JP2004515835A - 導波路を備えた反射体アレイを有する弾性波タッチスクリーン - Google Patents
導波路を備えた反射体アレイを有する弾性波タッチスクリーン Download PDFInfo
- Publication number
- JP2004515835A JP2004515835A JP2002500324A JP2002500324A JP2004515835A JP 2004515835 A JP2004515835 A JP 2004515835A JP 2002500324 A JP2002500324 A JP 2002500324A JP 2002500324 A JP2002500324 A JP 2002500324A JP 2004515835 A JP2004515835 A JP 2004515835A
- Authority
- JP
- Japan
- Prior art keywords
- waveguide
- array
- touch
- area
- elastic wave
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000001514 detection method Methods 0.000 claims abstract description 16
- 239000000758 substrate Substances 0.000 claims description 25
- 230000001902 propagating effect Effects 0.000 claims description 5
- 230000008859 change Effects 0.000 abstract description 5
- 230000000644 propagated effect Effects 0.000 abstract description 2
- 239000011521 glass Substances 0.000 description 12
- 238000003491 array Methods 0.000 description 10
- 239000000463 material Substances 0.000 description 9
- 239000011162 core material Substances 0.000 description 5
- 238000013461 design Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 235000019687 Lamb Nutrition 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 238000009125 cardiac resynchronization therapy Methods 0.000 description 2
- 238000005253 cladding Methods 0.000 description 2
- 239000004973 liquid crystal related substance Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 101100127285 Drosophila melanogaster unc-104 gene Proteins 0.000 description 1
- 238000003848 UV Light-Curing Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000005401 electroluminescence Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- HUAUNKAZQWMVFY-UHFFFAOYSA-M sodium;oxocalcium;hydroxide Chemical compound [OH-].[Na+].[Ca]=O HUAUNKAZQWMVFY-UHFFFAOYSA-M 0.000 description 1
- 238000010897 surface acoustic wave method Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/041—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
- G06F3/043—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using propagating acoustic waves
- G06F3/0436—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using propagating acoustic waves in which generating transducers and detecting transducers are attached to a single acoustic waves transmission substrate
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Acoustics & Sound (AREA)
- Human Computer Interaction (AREA)
- General Physics & Mathematics (AREA)
- Position Input By Displaying (AREA)
- Aerials With Secondary Devices (AREA)
- Electronic Switches (AREA)
Abstract
超音波タッチスクリーン(1a)は、弾性波に対して部分的に反射性の要素(14)のアレイ(13)によって、タッチ検知エリア(2)へと曲げられる弾性波信号を発生させる送信トランスデューサー(23a、23b)を有する。タッチ検知エリア上でのタッチによって、弾性波信号に変動が生じる。弾性波信号は、タッチ検知エリアを横断した後、弾性波に対して部分的に反射性の要素(14)のもう1つのアレイ(13)によって、受信トランスデューサー(26a、26b)の方向へと向きを変えられる。そして、信号(および変動)は、受信トランスデューサー(26a、26b)で検知される。タッチスクリーンのボーダー領域(15a)を狭くできるように、導波路(18)を用いて、弾性波信号をボーダー領域へと伝搬させている。導波路は、狭い経路幅で伝搬するように弾性波信号を制限するが、それでもなお、弾性波信号をタッチ検知エリアへと曲げることを可能としている。従って、トランスデューサーおよび反射要素の幅がより小さくなった構成を取ることができ、それを幅の狭いボーダー領域内に収めることができる。
Description
【0001】
発明の背景
1.発明の分野
本発明は、弾性波タッチスクリーン(または超音波タッチスクリーン)に関し、特に、反射アレイの幅が小さく、タッチ検知エリアが増加した弾性波タッチスクリーンに関する。
【0002】
2.関連技術の説明
弾性波タッチスクリーンにはタッチ検知エリアが存在し、タッチ検知エリアを伝搬する弾性波へのタッチ(触れること)の影響によって、タッチの発生および位置が検出される。通常の種類の弾性波タッチスクリーンは、レイリー波を用いている(本明細書において、レイリー波という用語には擬似レイリー波が含まれる)。例えば、レイリー波を用いたタッチスクリーンの例には、米国特許第4642423号(1987年);米国特許第4645870号(1987年);米国特許第4700176号(1987年)、米国特許第4746914号(1988年);米国特許第4791416号(1988年);再発行特許第33151号(1990年);米国特許第4825212号(1989年);米国特許第4859996号(1989年)、米国特許第4880665号(1989年);米国特許第4644100号(1987年);米国特許第5739479号(1998年);米国特許第5708461号(1998年)および米国特許第5854450号(1998年)にて開示されるタッチスクリーンがある。また、ラム波もしくはせん断波等の他の種類の弾性波、または種々の弾性波の組合わせ(レイリー波を含んだ組合せを含む)を用いた弾性波タッチスクリーンも既知であり、例えば、米国特許第5591945号(1997年);米国特許第5854450号(1998年);米国特許第5072427号(1991年);米国特許第5162618号(1992年);米国特許第5177327号(1993年);米国特許第5243148号(1993年);米国特許第5329070号(1994年);米国特許第5573077号および米国特許第5260521号(1993年)にて開示される超音波タッチスクリーンがある。この段落で引用する文献は、参照することによって、本明細書に組み込まれる。
【0003】
図1に、有効(またはアクティブ)なエリアまたはタッチ検知エリア2を有する従来の超音波タッチスクリーン1の作動状態を示す。第1送信トランスデューサー3aは、タッチ検知エリア2の外側に配置され、タッチスクリーン1の表面に弾性波を伝えるように(または音波的にもしくは超音波的に)連結されている。トランスデューサー3aは、弾性波信号(または音波信号もしくは超音波信号)を弾性波(または表面弾性波もしくは音波もしくは超音波、acoustic wave)11aの形態で送信し、信号は、一般的にタッチスクリーン1の平面にてタッチスクリーン1の上方エッジと平行となるように進行する。弾性波一部反射要素(または部分的に弾性波を反射させる要素)4の第1線状アレイ13は、弾性波11aの送信経路で整列される。反射要素4の各々は、弾性波信号を(略90°)部分的に反射させて、また、部分的に送信し、複数の弾性波(例えば、5a、5bおよび5c)が垂直方向(Y軸と平行)にてタッチ検知エリア2を横切るように進行する(反射要素4の間隔は、第1トランスミッター3aからの距離が増加するにつれて弾性波信号が減衰するのを補うべく変わっている)。弾性波5a、5bおよび5cは、タッチスクリーン1の下方エッジに到達すると、弾性波一部反射要素4の第2線状アレイ13によって第1受信トランスデューサー6aの方向に向かって略90°(矢印11bの方向へと)再度反射する。そして、第1受信トランスデューサー6aにて弾性波5a、5bおよび5cが検知され、データ処理用に電気信号に変換される。このような構成と同様の構成が、タッチスクリーン1の左側エッジおよび右側エッジに沿って配置される。第2送信トランスデューサー3bは、左側エッジに沿うように弾性波12aを発生させ、弾性波一部反射要素4の第3線状アレイ13によって、タッチ検知エリア2を水平方向(X軸と平行)に横切って進行する弾性波(例えば7a、7bおよび7c)が複数生じる。弾性波7a、7bおよび7cは、弾性波一部反射要素4の第4線状アレイ13によって、受信トランスデューサー6bの方向(矢印12bの方向)へと向きを変えられる。そして、受信トランスデューサー6bにて弾性波7a、7bおよび7cが検知され、電気信号に変換される。
【0004】
タッチ検知エリア2が、指またはスタイラス等の物体によってポジション8にてタッチされると、弾性波5bおよび7aのエネルギーのいくらがタッチした物体によって吸収される。それによって減衰が生じ、受信トランスデューサー6a、6bで、弾性波信号の変動(または摂動)として検出される。マイクロプロセッサー(図示せず)を用いるデータの時間遅れ解析によって、ポジション8の座標を決定することができる。
【0005】
タッチスクリーンを製造するに際し、送信/受信トランスデューサーが2組である必要は必ずしもないことが当業者に理解されよう。トランスデューサーが1組存在していない図1のデバイスが、タッチスクリーンとして機能することに依然変わりはなく、タッチの発生を検知し、限られた位置情報(1つの座標)を提供する。あるいは、米国特許第4746914号の図8で開示されているように、タッチスクリーンは、共通の送信/受信トランスデューサーの構成を用いて2つのトランスデューサーのみから設計できる。
【0006】
通常の使用に際して、ハウジング9(その輪郭は図1にて点線で示す)は、典型的には成形ポリマーまたは金属薄板(または板金)から作られ、タッチスクリーン1と組み合わされる。ハウジング9は、タッチスクリーン1に重ねて置かれるベゼル10(その輪郭もまた図1にて点線で示す)を含んでいる。ベゼルによって送信トランスデューサー、受信トランスデューサー、反射部材および他の要素が隠蔽される一方、タッチ検知エリア2は露出したものとなっている。この配置によって、コンタミ(contamination)および/または損傷から隠蔽された部品が保護され、外観がより美的に好ましくなると共に、ユーザーのためのタッチ検知エリアが規定されることになる。
【0007】
タッチスクリーンは、陰極線管(CRT)、液晶ディスプレイ(LCD)、プラズマ、エレクトロルミネセンス(またはEL)または他の種類のディスプレイ等のディスプレイのパネルに重ねて置かれる個別の表面板(典型的にはガラスから成るが、他の硬質基材を用いてもよい)を含んで成り得る。別の態様では、タッチスクリーン要素をCRTのガラス表面に直接的に結合させることによって、CRTをタッチスクリーンに変換しており、その結果、CRT表面がタッチ検知表面となることが提案されている。米国特許第4746914号には、かかる構造が開示されている。ダイレクト−オンCRTタッチスクリーン(direct−on CRT touchscreen)の構成は、看者とCRTの間にてガラスまたは他の材料から成る部材が取り除かれており、知覚されるディスプレイの輝度(または明度)が増加するために望ましい構成である。また、オーバーレイ・ガラス(または重ね合わされるガラス)を用いる必要がなく、オーバーレイ・ガラスの場所を確保するためにCRTシャシを変更する必要がない点で経済的な利点がある。
【0008】
図1においては、タッチ検知エリア2が、ボーダー領域15(2領域だけ番号を付している)によって包囲されており、そのボーダー領域15に反射要素4、送信トランスデューサー3a、3bおよび受信トランスデューサー6a、6bが配置されていることが判る。ボーダー領域15の幅が減少すると、タッチ検知エリア2に割り当てられ得るデバイスの正面エリアの割合が増加することになる。また、より容易にタッチスクリーンをモニターと一体化させてシールすることもできる。また、タッチスクリーンのボーダー領域15の幅が狭くなると、扱い易く、しゃれたデザインの印象が与えられ、製品がカスタマーにとってより魅力的なものとなる。
【0009】
更に、タッチスクリーンが、CRTの表面ガラス上に直接的に構成されている場合では、タッチスクリーン・メーカー(またはタッチスクリーン製造業者)は、ボーダー領域15の幅を調整できない。通常、タッチスクリーン・メーカーはCRT自体を製造することはなく、むしろ、モニター・メーカーによって提供されるCRTを加工し(または、コンピューターCPUシャシ(例えば、アップル・コンピューター製のアイマック(iMac、登録商標)等)と一体化したモニターの場合ではコンピューター・メーカーから提供されるCRTを加工し)、タッチスクリーン・メーカーがボーダー領域を適宜変更しなければならない。ある種のCRTの場合、ボーダー領域の幅が広いものがあり、他の場合では、狭いものもある。
【0010】
上述の理由から、幅がより狭いボーダー領域15に対応できるタッチスクリーンが製造できることが望ましい。ボーダー領域の幅を減少させるキー(key)となるのには、アレイ13およびトランスデューサーの幅を減少させることである。しかしながら、これらの要素の幅は、任意に減少させることができない。曲げられた弾性波5a、5bおよび5cがタッチを検知するのに十分な弾性波エネルギー(または音波エネルギーもしくは超音波エネルギー)を含んでいなければならないという点で、アレイ13の幅が弾性波11aのビーム幅(または束となった弾性波の幅)と密接に関係している。アレイ13の幅が狭すぎると、小さい割合の弾性波11aしかインタセプトされず(またはさえぎられず)、曲げられた信号が望ましくない程度に弱められることになる。このことは、他の反射体アレイに関しても同様に当て嵌まる。トランスデューサーに関しては、送信トランスデューサーの幅が小さいと、回折効果に起因して弾性波11aが散乱(または拡散)するので望ましくない。このような波動力学的効果についての物理的現象というものは、狭い開口部を通過する波の物理的現象に対応するものである。このような波動力学的効果に関する数学的な解析は、アレイ13の幅もまたタッチ・スクリーン1のサイズと関係しているという見解とよく一致する。タッチ・スクリーンが大きいほど、アレイ13の幅をより大きくして、トランスデューサーから下流で弾性波信号を十分量捕捉し、タッチを検知するのに十分な信号をタッチ検知エリア2を横切って反射させる必要がある。常套のタッチ・スクリーンでは、アレイ幅(弾性波信号の波長単位)は、アレイ長さ(波長単位)の平方根の1/3より大きい程度であった。
【0011】
従って、幅がより小さい反射アレイおよび/またはトランスデューサーを使用ができる設計によって、幅がより狭いボーダー領域に対応できる新しい設計の超音波タッチスクリーンを供することが望ましい。
【0012】
発明の簡単な要旨
本発明では、導波路(または弾性波用導波路)を用いてボーダー領域にて弾性波を集束する(または集める)ことによって上述の問題を解決している。導波路によって、弾性波エネルギーがより狭い経路幅に沿うように効率的に集められ、その結果、より幅の小さい反射アレイおよび/またはトランスデューサーの使用が可能となっている。従って、本発明は、
(a)(i)外周を有するタッチ検知エリア、および
(ii)タッチ検知エリアの周囲に存在するボーダー領域
を有する弾性波が伝搬可能な基板(または基材)、
(b)横断方向寸法(またはディメンション)を有した弾性波を部分的に反射する要素のアレイ(ボーダー領域の一部分に位置する)であって、弾性波信号をタッチ検知エリアへ送信するように、または、タッチ検知エリアから弾性波信号を受信するように配置されているアレイ、ならびに
(c)ボーダー領域の該部分に位置しており、アレイの横断方向寸法よりも小さい横断方向寸法を有する弾性波用導波路、
を有して成るタッチスクリーンを提供する。
また、本発明は、
(a)(i)外周を有するタッチ検知エリア、および
(ii)タッチ検知エリアの周囲に存在するボーダー領域、
を有する弾性波が伝搬可能な基板、ならびに
(b)横断方向寸法(弾性波信号の波長の単位数)が長手方向寸法(弾性波信号の波長の単位数)の平方根の1/3より小さい弾性波一部反射要素のアレイ、を有して成るタッチスクリーンを提供する。
【0013】
本明細書において、図面を通して繰返し使用する参照番号は、同じまたは同等の要素を示している。
【0014】
発明の詳細な説明
満足すべく作動するタッチスクリーンを提供するために必要とされる弾性波信号エネルギーは、タッチスクリーンの寸法(またはディメンション)、ならびに対応する反射アレイの長さおよび幅に部分的に依存している。単に、タッチスクリーン寸法が大きいほど、弾性波信号がより長い距離を伝搬(または進行)する必要があるという理由によって、タッチスクリーンがより大きいほど、信号エネルギーをより大きくする必要がある。トランスデューサーから下流方向にあるアレイの端部にて、特定/最小限の量の信号がタッチスクリーンを横切って送信できるようにする特徴を反射アレイが有する必要がある。タッチ検知領域を横切って送信される信号量を調節する方法の1つは、反射アレイの幅を大きくさせることである。反射アレイの幅を大きくすることによって、タッチスクリーンを横切って送信するまたは受信するために捕捉されるエネルギーがより多くなる。しかしながら、これによって、利用可能なタッチ検知エリアが必然的に減少し、アレイをカバーするのに必要なベゼルの幅が増加してしまう。このことは、非常に望ましくない特徴であり、実際には、所定のタッチ・スクリーン・サイズで利用可能なタッチ検知領域を増加させ、ベゼルの幅を最小限度にするというカスタマーのニーズと直接的に対立するものである。
【0015】
常套のアレイは、0.21インチ(5.3mm)または9.3波長(0.0226インチの常套の信号波長を仮定している)の最小の幅を有し、また0.6インチ(15.2mm)または26.5波長(0.0226インチの常套の信号波長を仮定している)の最大の幅を有している。最小の幅のアレイは、対角線が10インチまたは12インチ程度のより小さいスクリーンに用いられ、最大の幅のアレイは、20インチおよびそれより大きい程度のより大きいスクリーンに用いられる。また、かかる数値は、タッチスクリーンの基板の種類にも依存する。
【0016】
図2は、本発明の弾性波タッチスクリーンのトランスデューサー16および反射アレイ13を示しており、従来のタッチスクリーンよりもボーダー領域の幅を狭くすることが可能とする。本発明において、弾性波11aの経路は、弾性波用導波路18によって制限される。反射アレイ13は、導波路(または導波管)18と協同する弾性波一部反射要素14を複数含んでいる。この態様では、導波路18の上部に反射要素14が予め決められた間隔で置かれている(またはオーバーレイされている)。この配置によって、反射要素14が、入ってくる弾性波11aのエネルギーを弾性波5a、5bとしてタッチ検知エリアを横切るように部分的に偏向させる(または向きを変える)ことができる。図示するように、導波路18は横断方向寸法(幅)yを有しており、反射アレイ13は、導波路18の横断方向寸法yより大きい横断方向寸法(幅)wを有している。
【0017】
図3に示すように、幅yの導波路18を組み合わせる結果、相当な割合の弾性波エネルギーが幅wのアレイ14に閉じ込められることになる。導波路18の幅によって、弾性波のビーム(または弾性波の束)の幅を制御することができるので、それに対応させて、反射体14の幅を従来より小さくすることができる。なお、かかる場合でも、反射体14は、タッチが検知されるべく、十分な量の弾性波エネルギーをタッチ検知エリアを横切って偏向させる。
【0018】
図2を参照すると、(一般的であるが、必ずしもレイリー波と組み合わせて用いる必要はない)好ましい態様おいて、送信トランスデューサー16は、集束トランスデューサー(または収束型トランスデューサー、focusing transducer)である。(図1に示すような)従来技術のタッチスクリーンに用いられる常套的のトランスデューサーでは、弾性波の平行ビームが生じる。集束トランスデューサー16によって、導波路18の端部の焦点17にて弾性波のビーム22が焦点を結ぶようになっており、導波路18の端部で弾性波が集束され、伝搬されることになる。導波路がない従来のタッチスクリーンでは、アレイの端部でのエネルギーのスポット・サイズに関心を持つ必要があり、典型的には比較的大きなトランスデューサーをタッチスクリーンに使用しなければならない。本発明では、導波路を含ませているので、導波路の入口におけるスポット・サイズについて関心を持つことになる。トランスデューサーと導波路の入口との間の距離が比較的短くなることよって、従来のタッチスクリーンよりもアレイ軸に対して垂直(または直角)方向の寸法(またはディメンション)が小さくなったトランスデューサーを使用できる。より好ましくは、弾性波エネルギーをより効率的に導波路に授受させるために、導波路の入口にて焦点を有する集束トランスデューサーを使用してもよい。また、受信トランスデューサーも同様の利点を有した集束型であってもよい。(導波路がなければ、弾性波のビームが焦点17を超えて発散することになるため、従来のタッチスクリーンでは、集束トランスデューサーを通常有利に使用できないことに留意すべきである)。
【0019】
レイリー波と違って、せん断波(例えば、ZOHPSおよびHOHPS)ならびにラム波等の板波では、それらが進行する基板の上部表面および下部表面(または底部表面)の双方において弾性波エネルギーの密度が大きい。図4、図5および図6は、別の好ましい態様を示しており、導波路18が基板19の第1表面に取り付けられ、反射アレイが基板19の第2表面に取り付けられている。別の態様においては、導波路と反射アレイとが反対に取り付けられている。更に、一方の表面または両方の表面に複数(または多数)の導波路および/またはアレイを設けてもよい。
【0020】
図7および図8は、導波路/反射アレイの組合せに関したもう1つの別の態様を示している。この態様において、導波路50は、例えば銀粒子を充填したガラス・フリット等の導電性材料から成る。これによって、導波路が、関連するトランスデューサーへの電気的接続部として機能することができる。トランスデューサーには少なくとも2つの電気的接続部が必要であるので、導波路50には2つの要素50a、50bが含まれる。図7に示すように、導波路50は基板54の第1の側52に連結され、反射アレイ56が基板54の第2の側58に連結されている。別法では、図9に示すように、導波路50および反射アレイ56が基板54の同じ側に連結されている。この構成では、導波路50(または導波路50の原料)を基板54に塗布して硬化させ、その後、例えばUV硬化材料から成る反射アレイを導波路の上に設けている。
【0021】
図4を参照すると、本発明の超音波タッチスクリーン1aが模式的に示されている。導波路18が存在することによって、常套のアレイよりもアレイ24の反射要素14の幅を小さくすることができ、また、送信トランスデューサー23a、23bおよび受信トランスデュサー26a、26bの幅も小さくすることができる。その結果、ボーダー領域15aの幅が従来のタッチスクリーンより狭くなっている。
【0022】
当業者には、タッチスクリーンが、4つの全ての側部にて等しい幅のボーダー領域を必ずしも有している必要がないことが理解されよう。なお、この点に関して強調しておくと、図4のタッチスクリーン1aでは、あるボーダー領域15a(下部のボーダー領域)の幅が、他のボーダー領域よりも広くなるように意図して図示している。このことは、タッチスクリーン・メーカー以外のメーカーによって製造されたCRTまたは液晶ディスプレイ(LCD)に使用されるタッチスクリーンの場合に特に妥当するであろう。CRTまたはLCDメーカーは、タッチスクリーンとは関係のない設計的検討事項のために、ボーダー領域の幅が等しくないディスプレイを製造し得る。従って、常套の反射アレイを収めることができるボーダー領域がある一方、本発明の導波路を用いる反射アレイを必要とするボーダー領域もある。本発明では、タッチスクリーン内の全ての反射アレイを、導波路と協働させる必要はなく、また、導波路の長さがアレイの長さと同じである必要はない。ボーダー領域が十分に幅広い場合、導波路を用いるアレイを用いる必要はない(しかしながら、用いることが排除されるわけではない)。ボーダー領域の幅に応じて、1、2、3または4つの導波路を用いるアレイを矩形のタッチスクリーンは有してもよい。
【0023】
図10は、本発明のもう1つの別の態様を示している。この態様では、反射要素のアレイが、導波路内に「組み込まれ」ている。導波路60は、複数の部分60aにセグメント化されている。導波路60は、各部分60aの間のギャップ62によって、導波路60の長さ方向に沿って離間している。好ましくは、ギャップ62は、(n+1/2)λである(nはいずれかの整数であり、λは波長である)。各部分60aは、少なくとも1つの斜め方向の面64を有しており、その斜め方向の面64は、弾性波66のエネルギーをタッチスクリーン面を横切るように偏向させる弾性波反射要素として機能する。
【0024】
概念的には、弾性波用導波路は、光導波路と同様であり、クラッド材料により包囲されたコア材料から成っており、導波される波(それは光波または弾性波のいずれであってもよい)は、クラッド領域よりもコア領域において遅い伝搬速度を有する。図11aには、タッチスクリーンの表面に弾性波用導波路18が形成できる様子を断面で示している。コア24(例えば、ガラス・フリットまたは銀粒子が充填されたガラス・フリット等)がタッチスクリーン基材27(または基板、例えば硼珪酸塩またはソーダ石灰等から成るガラスから形成される)に付着されている。弾性波は、コア24では基材27におけるよりも遅く進行するので、基材27はクラッドとして有効に機能する。図11bは、導波路18の上に反射要素14の形成できる様子を断面で示している。別法にて、同様な製造工程で同様な材料から導波路およびアレイを形成してもよい。
【0025】
図11cは、別の導波路の構成を示しており、配置される材料は、基材27よりも伝搬速度が速いクラッド25であって、この例では、コアとして機能する。従って、図11cの構成は、図11aの構成を逆にしたものである。
【0026】
図11aおよび図11cの導波路は、オーバーレイ導波路(overlay waveguide)を例示したものであり、一方のストリップ材料が、もう一方の材料の基板の上部に置かれるので、そのように呼ばれている。トポグラフィック導波路(基板表面を局所的に変形させることによって形成される)等の他の種類の導波路を用いてもよい。図11dは、トポグラフィック導波路を示しており、ウェッジ28が変形部である。変形部は、例えば矩形リッジ(または矩形の隆起部)等の他の形状にしてもよい。オリナー(Oliner)の「弾性表面波用導波路:レビューA(Waveguides for Acoustic Surface Waves:A Review)」(Proc.IEEE、第64巻第5号615〜625頁(1976年5月))およびそこでの引用文献等の刊行物を参照することによって、本発明における使用に適した導波路の多くの設計を行なうことができることは当業者に理解されよう。例えば、ガラス・フリットから導波路および/または反射体アレイを作ることができる。別法では、導波路は、基板にて切欠部(cut−out)または谷状部(valley)であってもよい。また、導波路が複数の切欠部および谷部であってよく、その場合、幅yのストリップに切欠部が形成されている。
【0027】
図4および/または図10を参照すると、導波路を含ませることによって、アレイ長さに対する幅が、従来のアレイよりも小さくなった反射アレイが可能となっている。このアレイでは、平均的な幅または横断方向寸法(単位:波長)が長手方向寸法の平方根の約1/3(単位:波長)より小さくなり得る。平均的な幅というものは、アレイの長さにわたって勘案したアレイの平均幅を意味するものである。
【0028】
上述の本発明の詳細な説明は、主としてまたは専ら本発明の特定の部分または要旨に関する記載を含んでいる。そのような説明は明瞭にするためのものであって、便宜上のものであり、特定の特徴が、開示されている記載の範囲を超えて妥当するものであること、また、本明細書の開示が、種々の記載から理解される情報を適当に組み合わせたあらゆるものを含んでいることを理解されよう。同様に、本明細書の種々の図面および説明は、本発明の特定の態様に関係しているが、特定の特徴が特定の図面および態様の内容に開示されている場合、かかる特徴は、別の図面または態様の内容において、または、別の特徴との組合せにおいて、あるいは一般的に本発明において適切な程度まで用いることが可能であることを理解されよう。
【0029】
更に、ある好ましい態様に関して本発明を特に説明してきたが、本発明は、かかる好ましい態様に限定されるものではないことが理解されよう。むしろ、本発明の範囲は、上述の特許請求の範囲によって規定されるものである。
【図面の簡単な説明】
【図1】図1は、従来のタッチスクリーンを示す。
【図2】図2は、本発明の導波路−反射アレイの組合せを示す。
【図3】図3は、本発明の導波路の幅方向に沿った弾性波エネルギーの模式的なグラフを示す。
【図4】図4は、図2に示す種類の導波路−反射アレイの組合せを有する本発明の超音波タッチスクリーンを示す。
【図5】図5は、本発明の導波路−反射アレイの別の態様の側面図を示す。
【図6】図6は、図5の態様の平面図である。
【図7】図7は、本発明の導波路−反射アレイのもう1つの別の態様の側面図を示す。
【図8】図8は、図7の態様の平面図を示す。
【図9】図9は、本発明の導波路−反射アレイのもう1つの別の態様の側面図を示す。
【図10】図10は、本発明の導波路−反射アレイのもう1つの別の態様の平面図を示す。
【図11a】図11aは、本発明の導波路の態様の断面を示す。
【図11b】図11bは、本発明の導波路の態様の断面を示す。
【図11c】図11cは、本発明の導波路の態様の断面を示す。
【図11d】図11dは、本発明の導波路の態様の断面を示す。
【図11e】図11eは、本発明の導波路の態様の断面を示す。
発明の背景
1.発明の分野
本発明は、弾性波タッチスクリーン(または超音波タッチスクリーン)に関し、特に、反射アレイの幅が小さく、タッチ検知エリアが増加した弾性波タッチスクリーンに関する。
【0002】
2.関連技術の説明
弾性波タッチスクリーンにはタッチ検知エリアが存在し、タッチ検知エリアを伝搬する弾性波へのタッチ(触れること)の影響によって、タッチの発生および位置が検出される。通常の種類の弾性波タッチスクリーンは、レイリー波を用いている(本明細書において、レイリー波という用語には擬似レイリー波が含まれる)。例えば、レイリー波を用いたタッチスクリーンの例には、米国特許第4642423号(1987年);米国特許第4645870号(1987年);米国特許第4700176号(1987年)、米国特許第4746914号(1988年);米国特許第4791416号(1988年);再発行特許第33151号(1990年);米国特許第4825212号(1989年);米国特許第4859996号(1989年)、米国特許第4880665号(1989年);米国特許第4644100号(1987年);米国特許第5739479号(1998年);米国特許第5708461号(1998年)および米国特許第5854450号(1998年)にて開示されるタッチスクリーンがある。また、ラム波もしくはせん断波等の他の種類の弾性波、または種々の弾性波の組合わせ(レイリー波を含んだ組合せを含む)を用いた弾性波タッチスクリーンも既知であり、例えば、米国特許第5591945号(1997年);米国特許第5854450号(1998年);米国特許第5072427号(1991年);米国特許第5162618号(1992年);米国特許第5177327号(1993年);米国特許第5243148号(1993年);米国特許第5329070号(1994年);米国特許第5573077号および米国特許第5260521号(1993年)にて開示される超音波タッチスクリーンがある。この段落で引用する文献は、参照することによって、本明細書に組み込まれる。
【0003】
図1に、有効(またはアクティブ)なエリアまたはタッチ検知エリア2を有する従来の超音波タッチスクリーン1の作動状態を示す。第1送信トランスデューサー3aは、タッチ検知エリア2の外側に配置され、タッチスクリーン1の表面に弾性波を伝えるように(または音波的にもしくは超音波的に)連結されている。トランスデューサー3aは、弾性波信号(または音波信号もしくは超音波信号)を弾性波(または表面弾性波もしくは音波もしくは超音波、acoustic wave)11aの形態で送信し、信号は、一般的にタッチスクリーン1の平面にてタッチスクリーン1の上方エッジと平行となるように進行する。弾性波一部反射要素(または部分的に弾性波を反射させる要素)4の第1線状アレイ13は、弾性波11aの送信経路で整列される。反射要素4の各々は、弾性波信号を(略90°)部分的に反射させて、また、部分的に送信し、複数の弾性波(例えば、5a、5bおよび5c)が垂直方向(Y軸と平行)にてタッチ検知エリア2を横切るように進行する(反射要素4の間隔は、第1トランスミッター3aからの距離が増加するにつれて弾性波信号が減衰するのを補うべく変わっている)。弾性波5a、5bおよび5cは、タッチスクリーン1の下方エッジに到達すると、弾性波一部反射要素4の第2線状アレイ13によって第1受信トランスデューサー6aの方向に向かって略90°(矢印11bの方向へと)再度反射する。そして、第1受信トランスデューサー6aにて弾性波5a、5bおよび5cが検知され、データ処理用に電気信号に変換される。このような構成と同様の構成が、タッチスクリーン1の左側エッジおよび右側エッジに沿って配置される。第2送信トランスデューサー3bは、左側エッジに沿うように弾性波12aを発生させ、弾性波一部反射要素4の第3線状アレイ13によって、タッチ検知エリア2を水平方向(X軸と平行)に横切って進行する弾性波(例えば7a、7bおよび7c)が複数生じる。弾性波7a、7bおよび7cは、弾性波一部反射要素4の第4線状アレイ13によって、受信トランスデューサー6bの方向(矢印12bの方向)へと向きを変えられる。そして、受信トランスデューサー6bにて弾性波7a、7bおよび7cが検知され、電気信号に変換される。
【0004】
タッチ検知エリア2が、指またはスタイラス等の物体によってポジション8にてタッチされると、弾性波5bおよび7aのエネルギーのいくらがタッチした物体によって吸収される。それによって減衰が生じ、受信トランスデューサー6a、6bで、弾性波信号の変動(または摂動)として検出される。マイクロプロセッサー(図示せず)を用いるデータの時間遅れ解析によって、ポジション8の座標を決定することができる。
【0005】
タッチスクリーンを製造するに際し、送信/受信トランスデューサーが2組である必要は必ずしもないことが当業者に理解されよう。トランスデューサーが1組存在していない図1のデバイスが、タッチスクリーンとして機能することに依然変わりはなく、タッチの発生を検知し、限られた位置情報(1つの座標)を提供する。あるいは、米国特許第4746914号の図8で開示されているように、タッチスクリーンは、共通の送信/受信トランスデューサーの構成を用いて2つのトランスデューサーのみから設計できる。
【0006】
通常の使用に際して、ハウジング9(その輪郭は図1にて点線で示す)は、典型的には成形ポリマーまたは金属薄板(または板金)から作られ、タッチスクリーン1と組み合わされる。ハウジング9は、タッチスクリーン1に重ねて置かれるベゼル10(その輪郭もまた図1にて点線で示す)を含んでいる。ベゼルによって送信トランスデューサー、受信トランスデューサー、反射部材および他の要素が隠蔽される一方、タッチ検知エリア2は露出したものとなっている。この配置によって、コンタミ(contamination)および/または損傷から隠蔽された部品が保護され、外観がより美的に好ましくなると共に、ユーザーのためのタッチ検知エリアが規定されることになる。
【0007】
タッチスクリーンは、陰極線管(CRT)、液晶ディスプレイ(LCD)、プラズマ、エレクトロルミネセンス(またはEL)または他の種類のディスプレイ等のディスプレイのパネルに重ねて置かれる個別の表面板(典型的にはガラスから成るが、他の硬質基材を用いてもよい)を含んで成り得る。別の態様では、タッチスクリーン要素をCRTのガラス表面に直接的に結合させることによって、CRTをタッチスクリーンに変換しており、その結果、CRT表面がタッチ検知表面となることが提案されている。米国特許第4746914号には、かかる構造が開示されている。ダイレクト−オンCRTタッチスクリーン(direct−on CRT touchscreen)の構成は、看者とCRTの間にてガラスまたは他の材料から成る部材が取り除かれており、知覚されるディスプレイの輝度(または明度)が増加するために望ましい構成である。また、オーバーレイ・ガラス(または重ね合わされるガラス)を用いる必要がなく、オーバーレイ・ガラスの場所を確保するためにCRTシャシを変更する必要がない点で経済的な利点がある。
【0008】
図1においては、タッチ検知エリア2が、ボーダー領域15(2領域だけ番号を付している)によって包囲されており、そのボーダー領域15に反射要素4、送信トランスデューサー3a、3bおよび受信トランスデューサー6a、6bが配置されていることが判る。ボーダー領域15の幅が減少すると、タッチ検知エリア2に割り当てられ得るデバイスの正面エリアの割合が増加することになる。また、より容易にタッチスクリーンをモニターと一体化させてシールすることもできる。また、タッチスクリーンのボーダー領域15の幅が狭くなると、扱い易く、しゃれたデザインの印象が与えられ、製品がカスタマーにとってより魅力的なものとなる。
【0009】
更に、タッチスクリーンが、CRTの表面ガラス上に直接的に構成されている場合では、タッチスクリーン・メーカー(またはタッチスクリーン製造業者)は、ボーダー領域15の幅を調整できない。通常、タッチスクリーン・メーカーはCRT自体を製造することはなく、むしろ、モニター・メーカーによって提供されるCRTを加工し(または、コンピューターCPUシャシ(例えば、アップル・コンピューター製のアイマック(iMac、登録商標)等)と一体化したモニターの場合ではコンピューター・メーカーから提供されるCRTを加工し)、タッチスクリーン・メーカーがボーダー領域を適宜変更しなければならない。ある種のCRTの場合、ボーダー領域の幅が広いものがあり、他の場合では、狭いものもある。
【0010】
上述の理由から、幅がより狭いボーダー領域15に対応できるタッチスクリーンが製造できることが望ましい。ボーダー領域の幅を減少させるキー(key)となるのには、アレイ13およびトランスデューサーの幅を減少させることである。しかしながら、これらの要素の幅は、任意に減少させることができない。曲げられた弾性波5a、5bおよび5cがタッチを検知するのに十分な弾性波エネルギー(または音波エネルギーもしくは超音波エネルギー)を含んでいなければならないという点で、アレイ13の幅が弾性波11aのビーム幅(または束となった弾性波の幅)と密接に関係している。アレイ13の幅が狭すぎると、小さい割合の弾性波11aしかインタセプトされず(またはさえぎられず)、曲げられた信号が望ましくない程度に弱められることになる。このことは、他の反射体アレイに関しても同様に当て嵌まる。トランスデューサーに関しては、送信トランスデューサーの幅が小さいと、回折効果に起因して弾性波11aが散乱(または拡散)するので望ましくない。このような波動力学的効果についての物理的現象というものは、狭い開口部を通過する波の物理的現象に対応するものである。このような波動力学的効果に関する数学的な解析は、アレイ13の幅もまたタッチ・スクリーン1のサイズと関係しているという見解とよく一致する。タッチ・スクリーンが大きいほど、アレイ13の幅をより大きくして、トランスデューサーから下流で弾性波信号を十分量捕捉し、タッチを検知するのに十分な信号をタッチ検知エリア2を横切って反射させる必要がある。常套のタッチ・スクリーンでは、アレイ幅(弾性波信号の波長単位)は、アレイ長さ(波長単位)の平方根の1/3より大きい程度であった。
【0011】
従って、幅がより小さい反射アレイおよび/またはトランスデューサーを使用ができる設計によって、幅がより狭いボーダー領域に対応できる新しい設計の超音波タッチスクリーンを供することが望ましい。
【0012】
発明の簡単な要旨
本発明では、導波路(または弾性波用導波路)を用いてボーダー領域にて弾性波を集束する(または集める)ことによって上述の問題を解決している。導波路によって、弾性波エネルギーがより狭い経路幅に沿うように効率的に集められ、その結果、より幅の小さい反射アレイおよび/またはトランスデューサーの使用が可能となっている。従って、本発明は、
(a)(i)外周を有するタッチ検知エリア、および
(ii)タッチ検知エリアの周囲に存在するボーダー領域
を有する弾性波が伝搬可能な基板(または基材)、
(b)横断方向寸法(またはディメンション)を有した弾性波を部分的に反射する要素のアレイ(ボーダー領域の一部分に位置する)であって、弾性波信号をタッチ検知エリアへ送信するように、または、タッチ検知エリアから弾性波信号を受信するように配置されているアレイ、ならびに
(c)ボーダー領域の該部分に位置しており、アレイの横断方向寸法よりも小さい横断方向寸法を有する弾性波用導波路、
を有して成るタッチスクリーンを提供する。
また、本発明は、
(a)(i)外周を有するタッチ検知エリア、および
(ii)タッチ検知エリアの周囲に存在するボーダー領域、
を有する弾性波が伝搬可能な基板、ならびに
(b)横断方向寸法(弾性波信号の波長の単位数)が長手方向寸法(弾性波信号の波長の単位数)の平方根の1/3より小さい弾性波一部反射要素のアレイ、を有して成るタッチスクリーンを提供する。
【0013】
本明細書において、図面を通して繰返し使用する参照番号は、同じまたは同等の要素を示している。
【0014】
発明の詳細な説明
満足すべく作動するタッチスクリーンを提供するために必要とされる弾性波信号エネルギーは、タッチスクリーンの寸法(またはディメンション)、ならびに対応する反射アレイの長さおよび幅に部分的に依存している。単に、タッチスクリーン寸法が大きいほど、弾性波信号がより長い距離を伝搬(または進行)する必要があるという理由によって、タッチスクリーンがより大きいほど、信号エネルギーをより大きくする必要がある。トランスデューサーから下流方向にあるアレイの端部にて、特定/最小限の量の信号がタッチスクリーンを横切って送信できるようにする特徴を反射アレイが有する必要がある。タッチ検知領域を横切って送信される信号量を調節する方法の1つは、反射アレイの幅を大きくさせることである。反射アレイの幅を大きくすることによって、タッチスクリーンを横切って送信するまたは受信するために捕捉されるエネルギーがより多くなる。しかしながら、これによって、利用可能なタッチ検知エリアが必然的に減少し、アレイをカバーするのに必要なベゼルの幅が増加してしまう。このことは、非常に望ましくない特徴であり、実際には、所定のタッチ・スクリーン・サイズで利用可能なタッチ検知領域を増加させ、ベゼルの幅を最小限度にするというカスタマーのニーズと直接的に対立するものである。
【0015】
常套のアレイは、0.21インチ(5.3mm)または9.3波長(0.0226インチの常套の信号波長を仮定している)の最小の幅を有し、また0.6インチ(15.2mm)または26.5波長(0.0226インチの常套の信号波長を仮定している)の最大の幅を有している。最小の幅のアレイは、対角線が10インチまたは12インチ程度のより小さいスクリーンに用いられ、最大の幅のアレイは、20インチおよびそれより大きい程度のより大きいスクリーンに用いられる。また、かかる数値は、タッチスクリーンの基板の種類にも依存する。
【0016】
図2は、本発明の弾性波タッチスクリーンのトランスデューサー16および反射アレイ13を示しており、従来のタッチスクリーンよりもボーダー領域の幅を狭くすることが可能とする。本発明において、弾性波11aの経路は、弾性波用導波路18によって制限される。反射アレイ13は、導波路(または導波管)18と協同する弾性波一部反射要素14を複数含んでいる。この態様では、導波路18の上部に反射要素14が予め決められた間隔で置かれている(またはオーバーレイされている)。この配置によって、反射要素14が、入ってくる弾性波11aのエネルギーを弾性波5a、5bとしてタッチ検知エリアを横切るように部分的に偏向させる(または向きを変える)ことができる。図示するように、導波路18は横断方向寸法(幅)yを有しており、反射アレイ13は、導波路18の横断方向寸法yより大きい横断方向寸法(幅)wを有している。
【0017】
図3に示すように、幅yの導波路18を組み合わせる結果、相当な割合の弾性波エネルギーが幅wのアレイ14に閉じ込められることになる。導波路18の幅によって、弾性波のビーム(または弾性波の束)の幅を制御することができるので、それに対応させて、反射体14の幅を従来より小さくすることができる。なお、かかる場合でも、反射体14は、タッチが検知されるべく、十分な量の弾性波エネルギーをタッチ検知エリアを横切って偏向させる。
【0018】
図2を参照すると、(一般的であるが、必ずしもレイリー波と組み合わせて用いる必要はない)好ましい態様おいて、送信トランスデューサー16は、集束トランスデューサー(または収束型トランスデューサー、focusing transducer)である。(図1に示すような)従来技術のタッチスクリーンに用いられる常套的のトランスデューサーでは、弾性波の平行ビームが生じる。集束トランスデューサー16によって、導波路18の端部の焦点17にて弾性波のビーム22が焦点を結ぶようになっており、導波路18の端部で弾性波が集束され、伝搬されることになる。導波路がない従来のタッチスクリーンでは、アレイの端部でのエネルギーのスポット・サイズに関心を持つ必要があり、典型的には比較的大きなトランスデューサーをタッチスクリーンに使用しなければならない。本発明では、導波路を含ませているので、導波路の入口におけるスポット・サイズについて関心を持つことになる。トランスデューサーと導波路の入口との間の距離が比較的短くなることよって、従来のタッチスクリーンよりもアレイ軸に対して垂直(または直角)方向の寸法(またはディメンション)が小さくなったトランスデューサーを使用できる。より好ましくは、弾性波エネルギーをより効率的に導波路に授受させるために、導波路の入口にて焦点を有する集束トランスデューサーを使用してもよい。また、受信トランスデューサーも同様の利点を有した集束型であってもよい。(導波路がなければ、弾性波のビームが焦点17を超えて発散することになるため、従来のタッチスクリーンでは、集束トランスデューサーを通常有利に使用できないことに留意すべきである)。
【0019】
レイリー波と違って、せん断波(例えば、ZOHPSおよびHOHPS)ならびにラム波等の板波では、それらが進行する基板の上部表面および下部表面(または底部表面)の双方において弾性波エネルギーの密度が大きい。図4、図5および図6は、別の好ましい態様を示しており、導波路18が基板19の第1表面に取り付けられ、反射アレイが基板19の第2表面に取り付けられている。別の態様においては、導波路と反射アレイとが反対に取り付けられている。更に、一方の表面または両方の表面に複数(または多数)の導波路および/またはアレイを設けてもよい。
【0020】
図7および図8は、導波路/反射アレイの組合せに関したもう1つの別の態様を示している。この態様において、導波路50は、例えば銀粒子を充填したガラス・フリット等の導電性材料から成る。これによって、導波路が、関連するトランスデューサーへの電気的接続部として機能することができる。トランスデューサーには少なくとも2つの電気的接続部が必要であるので、導波路50には2つの要素50a、50bが含まれる。図7に示すように、導波路50は基板54の第1の側52に連結され、反射アレイ56が基板54の第2の側58に連結されている。別法では、図9に示すように、導波路50および反射アレイ56が基板54の同じ側に連結されている。この構成では、導波路50(または導波路50の原料)を基板54に塗布して硬化させ、その後、例えばUV硬化材料から成る反射アレイを導波路の上に設けている。
【0021】
図4を参照すると、本発明の超音波タッチスクリーン1aが模式的に示されている。導波路18が存在することによって、常套のアレイよりもアレイ24の反射要素14の幅を小さくすることができ、また、送信トランスデューサー23a、23bおよび受信トランスデュサー26a、26bの幅も小さくすることができる。その結果、ボーダー領域15aの幅が従来のタッチスクリーンより狭くなっている。
【0022】
当業者には、タッチスクリーンが、4つの全ての側部にて等しい幅のボーダー領域を必ずしも有している必要がないことが理解されよう。なお、この点に関して強調しておくと、図4のタッチスクリーン1aでは、あるボーダー領域15a(下部のボーダー領域)の幅が、他のボーダー領域よりも広くなるように意図して図示している。このことは、タッチスクリーン・メーカー以外のメーカーによって製造されたCRTまたは液晶ディスプレイ(LCD)に使用されるタッチスクリーンの場合に特に妥当するであろう。CRTまたはLCDメーカーは、タッチスクリーンとは関係のない設計的検討事項のために、ボーダー領域の幅が等しくないディスプレイを製造し得る。従って、常套の反射アレイを収めることができるボーダー領域がある一方、本発明の導波路を用いる反射アレイを必要とするボーダー領域もある。本発明では、タッチスクリーン内の全ての反射アレイを、導波路と協働させる必要はなく、また、導波路の長さがアレイの長さと同じである必要はない。ボーダー領域が十分に幅広い場合、導波路を用いるアレイを用いる必要はない(しかしながら、用いることが排除されるわけではない)。ボーダー領域の幅に応じて、1、2、3または4つの導波路を用いるアレイを矩形のタッチスクリーンは有してもよい。
【0023】
図10は、本発明のもう1つの別の態様を示している。この態様では、反射要素のアレイが、導波路内に「組み込まれ」ている。導波路60は、複数の部分60aにセグメント化されている。導波路60は、各部分60aの間のギャップ62によって、導波路60の長さ方向に沿って離間している。好ましくは、ギャップ62は、(n+1/2)λである(nはいずれかの整数であり、λは波長である)。各部分60aは、少なくとも1つの斜め方向の面64を有しており、その斜め方向の面64は、弾性波66のエネルギーをタッチスクリーン面を横切るように偏向させる弾性波反射要素として機能する。
【0024】
概念的には、弾性波用導波路は、光導波路と同様であり、クラッド材料により包囲されたコア材料から成っており、導波される波(それは光波または弾性波のいずれであってもよい)は、クラッド領域よりもコア領域において遅い伝搬速度を有する。図11aには、タッチスクリーンの表面に弾性波用導波路18が形成できる様子を断面で示している。コア24(例えば、ガラス・フリットまたは銀粒子が充填されたガラス・フリット等)がタッチスクリーン基材27(または基板、例えば硼珪酸塩またはソーダ石灰等から成るガラスから形成される)に付着されている。弾性波は、コア24では基材27におけるよりも遅く進行するので、基材27はクラッドとして有効に機能する。図11bは、導波路18の上に反射要素14の形成できる様子を断面で示している。別法にて、同様な製造工程で同様な材料から導波路およびアレイを形成してもよい。
【0025】
図11cは、別の導波路の構成を示しており、配置される材料は、基材27よりも伝搬速度が速いクラッド25であって、この例では、コアとして機能する。従って、図11cの構成は、図11aの構成を逆にしたものである。
【0026】
図11aおよび図11cの導波路は、オーバーレイ導波路(overlay waveguide)を例示したものであり、一方のストリップ材料が、もう一方の材料の基板の上部に置かれるので、そのように呼ばれている。トポグラフィック導波路(基板表面を局所的に変形させることによって形成される)等の他の種類の導波路を用いてもよい。図11dは、トポグラフィック導波路を示しており、ウェッジ28が変形部である。変形部は、例えば矩形リッジ(または矩形の隆起部)等の他の形状にしてもよい。オリナー(Oliner)の「弾性表面波用導波路:レビューA(Waveguides for Acoustic Surface Waves:A Review)」(Proc.IEEE、第64巻第5号615〜625頁(1976年5月))およびそこでの引用文献等の刊行物を参照することによって、本発明における使用に適した導波路の多くの設計を行なうことができることは当業者に理解されよう。例えば、ガラス・フリットから導波路および/または反射体アレイを作ることができる。別法では、導波路は、基板にて切欠部(cut−out)または谷状部(valley)であってもよい。また、導波路が複数の切欠部および谷部であってよく、その場合、幅yのストリップに切欠部が形成されている。
【0027】
図4および/または図10を参照すると、導波路を含ませることによって、アレイ長さに対する幅が、従来のアレイよりも小さくなった反射アレイが可能となっている。このアレイでは、平均的な幅または横断方向寸法(単位:波長)が長手方向寸法の平方根の約1/3(単位:波長)より小さくなり得る。平均的な幅というものは、アレイの長さにわたって勘案したアレイの平均幅を意味するものである。
【0028】
上述の本発明の詳細な説明は、主としてまたは専ら本発明の特定の部分または要旨に関する記載を含んでいる。そのような説明は明瞭にするためのものであって、便宜上のものであり、特定の特徴が、開示されている記載の範囲を超えて妥当するものであること、また、本明細書の開示が、種々の記載から理解される情報を適当に組み合わせたあらゆるものを含んでいることを理解されよう。同様に、本明細書の種々の図面および説明は、本発明の特定の態様に関係しているが、特定の特徴が特定の図面および態様の内容に開示されている場合、かかる特徴は、別の図面または態様の内容において、または、別の特徴との組合せにおいて、あるいは一般的に本発明において適切な程度まで用いることが可能であることを理解されよう。
【0029】
更に、ある好ましい態様に関して本発明を特に説明してきたが、本発明は、かかる好ましい態様に限定されるものではないことが理解されよう。むしろ、本発明の範囲は、上述の特許請求の範囲によって規定されるものである。
【図面の簡単な説明】
【図1】図1は、従来のタッチスクリーンを示す。
【図2】図2は、本発明の導波路−反射アレイの組合せを示す。
【図3】図3は、本発明の導波路の幅方向に沿った弾性波エネルギーの模式的なグラフを示す。
【図4】図4は、図2に示す種類の導波路−反射アレイの組合せを有する本発明の超音波タッチスクリーンを示す。
【図5】図5は、本発明の導波路−反射アレイの別の態様の側面図を示す。
【図6】図6は、図5の態様の平面図である。
【図7】図7は、本発明の導波路−反射アレイのもう1つの別の態様の側面図を示す。
【図8】図8は、図7の態様の平面図を示す。
【図9】図9は、本発明の導波路−反射アレイのもう1つの別の態様の側面図を示す。
【図10】図10は、本発明の導波路−反射アレイのもう1つの別の態様の平面図を示す。
【図11a】図11aは、本発明の導波路の態様の断面を示す。
【図11b】図11bは、本発明の導波路の態様の断面を示す。
【図11c】図11cは、本発明の導波路の態様の断面を示す。
【図11d】図11dは、本発明の導波路の態様の断面を示す。
【図11e】図11eは、本発明の導波路の態様の断面を示す。
Claims (9)
- (a)(i)タッチ検知エリア、および
(ii)タッチ検知エリア沿いに存在するボーダー領域
を有する弾性波が伝搬可能な基板、
(b)横断方向寸法を有した弾性波に対して部分的に反射性の要素のアレイ(ボーダー領域の一部分に位置する)であって、弾性波信号をタッチ検知エリアへ送信するように、またはタッチ検知エリアから弾性波信号を受信するように配置されているアレイ、ならびに
(c)ボーダー領域の該部分に位置し、アレイの横断方向寸法よりも小さい横断方向寸法を有する弾性波用導波路
を有して成るタッチスクリーン。 - 弾性波に対して部分的に反射性の要素の第2アレイ(ボーダー領域の第2部分に位置する)であって、弾性波がタッチ検知エリアを横切って進行した後に弾性波信号を受信するように配置された第2アレイを更に有して成っており、
第1アレイがタッチ検知領域に弾性波信号を送信するように配置されており、導波路がボーダー領域の該第1部分または第2部分に位置する、請求項1に記載のタッチスクリーン。 - 基板の表面に弾性波を伝えるように連結され、ボーダー領域の第1部分に沿って弾性波信号を送信するように配置された第1トランスデューサー、および基板の表面に弾性波を伝えるように連結されており、ボーダー領域の第2部分に沿って進行する弾性波信号を受信するように配置された第2トランスデューサーを更に有して成る、請求項2に記載のタッチスクリーン。
- 第1トランスデューサーおよび第2トランスデューサーのうち少なくとも一方は、集束トランスデューサーである、請求項3に記載のタッチスクリーン。
- 導波路は、オーバーレイ導波路である、請求項1に記載のタッチスクリーン。
- 導波路は、セグメント化導波路である、請求項1に記載のタッチスクリーン。
- 導波路は、トポログラフィック導波路である、請求項1に記載のタッチスクリーン。
- タッチ検知エリアおよびタッチ検知エリア沿いに存在するボーダー領域を有する、弾性波が伝搬できる基板、
基板の第1表面に取り付けられた弾性波に対して部分的に反射性の要素のアレイ(ボーダー領域の該一部分に位置する)であって、弾性波信号をタッチ検知エリアへ送信するように、またはタッチ検知エリアから弾性波信号を受信するように配置されるアレイ、および
基板の第2表面に取り付けられた弾性波用導波路(ボーダー領域部に位置する)であって、弾性波信号を線状アレイに沿って導く弾性波用導波路
を有して成るタッチスクリーン。 - タッチ検知エリアおよびタッチ検知エリア沿いに存在するボーダー領域を有する弾性波が伝搬できる基板、および
平均的な横断方向寸法(単位:波長)がアレイの長手方向寸法(単位:波長)の平方根の約1/3より小さい弾性波に対して部分的に反射性の要素のアレイ
を有して成るタッチスクリーン。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/579,584 US6636201B1 (en) | 2000-05-26 | 2000-05-26 | Acoustic touchscreen having waveguided reflector arrays |
PCT/US2001/010912 WO2001093189A2 (en) | 2000-05-26 | 2001-04-04 | Acoustic touchscreen having waveguide reflector arrays |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2004515835A true JP2004515835A (ja) | 2004-05-27 |
Family
ID=24317488
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002500324A Pending JP2004515835A (ja) | 2000-05-26 | 2001-04-04 | 導波路を備えた反射体アレイを有する弾性波タッチスクリーン |
Country Status (10)
Country | Link |
---|---|
US (1) | US6636201B1 (ja) |
EP (1) | EP1327224B1 (ja) |
JP (1) | JP2004515835A (ja) |
CN (1) | CN100449470C (ja) |
AT (1) | ATE520073T1 (ja) |
AU (2) | AU2001247936B2 (ja) |
CA (1) | CA2410069A1 (ja) |
MX (1) | MXPA02011679A (ja) |
TW (1) | TW531714B (ja) |
WO (1) | WO2001093189A2 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20150046924A (ko) * | 2013-10-23 | 2015-05-04 | 삼성디스플레이 주식회사 | 터치스크린 패널 및 이를 이용한 터치 위치 검출 방법 |
Families Citing this family (40)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2841022B1 (fr) * | 2002-06-12 | 2004-08-27 | Centre Nat Rech Scient | Procede pour localiser un impact sur une surface et dispositif pour la mise en oeuvre de ce procede |
JP4090329B2 (ja) * | 2002-11-13 | 2008-05-28 | タッチパネル・システムズ株式会社 | 音響波型接触検出装置 |
TW591502B (en) * | 2003-03-11 | 2004-06-11 | Onetouch Technologies Co Ltd | Design method of the reflective streaks on ultrasonic touch screen |
US7274358B2 (en) * | 2004-01-06 | 2007-09-25 | Tyco Electronics Corporation | Focusing-shaped reflector arrays for acoustic touchscreens |
CN102129334A (zh) | 2004-04-14 | 2011-07-20 | 泰科电子有限公司 | 接触式传感器、接触式传感器系统和检测接触的方法 |
US8325159B2 (en) * | 2004-04-14 | 2012-12-04 | Elo Touch Solutions, Inc. | Acoustic touch sensor |
JP4652826B2 (ja) | 2005-01-14 | 2011-03-16 | タッチパネル・システムズ株式会社 | 情報入力装置 |
US7764276B2 (en) | 2006-04-18 | 2010-07-27 | Schermerhorn Jerry D | Touch control system and apparatus with multiple acoustic coupled substrates |
US8243048B2 (en) | 2007-04-25 | 2012-08-14 | Elo Touch Solutions, Inc. | Touchscreen for detecting multiple touches |
CN101373415B (zh) * | 2007-08-21 | 2010-06-02 | 禾瑞亚科技股份有限公司 | 表面声波式触控面板的感测装置 |
US8576202B2 (en) * | 2010-03-25 | 2013-11-05 | Elo Touch Solutions, Inc. | Bezel-less acoustic touch apparatus |
US20110233894A1 (en) * | 2010-03-25 | 2011-09-29 | Bravo Sports | Wheel guard |
US10198097B2 (en) | 2011-04-26 | 2019-02-05 | Sentons Inc. | Detecting touch input force |
US11327599B2 (en) | 2011-04-26 | 2022-05-10 | Sentons Inc. | Identifying a contact type |
US9639213B2 (en) | 2011-04-26 | 2017-05-02 | Sentons Inc. | Using multiple signals to detect touch input |
US9189109B2 (en) | 2012-07-18 | 2015-11-17 | Sentons Inc. | Detection of type of object used to provide a touch contact input |
US9477350B2 (en) | 2011-04-26 | 2016-10-25 | Sentons Inc. | Method and apparatus for active ultrasonic touch devices |
US9594450B2 (en) | 2011-11-18 | 2017-03-14 | Sentons Inc. | Controlling audio volume using touch input force |
KR101771896B1 (ko) | 2011-11-18 | 2017-08-28 | 센톤스 아이엔씨. | 국소형 햅틱 피드백 |
US10235004B1 (en) | 2011-11-18 | 2019-03-19 | Sentons Inc. | Touch input detector with an integrated antenna |
US11340124B2 (en) | 2017-08-14 | 2022-05-24 | Sentons Inc. | Piezoresistive sensor for detecting a physical disturbance |
WO2013116837A1 (en) * | 2012-02-02 | 2013-08-08 | Ultra-Scan Corporation | Protective display surface |
US9524063B2 (en) | 2012-07-18 | 2016-12-20 | Sentons Inc. | Detection of a number of touch contacts of a multi-touch input |
US9513727B2 (en) | 2012-07-18 | 2016-12-06 | Sentons Inc. | Touch input surface microphone |
US9348468B2 (en) | 2013-06-07 | 2016-05-24 | Sentons Inc. | Detecting multi-touch inputs |
US9128567B2 (en) | 2012-11-20 | 2015-09-08 | Elo Touch Solutions, Inc. | Segmented waveguide core touch sensor systems and methods |
US9170686B2 (en) * | 2013-01-10 | 2015-10-27 | Elo Touch Solutions, Inc. | Multi-transducer waveguide arrays |
US9588552B2 (en) | 2013-09-11 | 2017-03-07 | Sentons Inc. | Attaching electrical components using non-conductive adhesive |
US9459715B1 (en) | 2013-09-20 | 2016-10-04 | Sentons Inc. | Using spectral control in detecting touch input |
US9880671B2 (en) | 2013-10-08 | 2018-01-30 | Sentons Inc. | Damping vibrational wave reflections |
US10048811B2 (en) | 2015-09-18 | 2018-08-14 | Sentons Inc. | Detecting touch input provided by signal transmitting stylus |
US10254481B2 (en) | 2016-09-20 | 2019-04-09 | Honeywell International Inc. | Integrated waveguide with reduced brillouin gain and a corresponding reduction in the magnitude of an induced stokes wave |
US10281646B2 (en) * | 2016-09-20 | 2019-05-07 | Honeywell International Inc. | Etchless acoustic waveguiding in integrated acousto-optic waveguides |
US10429677B2 (en) | 2016-09-20 | 2019-10-01 | Honeywell International Inc. | Optical waveguide having a wide brillouin bandwidth |
US10908741B2 (en) | 2016-11-10 | 2021-02-02 | Sentons Inc. | Touch input detection along device sidewall |
US10296144B2 (en) | 2016-12-12 | 2019-05-21 | Sentons Inc. | Touch input detection with shared receivers |
US10126877B1 (en) | 2017-02-01 | 2018-11-13 | Sentons Inc. | Update of reference data for touch input detection |
US10585522B2 (en) | 2017-02-27 | 2020-03-10 | Sentons Inc. | Detection of non-touch inputs using a signature |
US10312658B2 (en) | 2017-06-22 | 2019-06-04 | Honeywell International Inc. | Brillouin gain spectral position control of claddings for tuning acousto-optic waveguides |
US11580829B2 (en) | 2017-08-14 | 2023-02-14 | Sentons Inc. | Dynamic feedback for haptics |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FI92530C (fi) * | 1985-02-05 | 1994-11-25 | Zenith Electronics Corp | Akustisia aaltoja käyttävä kosketuspaneeli |
US4644100A (en) * | 1985-03-22 | 1987-02-17 | Zenith Electronics Corporation | Surface acoustic wave touch panel system |
USRE33151E (en) * | 1985-02-05 | 1990-01-23 | Zenith Electronics Corporation | Touch control system for controllable apparatus |
US4825212A (en) * | 1986-11-14 | 1989-04-25 | Zenith Electronics Corporation | Arrangement for use with a touch control system having a spherically curved touch surface |
US4880665A (en) * | 1987-01-20 | 1989-11-14 | Zenith Electronics Corporation | Touch control arrangement for graphics display apparatus having saw reflectors of frit composition |
US5329070A (en) * | 1990-11-16 | 1994-07-12 | Carroll Touch Inc. | Touch panel for an acoustic touch position sensor |
US5162618A (en) * | 1990-11-16 | 1992-11-10 | Exzec, Inc. | Acoustic touch position sensor with first order lamb wave reflective arrays |
US5591945A (en) * | 1995-04-19 | 1997-01-07 | Elo Touchsystems, Inc. | Acoustic touch position sensor using higher order horizontally polarized shear wave propagation |
US5739479A (en) * | 1996-03-04 | 1998-04-14 | Elo Touchsystems, Inc. | Gentle-bevel flat acoustic wave touch sensor |
-
2000
- 2000-05-26 US US09/579,584 patent/US6636201B1/en not_active Expired - Lifetime
-
2001
- 2001-04-04 JP JP2002500324A patent/JP2004515835A/ja active Pending
- 2001-04-04 CN CNB018134165A patent/CN100449470C/zh not_active Expired - Lifetime
- 2001-04-04 AU AU2001247936A patent/AU2001247936B2/en not_active Ceased
- 2001-04-04 AT AT01920930T patent/ATE520073T1/de not_active IP Right Cessation
- 2001-04-04 CA CA002410069A patent/CA2410069A1/en not_active Abandoned
- 2001-04-04 WO PCT/US2001/010912 patent/WO2001093189A2/en active IP Right Grant
- 2001-04-04 MX MXPA02011679A patent/MXPA02011679A/es active IP Right Grant
- 2001-04-04 AU AU4793601A patent/AU4793601A/xx active Pending
- 2001-04-04 EP EP01920930A patent/EP1327224B1/en not_active Expired - Lifetime
- 2001-05-16 TW TW090111711A patent/TW531714B/zh not_active IP Right Cessation
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20150046924A (ko) * | 2013-10-23 | 2015-05-04 | 삼성디스플레이 주식회사 | 터치스크린 패널 및 이를 이용한 터치 위치 검출 방법 |
KR102092944B1 (ko) | 2013-10-23 | 2020-03-25 | 삼성디스플레이 주식회사 | 터치스크린 패널 및 이를 이용한 터치 위치 검출 방법 |
Also Published As
Publication number | Publication date |
---|---|
WO2001093189A3 (en) | 2003-04-17 |
CN100449470C (zh) | 2009-01-07 |
WO2001093189A2 (en) | 2001-12-06 |
US6636201B1 (en) | 2003-10-21 |
MXPA02011679A (es) | 2003-05-14 |
ATE520073T1 (de) | 2011-08-15 |
AU2001247936B2 (en) | 2005-07-21 |
CA2410069A1 (en) | 2001-12-06 |
CN1527988A (zh) | 2004-09-08 |
AU4793601A (en) | 2001-12-11 |
EP1327224B1 (en) | 2011-08-10 |
TW531714B (en) | 2003-05-11 |
EP1327224A2 (en) | 2003-07-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2004515835A (ja) | 導波路を備えた反射体アレイを有する弾性波タッチスクリーン | |
AU2001247936A1 (en) | Acoustic touchscreen having waveguided reflector arrays | |
US10678379B2 (en) | Bezel-less acoustic touch apparatus | |
US5739479A (en) | Gentle-bevel flat acoustic wave touch sensor | |
US8896564B2 (en) | Acoustic touch apparatus | |
US8941624B2 (en) | Acoustic touch sensor utilizing edge waves | |
EP1639442B1 (en) | Acoustic touch sensor with low-profile diffractive grating transducer assembly | |
KR101163339B1 (ko) | 음향 터치 센서 | |
EP2296082A1 (en) | Acoustic touch position sensor using a low-loss transparent substrate | |
JP2000066838A (ja) | タッチパネル | |
JP3749608B2 (ja) | タッチ式座標入力装置 | |
US9128567B2 (en) | Segmented waveguide core touch sensor systems and methods |