JP2004511332A - Shell tube type filter and automatic waste heat recovery system - Google Patents

Shell tube type filter and automatic waste heat recovery system Download PDF

Info

Publication number
JP2004511332A
JP2004511332A JP2002534767A JP2002534767A JP2004511332A JP 2004511332 A JP2004511332 A JP 2004511332A JP 2002534767 A JP2002534767 A JP 2002534767A JP 2002534767 A JP2002534767 A JP 2002534767A JP 2004511332 A JP2004511332 A JP 2004511332A
Authority
JP
Japan
Prior art keywords
filter
hot water
heat recovery
waste
recovery system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002534767A
Other languages
Japanese (ja)
Inventor
キム,キ,スク
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of JP2004511332A publication Critical patent/JP2004511332A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/026Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
    • F28F9/027Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits in the form of distribution pipes
    • F28F9/0273Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits in the form of distribution pipes with multiple holes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D29/00Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor
    • B01D29/01Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor with flat filtering elements
    • B01D29/03Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor with flat filtering elements self-supporting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D29/00Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor
    • B01D29/62Regenerating the filter material in the filter
    • B01D29/66Regenerating the filter material in the filter by flushing, e.g. counter-current air-bumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D35/00Filtering devices having features not specifically covered by groups B01D24/00 - B01D33/00, or for applications not specifically covered by groups B01D24/00 - B01D33/00; Auxiliary devices for filtration; Filter housing constructions
    • B01D35/12Devices for taking out of action one or more units of multi- unit filters, e.g. for regeneration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Filtration Of Liquid (AREA)

Abstract

本発明は、建物や工場で使用した後、排出する廃温水の熱を回収する廃熱回収システムに関し、詳しくは、微細な孔管によってなるフィルター、即ち、シェルチューブ型フィルター(shell tube type filter)及び自動化された廃熱回収ステムに関するものである。
本発明は、廃熱回収システムにおいて、使用される濾過器のフィルターを逆洗水によって、漉された異物質を簡単にフィルターから除去することができるシェルチューブ型フィルターを提供し、これによって、廃温水に混入された異物質を除去する濾過装置において自動洗浄が可能な構造を有することによつて、廃熱回収装置の稼動を自動制御が可能な自動制御廃熱回収システムを提供することを特徴とする。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a waste heat recovery system for recovering heat of waste hot water discharged after use in a building or a factory, and more particularly, to a filter formed by a fine hole tube, that is, a shell tube type filter. And an automated waste heat recovery system.
The present invention provides a shell-tube type filter in a waste heat recovery system, in which a filter of a used filter can be easily removed from the filter by backwashing water with a backwash water, whereby The present invention provides an automatic control waste heat recovery system capable of automatically controlling the operation of the waste heat recovery device by having a structure capable of performing automatic cleaning in a filtration device for removing foreign substances mixed in hot water. And

Description

【0001】
(技術分野)
本発明は、建物や工場で使用して排出する廃温水の熱を回収する廃熱回収システムに関し、詳しくは、微細な孔管からなるフィルター、即ちシェルチューブ型フィルター(shell tube type filter)及びこれを使用する自動化された廃熱回収システムに関するものである。
【0002】
(背景技術)
従来から、一般的に銭湯その外温水や蒸気を使用する建物で使用された廃温水は放出される。放出された廃温水には、相当な量の熱エネルギーが含まれているのでエネルギーの浪費を防止するために温水から熱を回収しリサイクルするべく熱回収装置が使用されている。
【0003】
ところが、上記の廃温水には相当量の浮遊物など異物質が含まれているので、これら異物質は廃熱回収装置の熱交換器の熱回収機能を低下させるため放出された廃温水から異物質を濾過器によってこれを漉して取り除いた後、熱交換器に送られるようになっている。従って、廃熱回収装置を相当時間の間稼動すれば濾過器に蓄積された異物質を取り除かなければならない。そうでなければ濾過器が閉塞され、廃温水に混入された異物質が濾過されず、濾過されない状態で廃温水が熱交換器に送られたり、又は廃温水が濾過器で詰まってしまい、熱交換器に移送されることができなくなり、廃熱回収装置がその機能を遂行することができなくなるからである。
【0004】
従来の廃熱回収装置の濾過器に使用されているフィルターは、網状、即ちネット型フィルター(net type filter)である。家庭やその他銭湯及び大型建物などから捨てられる廃温水中には、髪の毛やその他糸のような細長く柔軟性がある異物質が含まれているのが当然であり、このような髪の毛などの異物質が上記ネット型フィルターによって漉される時、網の孔を部分的に通過しながら網に巻き付きフィルターの孔を塞ぐ。このために、ネット型フィルターで髪の毛や糸のような異物質を除去する作業が非常にややこしい。その理由は、上記のように髪の毛等が網に巻き付きながら絡んでフィルターの網に固く縛られるからである。それで従来の場合、濾過器の掃除の時濾過用フィルターの掃除作業はフィルター自体を新しいものに取り替えたり、手作業を通じてネット型フィルターから髪の毛などを除去している。
【0005】
このように、従来の廃熱回収装置において、濾過器の掃除作業は必然的に手作業に依存する外はないので、廃温水の廃熱回収装置の稼動を自動化することができなかった。
又、上記のように従来の手動廃熱回収装置は、廃温水に含まれた粘性物質及び化学物質によって、熱交換器の伝熱管に形成されるスケールを手動操作により洗浄することになり、使用者の感覚に依存して装置の洗浄を行うことになるため、効果的な廃熱回収装置運転が不可能であった。廃温水の熱を回収するためには、発生される廃温水が廃熱回収装置の熱交換器の伝熱管を全量通過し、廃温水に含まれた熱が原水に伝達され、原水が予熱された状態でボイラー又は使用先に供給されることによって、予熱された量に相当するエネルギー(燃料)を節減することができることろ、現在までは廃熱回収装置がすべて手動で運転されるように製作、設置され効率的な運転が不可能であり、運転状態の自動記録による運転状況測定が不可能であり、廃熱回収量の測定が不可能であるため、廃温水熱回収装置を信頼しなくなり、廃温水熱回収装置の設置をしなかつたり、設置されている従来の廃温水熱回収装置も低効率で稼動されたり、稼動を中止せざるを得なくなり、個人的には燃料浪費による固定支出費用の上昇と国家的にはエネルギー浪費によるエネルギー輸入の増加に至った。
【0006】
政府でも廃熱回収の重要性を認識し1994年に25℃以上の廃温水を放流する建物の新築時、廃温水回収装置の設置を法律で義務化したが、廃温水熱回収装置が上記のような理由によってその性能を発揮することができないことから、使用者には廃温水熱回収装置を設置するために必要とする費用負担と、国家的には廃温水熱回収装置の製作及び設置に必要とする経費が浪費となり本来の趣旨を喪失するに至って、現在は有名無実な法律になった。
【0007】
本発明は、前記従来の問題を解決するべく創案されたものであり、廃熱回収システムにおいて、使用される濾過器のフィルターを逆洗水することによって漉された異物質をフィルターから簡単に取り除くことができるシェルチューブ型フィルターを提供することを目的とし、これによって、廃温水に混入された異物質を除去する濾過装置において自動的に洗浄が可能な構造を有するようにして、廃熱回収装置の稼動を自動的に制御可能な自動制御廃熱回収システムを提供することを特徴とする。
【0008】
(実施の形態)
本発明によるシェルチューブ型フィルター及び自動制御廃熱回収システムの好適な実施の形態を例として、添付の図面を参照しながら以下詳細に説明する。
図1は、本発明の自動制御廃熱回収システムのシステム構成図である。
図1に示されるように、本発明の廃熱回収システムは、1次濾過器(100)、2次濾過器(400)、渦流槽(200)及び熱交換器(300)が相互に配管で連結され、上記各装置の廃温水及び原水(供給水)と、洗浄水の入出口の各部分に形成された自動制御弁(V1〜V10、DV)と温度測定器(S2、S3)及び流量測定器(S3)、圧力測定器(S4)、更に、上記弁及び上記測定器等を制御する自動制御盤(AT)によって構成される。
【0009】
このような構成から成る本発明において、廃温水の流れを簡単に説明すれば、廃温水は、最初1次濾過器(100)に入水され1次濾過された後渦流槽(200)に移送され、渦流を形成するようにして流動状態になり、次の段階では、熱交換器(300)に移送された高温状態の廃温水と低温状態の原水(供給水)間に熱交換が成立し、原水に熱を伝達した廃温水は排出口を通じて下水道や浄化槽に移送される。
【0010】
ところが、上記渦流槽(200)は2次濾過器(400)と配管連結されているので、自動弁V8の開放で渦流槽(200)の廃温水が2次濾過器(400)に移送され、再び濾過された後ポンプ(P)によって渦流槽(200)に返送される。
【0011】
この2次濾過器(400)の稼動は断続的周期的になるように制御される。
2次濾過器(400)の稼動周期及び稼動時間は廃温水の混入異物質の濃度に依存する。即ち、2次濾過器(400)は、1次濾過で不十分な場合、及び、熱交換器(300)で廃温水に流動性を付与し、廃温水に混入された粘性物質が熱交換器(300)内に設置された伝熱管の表面に付着して廃温水の伝熱を妨害することを防止したり、その他廃温水の移動路を閉塞する原因を取り除いたりするために、渦流槽(200)内に設置された廃水渦流ノズル(230)により渦流を発生させようとする場合に、附加的に使用される装置である。
【0012】
このような構成及び作用をなす本発明の自動廃熱回収システムを構成する各構成部分をより詳細に説明する。
図2は、本発明の1次濾過器(100)を示した図面であり、図2aは分解斜視図であり、図2bは側断面図である。
【0013】
1次濾過器(100)は、図2aに示されるように、内部が空いた筒状形態を成しながら上部面が開放された胴体(110)、胴体(110)の上部面を覆う蓋(120)、上記胴体(110)内部に設置されるシェルチューブ型フィルター(130、shell type filter)で構成される。
上記胴体(110)の両側面に上部側部分と下部側部分にそれぞれ貫通口が形成され、上部側の貫通口は廃温水が入水される入水口(111)であり、下部側の貫通口は濾過された廃温水が次の段階、即ち渦流槽(200)に移送される出水口(112)である。
上記入水口(111)と出水口(112)には、それぞれ自動制御される弁V1とV2が形成されている。
【0014】
又、胴体(110)の底面中央に貫通口が形成されるが、この貫通口は濾過器を洗浄する洗浄水が圧入される洗浄水流入口(114)であり、洗浄水流入の可否は自動制御される弁V3に依存する。又、洗浄水流入口(114)には別途に分枝された沈殿物排出パイプ(115)を形成しドレーン弁(DV)によって間欠的に沈殿物を胴体(110)外に排出するようにする。
上記蓋(120)は上記胴体(110)の上部面を覆うと共に、その中央部を貫通し洗浄水放出口(121)が弁V4と共に形成される。
【0015】
上記シェルチューブ型フィルター(130)は相当な厚み、即ち高さを有する厚板状体となるので、上記濾過器胴体(110)の内側空間の横断面に密着組立てられる断面を有しながら上部面(130S)から下部面(130B)へ垂直する多数のチューブ状の円筒孔(131)が密集し束を形成したもので、上部面(130S)側に廃温水が流入すると、上記円筒孔(131)を通過して下部面(130B)側へ抜け出す。この過程で廃温水に混入された異物質、即ち髪の毛、糸のような固形物及び円筒孔(131)の断面より大きな体積のその他の固形物や相当な粘性を有する粘性異物質は、本シェルチューブ型フィルター(130)を通過することができずに上部面上に蓄積され、廃温水は濾過されるのである。
【0016】
特に、本発明において、主要特徴部分である上記シェルチューブ型フィルター(130)は従来のネット型フィルターと異なり、髪の毛、糸など細長い柔軟性がある異物質が漉されることによって、その一側先端が円筒孔(131)内に入つても他の糸等の先端ともつれることがないので、相当量の廃温水を濾過させ、フィルター(130)の上部面に積った異物質を除去することが非常に容易である。
従って、本発明は、濾過器に逆流される洗浄水によって自動洗浄が可能となるシェルチューブ型フィルター(130)を特徴とする。
【0017】
このような構成で成った本発明の1次濾過器(100)に廃温水が流入口(111)を通じて流入され、シェルチューユブ型フィルター(130)を通過して濾過された後、流出口(112)を通過して後述する渦流槽(200)に移送される。そして、相当量の廃温水を濾過させた濾過器(100)は、シェルチューブ型フィルター(130)の円筒孔(131)が、漉された異物質によって詰まることになり、これによって濾過器(100)の濾過機能が当然として悪くなるが、この場合、上記流入口(111)と流出口(112)を弁V1とV2で閉鎖し、胴体(110)の底面に形成された洗浄水流入口(114)と、蓋(120)に形成された洗浄水放出口(121)を弁V3とV4の操作で開放し、洗浄水を胴体(110)内に流入させながら逆流させれば、シェルチューブ型フィルター(130)の上部面(130S)上にかかっていた髪の毛等のような異物質とその他国形異物質、粘液性異物質が持ち上げられながら洗浄水と共に洗浄水放出口(121)を通過して濾過器(100)の外に排出され浄化槽等に移送される。特に上記洗浄過程でシェルチューブ型フィルター(130)に形成された細いチューブ状で形成された円筒孔(131)に詰まっていた異物質も洗浄される。
【0018】
図3は、本発明の渦流槽(200)と熱交換器(300)を分解斜視図で示しており、図4は、上記渦流槽(200)の側断面図である。
図3及び図4に示されるように渦流槽(200)は上・下部面が開放された通常の胴体(210)と蓋(220)及び廃水渦流ノズル(230)から構成される。上記胴体(210)は後述する熱交換器(300)の胴体と同一の大きさを有する断面を有し、その上部に相互連通するように組立てられたもので、胴体(210)の左・右側面を貫通してなる廃温水流入口(211)と廃温水流出口(212)が形成され、上記流入口(211)は上述の1次濾過器(100)と連通配管されており、流出口(212)は後述する2次濾過器(400)に配管され連通されている。
そして、渦流槽(200)の蓋(220)は、上記胴体(210)の上部面を覆うと共に、その中央に貫通孔が形成され、この貫通孔に入水管(221)が垂直で組立てられ、この入水管(221)は後述する2次濾過器(400)で濾過された廃温水が流入される管である。この入水管(221)の下端部にやや傾斜し両端が塞がった円筒状の廃水渦流ノズル(230)が形成されている。
【0019】
図5は、上記廃水渦流ノズル(230)を平面図(図5a)、側面図(図5b)、底面図(図5c)で示している。廃水渦流ノズル(230)は、図5で観察されるように円筒状であり、その中心部に上記入水管(221)が連通して連結されるが、垂直に形成された入水管(221)とやや傾斜して形成される。
又、廃水渦流ノズル(230)の底面部分を断面で見る時、略45°方向に多数の孔が一列にノズル孔(231)を形成するが、このノズル孔(231)は胴体の中央を中心として両側に相互にずれるようにして、連続的に形成される。
【0020】
上記のような構成からなる廃水渦流ノズル(230)は、入水管(221)に圧送される2次濾過器で濾過された廃温水が流入され、ノズル孔(231)を通じて渦流槽(200)内に噴射される。このノズル孔(231)から噴射される2次濾過された廃温水は、上述したような挙動で渦流槽(200)内に流入口(211)を通じて入水された1次濾過器(100)で1次濾過された廃温水に撒かれて混合されることになる。この過程で渦流槽(200)内の廃温水は渦流が発生することになる。このような渦流発生をもっと効果的にするために、前述したように廃水渦流ノズル(230)が入水管(221)と傾斜して形成されるようにした。
本廃水渦流ノズル(230)によって廃温水に渦流が生じると、後述する熱交換器(300)を通過する時、未だ濾過されなかった異物質等が熱交換器(300)内の壁等に付着しなくなり、熱交換器(300)の熱交換能を抵下させることがないようにする。
【0021】
図1と図4に、本発明に適用された熱交換器(300)が適切に示されている。上記熱交換器(300)の基本的構造は公知の熱交換器と同一のもので、ただ、熱交換器(300)の胴体(310)上部面が開放され上記渦流槽(200)と連通され、渦流槽(200)内の廃温水がそのまま熱交換器(300)内に自重によって移送され、廃温水と原水間の熱交換が成立し、再び胴体(310)の下部側に形成された捕集槽(330)に移送されるように形成されている。
熱交換器の胴体(310)の内部には、公知の形状と方法で、使用されていない低温状態の原水が流れる伝熱管(320)が層状に連続形成されており、上記伝熱管(320)の間の間隙に高温の廃温水が自重で通過すると、良導体である伝熱管(320)を通じて廃温水の熱が原水に伝達され原水が加温される熱交換が成立する。
【0022】
上記伝熱管(320)に流れる低温の原水は、胴体(310)の側面に形成された原水入水口(311)を通じて入水され加温された後、弁V5と共に形成された出水口(312)を通じて排出されボイラー等に移送されるが、上記原水入水口(311)側と原水出水口(312)側にそれぞれ温度測定センサーS1とS2を設置して原水が得た熱量を測定することができるように構成し、原水入水口(311)の管に流量測定器(S3)を設置して原水の流入量、即ち原水の流速を制御することができる根拠を設けた。
【0023】
そして、熱交換器(300)の下部側に形成された捕集槽(330)の底面に熱交換を終えた廃水が下水溝や浄化槽へ放出される廃水放出口(313)が形成され、熱交換器(300)の底面(315)の中央を貫通して洗浄水が流入される洗浄水流入口(316)が弁V6と共に形成され、洗浄水流入口(316)を形成する管は分枝されて沈澱物排出パイプ(318)を形成し、ドレーン弁(DV)によって間欠的に熱交換器の底面に沈積された沈殿物を胴体外に排出させるように構成する。
【0024】
次の2次濾過器(400)は、上記1次濾過器(100)と略同様の構造であるが、ただ、2次濾過器(400)で濾過される廃温水は上記渦流槽(200)を経過した廃温水が入水され濾過されるものであり、2次濾過された廃温水は流出口(412)に設置された加圧ポンプによって渦流槽(200)の蓋(220)に形成された入水管(221)へ押送され渦流槽(200)内に渦流を作る廃水渦流ノズル(230)に送られる。
そして、2次濾過器(400)の胴体(410)内の水圧を測定するための圧力測定器(S4)が設置され、2次濾過器(400)の内部圧力を測定しシェルチューブ型フィルター(430)が正常に機能するか否かを判断し、2次濾過器(400)の洗浄可否を自動制御盤(AT)によって決める。
【0025】
図1において、2次濾過器(400)を示した図面に摘示した符号中、未説明の符号(410)は通常の胴体、420は蓋、430はシェルチューブ型フィルター、411は流入口、412は流出口、V7、V8、V9、V10は弁、421は洗浄水放出口、414は洗浄水入水口である。
上述した本発明の装置等において、それぞれの装置を洗浄するための洗浄水は、図1に示されたように、熱交換器(300)に配管された原水パイプを分枝して押送された原水を使用するように構成している。
【0026】
以上のような構成からなる本発明によるシェルチューブ型フィルターが利用された自動化廃水回収システムにおいて、各種の測定器(S1、S2、S3、S4)によって情報を得、各種の弁(V1〜V10)及びポンプ(P)の作動可否を自動制御盤(AT)によって制御することによって、本発明の廃熱回収システムの各装置を無人制御することができるものである。
即ち、自動制御盤(AT)は、本発明のシステムに関連された装置の全般的な稼動時間などを原水の昇温程度及び廃温水の放出温度に従って入力制御し、1次濾過器(100)の弁V1、V2、V3、V4の作動可否と2次濾過器(400)のポンプ(P)及び弁V8、V8、V9、V10の作動可否、渦流槽(200)の弁V5、熱交換器(300)の弁V6の作動可否を制御するが、その作動時刻及び作動時間は廃温水の異物質濃度に従ってコントロールし、各装置(100、300、400)のドレーン弁(DV)の作動時刻及び時間を廃温水の異物質濃度に従って制御されるようにし、原水の入水温度と放出温度をそれぞれ測定する温度測定器S3とS4の情報と原水の流入量を測定する流量計(S4)の情報を取り合わせて回収された熱量を測定し、別途に設けた表示窓に表示されるようにする。
【0027】
(産業上の利用可態性)
上述のような構成及び作用をなす本発明によるシェルチューブ型フィルター(130)は、従来のネット型フィルターと異なり髪の毛、糸など細くて長い柔軟性異物質が濾過される際に、その一側先端が本発明のフィルター(130)に形成された円筒孔(131)内)に入っても別の糸等の先端ともつれることがないので、相当量の廃温水を濾過しフィルター(130)の上部面(130S)に積った異物質中、糸のような異物質等がフィルターともつれることがないのでこれらを除去することが極めて容易である。
特に、円筒孔(131)の向かい側、即ちシェルチューブ型フィルターの底面側(130B)に逆洗水を供給すれば、異物質などがフィルター(130)から容易に分離される。
【0028】
従って、本発明は手動で操作されるしかなかった従来の廃熱回収システムと異なり、自動制御が可能であり、特に、本発明による廃熱回収システム、自動操作が可能となり経済的であるのみならず、高温の廃温水に含まれた固形物の濃度によって各種装置の作動及びその洗浄を自動制御するので、装置の耐久性を高めるだけでなく、使用者の便宜性を図ることができ、特に本発明の特徴中の一つである2次濾過器(400)及び渦流槽(200)によって高濃度の廃温水でも、その処理が可能になるので産業上利用性が多大な発明である。
又、本発明の自動制御盤に原水が得た熱量が表示されるので、これによつてエネルギー使用量を予め予測し効率的なェネルギー管理が可飴であり、本発明の制御システムの有用性を使用者が直接感じることができる付加的な効果もある。
【図面の簡単な説明】
【図1】本発明の実施の形態に係る自動廃熱回収システムのシステム構成図である。
【図2a】本発明の実施の形態に係る1次濾過器の分解斜視図である。
【図2b】本発明の実施の形態に係る1次濾過器の側断面図である。
【図3】本発明において渦流槽と熱交換器の分解斜視図である。
【図4】本発明の実施の形態に係る渦流槽の側断面図である。
【図5a】本発明の実施の形態に係る廃水渦流ノズルの平面図である。
【図5b】本発明の実施の形態に係る廃水渦流ノズルの側面図である。
【図5a】本発明の実施の形態に係る廃水渦流ノズルの底面図である。
[0001]
(Technical field)
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a waste heat recovery system for recovering heat of waste hot water used in buildings and factories, and more particularly, to a filter having a fine hole tube, that is, a shell tube type filter and a filter having the same. And an automated waste heat recovery system using the same.
[0002]
(Background technology)
BACKGROUND ART Conventionally, waste hot water generally used in buildings using hot water and steam outside the public bath is discharged. Since the discharged waste hot water contains a considerable amount of heat energy, a heat recovery device is used to recover and recycle heat from the hot water in order to prevent waste of energy.
[0003]
However, since the waste hot water contains a considerable amount of foreign substances such as suspended solids, these foreign substances are different from the discharged waste hot water to reduce the heat recovery function of the heat exchanger of the waste heat recovery device. After the material is filtered off by a filter, it is sent to a heat exchanger. Therefore, if the waste heat recovery device is operated for a considerable time, foreign substances accumulated in the filter must be removed. Otherwise, the filter will be closed and the foreign substances mixed in the waste hot water will not be filtered, and the waste hot water will be sent to the heat exchanger in an unfiltered state, or the waste hot water will be blocked by the filter, This is because it cannot be transferred to the exchanger and the waste heat recovery device cannot perform its function.
[0004]
A filter used in a filter of a conventional waste heat recovery apparatus is a net type, that is, a net type filter. Naturally, waste warm water discarded from homes and other public baths and large buildings contains long and flexible foreign substances such as hair and other yarns. When sifted by the above-mentioned net type filter, it winds around the net while partially passing through the hole of the net and closes the hole of the filter. For this reason, the work of removing foreign substances such as hair and thread with a net-type filter is very complicated. The reason for this is that the hair and the like are wrapped around the net and become entangled and tightly bound to the filter net as described above. Therefore, in the related art, when the filter is cleaned, the cleaning operation of the filtration filter involves replacing the filter itself with a new one, or removing the hair and the like from the net-type filter through manual operation.
[0005]
As described above, in the conventional waste heat recovery device, the operation of cleaning the waste heat recovery device cannot be automated because the operation of cleaning the filter necessarily depends on the manual operation.
In addition, as described above, the conventional manual waste heat recovery apparatus uses a viscous substance and a chemical substance contained in waste hot water to manually clean a scale formed in a heat transfer tube of a heat exchanger, and is used. Since the cleaning of the apparatus is performed depending on the sense of the user, it is impossible to effectively operate the waste heat recovery apparatus. In order to recover the heat of waste hot water, all of the generated waste hot water passes through the heat exchanger tubes of the heat exchanger of the waste heat recovery device, the heat contained in the waste hot water is transferred to the raw water, and the raw water is preheated. By supplying the fuel to the boiler or the place of use in a heated state, the energy (fuel) corresponding to the preheated amount can be saved, and until now, all the waste heat recovery devices have been manufactured manually. Installed, it is impossible to operate efficiently, the operation status cannot be measured by automatic recording of the operation status, and the amount of waste heat recovery cannot be measured. , And the installation of the conventional waste water heat recovery system has been inefficiently operated or has to be stopped, and personally fixed expenditures due to fuel waste Rising costs and national energy It has led to an increase in energy imports by ghee waste.
[0006]
The government also recognized the importance of waste heat recovery and, in 1994, required the installation of waste water recovery equipment by law when constructing a building that discharges waste water with a temperature of 25 ° C or higher. Because of its inability to exhibit its performance due to such reasons, the user must bear the cost required to install the waste hot water heat recovery equipment, and the nation has to construct and install the waste hot water heat recovery equipment. The required expenses have been wasted and the original intention has been lost, and the law is now famous and innocent.
[0007]
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned conventional problems. In a waste heat recovery system, foreign substances that have been filtered are easily removed from a filter of a used filter by backwashing the filter. The present invention aims to provide a shell-tube type filter capable of automatically cleaning in a filter device for removing foreign substances mixed in waste hot water, thereby providing a waste heat recovery device. It is characterized in that an automatic control waste heat recovery system capable of automatically controlling the operation of a waste heat recovery system is provided.
[0008]
(Embodiment)
Preferred embodiments of the shell-tube type filter and the automatic waste heat recovery system according to the present invention will be described in detail below with reference to the accompanying drawings.
FIG. 1 is a system configuration diagram of the automatic waste heat recovery system of the present invention.
As shown in FIG. 1, in the waste heat recovery system of the present invention, a primary filter (100), a secondary filter (400), a vortex tank (200), and a heat exchanger (300) are mutually connected by piping. Automatic control valves (V1 to V10, DV), temperature measuring devices (S2, S3), and flow rates of waste water and raw water (supply water) connected to each of the above devices, cleaning water inlet / outlet, and the like. It comprises a measuring device (S3), a pressure measuring device (S4), and an automatic control panel (AT) for controlling the valve, the measuring device, and the like.
[0009]
In the present invention having such a configuration, the flow of the waste hot water will be briefly described. First, the waste hot water enters the primary filter (100), is subjected to the primary filtration, and is then transferred to the vortex tank (200). In the next stage, heat exchange is established between the high-temperature waste hot water transferred to the heat exchanger (300) and the low-temperature raw water (supply water), so as to form a vortex. The waste hot water that has transferred heat to the raw water is transferred to the sewer or septic tank through the outlet.
[0010]
However, since the vortex tank (200) is connected to the secondary filter (400) by piping, the waste hot water in the vortex tank (200) is transferred to the secondary filter (400) by opening the automatic valve V8. After being filtered again, it is returned to the vortex tank (200) by the pump (P).
[0011]
The operation of this secondary filter (400) is controlled to be intermittent and periodic.
The operation cycle and operation time of the secondary filter (400) depend on the concentration of foreign substances mixed in the waste hot water. That is, the secondary filter (400) provides fluidity to the waste hot water by the heat exchanger (300) when the primary filtration is insufficient, and the viscous substance mixed in the waste hot water is removed by the heat exchanger. In order to prevent the heat from being attached to the surface of the heat transfer tube installed in the (300) and hinder the heat transfer of the waste hot water, and to remove other causes of blocking the moving path of the waste hot water, a vortex tank ( This device is additionally used when a vortex is to be generated by the wastewater vortex nozzle (230) installed in the inside (200).
[0012]
Each component constituting the automatic waste heat recovery system of the present invention having such a configuration and operation will be described in more detail.
FIG. 2 is a view showing a primary filter (100) of the present invention, FIG. 2a is an exploded perspective view, and FIG. 2b is a side sectional view.
[0013]
As shown in FIG. 2A, the primary filter (100) has a body (110) having a cylindrical shape with an open interior and an open upper surface, and a cover (110) for covering the upper surface of the body (110). 120) and a shell tube type filter (130, a shell type filter) installed inside the body (110).
On both sides of the body (110), through holes are respectively formed in an upper side portion and a lower side portion, the upper side through hole is a water inlet (111) into which waste hot water is supplied, and the lower side through hole is The filtered waste hot water is the next step, the water outlet (112), which is transferred to the vortex tank (200).
The water inlet (111) and the water outlet (112) are respectively formed with valves V1 and V2 that are automatically controlled.
[0014]
A through-hole is formed at the center of the bottom of the body (110). The through-hole is a washing water inlet (114) into which washing water for washing the filter is injected, and whether or not the washing water flows in is automatically controlled. Depending on which valve V3 is used. Further, a separately formed sediment discharge pipe (115) is formed at the washing water inlet (114), and the sediment is intermittently discharged to the outside of the body (110) by a drain valve (DV).
The lid (120) covers an upper surface of the body (110), and penetrates a central portion thereof, and a washing water discharge port (121) is formed together with the valve V4.
[0015]
Since the shell tube type filter (130) is a thick plate having a considerable thickness, that is, a height, the upper surface of the filter (130) has a cross section that can be closely assembled to a cross section of the inner space of the filter body (110). A large number of tubular cylindrical holes (131) perpendicular to the lower surface (130B) from (130S) are densely formed to form a bundle. When waste hot water flows into the upper surface (130S) side, the cylindrical holes (131) are formed. ) And escapes to the lower surface (130B) side. In this process, foreign substances mixed into the waste hot water, that is, solid substances such as hair and thread, other solid substances having a volume larger than the cross section of the cylindrical hole (131), and viscous foreign substances having considerable viscosity are removed from the shell. The hot water that has accumulated on the upper surface without being able to pass through the tubular filter (130) is filtered.
[0016]
In particular, in the present invention, the shell tube type filter (130), which is a main characteristic part, is different from a conventional net type filter in that an elongate and flexible foreign substance such as hair, thread, etc. is strained so that one end of the filter is formed. Even if the gas enters the cylindrical hole (131), it does not become entangled with the tip of other yarns, so that a considerable amount of waste hot water is filtered to remove foreign substances accumulated on the upper surface of the filter (130). Is very easy.
Accordingly, the present invention features a shell tube type filter (130) that can be automatically washed by washing water flowing back to the filter.
[0017]
The waste hot water is introduced into the primary filter (100) of the present invention having the above-described configuration through the inlet (111), filtered through the shell tube type filter (130), and then filtered out of the outlet ( 112) and is transferred to a vortex tank (200) described later. Then, in the filter (100) that has filtered a considerable amount of waste hot water, the cylindrical hole (131) of the shell tube type filter (130) is clogged with the filtered foreign substance. In this case, the inflow port (111) and the outflow port (112) are closed by valves V1 and V2, and the washing water inflow port (114) formed on the bottom surface of the body (110). ) And the washing water discharge port (121) formed in the lid (120) is opened by operating the valves V3 and V4, and the washing water is caused to flow backward while flowing into the body (110). Foreign matter, such as hair, on the upper surface (130S) of (130) and other foreign matter and mucous foreign matter, which are lifted, pass through the washing water discharge port (121) together with the washing water while being lifted. Filtration Is discharged out of the vessel (100) is transferred to the septic tank or the like. In particular, the foreign substance clogged in the cylindrical hole (131) formed in the thin tube shape formed in the shell tube type filter (130) in the washing process is also washed.
[0018]
FIG. 3 is an exploded perspective view of the swirl tank (200) and the heat exchanger (300) of the present invention, and FIG. 4 is a side sectional view of the swirl tank (200).
As shown in FIGS. 3 and 4, the vortex tank (200) is composed of a normal body (210) having open upper and lower surfaces, a lid (220), and a wastewater vortex nozzle (230). The body 210 has a cross section having the same size as a body of a heat exchanger 300 described later, and is assembled to communicate with an upper part thereof. A waste hot water inlet (211) and a waste hot water outlet (212) penetrating the surface are formed, and the inlet (211) is connected to the above-mentioned primary filter (100) and connected to the primary filter (100). (212) is piped and communicated with a secondary filter (400) described later.
The lid (220) of the vortex tank (200) covers the upper surface of the body (210), and has a through hole formed in the center thereof, and the water inlet pipe (221) is vertically assembled in the through hole. The water inlet pipe (221) is a pipe into which waste hot water filtered by a secondary filter (400) described later flows. At the lower end of the water inlet pipe (221), a cylindrical wastewater vortex nozzle (230) that is slightly inclined and both ends are closed is formed.
[0019]
FIG. 5 shows the wastewater vortex nozzle (230) in a plan view (FIG. 5a), a side view (FIG. 5b), and a bottom view (FIG. 5c). The wastewater swirl nozzle (230) has a cylindrical shape as seen in FIG. 5, and the water inlet pipe (221) communicates with the center of the nozzle, and is vertically connected to the water inlet pipe (221). It is formed with a slight inclination.
Further, when the bottom portion of the wastewater swirl nozzle (230) is viewed in cross section, a large number of holes are formed in a row in a substantially 45 ° direction, and the nozzle holes (231) are formed at the center of the body. Are formed continuously so as to be shifted from each other on both sides.
[0020]
The wastewater vortex nozzle (230) having the above-described configuration receives waste hot water filtered by a secondary filter that is fed to the water inlet pipe (221) and flows into the vortex tank (200) through the nozzle hole (231). Injected to. The secondary filtered waste hot water jetted from the nozzle hole (231) is subjected to the primary filtration (100) in the vortex tank (200) through the inlet (211) in the above-described manner. Next, it is scattered and mixed in the filtered waste hot water. In this process, the swirling current is generated in the waste hot water in the swirling tank (200). In order to make the generation of the vortex more effective, the wastewater vortex nozzle (230) is formed to be inclined with the water inlet pipe (221) as described above.
When a vortex is generated in the waste hot water by the wastewater vortex nozzle (230), foreign substances that have not been filtered yet adhere to the walls and the like inside the heat exchanger (300) when passing through the heat exchanger (300) described below. And the heat exchange capacity of the heat exchanger (300) is not reduced.
[0021]
FIGS. 1 and 4 suitably show a heat exchanger (300) applied to the present invention. The basic structure of the heat exchanger (300) is the same as that of a known heat exchanger, except that the upper surface of the body (310) of the heat exchanger (300) is open and communicates with the vortex tank (200). The waste hot water in the vortex tank (200) is directly transferred into the heat exchanger (300) by its own weight, heat exchange between the waste hot water and the raw water is established, and the trap formed on the lower side of the body (310) again. It is formed to be transferred to the collecting tank (330).
Inside the body (310) of the heat exchanger, a heat transfer tube (320) through which unused raw water in a low temperature state flows is continuously formed in a layered manner by a known shape and method, and the heat transfer tube (320) is formed. When hot waste hot water passes by its own weight in the gap between the two, heat of the waste hot water is transmitted to the raw water through the heat transfer tube (320), which is a good conductor, and heat exchange in which the raw water is heated is established.
[0022]
The low-temperature raw water flowing through the heat transfer pipe (320) enters through a raw water inlet (311) formed on the side surface of the body (310), is heated, and then flows through an outlet (312) formed with the valve V5. The raw water is discharged and transferred to a boiler or the like. The temperature measuring sensors S1 and S2 are installed at the raw water inlet (311) side and the raw water outlet (312) side, respectively, so that the amount of heat obtained by the raw water can be measured. The flow rate measuring device (S3) is installed in the pipe of the raw water inlet (311) to provide a basis for controlling the flow rate of the raw water, that is, the flow rate of the raw water.
[0023]
A wastewater discharge port (313) through which wastewater having undergone heat exchange is discharged to a sewer or a purification tank is formed on the bottom surface of a collection tank (330) formed below the heat exchanger (300). A washing water inlet (316) through which washing water flows through the center of the bottom surface (315) of the exchanger (300) is formed together with the valve V6, and a pipe forming the washing water inlet (316) is branched. A sediment discharge pipe (318) is formed to discharge the sediment deposited on the bottom surface of the heat exchanger intermittently by the drain valve (DV) to the outside of the body.
[0024]
The secondary filter (400) has substantially the same structure as the primary filter (100), except that the waste hot water filtered by the secondary filter (400) is discharged from the vortex tank (200). The waste hot water that has passed through is passed through and filtered, and the secondary filtered waste hot water is formed on the lid (220) of the vortex tank (200) by a pressure pump installed at the outlet (412). It is pushed to a water inlet pipe (221) and sent to a wastewater swirl nozzle (230) that creates a swirl in a swirl tank (200).
Then, a pressure measuring device (S4) for measuring the water pressure in the body (410) of the secondary filter (400) is installed, and the internal pressure of the secondary filter (400) is measured, and the shell tube type filter (S4) is measured. 430) is determined to function normally, and whether or not the secondary filter (400) can be washed is determined by an automatic control panel (AT).
[0025]
In FIG. 1, among the reference numerals shown in the drawing showing the secondary filter (400), unexplained reference numeral (410) is a normal body, 420 is a lid, 430 is a shell tube type filter, 411 is an inflow port, 412 Is an outlet, V7, V8, V9, V10 are valves, 421 is a wash water discharge port, and 414 is a wash water inlet.
In the above-described apparatus of the present invention, as shown in FIG. 1, the washing water for washing each apparatus was branched and sent through a raw water pipe provided to a heat exchanger (300). It is configured to use raw water.
[0026]
In the automated wastewater recovery system using the shell tube type filter according to the present invention having the above-described configuration, information is obtained by various measuring devices (S1, S2, S3, S4) and various valves (V1 to V10) are obtained. By controlling the operation of the pump (P) with the automatic control panel (AT), each device of the waste heat recovery system of the present invention can be controlled unattended.
That is, the automatic control panel (AT) controls the input of the general operation time of the apparatus related to the system of the present invention according to the temperature rise of raw water and the discharge temperature of waste hot water, and the primary filter (100). Of valves V1, V2, V3, and V4, and operation of pump (P) of secondary filter (400) and valves V8, V8, V9, and V10, valve V5 of vortex tank (200), and heat exchanger The operation time of the valve V6 of (300) is controlled according to the concentration of foreign substances in the waste hot water, and the operation time and operation time of the drain valve (DV) of each device (100, 300, 400) are controlled. The time is controlled in accordance with the concentration of the foreign substance in the waste hot water, and the information of the temperature measuring devices S3 and S4 for measuring the inflow temperature and the release temperature of the raw water, respectively, and the information of the flow meter (S4) for measuring the inflow of the raw water are Collected and collected The amount of heat is measured, to be displayed on the display window provided separately.
[0027]
(Industrial availability)
The shell tube type filter (130) according to the present invention having the above-described structure and operation is different from a conventional net type filter in that when a thin and long flexible foreign substance such as hair or thread is filtered, one end thereof is filtered. Does not become entangled with the tip of another thread even if it enters the cylindrical hole (131) formed in the filter (130) of the present invention, so that a considerable amount of waste hot water is filtered and the upper part of the filter (130) is removed. Among the foreign substances accumulated on the surface (130S), foreign substances such as threads do not become entangled with the filter, so that it is extremely easy to remove them.
In particular, if backwash water is supplied to the opposite side of the cylindrical hole (131), that is, the bottom side (130B) of the shell tube type filter, foreign substances and the like are easily separated from the filter (130).
[0028]
Therefore, unlike the conventional waste heat recovery system which had to be operated manually, the present invention can be automatically controlled. In addition, since the operation and cleaning of various devices are automatically controlled by the concentration of solids contained in high-temperature waste hot water, not only can the durability of the device be increased, but also convenience for the user can be achieved, Since the secondary filter (400) and the vortex tank (200), which are one of the features of the present invention, can treat even high-concentration waste hot water, the invention has great industrial applicability.
In addition, since the amount of heat obtained from the raw water is displayed on the automatic control panel of the present invention, it is possible to predict the amount of energy used in advance and efficiently manage energy, and the usefulness of the control system of the present invention. There is an additional effect that the user can feel directly.
[Brief description of the drawings]
FIG. 1 is a system configuration diagram of an automatic waste heat recovery system according to an embodiment of the present invention.
FIG. 2a is an exploded perspective view of a primary filter according to the embodiment of the present invention.
FIG. 2b is a side sectional view of the primary filter according to the embodiment of the present invention.
FIG. 3 is an exploded perspective view of a vortex tank and a heat exchanger in the present invention.
FIG. 4 is a side sectional view of the vortex tank according to the embodiment of the present invention.
FIG. 5a is a plan view of a wastewater swirl nozzle according to an embodiment of the present invention.
FIG. 5b is a side view of the wastewater swirl nozzle according to the embodiment of the present invention.
FIG. 5a is a bottom view of a wastewater swirl nozzle according to an embodiment of the present invention.

Claims (7)

廃水に含まれた異物質を濾過する濾過器に使用されるフィルターにおいて、相当な厚さ、即ち、高さを有する厚板状体で形成され、上部面(130S)から下部面(130B)へ垂直に貫通される多数のチューブ状円筒孔(131)が束で形成されたシェルチューブ型フィルター。A filter used in a filter for filtering foreign substances contained in wastewater is formed of a thick plate having a considerable thickness, that is, a height, from an upper surface (130S) to a lower surface (130B). A shell tube type filter in which a number of tubular cylindrical holes (131) penetrated vertically are formed in a bundle. 放出される廃温水から熱を回収する廃熱回収システムにおいて、1次濾過器(100)、2次濾過器(400)、渦流槽(200)及び熱交換器(300)によって構成され、相互配管によって連結し、上記各装置(100、200、300、400)の廃温水及び洗浄水の入・出口と、又各沈殿物排出パイプに各々自動制御弁(V1〜V10、DV)を設置し、自動的に自動制御盤によって自動制御できるようにした自動制御廃熱回収システム。In a waste heat recovery system that recovers heat from discharged waste hot water, the waste heat recovery system includes a primary filter (100), a secondary filter (400), a vortex tank (200), and a heat exchanger (300). Automatic control valves (V1 to V10, DV) are installed at the inlet / outlet of the waste hot water and washing water of each of the above devices (100, 200, 300, 400), and at each of the sediment discharge pipes. An automatic control waste heat recovery system that can be automatically controlled by an automatic control panel. 廃温水が最初に1次濾過器(100)に入水し1次濾過された後、渦流槽(200)に移送され廃温水に渦流が形成されるようにして流動する状態となり、次の段階で熱交換器(300)に移送され高温状態の廃温水と低温状態の原水(供給水)間に熱交換が行われ、原水に熱を伝達した廃温水は排出口を通じて下水道や浄化槽に放出され、上記渦流槽(200)は2次濾過器(400)と配管連結されるので、自動弁V7の開放によって渦流槽(200)の廃温水が2次濾過器(400)に移送され更に再濾過され、次いでポンプ(P)によって渦流槽(200)に返送されることを断続的周期的に行うように制御される請求項2記載の自動制御廃熱回収システム。The waste hot water first enters the primary filter (100) and is subjected to the primary filtration, and then is transferred to the vortex tank (200), where the waste hot water flows so that a vortex is formed in the waste hot water. The heat is transferred to the heat exchanger (300) and heat exchange is performed between the high-temperature waste hot water and the low-temperature raw water (supply water). The waste hot water that transfers heat to the raw water is discharged to the sewer and the septic tank through the outlet, Since the vortex tank (200) is connected to the secondary filter (400) by a pipe, the waste hot water in the vortex tank (200) is transferred to the secondary filter (400) by the opening of the automatic valve V7, and is further filtered again. 3. An automatically controlled waste heat recovery system according to claim 2, wherein the return to the vortex tank (200) by a pump (P) is controlled to be performed intermittently and periodically. 1次濾過器(100)は通常の胴体(110)、蓋(120)、シェルチューブ型フィルター(130)によって構成され、胴体(110)の側面上下に各々廃温水が入出する流入口(111)と流出口(112)が弁V1とV2と共に形成され、蓋(120)と胴体(110)の底面に逆流される洗浄水が入出する洗浄水流入口(114)と洗浄水放出口(121)が弁V3とV4と共に形成された請求項2又は3記載の自動制御廃熱回収システム。The primary filter (100) includes a normal body (110), a lid (120), and a shell tube type filter (130), and an inlet (111) through which waste hot water flows in and out of the upper and lower sides of the body (110). And an outlet (112) are formed together with the valves V1 and V2, and a washing water inlet (114) and a washing water outlet (121) through which washing water flowing back and forth to the bottom of the lid (120) and the body (110) enter and exit. 4. An automatically controlled waste heat recovery system according to claim 2 or 3, formed with valves V3 and V4. 渦流槽(200)は上・下部面が開放された通常の胴体(210)と蓋(220)及び廃水渦流ノズル(230)によって構成され、上部側が開放された通常の熱交換器(300)の上部側と連通して形成され、廃水渦流ノズル(230)は、蓋(220)を貫通し、垂直に形成された入水管(221)の下端部に水平に連通した筒状体で、底面部分に多数のノズル孔(231)が中央を中心として両側に相互ずれるようにして一列に形成された請求項2又は3記載の自動制御廃熱回収システム。The vortex tank (200) is composed of a normal body (210) having upper and lower surfaces opened, a lid (220) and a wastewater vortex nozzle (230), and is provided with a normal heat exchanger (300) having an upper side opened. The wastewater swirl nozzle (230) is formed in communication with the upper side, and is a tubular body that penetrates the lid (220) and horizontally communicates with the lower end of the vertically formed water inlet pipe (221). 4. The automatic control waste heat recovery system according to claim 2, wherein a number of nozzle holes are formed in a row so as to be shifted from each other on both sides of the center. 熱交換器(300)の原水入水口(311)側と原水出水口(312)側に各々温度測定センサーS1とS2が設置され、入水される原水の温度と出水される原水の温度を測定し、原水入水口(311)の管に流量測定器(S3)を設置した請求項2又は3記載の自動制御廃熱回収システム。Temperature measuring sensors S1 and S2 are installed on the raw water inlet (311) side and the raw water outlet (312) side of the heat exchanger (300), respectively, to measure the temperature of raw water entering and the temperature of raw water flowing out. 4. The automatic control waste heat recovery system according to claim 2, wherein a flow rate measuring device (S3) is installed in a pipe of the raw water inlet (311). 2次濾過器(400)にその内圧を測定するための圧力測定器(S4)が形成された請求項2又は3記載の自動制御廃熱回収システム。4. The automatic control waste heat recovery system according to claim 2, wherein a pressure measuring device (S4) for measuring the internal pressure is formed in the secondary filter (400).
JP2002534767A 2000-10-09 2000-10-09 Shell tube type filter and automatic waste heat recovery system Pending JP2004511332A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2000/001122 WO2002031428A1 (en) 2000-10-09 2000-10-09 Shell tube type filter and auto-controlled heat recovery system of waste water

Publications (1)

Publication Number Publication Date
JP2004511332A true JP2004511332A (en) 2004-04-15

Family

ID=19198279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002534767A Pending JP2004511332A (en) 2000-10-09 2000-10-09 Shell tube type filter and automatic waste heat recovery system

Country Status (2)

Country Link
JP (1) JP2004511332A (en)
WO (1) WO2002031428A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103759555A (en) * 2013-11-20 2014-04-30 东莞市易阳节能设备有限公司 Multi-functional energy-saving combined system for recycling waste heat of industrial wastewater
CN105999833A (en) * 2016-05-04 2016-10-12 刘洋豪 Equipment for recovering heat energy and waste water
CN111735327A (en) * 2020-06-29 2020-10-02 顾艳波 Fluid heat exchange equipment

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5937437B2 (en) * 1979-09-19 1984-09-10 株式会社東洋製作所 Waste heat recovery system
JPS60144594A (en) * 1984-01-05 1985-07-30 Hisaka Works Ltd Waste heat recovery device
KR880014341A (en) * 1987-05-13 1988-12-23 문후범 Heat exchanger of bathroom boiler
KR940002428Y1 (en) * 1989-03-22 1994-04-15 대우전자 주식회사 Filter cap for water purifier
KR950005418B1 (en) * 1992-10-01 1995-05-24 한성균 Waste water treatment filter

Also Published As

Publication number Publication date
WO2002031428A1 (en) 2002-04-18

Similar Documents

Publication Publication Date Title
KR100985300B1 (en) Fixed bar type pore controllable fiber module filter and fiber filter instrument
CN100503993C (en) Hotel bathing waste water treatment and integral reclamation apparatus and its method
CN101143303B (en) Household full-automatic double film self-flushing water-purifying device
CN206295823U (en) A kind of inner pressed milipore filter water treatment system
JP2004511332A (en) Shell tube type filter and automatic waste heat recovery system
CN201055753Y (en) Household full-automatic double-film self-flushing purifier
KR100330371B1 (en) Shell Tube type Filter and Auto-controlled Heat Recovery System of Waste Water
CN208372844U (en) A kind of anti-clogging detection device of reverse osmosis (RO) film
CN109502816A (en) A kind of Zhi Xian factory sewage disposal system and method
CN107376480A (en) Filter element filtering device for dense salt waste water
CN205933505U (en) Industrial sewage purification device
CN201744235U (en) Double filter element automatic mutual pure water jet type backwash pure water primary filter
KR100884825B1 (en) Water treatment method and the apparatus using horizontal purify
CN207694348U (en) A kind of sewage filter device
WO2022237436A1 (en) Filter-type detergent feeding assembly and washing apparatus
CN208878006U (en) Automatic cleaning type filtering appts. for running water
CN207091035U (en) A kind of water purifier
CN220656739U (en) Filter device for water and fertilizer integrated irrigation equipment
CN216170191U (en) Full-automatic components of a whole that can function independently purifier
CN217264972U (en) Self-cleaning ultra-filtration water treatment equipment
CN212833309U (en) Three-level selection mechanism of water resource recycling system
CN208648930U (en) A kind of purifier of automatic backflushing
JP3217487B2 (en) Bathtub cleaning equipment
JP2005000736A (en) Filter apparatus and activated carbon adsorbing device
KR20000015249A (en) Cleansing method for filter film of filter and cleansing system using it

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060404

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20060703

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20060710

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061128