JP2004509790A - Droplet deposition device - Google Patents

Droplet deposition device Download PDF

Info

Publication number
JP2004509790A
JP2004509790A JP2002530310A JP2002530310A JP2004509790A JP 2004509790 A JP2004509790 A JP 2004509790A JP 2002530310 A JP2002530310 A JP 2002530310A JP 2002530310 A JP2002530310 A JP 2002530310A JP 2004509790 A JP2004509790 A JP 2004509790A
Authority
JP
Japan
Prior art keywords
fluid
temperature
signal
chamber
electrical signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002530310A
Other languages
Japanese (ja)
Inventor
ザプカ,ワーナー
ニルソン,ボス
デ ロース,マイク
ブルエナール,ジュアーゲン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xaar Technology Ltd
Original Assignee
Xaar Technology Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xaar Technology Ltd filed Critical Xaar Technology Ltd
Publication of JP2004509790A publication Critical patent/JP2004509790A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/015Ink jet characterised by the jet generation process
    • B41J2/04Ink jet characterised by the jet generation process generating single droplets or particles on demand
    • B41J2/045Ink jet characterised by the jet generation process generating single droplets or particles on demand by pressure, e.g. electromechanical transducers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/015Ink jet characterised by the jet generation process
    • B41J2/04Ink jet characterised by the jet generation process generating single droplets or particles on demand
    • B41J2/045Ink jet characterised by the jet generation process generating single droplets or particles on demand by pressure, e.g. electromechanical transducers
    • B41J2/04501Control methods or devices therefor, e.g. driver circuits, control circuits
    • B41J2/04541Specific driving circuit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/015Ink jet characterised by the jet generation process
    • B41J2/04Ink jet characterised by the jet generation process generating single droplets or particles on demand
    • B41J2/045Ink jet characterised by the jet generation process generating single droplets or particles on demand by pressure, e.g. electromechanical transducers
    • B41J2/04501Control methods or devices therefor, e.g. driver circuits, control circuits
    • B41J2/04563Control methods or devices therefor, e.g. driver circuits, control circuits detecting head temperature; Ink temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/015Ink jet characterised by the jet generation process
    • B41J2/04Ink jet characterised by the jet generation process generating single droplets or particles on demand
    • B41J2/045Ink jet characterised by the jet generation process generating single droplets or particles on demand by pressure, e.g. electromechanical transducers
    • B41J2/04501Control methods or devices therefor, e.g. driver circuits, control circuits
    • B41J2/04581Control methods or devices therefor, e.g. driver circuits, control circuits controlling heads based on piezoelectric elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/015Ink jet characterised by the jet generation process
    • B41J2/04Ink jet characterised by the jet generation process generating single droplets or particles on demand
    • B41J2/045Ink jet characterised by the jet generation process generating single droplets or particles on demand by pressure, e.g. electromechanical transducers
    • B41J2/04501Control methods or devices therefor, e.g. driver circuits, control circuits
    • B41J2/04588Control methods or devices therefor, e.g. driver circuits, control circuits using a specific waveform
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2202/00Embodiments of or processes related to ink-jet or thermal heads
    • B41J2202/01Embodiments of or processes related to ink-jet heads
    • B41J2202/10Finger type piezoelectric elements

Abstract

Droplet deposition apparatus comprises a plurality of fluid chambers (2), each fluid ejection chamber being defined in part by at least one wall (11) actuable by an electrical signal to effect droplet ejection from that chamber. The apparatus provides means (16) for cyclically supplying electrical signals to the walls (11) for actuation thereof, means (60) for measuring, within a period between the application of successive electrical signals to the walls, a temperature dependent electrical property of a wall of a fluid chamber to provide a signal having a magnitude dependant on the temperature of fluid in the fluid chambers, and means for adjusting the magnitude of the actuating electrical signals depending on the magnitude of the temperature dependant signal.

Description

【0001】
【発明の属する技術分野】
本発明はドロップ−オン−デマンドインクジェットプリンタ等の液滴付着用装置に関する。
【0002】
【従来の技術】
本発明が対象とするのは特には電気信号によって生ずる音圧力波でチャンバから液体(たとえばインク)の液滴を射出するプリンタその他の液滴付着用装置である。この装置は単一の液滴射出チャンバをもつものも包含しているが、典型的なものはそれぞれにノズルを備えたこれらのチャンバ列をもつプリントヘッドであり、このプリントヘッドは要求に応じチャンバから液滴を射出するに必要な出力を与えるデータ伝達用作動電気信号を受け入れるようになっている。各チャンバは圧電要素によって結合されており、作動電気信号によって圧電要素が変形を起こして音圧力波を発生して液滴を射出する。これらの装置は本出願人の所有する特許文献1、特許文献2及び特許文献3に開示されている。
【0003】
これらの特許文献には、圧電材料が山形構造をもち、チャンバの側面がチャンバの長さ方向にのびる。反対に分極した領域をもつ圧電材料によって結合されていて、電気信号を付与すると圧電材料の両方の領域が、断面でみて、同じ方向に山形に変形する構造のものが記載されている。この構造は特許文献1に「エンドシュータ」プリントヘッドと称して記載されており、これはノズルが長いチャンバの端にありそして圧電材料がチャンバの側面に沿って付着している方式のものである。一方それとは別に又はそれに加えて、特許文献3に記載されている「サイドシュータ」プリントヘッドがあり、これは圧電材料によって結合されていないチャンバの長さ方向の側面の一つにノズルがある方式のものである。いずれの方式も所定の液滴射出機能を示すためにかなりの駆動電圧の低下をもたらす。
【0004】
印刷操作中に、圧電材料に作動電気信号を与える駆動回路等によって熱が発生する。この熱は射出チャンバ中に吸収されてそのなかの射出流体を加熱することになる。それに伴い射出流体の速度が低下する。このように射出流体の速度が変わると、液滴射出速度が変わり、その結果印刷された像のドット位置に誤差が生ずる。さらに、特許文献4に記載されているように、圧電材料の作動で生ずるヒステリシス損失が射出チャンネル中のインクの温度上昇をもたらしうる。極端な場合、この温度上昇がアクチブな流路とそれに隣接する流路にだけ局在化しうる。
【0005】
本発明者等は印刷操作中の液滴射出流体の温度をモニターし、モニターした温度に応答する作動信号の大きさを調節することが望ましいことを見出した。公知技術として圧電要素の近くにあるプリントヘッドの外側表面上に、駆動回路に電気的に接続させたサーミスタを配する方法がある。サーミスタ位置の温度が上昇すると駆動回路の抵抗値が低下して、圧電要素に付与する作動信号の大きさを低下させる。しかし、プリントヘッドのケースによってサーミスタと圧電要素の間にもたらされた断熱とケースにサーミスタを取りつける接着剤層がサーミスタの温度と液滴射出流体の温度の間に差をもたらしてしまう。この差は印刷操作中のプリントヘッド内の温度変化が速いと、液滴射出流体中の温度変化に対する駆動回路のリアクタンスが遅いので、かなりのものとなる。
【0006】
【特許文献1】欧州特許出願公開第0277703号明細書
【特許文献2】米国特許第4,887,100号明細書
【特許文献3】国際公開第WO91/17051号パンフレット
【0007】
【発明が解決しようとする課題】
本発明の目的は、これら及び他の問題を解決することにある。
【0008】
【課題を解決するための手段】
一の態様において、本発明は、複数の液体チャンバ、それぞれの流体チャンバから液滴射出を行うために電気信号によって作動しうる圧電アクチュエータ、該アクチュエータの各々に電気信号を循環的に供給する手段、該アクチュエータ手段への継続的な電気信号の付与の間の間隔内に、該アクチュエータ手段の温度に依存する電気的性質を測定して該アクチュエータ手段と連結する流体チャンバ中の流体の温度に依存する大きさの信号を与える手段、及び該温度依存性信号の大きさに基づき、作動用電気信号(たとえば振幅及び/又は作用時間)を調節する手段からなる液滴付着用装置を提供する。
【0009】
本発明者等は温度センサは印刷操作中射出流体と直接接触していることを確実に行うことが重要であることを確認した。本発明者等はまたこれらの温度感知はプリントヘッドの標準的な印刷操作又は印刷速度と妨害すべきでないことも確信した。温度感知を継続的な電気信号の付与の間の間隔内に完全に行うので、温度感知が作動用電気信号を妨害したり、印刷速度を遅くすることはない。
【0010】
一の態様において、電気信号の供給手段は4〜5kHz、好ましくは4.2kHzの周波数で作動用手段に電気信号を供給するようにアレンジされる。作用時間は240μsが好ましい。一の態様において、電気的性質の測定に要する時間は42μsであり、作動の間隔は240μsより小さい。
【0011】
好ましい態様において、この温度依存性の電気的性質は電気容量である。本発明者等は液体チャンバの圧電アクチュエータの電気容量は図1に示すように、温度の実質的に直線状の関数であることを見出し且つ実験的に確認した。その結果、温度依存信号の大きさはインクの温度に直接比例するといえる。
【0012】
該アクチュエータ手段は好ましくは該チャンバのそれぞれの壁の主要部が圧電材料からなり、各作動可能な流路壁が作動用電気信号を付与すると変形して流体チャンバから流体を射出する。従って、好ましい態様において、本発明は、それぞれのチャンバから液滴射出を行うように電気信号によって作動しうる少なくとも1の壁によってそれぞれの一部が構成されている複数の流体チャンバ、作動のために壁に電気信号を循環的に供給する手段、壁に継続的に電気信号を付与する間の間隔内に液体チャンバの壁の温度依存性電気信号を測定して流体チャンバの流体の温度に依存する大きさの信号を与える手段、及び温度依存性信号の大きさに基づいて、作動用電気信号の大きさ(たとえば、作動用電気信号の振幅及び/又は作用時間)を調節する手段からなる液滴付着用装置を提供する。
【0013】
この装置は好ましくは作動用電気信号上に調節手段によって付与するための温度依存性電圧信号を与えるために温度依存性信号を形づくる手段をもつ。この形成手段は信号が温度によって直線的にかわるか又は非直線的にかわるかによって適宜のアレンジを適用しうる。
【0014】
一の態様において、測定手段はその入力部測定用電圧を受け入れる連続的に接続した2個のトランジスタ(壁の一方の側がトランジスタの共通出力部に接続し、壁の他方の側が回路の出力部に接続している)、及び出力部で電圧の減少速度を測定するために出力部に接続されて流体チャンバ内の流体の温度に依存する大きさの信号を与える手段とをもつ。測定中の壁の過熱を防ぐために、出力部に5Vを供給して測定用電圧を与えることができる。
【0015】
好ましくは、圧電材料は作動用電気信号を付与すると剪断モードで変形して流体射出チャンバ内に音圧力波を生じそれによって流体を射出するようなものである。
好ましいアレンジにおいて、圧電材料を各流体チャンバの側面に沿って配する。この液滴付着用装置は「エンドシューター」構造又は「サイドシューター」構造のいずれもとりうる。また出願人自身の特許文献4に記載されているように、圧電材料を各流体チャンバの裏面に配することもでき、それにより圧電材料への作動用信号の付与によって射出チャンバのノズルの方向へ又はそれから離れる方向に同材料を動かして流体射出用の所望の音圧力波を生じさせることができる。
【特許文献4】国際公開第WO00/16982号パンフレット
【0016】
本発明はまた、各液体射出チャンバが電気的作動用信号に応答して液滴を射出する手段、同チャンバ内の流体にさらされて流体の温度に依存する信号を与える手段及び作動用電気信号を調節するために温度依存性信号に応答する手段をもつ一列の流体射出チャンバをもつ液滴付着用装置を提供する。好ましくは、各流体射出チャンバはそこから液滴を射出するために電気信号で作動可能な少なくとも1の壁によってその一部が構成されており、同装置は信号を与えるために壁の温度依存性の電気的性質を用いる手段をもつ。
【0017】
本発明はまた複数の流体チャンバと、各流体チャンバ用に、同チャンバからの液滴射出を行うために電気信号によって作動できる圧電アクチュエータをもつ液滴付着用装置の操作方法を提供する。この方法は、各アクチュエータ手段にその作動用に電気信号を循環的に供給し;該アクチュエータ手段への継続的な電気信号の付与の間の間隔内に、該アクチュエータ手段の温度に依存する電気的性質を測定して該アクチュエータ手段と直結する流体チャンバ内の流体の温度に依存する大きさの信号を与え;そしてこの温度依存性信号の大きさに依存する作動用電気信号の大きさを調節することからなる。
【0018】
本発明の一態様を図面に基づいて説明する。
図1は流体チャンバの作動可能な壁の温度に対する電気容量の変化を示すグラフである。
図2はエンドシューター山形プリントヘッドの概略図である。
図3は図2のプリントヘッドの断面図である。
図4はコンデンサの充電曲線を示すグラフである。
図5はプリントヘッド内の温度指示性信号を与えるために用いる測定用回路のアレンジ図である。
図6は測定回路をもつテストボードのブロック図である。
図7は測定回路の出力を示すグラフである。
【0019】
図2に示す本発明の一態様の平面列型ドロップ・オン・デマンドインクジェットプリンタは多くの平行流体チャンバ又は流路2をもってつくられたプリントヘッド10をもち、ここでは流路2の9個だけを示しておりその長さ軸は平面に配されている。流路2はプリントヘッドの頂部全体を覆うカバー(図示せず)で閉ざされている。
【0020】
流路はエンドシューター構造をしており、ノズル板5内のそれらの対応する端部で終わっている。ノズル板5内にはノズル6が形成されており、その一つは各流体射出流路2用のものである。インク4等の流体が、要求に応じ、流体射出流路2から液滴7の形で射出され印刷表面9の印刷線8上に付着される。印刷表面とプリントヘッドの間には流路軸の面に垂直な相対運動がある。
プリントヘッド10は平らな基板部20をもち、そのなかに流路がノズル板5から平行に後方向に切られるか又はPZT圧電材料から作られている。
【0021】
流路2は長く狭くそして長方形の断面をもち、流路の長さ方向に対向する側壁11をもっている。流体射出流路2の側壁11は流路の長さ方向に沿って電極(図示せず)をもち、それにより側壁が長さ方向の実質上全体に沿う流路軸に対し横断的に剪断モードで変形可能となって、流路2内のインクに圧力変化をもたらしてノズルから液滴を射出させる。
【0022】
流路2はノズルから離れた端部で横断チャンネル(図示せず)と接続しており、横断流路はパイプ14によってインク貯蔵部(図示せず)と接続している。流体射出流路の側壁11を作動するための電気的接続(図示せず)は基板部20上にLSIチップ16になされている。典型的には、チップ16は流体射出流路2の関連側壁の変形用の電気信号を供給するための32個以下の別々の電極に接続しており、従って通常は一列の全流路の側壁に作動用電気信号を与えるよう複数のチップ16をもつ。しかしチップと接続する電極の数は当然要求に応じかえうる。
【0023】
図3に示すように、流路側壁11は反対に分極した領域をもっていて電界の付与によってそれらが山形に変形する。この列は基板と頂部壁25及び27間にはさまれた剪断モードアクチュエータ15、17、19、21及び23の形の変形可能な側壁11を有しており、各々は上壁部及び下壁部29及び31からつくられており、これらは矢印33及び35で示すように、流路軸を含む面と垂直に反対センスに分極される。
【0024】
流体射出流路2の内壁はそれぞれの電極37、39、41、43及び45でカバーされている。従って、電圧をある特定流路の電極、たとえば剪断モードアクチュエータ19及び21間の流路2の電極41、に付与すると、電極41の内壁のいずれかの側の流路2の電極39及び43は接地のままだが、電界がアクチュエータ19及び21に反対センスで付与される。上壁部と下壁部29及び31の反対の分極のため、これらは点線47及び49で示すようにそれらの間の流路2中に山形に剪断モードで偏向する。かくして衝撃がアクチュエータ19及び21間の流路2中のインクに付与され、音圧力波が生じて流路の長さ方向に移動してそこからインク液滴7を射出する。
【0025】
印刷操作の間に、たとえばチップ16によって熱が発生する。この熱は流体チャンバ2中に放散し、インク4の温度を上げ、インク4の粘度を低下させる。このようにインクの粘度が変動すると、液滴射出速度が変化し、その結果、印刷像にドット配置の誤差が生ずる。これらの誤差の発生を防ぐため、本発明の液滴付着用装置では、インクの温度を印刷操作中モニターする。これにより、流体射出チャンバ2の壁11に付与される作動用信号の大きさを、インクの粘度の低下を補うようにモニターした温度に応答して調節することが可能となる。
【0026】
本発明の装置では、作動可能な側壁11の温度依存性のある電気的性質を印刷操作の間中インク4の温度のモニターに用いる。壁11がインク4に直接接触しているので、インクの温度の速やかな変化を検知して速やかに対応できる。
【0027】
本発明者等は流路2の壁11の電気容量が温度の実質的に直線状の関数であることを見出し、また図1に示すように、確認した。その結果、温度依存性信号の大きさはインクの温度に直接比例しうる。図4にコンデンサ用の標準的充電曲線を示す。
図5において、測定用回路60が流路2内のインクの温度に依存する大きさをもつ信号を与えるために用いられる。
【0028】
回路60は2個の入力の抵抗器62、64をもち、それらは各々連結している一対のトランジスタ66、68のそれぞれ1つのゲートに接続している。流路2の壁は測定されるべき電気容量Cとして70に表され、コンデンサ70はその一方の側においてトランジスタ66、68の共通して接続されたドレンに接続されその他方の側において第1の出力抵抗器72に接続される。第2の出力抵抗器74はトランジスタ68の源に接続される。5ボルトの入力をトランジスタ66の源に供給し、そして出力76をコンデンサ70の他方の側に接続する。この測定回路は、たとえばチップ16の一部としてプリントヘッド上にとりつけたASIC中に組み込みうるほど十分に簡単なものである。
【0029】
図6に測定用回路60、電源82、コントローラ84及び比較器回路86をもつテストボード80を示す。
測定用回路60の出力を比較器回路86に供給する。接触76における出力を図7に示す。これは時間tの関数として、コンデンサ70の充電用電流Ic又は電圧Voのいずれかを示す曲線を示している。
【0030】
電流又は電圧が急激に増加するとマイナスになる前にゼロに減少する。コンデンサ70の電気容量はこの減衰又は充電時間、t(ch)に比例する。比較器回路86をこの時間を測定するようにアレンジする。コントローラ84を、たとえば90%というような予め定めた%に減衰を測定するように比較器86をセットするために用いうる。
【0031】
本発明者等は、充電/減衰時間が流路2の活性化の間の時間よりも短く、活動している流路2の壁の電気容器の測定を行うことができることを見出した。その結果、印刷操作を妨害することはない。
たとえば4.2kHzの周波数で操作している200ドット/インチのプリントヘッドでは、壁の電気容量の測定を42マイクロ秒内に行うことができる。これは十分に流路の活性化の間の240マイクロ秒の時間内にある。より速い測定をより速やかにプリントヘッドで行うこともできる。
【0032】
インク4の温度の室温からの偏差による、壁の電気容器の変動は、比較器回路86が流路2中のインクの温度を示す信号を出力するのに応答して減衰又は充電時間、t(ch)を変える。この信号は次いで壁に供給された作動用電気信号上に付加されることができるような形を形成する。これがさらに液滴の配置誤差を防ぐように射出流路2から射出された液滴の速度を修正する。
【0033】
上記したように、好ましい態様において、単一のチップ16が作動用信号を32以下の電極だけに供給し、従って32以下の流路のグループからの液滴の射出を制御する。それ故、典型的には複数のチップ16を用いて、それぞれがそれぞれの流路グループからの射出を制御する。一の態様において、各グループの壁の1つの電気容量をそれぞれのチップ16によって定期的に測定し、そのグループの流路の壁に供給される作動用流路の大きさを調節する。かくして、その列の各32番目の壁の電気容量を測定することによって、作動用電気信号を作動順序に依存して列を横切ってかえることができる。列を横断する温度感応性を増加させるために、各グループの壁の数を減らすことができる。
【0034】
本発明の利点の1つは、活動している流路を用い、多流路プリントヘッドを横断する温度の均一性を測定できることにある。さらなる利点は測定用回路がプリントヘッド上に設けたASIC中に、たとえばチップ16の一部として組み込むことができるほど十分に単純であるということである。また、5ボルトの供給源の使用は測定を毎秒行った場合でさえプリントヘッドのさらなる加熱をもたらさない。
【0035】
以上、本発明を例示的に説明したが、本発明の範囲内で種々の変形をなしうることは当然のことである。たとえば、上記では本発明を「エンドシューター」プリントヘッドを例に説明したが、本発明は「サイドシューター」形その他のプリントヘッドにも同様に適用できる。
さらに、適宜の手段を作動可能な流路の電気容量その他の適当な電気的性質を検知するために用いうる。たとえば、デジタル検知回路を選択された電気的性質の検知の間にノイズの発生に伴って生ずる問題を防ぐために用いることができる。
請求項を含むこの明細書及び/又は図面に開示した各特徴は他の開示及び/又は記載した特徴とは別に本発明に包含されうる。
【図面の簡単な説明】
【図1】
流体チャンバの作動可能な壁の温度に対する電気容量の変化を示すグラフ。
【図2】
エンドシューター山形プリントヘッドの概略図。
【図3】
図2のプリントヘッドの断面図。
【図4】
コンデンサの充電曲線を示すグラフ。
【図5】
プリントヘッド内の温度指示性信号を与えるために用いる測定用回路のアレンジ図。
【図6】
測定回路をもつテストボードのブロック図。
【図7】
測定回路の出力を示すグラフ。
【符号の説明】
2  流路
4  インク
5  ノズル板
6  ノズル
7  液滴
8  印刷線
10  プリントヘッド
11  側壁
14  パイプ
15,17,19,21,23  アクチュエータ
16  チップ
20  基板部分
37,39,41,43,45  電極
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a device for applying a droplet, such as a drop-on-demand ink jet printer.
[0002]
[Prior art]
The invention is particularly directed to printers and other devices for depositing droplets of liquid (eg, ink) from a chamber with sound pressure waves generated by electrical signals. This apparatus includes those with a single droplet ejection chamber, but typically are printheads with these chamber rows each with a nozzle, which printheads are available on demand. And an actuating electrical signal for data transmission that provides the output required to eject droplets from the device. Each chamber is connected by a piezoelectric element, and the piezoelectric element is deformed by an operation electric signal to generate a sound pressure wave to eject a droplet. These devices are disclosed in U.S. Pat. Nos. 6,059,009, 6,098,089, and 6,098,087 owned by the present applicant.
[0003]
In these patent documents, the piezoelectric material has a chevron structure and the side of the chamber extends in the longitudinal direction of the chamber. A structure is described in which the two regions of the piezoelectric material are coupled by a piezoelectric material having oppositely polarized regions, and when an electric signal is applied, both regions of the piezoelectric material are deformed in a cross-section in the same direction in a chevron. This structure is described in U.S. Pat. No. 6,037,086 as an "end shooter" printhead, in which the nozzle is at the end of a long chamber and piezoelectric material is deposited along the sides of the chamber. . Alternatively or in addition, there is a "side shooter" printhead described in U.S. Pat. No. 6,037,089, which has a nozzle on one of the longitudinal sides of the chamber that is not joined by piezoelectric material. belongs to. Either scheme results in a significant drop in drive voltage to exhibit a predetermined drop ejection function.
[0004]
During a printing operation, heat is generated by a drive circuit or the like that provides an actuation electrical signal to the piezoelectric material. This heat will be absorbed into the injection chamber and heat the injection fluid therein. Accordingly, the velocity of the ejected fluid decreases. When the speed of the ejection fluid changes in this manner, the droplet ejection speed changes, resulting in an error in the dot position of the printed image. In addition, as described in U.S. Patent No. 6,064,086, hysteresis loss caused by the operation of the piezoelectric material can result in an increase in the temperature of the ink in the ejection channel. In extreme cases, this increase in temperature can be localized only in the active channel and the channel adjacent thereto.
[0005]
The inventors have found that it is desirable to monitor the temperature of the droplet ejection fluid during a printing operation and adjust the magnitude of the actuation signal responsive to the monitored temperature. Known techniques include placing a thermistor electrically connected to a drive circuit on the outer surface of the printhead near the piezoelectric element. When the temperature at the thermistor position increases, the resistance value of the drive circuit decreases, and the magnitude of the operation signal applied to the piezoelectric element decreases. However, the insulation provided between the thermistor and the piezoelectric element by the printhead case and the layer of adhesive that attaches the thermistor to the case causes a difference between the temperature of the thermistor and the temperature of the droplet ejection fluid. This difference is significant if the temperature change in the printhead during the printing operation is fast, since the reactance of the drive circuit for temperature changes in the droplet ejection fluid is slow.
[0006]
[Patent Document 1] European Patent Application Publication No. 0277703 [Patent Document 2] US Patent No. 4,887,100 [Patent Document 3] International Publication WO91 / 17051 Pamphlet [0007]
[Problems to be solved by the invention]
It is an object of the present invention to solve these and other problems.
[0008]
[Means for Solving the Problems]
In one aspect, the invention comprises a plurality of liquid chambers, a piezoelectric actuator operable by an electrical signal to perform droplet ejection from each fluid chamber, means for cyclically supplying an electrical signal to each of the actuators, Within the interval between the application of the continuous electrical signal to the actuator means, measuring the temperature-dependent electrical properties of the actuator means to determine the temperature of the fluid in the fluid chamber in communication with the actuator means An apparatus for depositing droplets is provided, comprising: means for providing a magnitude signal; and means for adjusting an actuation electrical signal (eg, amplitude and / or duration) based on the magnitude of the temperature dependent signal.
[0009]
The present inventors have determined that it is important to ensure that the temperature sensor is in direct contact with the ejected fluid during the printing operation. We have also realized that these temperature sensing should not interfere with the standard print operation or print speed of the printhead. Since the temperature sensing occurs completely within the interval between the application of the continuous electrical signal, the temperature sensing does not interfere with the activation electrical signal and does not slow down the printing speed.
[0010]
In one aspect, the means for supplying an electrical signal is arranged to supply the operating means with an electrical signal at a frequency of 4-5 kHz, preferably 4.2 kHz. The action time is preferably 240 μs. In one embodiment, the time required to measure the electrical properties is 42 μs and the interval between actuations is less than 240 μs.
[0011]
In a preferred embodiment, this temperature dependent electrical property is capacitance. The inventors have found and experimentally confirmed that the capacitance of the piezoelectric actuator in the liquid chamber is a substantially linear function of temperature, as shown in FIG. As a result, it can be said that the magnitude of the temperature-dependent signal is directly proportional to the temperature of the ink.
[0012]
The actuator means preferably comprises a major portion of a respective wall of the chamber made of a piezoelectric material, and each actuatable channel wall deforms and ejects fluid from the fluid chamber when an actuating electrical signal is applied. Thus, in a preferred aspect, the present invention provides a plurality of fluid chambers, each part of which is constituted by at least one wall operable by an electrical signal to effect droplet ejection from each chamber. Means for cyclically supplying an electrical signal to the wall, measuring the temperature-dependent electrical signal of the wall of the liquid chamber during the interval between continuously applying the electrical signal to the wall and relying on the temperature of the fluid in the fluid chamber Droplets comprising means for providing a magnitude signal and means for adjusting the magnitude of the actuation electrical signal (eg, the amplitude and / or duration of the actuation electrical signal) based on the magnitude of the temperature dependent signal. An apparatus for deposition is provided.
[0013]
The device preferably has means for shaping the temperature-dependent signal to provide a temperature-dependent voltage signal on the operating electrical signal for application by the adjusting means. This forming means can apply an appropriate arrangement depending on whether the signal changes linearly or non-linearly with temperature.
[0014]
In one embodiment, the measuring means comprises two serially connected transistors (one side of the wall connected to the common output of the transistor and the other side of the wall connected to the output of the circuit) receiving its input measuring voltage. Connected to the output to provide a signal of a magnitude dependent on the temperature of the fluid in the fluid chamber for measuring the rate of decrease of the voltage at the output. In order to prevent overheating of the wall during measurement, a voltage for measurement can be provided by supplying 5 V to the output section.
[0015]
Preferably, the piezoelectric material is such that upon application of an actuating electrical signal, it deforms in a shear mode to produce a sound pressure wave in the fluid ejection chamber, thereby ejecting the fluid.
In a preferred arrangement, a piezoelectric material is placed along the sides of each fluid chamber. The device for depositing droplets can have either an "end shooter" configuration or a "side shooter" configuration. Also, as described in Applicant's own Patent Document 4, a piezoelectric material can be disposed on the back surface of each fluid chamber, so that an actuation signal is applied to the piezoelectric material in the direction of the nozzle of the injection chamber. Alternatively, the material can be moved away from it to produce the desired sound pressure wave for fluid ejection.
[Patent Document 4] International Publication WO00 / 16982 pamphlet
The invention also provides a means for each liquid ejection chamber to eject droplets in response to an electrical actuation signal, a means for exposing the fluid in the chamber to provide a signal dependent on the temperature of the fluid, and an actuation electrical signal. Apparatus for drop deposition having a row of fluid ejection chambers having means for responding to a temperature dependent signal to adjust the temperature. Preferably, each fluid ejection chamber is formed in part by at least one wall operable with an electrical signal to eject a droplet therefrom, the device comprising a temperature dependent wall for providing the signal. Means to use the electrical properties of
[0017]
The present invention also provides a method of operating a droplet deposition apparatus having a plurality of fluid chambers and, for each fluid chamber, a piezoelectric actuator operable by an electrical signal to cause droplet ejection from the chamber. The method cyclically supplies each actuator means with an electrical signal for its operation; within the interval between the continuous application of the electrical signal to the actuator means, an electrical signal dependent on the temperature of the actuator means. Measuring a property to provide a signal whose magnitude depends on the temperature of the fluid in the fluid chamber directly connected to the actuator means; and adjusting the magnitude of the actuation electrical signal depending on the magnitude of this temperature dependent signal. Consisting of
[0018]
One embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a graph showing the change in capacitance with respect to the temperature of an operable wall of a fluid chamber.
FIG. 2 is a schematic diagram of an end shooter chevron printhead.
FIG. 3 is a sectional view of the print head of FIG.
FIG. 4 is a graph showing a charging curve of the capacitor.
FIG. 5 is an arrangement diagram of a measuring circuit used to provide a temperature indicating signal in the print head.
FIG. 6 is a block diagram of a test board having a measurement circuit.
FIG. 7 is a graph showing the output of the measurement circuit.
[0019]
The planar row-type drop-on-demand ink jet printer of one embodiment of the present invention shown in FIG. 2 has a printhead 10 made with many parallel fluid chambers or channels 2, where only nine of the channels 2 are used. It is shown and its length axis is arranged in a plane. The channel 2 is closed by a cover (not shown) covering the entire top of the print head.
[0020]
The channels are of an end shooter configuration and terminate at their corresponding ends in the nozzle plate 5. Nozzles 6 are formed in the nozzle plate 5, one of which is for each fluid ejection channel 2. A fluid, such as ink 4, is ejected from the fluid ejection channel 2 in the form of droplets 7 on demand and deposited on a printing line 8 on a printing surface 9, as required. There is a relative movement between the printing surface and the printhead, which is perpendicular to the plane of the channel axis.
The print head 10 has a flat substrate part 20 in which the flow channels are cut rearward parallel to the nozzle plate 5 or are made of PZT piezoelectric material.
[0021]
The channel 2 is long, narrow and rectangular in cross section and has side walls 11 facing the length of the channel. The side wall 11 of the fluid ejection channel 2 has electrodes (not shown) along the length of the channel, so that the side wall is in shear mode transverse to the channel axis along substantially the entire length. And the pressure in the ink in the flow path 2 is changed to eject the droplet from the nozzle.
[0022]
Channel 2 is connected at an end remote from the nozzle to a transverse channel (not shown), which is connected by a pipe 14 to an ink reservoir (not shown). Electrical connection (not shown) for operating the side wall 11 of the fluid ejection flow path is made on the LSI chip 16 on the substrate section 20. Typically, the tip 16 is connected to no more than 32 separate electrodes for providing electrical signals for deformation of the associated side wall of the fluid ejection channel 2 and thus typically has a row of side walls of all channels. Have a plurality of chips 16 to provide electrical signals for actuation. However, the number of electrodes connected to the chip can of course vary according to requirements.
[0023]
As shown in FIG. 3, the channel side wall 11 has oppositely polarized regions, and they are deformed into a mountain shape by the application of an electric field. This row has deformable side walls 11 in the form of shear mode actuators 15, 17, 19, 21 and 23 sandwiched between the substrate and top walls 25 and 27, each having an upper wall and a lower wall. It is made of parts 29 and 31, which are polarized in opposite senses perpendicular to the plane containing the flow axis, as indicated by arrows 33 and 35.
[0024]
The inner wall of the fluid ejection channel 2 is covered with the respective electrodes 37, 39, 41, 43 and 45. Therefore, when a voltage is applied to an electrode of a particular flow path, for example, the electrode 41 of the flow path 2 between the shear mode actuators 19 and 21, the electrodes 39 and 43 of the flow path 2 on either side of the inner wall of the electrode 41 While still grounded, an electric field is applied to actuators 19 and 21 in opposite sense. Due to the opposite polarization of the upper and lower walls 29 and 31, they deflect in shear mode in a chevron into the flow path 2 between them as shown by the dotted lines 47 and 49. Thus, a shock is applied to the ink in the flow path 2 between the actuators 19 and 21, and a sound pressure wave is generated, moves in the length direction of the flow path, and ejects the ink droplets 7 therefrom.
[0025]
During the printing operation, heat is generated, for example, by the chip 16. This heat is dissipated into the fluid chamber 2, increasing the temperature of the ink 4 and reducing the viscosity of the ink 4. When the ink viscosity fluctuates in this manner, the droplet ejection speed changes, and as a result, a dot arrangement error occurs in the printed image. In order to prevent the occurrence of these errors, the temperature of the ink is monitored during the printing operation in the apparatus for depositing droplets of the present invention. This allows the magnitude of the actuation signal applied to the wall 11 of the fluid ejection chamber 2 to be adjusted in response to the monitored temperature to compensate for the decrease in ink viscosity.
[0026]
In the apparatus according to the invention, the temperature-dependent electrical properties of the operable side wall 11 are used to monitor the temperature of the ink 4 during the printing operation. Since the wall 11 is in direct contact with the ink 4, it is possible to detect a rapid change in the temperature of the ink and respond quickly.
[0027]
The present inventors have found that the capacitance of the wall 11 of the flow channel 2 is a substantially linear function of temperature and have confirmed it, as shown in FIG. As a result, the magnitude of the temperature dependent signal can be directly proportional to the temperature of the ink. FIG. 4 shows a typical charging curve for a capacitor.
In FIG. 5, a measuring circuit 60 is used to provide a signal having a magnitude dependent on the temperature of the ink in the flow path 2.
[0028]
Circuit 60 has two input resistors 62, 64, which are connected to the respective gates of a pair of transistors 66, 68 each connected. The wall of the channel 2 is represented at 70 as the capacitance C to be measured, the capacitor 70 being connected on one side to the commonly connected drain of the transistors 66, 68 and on the other side to the first Connected to output resistor 72. Second output resistor 74 is connected to the source of transistor 68. A 5 volt input is provided to the source of transistor 66 and output 76 is connected to the other side of capacitor 70. The measurement circuit is simple enough to be incorporated into an ASIC mounted on a printhead as part of chip 16, for example.
[0029]
FIG. 6 shows a test board 80 having a measurement circuit 60, a power supply 82, a controller 84, and a comparator circuit 86.
The output of the measuring circuit 60 is supplied to a comparator circuit 86. The output at contact 76 is shown in FIG. This shows a curve indicating either the charging current Ic of capacitor 70 or voltage Vo as a function of time t.
[0030]
A sudden increase in current or voltage decreases to zero before going negative. The capacitance of the capacitor 70 is proportional to this decay or charging time, t (ch). The comparator circuit 86 is arranged to measure this time. Controller 84 may be used to set comparator 86 to measure the attenuation to a predetermined percentage, such as 90%.
[0031]
The inventors have found that the charging / decay time is shorter than the time between activations of the flow channel 2, so that measurements can be made of the electric container on the wall of the active flow channel 2. As a result, the printing operation is not interrupted.
For example, with a 200 dot / inch printhead operating at a frequency of 4.2 kHz, measurements of wall capacitance can be made within 42 microseconds. This is well within the 240 microsecond time between channel activations. Faster measurements can also be taken with the printhead more quickly.
[0032]
Fluctuations in the wall electrical container due to deviations of the temperature of the ink 4 from room temperature are attenuated or charged in response to the comparator circuit 86 outputting a signal indicative of the temperature of the ink in the flow path 2, t ( ch). This signal then forms a shape that can be added to the actuation electrical signal supplied to the wall. This further corrects the speed of the droplet ejected from the ejection channel 2 so as to prevent the placement error of the droplet.
[0033]
As noted above, in a preferred embodiment, a single tip 16 provides actuation signals to only 32 or fewer electrodes, and thus controls the ejection of droplets from groups of 32 or less channels. Therefore, typically, a plurality of chips 16 are used, each of which controls the injection from its respective channel group. In one embodiment, the capacitance of one of the walls of each group is periodically measured by a respective chip 16 to adjust the size of the actuation channels supplied to the walls of the channels of that group. Thus, by measuring the capacitance of each thirty-second wall of the row, the activation electrical signal can be varied across the row depending on the activation sequence. To increase the temperature sensitivity across the rows, the number of walls in each group can be reduced.
[0034]
One of the advantages of the present invention is that it can measure temperature uniformity across a multi-channel printhead using active channels. A further advantage is that the measurement circuitry is simple enough to be incorporated into an ASIC provided on the printhead, for example as part of the chip 16. Also, the use of a 5 volt source does not result in additional heating of the printhead even when measurements are taken every second.
[0035]
As described above, the present invention has been exemplarily described, but it is obvious that various modifications can be made within the scope of the present invention. For example, while the invention has been described above with reference to an "end shooter" printhead, the invention is equally applicable to "side shooter" and other printheads.
Further, any suitable means can be used to detect the capacitance of the operable flow path and other suitable electrical properties. For example, a digital sensing circuit can be used to prevent problems associated with the generation of noise during sensing of selected electrical properties.
Each feature disclosed in the specification and / or drawings, including the claims, may be encompassed by the present invention apart from other disclosed and / or described features.
[Brief description of the drawings]
FIG.
5 is a graph showing the change in capacitance with temperature of an operable wall of a fluid chamber.
FIG. 2
FIG. 2 is a schematic view of an end shooter Yamagata print head.
FIG. 3
FIG. 3 is a cross-sectional view of the print head of FIG.
FIG. 4
4 is a graph showing a charging curve of a capacitor.
FIG. 5
FIG. 3 is an arrangement diagram of a measurement circuit used to provide a temperature indicating signal in a print head.
FIG. 6
FIG. 3 is a block diagram of a test board having a measurement circuit.
FIG. 7
4 is a graph showing the output of the measurement circuit.
[Explanation of symbols]
2 Flow path 4 Ink 5 Nozzle plate 6 Nozzle 7 Droplet 8 Print line 10 Print head 11 Side wall 14 Pipes 15, 17, 19, 21, 23 Actuator 16 Chip 20 Substrate part 37, 39, 41, 43, 45 Electrode

Claims (13)

複数の液体チャンバ、それぞれの流体チャンバから液滴射出を行うために電気信号によって作動しうる圧電アクチュエータ、該アクチュエータの各々に電気信号を循環的に供給する手段、該アクチュエータ手段への継続的な電気信号の付与の間の間隔内に、該アクチュエータ手段の温度に依存する電気的性質を測定して該アクチュエータ手段と連結する流体チャンバ中の流体の温度に依存する大きさの信号を与える手段、及び該温度依存性信号の大きさに基づき、作動用電気信号を調節する手段からなることを特徴とする液滴付着用装置。A plurality of liquid chambers, a piezoelectric actuator operable by an electrical signal to perform droplet ejection from each fluid chamber, means for cyclically supplying an electrical signal to each of the actuators, and continuous electricity to the actuator means Means for measuring a temperature dependent electrical property of the actuator means within the interval between application of the signals to provide a signal of a magnitude dependent on the temperature of the fluid in the fluid chamber in communication with the actuator means; An apparatus for adhering droplets, comprising means for adjusting an electric signal for operation based on the magnitude of the temperature-dependent signal. 供給手段が4〜5kHzの範囲の周波数にて電気信号をアクチュエータ手段に供給する請求項1の装置。2. The apparatus of claim 1 wherein the supply means supplies the electrical signal to the actuator means at a frequency in the range of 4-5 kHz. 供給手段が4.2kHzの周波数にて電気信号を供給する請求項2の装置。3. The apparatus of claim 2, wherein the supplying means supplies the electrical signal at a frequency of 4.2 kHz. 間隔が240μsである請求項1〜3のいずれか1項の装置。4. The device according to claim 1, wherein the interval is 240 [mu] s. 温度に依存する電気的性質が電気容量である請求項1〜4のいずれか1項の装置。The device according to any one of claims 1 to 4, wherein the temperature-dependent electrical property is capacitance. アクチュエータ手段がそれぞれのチャンバの壁の主要部を占める圧電材料をもち、各作動可能な流路が作動用電気信号を付与すると変形して流体チャンバから流体を射出できるものである請求項1〜5のいずれか1項の装置。6. The method of claim 1, wherein the actuator means comprises a piezoelectric material occupying a major portion of a wall of each chamber, and each operable flow path deforms upon application of an activation electrical signal to eject fluid from the fluid chamber. The device according to any one of the preceding claims. 測定手段がその入力部で測定用電圧を受け入れる連続的に接続された2個のトランジスタからなる測定用回路をもち、壁の一方の側がトランジスタの共通出力部に接続され、壁の他方の側が該回路から出力部に接続されており、さらに出力部で電圧の減衰割合を測定して流体チャンバ中の流体の温度に依存する大きさをもつ信号を与えるよう出力部に接続された手段をもつ請求項6の装置。The measuring means has a measuring circuit consisting of two transistors connected in series, which receives a measuring voltage at its input, one side of the wall being connected to the common output of the transistor and the other side of the wall being connected to the common output of the transistor. Means connected to the output from the circuit and further connected to the output to measure the rate of voltage decay at the output to provide a signal having a magnitude dependent on the temperature of the fluid in the fluid chamber. Item 6. The apparatus according to Item 6. 測定用電圧を与えるために5Vの供給電圧が入力部に接続される請求項7の装置。The apparatus of claim 7, wherein a 5V supply voltage is connected to the input to provide a measurement voltage. 圧電材料が作動用信号を付与すると剪断モードで変形して流体チャンバ内に音圧力波を生じ、それによって流体を射出するようになっている請求項6〜8のいずれか1項の装置。9. Apparatus according to any one of claims 6 to 8, wherein the piezoelectric material deforms in a shear mode upon application of an actuation signal to create a sound pressure wave in the fluid chamber, thereby ejecting the fluid. 圧電材料が各流体チャンバの側面に沿って配されている請求項6〜9のいずれか1項の装置。Apparatus according to any one of claims 6 to 9, wherein a piezoelectric material is disposed along a side of each fluid chamber. 複数の流体チャンバと、各流体チャンバ用に、同チャンバからの液滴射出を行うために電気信号によって作動できる圧電アクチュエータをもつ液滴付着用装置を操作するに際し、各アクチュエータ手段にその作動用に電気信号を循環的に供給し;該アクチュエータ手段への継続的な電気信号の付与の間の間隔内に、該アクチュエータ手段の温度に依存する電気的性質を測定して該アクチュエータ手段と直結する流体チャンバ内の流体の温度に依存する大きさの信号を与え;そしてこの温度依存性信号の大きさに依存する作動用電気信号の大きさを調節することからなることを特徴とする液滴付着用装置の操作方法。In operating a droplet deposition device having a plurality of fluid chambers and, for each fluid chamber, a piezoelectric actuator that can be actuated by an electrical signal to perform droplet ejection from the chamber, each actuator means is provided with an actuator for actuation thereof. Providing an electrical signal in a cyclical manner; within the interval between the continuous application of the electrical signal to the actuator means, measuring the temperature-dependent electrical properties of the actuator means to determine the fluid directly connected to the actuator means Providing a signal of a magnitude dependent on the temperature of the fluid in the chamber; and adjusting the magnitude of the actuation electrical signal dependent on the magnitude of the temperature dependent signal. How to operate the device. 図面を参照し明細書に実質的に記載されている液滴装置。A droplet device substantially as herein described with reference to the drawings. 図面を参照し明細書に実質的に記載されている液滴付着用装置の操作方法。A method for operating a device for depositing droplets substantially as herein described with reference to the drawings.
JP2002530310A 2000-09-26 2001-09-26 Droplet deposition device Pending JP2004509790A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GBGB0023545.7A GB0023545D0 (en) 2000-09-26 2000-09-26 Droplet deposition apparatus
PCT/GB2001/004307 WO2002026500A1 (en) 2000-09-26 2001-09-26 Droplet deposition apparatus

Publications (1)

Publication Number Publication Date
JP2004509790A true JP2004509790A (en) 2004-04-02

Family

ID=9900137

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002530310A Pending JP2004509790A (en) 2000-09-26 2001-09-26 Droplet deposition device

Country Status (11)

Country Link
US (1) US20090225111A1 (en)
EP (1) EP1322475B1 (en)
JP (1) JP2004509790A (en)
KR (1) KR100847083B1 (en)
CN (1) CN1241740C (en)
AT (1) ATE361199T1 (en)
AU (1) AU2001290120A1 (en)
BR (1) BR0114208A (en)
DE (1) DE60128248T2 (en)
GB (1) GB0023545D0 (en)
WO (1) WO2002026500A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006272909A (en) * 2005-03-30 2006-10-12 Brother Ind Ltd Ink-jet recorder
JP4905414B2 (en) * 2008-06-04 2012-03-28 セイコーエプソン株式会社 Liquid material discharge apparatus, liquid material discharge method, and electro-optical device manufacturing method
US20130293246A1 (en) * 2010-11-17 2013-11-07 Advanced Liquid Logic Inc. Capacitance Detection in a Droplet Actuator
EP2707131B1 (en) 2011-05-09 2019-04-24 Advanced Liquid Logic, Inc. Microfluidic feedback using impedance detection

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09262990A (en) * 1996-03-28 1997-10-07 Brother Ind Ltd Residual amount detection apparatus
JPH10235860A (en) * 1997-02-25 1998-09-08 Minolta Co Ltd Ink jet recording device
JPH1199648A (en) * 1997-09-29 1999-04-13 Oki Data Corp Ink-jet printer

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4879568A (en) 1987-01-10 1989-11-07 Am International, Inc. Droplet deposition apparatus
JPH01306252A (en) * 1988-06-03 1989-12-11 Seiko Epson Corp Ink jet recorder
JP2760097B2 (en) * 1989-11-01 1998-05-28 松下電器産業株式会社 Driving device for inkjet head
GB9010289D0 (en) 1990-05-08 1990-06-27 Xaar Ltd Drop-on-demand printing apparatus and method of manufacture
GB9605547D0 (en) 1996-03-15 1996-05-15 Xaar Ltd Operation of droplet deposition apparatus
GB9820755D0 (en) 1998-09-23 1998-11-18 Xaar Technology Ltd Drop on demand ink jet printing apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09262990A (en) * 1996-03-28 1997-10-07 Brother Ind Ltd Residual amount detection apparatus
JPH10235860A (en) * 1997-02-25 1998-09-08 Minolta Co Ltd Ink jet recording device
JPH1199648A (en) * 1997-09-29 1999-04-13 Oki Data Corp Ink-jet printer

Also Published As

Publication number Publication date
DE60128248T2 (en) 2008-01-10
KR20030045793A (en) 2003-06-11
KR100847083B1 (en) 2008-07-18
US20090225111A1 (en) 2009-09-10
AU2001290120A1 (en) 2002-04-08
CN1466522A (en) 2004-01-07
WO2002026500A1 (en) 2002-04-04
DE60128248D1 (en) 2007-06-14
EP1322475A1 (en) 2003-07-02
CN1241740C (en) 2006-02-15
EP1322475B1 (en) 2007-05-02
ATE361199T1 (en) 2007-05-15
BR0114208A (en) 2003-10-07
GB0023545D0 (en) 2000-11-08

Similar Documents

Publication Publication Date Title
CN102689516B (en) Jet head liquid and liquid injection apparatus
JP4243340B2 (en) Inkjet recording apparatus, image forming apparatus, head drive control apparatus, head drive control method, and inkjet head
US9862187B1 (en) Inkjet printhead temperature sensing at multiple locations
JPH04232753A (en) Device for electronically detecting air in print head
US20080084457A1 (en) Liquid Ejection Head And Driving Method Thereof
CN102673153B (en) Liquid ejection head and liquid ejection apparatus
JPH01171951A (en) Method of adjusting speed of ink-drip of ink jet nozzle in aligned nozzle
EP1946933B1 (en) Inkjet recording apparatus
US7524040B2 (en) Liquid ejection head and liquid ejection apparatus
JP2004509790A (en) Droplet deposition device
US9073373B2 (en) Control method of and control device for controlling liquid ejection head, and liquid ejecting apparatus
US20030058292A1 (en) Droplet deposition apparatus
JP2016150487A (en) Liquid injection device
US7658458B2 (en) Inkjet recording apparatus and method of determining control condition in the apparatus
US6296346B1 (en) Apparatus for jetting ink utilizing lamb wave and method for manufacturing the same
JP2004017600A (en) Liquid jet head and liquid jet device
JP2005335294A (en) Drive controlling method of liquid-droplet discharging head, drive controller of liquid-droplet discharging head and liquid-droplet discharging device
JP6136006B2 (en) Droplet ejection apparatus and image forming apparatus
JP2002046265A (en) Driving method of ink jet head
JP2001205798A (en) Ink jet recorder, and method for driving ink jet recording head
JPH11207953A (en) Ink jet recording device and drive method therefor
JPH03162965A (en) Temperature compensator for liquid jet recording head
JP2002210956A (en) Ink jet head and ink jet recorder
JPH02239941A (en) Ink jet printer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110301

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111004