743A4 (en) * | 2005-09-06 | 2008-10-29 | Nantero Inc | Method and system of using nanotube fabrics as joule heating elements for memories and other applications |
ATE518131T1 (en) * | 2005-09-06 | 2011-08-15 | Nantero Inc | NANOTUBE-BASED SENSOR SYSTEM AND METHOD FOR USE THEREOF |
WO2008054364A2 (en) * | 2005-09-06 | 2008-05-08 | Nantero, Inc. | Carbon nanotubes for the selective transfer of heat from electronics |
US7965156B2 (en) | 2005-09-06 | 2011-06-21 | Nantero, Inc. | Carbon nanotube resonators comprising a non-woven fabric of unaligned nanotubes |
WO2007038164A2 (en) * | 2005-09-23 | 2007-04-05 | Nanosys, Inc. | Methods for nanostructure doping |
US7492015B2 (en) * | 2005-11-10 | 2009-02-17 | International Business Machines Corporation | Complementary carbon nanotube triple gate technology |
KR20080078879A (en) * | 2005-12-19 | 2008-08-28 | 어드밴스드 테크놀러지 머티리얼즈, 인코포레이티드 | Production of carbon nanotubes |
KR100668355B1 (en) * | 2006-02-16 | 2007-01-12 | 삼성전자주식회사 | Unipolar nanotube transistor having carrier-trapping material and field effect transistor having the same |
JP5029600B2 (en) * | 2006-03-03 | 2012-09-19 | 富士通株式会社 | Field effect transistor using carbon nanotube, method of manufacturing the same, and sensor |
US7714386B2 (en) | 2006-06-09 | 2010-05-11 | Northrop Grumman Systems Corporation | Carbon nanotube field effect transistor |
US8217386B2 (en) * | 2006-06-29 | 2012-07-10 | University Of Florida Research Foundation, Inc. | Short channel vertical FETs |
CA2661638C (en) | 2006-08-30 | 2014-07-15 | Northwestern University | Monodisperse single-walled carbon nanotube populations and related methods for providing same |
US20080070331A1 (en) * | 2006-09-18 | 2008-03-20 | Chuan Ke, Hsi-Tien Chang, Pu Shen | Method for manufacturing a strongly refractive microlens for a light emitting diode with condensation silicone |
WO2008039496A2 (en) * | 2006-09-27 | 2008-04-03 | The Trustees Of Columbia University | Growth and applications of ultralong carbon nanotubes |
US8758717B2 (en) * | 2006-10-19 | 2014-06-24 | Rensselaer Polytechnic Institute | Electrical current-induced structural changes and chemical functionalization of carbon nanotubes |
US7786024B2 (en) * | 2006-11-29 | 2010-08-31 | Nanosys, Inc. | Selective processing of semiconductor nanowires by polarized visible radiation |
US8058112B2 (en) * | 2006-12-18 | 2011-11-15 | Nec Corporation | Semiconductor device having carbon nanotubes and method for manufacturing the same |
US8168495B1 (en) | 2006-12-29 | 2012-05-01 | Etamota Corporation | Carbon nanotube high frequency transistor technology |
US9806273B2 (en) * | 2007-01-03 | 2017-10-31 | The United States Of America As Represented By The Secretary Of The Army | Field effect transistor array using single wall carbon nano-tubes |
US7930257B2 (en) | 2007-01-05 | 2011-04-19 | Knowm Tech, Llc | Hierarchical temporal memory utilizing nanotechnology |
KR101311301B1 (en) | 2007-02-09 | 2013-09-25 | 엘지디스플레이 주식회사 | Nanowire transistor and manufacturing method thereof |
US20080238882A1 (en) * | 2007-02-21 | 2008-10-02 | Ramesh Sivarajan | Symmetric touch screen system with carbon nanotube-based transparent conductive electrode pairs |
WO2008112764A1 (en) | 2007-03-12 | 2008-09-18 | Nantero, Inc. | Electromagnetic and thermal sensors using carbon nanotubes and methods of making same |
WO2009023304A2 (en) * | 2007-05-02 | 2009-02-19 | Atomate Corporation | High density nanotube devices |
TWI461350B (en) * | 2007-05-22 | 2014-11-21 | Nantero Inc | Triodes using nanofabric articles and methods of making the same |
US8134220B2 (en) * | 2007-06-22 | 2012-03-13 | Nantero Inc. | Two-terminal nanotube devices including a nanotube bridge and methods of making same |
WO2009032090A1 (en) * | 2007-08-29 | 2009-03-12 | Northwestern University | Transparent electrical conductors prepared from sorted carbon nanotubes and methods of preparing same |
EP2205522B1 (en) * | 2007-10-02 | 2019-03-13 | President and Fellows of Harvard College | Carbon nanotube synthesis for nanopore devices |
CN101458598B (en) * | 2007-12-14 | 2011-06-08 | 清华大学 | Touch screen and display device |
CN101458593B (en) * | 2007-12-12 | 2012-03-14 | 清华大学 | Touch screen and display device |
CN101656769B (en) * | 2008-08-22 | 2012-10-10 | 清华大学 | Mobile telephone |
CN101458595B (en) * | 2007-12-12 | 2011-06-08 | 清华大学 | Touch screen and display device |
CN101470566B (en) * | 2007-12-27 | 2011-06-08 | 清华大学 | Touch control device |
CN101458600B (en) * | 2007-12-14 | 2011-11-30 | 清华大学 | Touch screen and display device |
CN101458602B (en) * | 2007-12-12 | 2011-12-21 | 清华大学 | Touch screen and display device |
CN101419519B (en) * | 2007-10-23 | 2012-06-20 | 清华大学 | Touch panel |
CN101470560B (en) * | 2007-12-27 | 2012-01-25 | 清华大学 | Touch screen and display equipment |
CN101458603B (en) * | 2007-12-12 | 2011-06-08 | 北京富纳特创新科技有限公司 | Touch screen and display device |
CN101676832B (en) * | 2008-09-19 | 2012-03-28 | 清华大学 | Desktop computer |
CN101458606B (en) * | 2007-12-12 | 2012-06-20 | 清华大学 | Touch screen, method for producing the touch screen, and display device using the touch screen |
CN101620454A (en) * | 2008-07-04 | 2010-01-06 | 清华大学 | Potable computer |
CN101458604B (en) * | 2007-12-12 | 2012-03-28 | 清华大学 | Touch screen and display device |
CN101458596B (en) * | 2007-12-12 | 2011-06-08 | 北京富纳特创新科技有限公司 | Touch screen and display device |
CN101464763B (en) * | 2007-12-21 | 2010-09-29 | 清华大学 | Production method of touch screen |
CN101458597B (en) * | 2007-12-14 | 2011-06-08 | 清华大学 | Touch screen, method for producing the touch screen, and display device using the touch screen |
CN101458594B (en) * | 2007-12-12 | 2012-07-18 | 清华大学 | Touch screen and display device |
CN101458608B (en) * | 2007-12-14 | 2011-09-28 | 清华大学 | Touch screen preparation method |
CN101655720B (en) * | 2008-08-22 | 2012-07-18 | 清华大学 | Personal digital assistant |
CN101458599B (en) * | 2007-12-14 | 2011-06-08 | 清华大学 | Touch screen, method for producing the touch screen, and display device using the touch screen |
CN101458605B (en) * | 2007-12-12 | 2011-03-30 | 鸿富锦精密工业(深圳)有限公司 | Touch screen and display device |
CN101419518B (en) * | 2007-10-23 | 2012-06-20 | 清华大学 | Touch panel |
CN101470558B (en) * | 2007-12-27 | 2012-11-21 | 清华大学 | Touch screen and display equipment |
CN101470559B (en) * | 2007-12-27 | 2012-11-21 | 清华大学 | Touch screen and display equipment |
CN101458609B (en) * | 2007-12-14 | 2011-11-09 | 清华大学 | Touch screen and display device |
EP2062515B1 (en) * | 2007-11-20 | 2012-08-29 | So, Kwok Kuen | Bowl and basket assembly and salad spinner incorporating such an assembly |
CN101458975B (en) * | 2007-12-12 | 2012-05-16 | 清华大学 | Electronic element |
CN101458601B (en) * | 2007-12-14 | 2012-03-14 | 清华大学 | Touch screen and display device |
CN101464757A (en) * | 2007-12-21 | 2009-06-24 | 清华大学 | Touch screen and display equipment |
CN101458607B (en) * | 2007-12-14 | 2010-12-29 | 清华大学 | Touch screen and display device |
CN101464765B (en) * | 2007-12-21 | 2011-01-05 | 鸿富锦精密工业(深圳)有限公司 | Touch screen and display equipment |
CN101464764B (en) * | 2007-12-21 | 2012-07-18 | 清华大学 | Touch screen and display equipment |
US8574393B2 (en) * | 2007-12-21 | 2013-11-05 | Tsinghua University | Method for making touch panel |
CN101464766B (en) * | 2007-12-21 | 2011-11-30 | 清华大学 | Touch screen and display equipment |
CN101470565B (en) * | 2007-12-27 | 2011-08-24 | 清华大学 | Touch screen and display equipment |
CN101933125A (en) * | 2007-12-31 | 2010-12-29 | 伊特蒙塔公司 | Edge-contacted vertical carbon nanotube transistor |
TWI502522B (en) * | 2008-03-25 | 2015-10-01 | Nantero Inc | Carbon nanotube-based neural networks and methods of making and using same |
KR101410933B1 (en) * | 2008-04-11 | 2014-07-02 | 성균관대학교산학협력단 | Method of doping transistor comprising carbon nanotube and method of controlling position of doping ion and transistors using the same |
CN101582447B (en) * | 2008-05-14 | 2010-09-29 | 清华大学 | Thin film transistor |
CN101599495B (en) * | 2008-06-04 | 2013-01-09 | 清华大学 | Thin-film transistor panel |
CN101582445B (en) * | 2008-05-14 | 2012-05-16 | 清华大学 | Thin film transistor |
CN101582449B (en) * | 2008-05-14 | 2011-12-14 | 清华大学 | Thin film transistor |
CN101587839B (en) * | 2008-05-23 | 2011-12-21 | 清华大学 | Method for producing thin film transistors |
CN101582451A (en) * | 2008-05-16 | 2009-11-18 | 清华大学 | Thin film transistor |
CN101582448B (en) * | 2008-05-14 | 2012-09-19 | 清华大学 | Thin film transistor |
CN101582382B (en) * | 2008-05-14 | 2011-03-23 | 鸿富锦精密工业(深圳)有限公司 | Preparation method of thin film transistor |
CN101593699B (en) * | 2008-05-30 | 2010-11-10 | 清华大学 | Method for preparing thin film transistor |
CN101582444A (en) * | 2008-05-14 | 2009-11-18 | 清华大学 | Thin film transistor |
CN101582446B (en) * | 2008-05-14 | 2011-02-02 | 鸿富锦精密工业(深圳)有限公司 | Thin film transistor |
US8946683B2 (en) * | 2008-06-16 | 2015-02-03 | The Board Of Trustees Of The University Of Illinois | Medium scale carbon nanotube thin film integrated circuits on flexible plastic substrates |
US8587989B2 (en) * | 2008-06-20 | 2013-11-19 | Nantero Inc. | NRAM arrays with nanotube blocks, nanotube traces, and nanotube planes and methods of making same |
US8237677B2 (en) * | 2008-07-04 | 2012-08-07 | Tsinghua University | Liquid crystal display screen |
CN101625466B (en) * | 2008-07-09 | 2012-12-19 | 清华大学 | Touch liquid crystal display screen |
US8390580B2 (en) * | 2008-07-09 | 2013-03-05 | Tsinghua University | Touch panel, liquid crystal display screen using the same, and methods for making the touch panel and the liquid crystal display screen |
US8022393B2 (en) * | 2008-07-29 | 2011-09-20 | Nokia Corporation | Lithographic process using a nanowire mask, and nanoscale devices fabricated using the process |
WO2010019440A1 (en) * | 2008-08-14 | 2010-02-18 | Nantero, Inc. | Nonvolatile nanotube programmable logic devices and nonvolatile nanoture field programmable gate arrays using same |
US9263126B1 (en) | 2010-09-01 | 2016-02-16 | Nantero Inc. | Method for dynamically accessing and programming resistive change element arrays |
CN101676452B (en) * | 2008-09-19 | 2011-11-30 | 清华大学 | Method of producing carbon nano-tube yarn |
US7915637B2 (en) | 2008-11-19 | 2011-03-29 | Nantero, Inc. | Switching materials comprising mixed nanoscopic particles and carbon nanotubes and method of making and using the same |
KR101026160B1 (en) | 2008-11-26 | 2011-04-05 | 한국원자력연구원 | Hybrid nano-logic circutis and the method of manufacturing the same |
KR101076767B1 (en) | 2009-02-11 | 2011-10-26 | 광주과학기술원 | Nano-logic circuits and the method of manufacturing the same |
CN101924816B (en) * | 2009-06-12 | 2013-03-20 | 清华大学 | Flexible mobile phone |
US8128993B2 (en) * | 2009-07-31 | 2012-03-06 | Nantero Inc. | Anisotropic nanotube fabric layers and films and methods of forming same |
US8574673B2 (en) | 2009-07-31 | 2013-11-05 | Nantero Inc. | Anisotropic nanotube fabric layers and films and methods of forming same |
US20110034008A1 (en) * | 2009-08-07 | 2011-02-10 | Nantero, Inc. | Method for forming a textured surface on a semiconductor substrate using a nanofabric layer |
US8351239B2 (en) * | 2009-10-23 | 2013-01-08 | Nantero Inc. | Dynamic sense current supply circuit and associated method for reading and characterizing a resistive memory array |
WO2011050331A2 (en) * | 2009-10-23 | 2011-04-28 | Nantero, Inc. | Method for passivating a carbonic nanolayer |
US8895950B2 (en) | 2009-10-23 | 2014-11-25 | Nantero Inc. | Methods for passivating a carbonic nanolayer |
US9126836B2 (en) | 2009-12-28 | 2015-09-08 | Korea University Research And Business Foundation | Method and device for CNT length control |
US8222704B2 (en) * | 2009-12-31 | 2012-07-17 | Nantero, Inc. | Compact electrical switching devices with nanotube elements, and methods of making same |
WO2011100661A1 (en) | 2010-02-12 | 2011-08-18 | Nantero, Inc. | Methods for controlling density, porosity, and/or gap size within nanotube fabric layers and films |
US20110203632A1 (en) * | 2010-02-22 | 2011-08-25 | Rahul Sen | Photovoltaic devices using semiconducting nanotube layers |
US10661304B2 (en) | 2010-03-30 | 2020-05-26 | Nantero, Inc. | Microfluidic control surfaces using ordered nanotube fabrics |
KR20170026652A (en) | 2010-03-30 | 2017-03-08 | 난테로 인크. | Methods for arranging nanoscopic elements within networks, fabrics, and films |
EP2557567A1 (en) | 2011-08-09 | 2013-02-13 | Thomson Licensing | Programmable read-only memory device and method of writing the same |
US8664091B2 (en) * | 2011-11-10 | 2014-03-04 | Institute of Microelectronics, Chinese Academy of Sciences | Method for removing metallic nanotube |
CN103101898B (en) * | 2011-11-10 | 2015-05-20 | 中国科学院微电子研究所 | Metallic nanotube removal method |
US20130285019A1 (en) * | 2012-04-26 | 2013-10-31 | Postech Academy-Industry Foundation | Field effect transistor and method of fabricating the same |
US10089930B2 (en) | 2012-11-05 | 2018-10-02 | University Of Florida Research Foundation, Incorporated | Brightness compensation in a display |
US9007732B2 (en) | 2013-03-15 | 2015-04-14 | Nantero Inc. | Electrostatic discharge protection circuits using carbon nanotube field effect transistor (CNTFET) devices and methods of making same |
US9650732B2 (en) | 2013-05-01 | 2017-05-16 | Nantero Inc. | Low defect nanotube application solutions and fabrics and methods for making same |
WO2014191892A1 (en) * | 2013-05-29 | 2014-12-04 | Csir | A field effect transistor and a gas detector including a plurality of field effect transistors |
US10654718B2 (en) | 2013-09-20 | 2020-05-19 | Nantero, Inc. | Scalable nanotube fabrics and methods for making same |
CN105097939B (en) * | 2014-04-24 | 2018-08-17 | 清华大学 | Thin film transistor (TFT) |
US9147824B1 (en) * | 2014-05-08 | 2015-09-29 | International Business Machines Corporation | Reactive contacts for 2D layered metal dichalcogenides |
US9741811B2 (en) | 2014-12-15 | 2017-08-22 | Samsung Electronics Co., Ltd. | Integrated circuit devices including source/drain extension regions and methods of forming the same |
US9299430B1 (en) | 2015-01-22 | 2016-03-29 | Nantero Inc. | Methods for reading and programming 1-R resistive change element arrays |
US9947400B2 (en) | 2016-04-22 | 2018-04-17 | Nantero, Inc. | Methods for enhanced state retention within a resistive change cell |
US9934848B2 (en) | 2016-06-07 | 2018-04-03 | Nantero, Inc. | Methods for determining the resistive states of resistive change elements |
US9941001B2 (en) | 2016-06-07 | 2018-04-10 | Nantero, Inc. | Circuits for determining the resistive states of resistive change elements |
US10665799B2 (en) * | 2016-07-14 | 2020-05-26 | International Business Machines Corporation | N-type end-bonded metal contacts for carbon nanotube transistors |
US10665798B2 (en) * | 2016-07-14 | 2020-05-26 | International Business Machines Corporation | Carbon nanotube transistor and logic with end-bonded metal contacts |
CN113130620B (en) * | 2020-01-15 | 2023-07-18 | 清华大学 | Field effect transistor |
CN113851536A (en) * | 2020-06-28 | 2021-12-28 | 华为技术有限公司 | Field effect transistor, preparation method thereof and semiconductor structure |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE69721929T2 (en) * | 1996-03-26 | 2004-05-13 | Samsung Electronics Co., Ltd., Suwon | TUNNEL EFFECT ARRANGEMENT AND PRODUCTION METHOD |
US6290861B1 (en) * | 1997-07-15 | 2001-09-18 | Silverbrook Research Pty Ltd | Method of manufacture of a conductive PTFE bend actuator vented ink jet printer |
JP2904346B1 (en) * | 1998-06-08 | 1999-06-14 | 日本電気株式会社 | Method for forming heterojunction of carbon nanotube |
US6203864B1 (en) * | 1998-06-08 | 2001-03-20 | Nec Corporation | Method of forming a heterojunction of a carbon nanotube and a different material, method of working a filament of a nanotube |
KR100277881B1 (en) * | 1998-06-16 | 2001-02-01 | 김영환 | Transistor |
US6361861B2 (en) * | 1999-06-14 | 2002-03-26 | Battelle Memorial Institute | Carbon nanotubes on a substrate |
AU1347501A (en) * | 1999-10-26 | 2001-05-08 | Stellar Display Corporation | Method of fabricating a field emission device with a lateral thin-film edge emitter |
US7335603B2 (en) * | 2000-02-07 | 2008-02-26 | Vladimir Mancevski | System and method for fabricating logic devices comprising carbon nanotube transistors |
-
2001
- 2001-01-03 US US09/753,845 patent/US6423583B1/en not_active Expired - Lifetime
- 2001-12-21 EP EP01272504A patent/EP1350277B1/en not_active Expired - Lifetime
- 2001-12-21 CN CNB018217087A patent/CN100347874C/en not_active Expired - Fee Related
- 2001-12-21 AT AT01272504T patent/ATE526690T1/en not_active IP Right Cessation
- 2001-12-21 IL IL15652301A patent/IL156523A0/en not_active IP Right Cessation
- 2001-12-21 JP JP2002554893A patent/JP4099063B2/en not_active Expired - Fee Related
- 2001-12-21 KR KR1020037007987A patent/KR100621444B1/en not_active IP Right Cessation
- 2001-12-21 CA CA002431064A patent/CA2431064C/en not_active Expired - Fee Related
- 2001-12-21 WO PCT/GB2001/005715 patent/WO2002054505A2/en not_active Application Discontinuation
- 2001-12-24 TW TW090132102A patent/TW523797B/en not_active IP Right Cessation
-
2002
- 2002-01-02 MY MYPI20020002A patent/MY127407A/en unknown
- 2002-05-13 US US10/144,402 patent/US6706566B2/en not_active Expired - Lifetime
-
2003
- 2003-06-19 IL IL156523A patent/IL156523A/en active IP Right Revival
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003338621A (en) * | 2002-05-20 | 2003-11-28 | Fujitsu Ltd | Semiconductor device and manufacturing method therefor |
US7696512B2 (en) | 2002-05-20 | 2010-04-13 | Fujitsu Limited | Electron device and process of manufacturing thereof |
JP4501339B2 (en) * | 2002-11-29 | 2010-07-14 | ソニー株式会社 | Method for manufacturing pn junction element |
JP2004179564A (en) * | 2002-11-29 | 2004-06-24 | Sony Corp | Pn junction element and its manufacture |
JP2005170787A (en) * | 2003-12-11 | 2005-06-30 | Internatl Business Mach Corp <Ibm> | Selective synthesis of semiconducting carbon nanotube |
US7374793B2 (en) | 2003-12-11 | 2008-05-20 | International Business Machines Corporation | Methods and structures for promoting stable synthesis of carbon nanotubes |
US7851064B2 (en) | 2003-12-11 | 2010-12-14 | International Business Machines Corporation | Methods and structures for promoting stable synthesis of carbon nanotubes |
US7253431B2 (en) | 2004-03-02 | 2007-08-07 | International Business Machines Corporation | Method and apparatus for solution processed doping of carbon nanotube |
JP2007173428A (en) * | 2005-12-21 | 2007-07-05 | Fujitsu Ltd | Carbon nanotube transistor array and method of manufacturing same |
JP2010515283A (en) * | 2008-01-22 | 2010-05-06 | コリア リサーチ インスティテュート オブ ケミカル テクノロジー | Carbon nanotube transistor manufacturing method and carbon nanotube transistor using the same |
JP2009278104A (en) * | 2008-05-16 | 2009-11-26 | Qinghua Univ | Thin film transistor |
JP2013144627A (en) * | 2012-01-16 | 2013-07-25 | Industry-Academic Cooperation Foundation At Namseoul Univ | Method of growing carbon nanotube laterally, and lateral interconnection using the same and field effect transistor using the same |
JP2015095564A (en) * | 2013-11-12 | 2015-05-18 | 独立行政法人産業技術総合研究所 | Field effect transistor using carbon nanotube aggregate |
JP2015095557A (en) * | 2013-11-12 | 2015-05-18 | 独立行政法人産業技術総合研究所 | Field effect transistor using carbon nanotube aggregate |
Also Published As
Publication number | Publication date |
---|---|
EP1350277B1 (en) | 2011-09-28 |
KR100621444B1 (en) | 2006-09-08 |
CN100347874C (en) | 2007-11-07 |
WO2002054505A2 (en) | 2002-07-11 |
KR20030068175A (en) | 2003-08-19 |
JP4099063B2 (en) | 2008-06-11 |
US20020173083A1 (en) | 2002-11-21 |
IL156523A0 (en) | 2004-01-04 |
CA2431064A1 (en) | 2002-07-11 |
CN1484865A (en) | 2004-03-24 |
TW523797B (en) | 2003-03-11 |
ATE526690T1 (en) | 2011-10-15 |
MY127407A (en) | 2006-11-30 |
US6706566B2 (en) | 2004-03-16 |
US6423583B1 (en) | 2002-07-23 |
WO2002054505A3 (en) | 2002-11-14 |
IL156523A (en) | 2007-05-15 |
CA2431064C (en) | 2006-04-18 |
EP1350277A2 (en) | 2003-10-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4099063B2 (en) | Device formation method using nanotubes | |
Yao et al. | Electrical transport through single-wall carbon nanotubes | |
Martel et al. | Ambipolar electrical transport in semiconducting single-wall carbon nanotubes | |
Avouris | Carbon nanotube electronics | |
McEuen et al. | Single-walled carbon nanotube electronics | |
Pop | The role of electrical and thermal contact resistance for Joule breakdown of single-wall carbon nanotubes | |
Zhao et al. | Frequency-dependent electrical transport in carbon nanotubes | |
US10020365B2 (en) | Graphene device and method of fabricating a graphene device | |
Lee et al. | Room-temperature tunneling behavior of boron nitride nanotubes functionalized with gold quantum dots | |
Dehghani et al. | Temperature dependence of electrical resistance of individual carbon nanotubes and carbon nanotubes network | |
JP4251268B2 (en) | Electronic device and manufacturing method thereof | |
CN101389430A (en) | Carbon nanotube interdigitated sensor | |
Yarali et al. | Physisorbed versus chemisorbed oxygen effect on thermoelectric properties of highly organized single walled carbon nanotube nanofilms | |
JP4501339B2 (en) | Method for manufacturing pn junction element | |
Aïssa et al. | The channel length effect on the electrical performance of suspended-single-wall-carbon-nanotube-based field effect transistors | |
Collins et al. | The electronic properties of carbon nanotubes | |
Tabib-Azar et al. | Sensitive ${\rm NH} _ {3}{\rm OH} $ and HCl Gas Sensors Using Self-Aligned and Self-Welded Multiwalled Carbon Nanotubes | |
Mishra et al. | ESD behavior of MWCNT interconnects—Part I: Observations and insights | |
Yu et al. | Single-Walled Carbon Nanotubes as a Chemical Sensor for $\hbox {SO} _ {2} $ Detection | |
JP2005101424A (en) | Method for manufacturing field-effect semiconductor device | |
Watanabe et al. | Coulomb blockade oscillation in a multiwalled carbon nanotube with internanotube tunnel junctions | |
Shrivastava et al. | ESD behavior of metallic carbon nanotubes | |
WO2005027226A1 (en) | Method for manufacturing field effect semiconductor device | |
LIAO | CE RTIFICATEOF CO MMITTEE AP PROVAL | |
Issi et al. | Electrical transport properties in carbon nanotubes |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070619 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070822 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20071106 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080201 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080311 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080314 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110321 Year of fee payment: 3 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110321 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110321 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120321 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130321 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140321 Year of fee payment: 6 |
|
LAPS | Cancellation because of no payment of annual fees |