JP2004501683A - Antimicrobial reservoir for implantable medical devices - Google Patents

Antimicrobial reservoir for implantable medical devices Download PDF

Info

Publication number
JP2004501683A
JP2004501683A JP2002505055A JP2002505055A JP2004501683A JP 2004501683 A JP2004501683 A JP 2004501683A JP 2002505055 A JP2002505055 A JP 2002505055A JP 2002505055 A JP2002505055 A JP 2002505055A JP 2004501683 A JP2004501683 A JP 2004501683A
Authority
JP
Japan
Prior art keywords
antimicrobial
reservoir
diffusible
medical device
implantable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002505055A
Other languages
Japanese (ja)
Inventor
チン,ジョーゼフ エイ
パサック,シー ピー
Original Assignee
サルザー カーボメディクス インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サルザー カーボメディクス インコーポレイテッド filed Critical サルザー カーボメディクス インコーポレイテッド
Publication of JP2004501683A publication Critical patent/JP2004501683A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L29/00Materials for catheters, medical tubing, cannulae, or endoscopes or for coating catheters
    • A61L29/14Materials characterised by their function or physical properties, e.g. lubricating compositions
    • A61L29/16Biologically active materials, e.g. therapeutic substances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/16Macromolecular materials obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/54Biologically active materials, e.g. therapeutic substances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • A61F2/2409Support rings therefor, e.g. for connecting valves to tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0058Additional features; Implant or prostheses properties not otherwise provided for
    • A61F2250/0067Means for introducing or releasing pharmaceutical products into the body
    • A61F2250/0068Means for introducing or releasing pharmaceutical products into the body the pharmaceutical product being in a reservoir
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/40Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
    • A61L2300/404Biocides, antimicrobial agents, antiseptic agents

Abstract

埋込可能抗菌性医療装置は1つまたはそれより多くの抗菌物質レザバーを備え、そのようなレザバーのそれぞれは、抗菌物質を生体内における時限放出のためにあらかじめ定められた分布で取り込む1つまたはそれより多くの多孔質で疎水性のコアを含む。抗菌物質レザバーコアに取り込まれれた抗菌物質のあらかじめ定められた分布は、超臨界流体溶剤キャリアの使用により達成される。そのような溶剤キャリアからの抗菌物質の析出は、溶剤キャリアを、加熱または冷却するか、あるいは周囲圧力を低下させることにより、達成される。Implantable antimicrobial medical devices include one or more antimicrobial reservoirs, each such reservoir incorporating one or more antimicrobial agents in a predetermined distribution for timed release in vivo. It contains more porous and hydrophobic cores. A predetermined distribution of the antimicrobial substance incorporated into the antimicrobial reservoir core is achieved through the use of a supercritical fluid solvent carrier. Precipitation of the antimicrobial substance from such a solvent carrier is achieved by heating or cooling the solvent carrier or reducing the ambient pressure.

Description

【0001】
背景技術
本発明は全般的には患者への埋込を目的とする医療装置に関する。さらに詳しくは、本発明は、埋込後の医療装置またはその近くにおける感染を阻止するための、医療装置における抗菌物質の取込みに関する。
【0002】
埋込可能医療装置は人間の様々な疾患及びその他の状況の管理において極めて重要になっている。埋込後のそのような医療装置の表面上の微生物によるコロニー形成は比較的稀にしかおこらないが、埋め込まれた装置の取出し及び/または交換を行う必要を、二次感染の断固たる処置とともに含む、重篤で、費用のかかる合併症を生じ得る。
【0003】
埋め込まれた医療装置に関係付けられる感染率は比較的に高くはないが、そのような感染がおこってしまった場合の、感染患者への脅威及び医療システムにかかる費用は重大である。例えば、心臓弁交換手術における最も重篤な合併症の1つは、人工弁性心内膜炎(PVE)である。PVEは、埋込時に人工弁縫付けカフが取り付けられる解剖学的組織(輪)に縫付けカフが接する接合部またはその近くでの細菌感染の結果である。PVEの総合発生率は1年に患者1人当り約1%に過ぎないが、この状況には高い罹病率及び(60%までの)死亡率がともなう。
【0004】
埋め込まれた医療装置における感染の抑制に様々な手法が試みられたが、限られた成功しか得られていない。例えば、不動化された抗菌性化合物を含む被膜により実験室環境において装置の細菌コロニー形成が有効に抑えられることが報告されたが、臨床環境において同様の結果を再現することは困難であった。生体内で有効であるためには、医療装置の表面上に不動化された抗菌物質が、装置を汚染した、コロニーを形成する細菌と直接に接触しなければならない。あいにくなことに、病原性細菌はその中で細菌が成長する、バイオフィルムと呼ばれる、粘性保護物質をつくる。バイオフィルムは、とりわけ、細菌が付着する基板表面との細菌細胞の直接接触を妨げ、細菌を基板表面に存在し得る、バイオフィルムがなければ毒性の、材料に対して耐性にする。
【0005】
実験室においては、ある程度の抗菌活性を与える目的で1つのまたは別の方法で処理された医療装置の抗菌効能が、装置を細菌培養に曝露することにより評価されることが多かった。そのような試験のための細菌の選択及び源が、(プランクトン様細菌と呼ばれる)細胞培養内に自由に浮遊する微生物が細菌培養容器または埋め込まれた医療装置のような基板に付着する細菌とは異なる挙動を示すことから、有意な結果を得るために極めて重要である。プランクトン様細菌は表面上に不動化された抗菌物質に対してバイオフィルム形成細菌より感受性が高い。したがって、不動化された抗菌物質で被覆された装置は、実験室ではプランクトン様細菌によるコロニー形成を有効に防止できるが、病原性のバイオフィルム形成細菌による生体内での装置感染を防止するには完全に無効であり得る。この結果、臨床感染からもたらされるバイオフィルム型細菌ではなく、実験室において培養されたプランクトン様細菌の実験使用により、バイオフィルム型細菌に対する臨床上の効能に欠ける医療装置が数多く商品化されることになった。
【0006】
バイオフィルム型細菌の成長を有効に阻害するためには、抗菌物質がバイオフィルムを浸透すべきである。これを達成するためには、抗菌物質が埋込後に医療装置から周囲組織内に拡散できなければならない。したがって、医療装置の表面上に不動化された(すまわち拡散しない)抗菌物質は、多くの病原性微生物に対してほとんど有効ではない。より有効な医療装置は、拡散性抗菌物質を埋込後に局所的環境に送り出す能力をもつことになろう。
【0007】
埋め込まれた医療装置の局所的環境内への抗菌物質の放出を可能にする態様で、抗菌物質を医療装置上に被覆するか、さもなければ医療層内に取り込むための、様々な方法が発表されている。例えば、本明細書に参照として含まれる、米国特許第5,624,704号明細書は、初めに抗菌物質を有機溶剤に溶かして抗菌性調合物を形成することによる、抗菌物質を非金属製医療インプラントに含浸させるための方法を開示している。その後、別の浸透薬及びアルカリ化薬が抗菌性調合物に添加される。得られた抗菌性調合物は次いで、埋込後の放出のために、調合物を医療装置の材料内に取り込むため、目的の医療装置に与えられる。
【0008】
有機溶剤内の溶質として埋込可能医療装置に初めに与えられた抗菌物質は、理想的には、溶剤が除かれたときに、あらかじめ定められた分布で装置内に取り込まれたままでいるであろう。そのような装置内の所望のあらかじめ定められた分布の維持が、生体内(すなわち埋込後)における抗菌物質の予測可能な放出動態を得るに重要である。そのような予測可能な放出動態は、続いて、薬剤の過剰適用を回避しながら(すなわち、装置周囲におけるいかなる抗菌物質の過剰濃度をいかなるときにも回避しながら)、装置周囲に臨床上効能のある抗菌物質の阻害帯(ZOI)をある有効期間にわたって確立するために必須である。
【0009】
従来の溶剤除去は一般に医療装置表面からの蒸発によっているため、有機溶剤の抽出中に装置内で溶質の濃度勾配が生じることは事実上不可避である。そのような勾配が存在すると、溶剤キャリアからの抗菌物質の析出が装置の周縁近傍でおこりがちであり、取り込まれた抗菌物質の量が目減りし、装置周囲の所望のあらかじめ定められた抗菌物質ZOIをある期間の間維持するという課題が複雑化するであろう。埋込可能医療装置内に抗菌物質の濃度勾配が存在すると、生体内における装置からの抗菌物質の拡散効率が低くなり、したがって、埋込後の臨床上の抗菌効能が減じる。
【0010】
埋込後の抗菌物質放出持続期間の間は少なくとも最小有効ZOIを維持するための代表的な試みでは一般に、放出持続期間の少なくとも一部にわたる薬剤の(有毒であり得る)過剰適用がおこるであろう。対照的に、本発明は、溶剤抽出中の埋込可能抗菌性医療装置内における望ましくない溶質再分布を最小限に抑え、同時に、溶剤除去を最大化する。これらの条件は、埋込可能医療装置が毒性を生じる可能性を低めると同時に埋込可能医療装置の抗菌効能を高める上で、互いに補完する。
【0011】
発明の開示
本発明は、非限定的例として、人工心臓弁、弁形成リング、ペースメーカー、ポンプ及びカテーテルのような、埋込可能抗菌性医療装置に関する方法及び装置を含む。本発明にしたがう埋込可能抗菌性医療装置は、少なくとも1つの多孔質で疎水性のレザバーコアに1つまたはそれより多くの抗菌物質を取り込んでいる少なくとも1つの拡散性抗菌物質レザバーに結合された埋込可能医療装置を含む。抗菌物質の所望の分布は、好ましくは超臨界二酸化炭素(SCO2)を含む、少なくとも1つの超臨界流体または近超臨界流体を含む超臨界流体溶剤の使用により1つまたはそれより多くの抗菌物質を対応するレザバー部分に選択的に装荷することにより達成される。好ましい実施形態において、抗菌物質は、あらかじめ定められた非一様分布で、レザバーコアに存在する。
【0012】
本発明にしたがう拡散性抗菌物質レザバー内の抗菌物質の分布により、臨床上有効な期間にわたり生体内の埋込可能抗菌性医療装置周囲に医療上有効なZOIを維持するに十分な量の物質の時限放出がおこる。初めにZOIを確立するには一般に、組織内抗菌物質濃度を有効レベルまで高めるため及び/または埋込中の感染因子汚染を消すために、レザバーからの比較的高速な抗菌物質の拡散が必要であろう。その後、臨床上有効な期間にわたり薬剤の過剰適用をおこすことなく臨床上有効なZOIを維持するに十分に迅速に、1つまたはそれより多くの抗菌物質がレザバーから放出される。
【0013】
後の生体内における拡散のために1つまたはそれより多くの多孔質で疎水性のレザバーコア内の1つまたはそれより多くの抗菌物質のあらかじめ定められた、好ましくは非一様な、分布を確立するための超臨界流体溶剤の使用により、埋込可能医療装置において従来は得られなかった実質的な臨床上の恩恵が得られる。所望の物質を材料に含浸させるための超臨界流体の使用は、医療分野外では発表されていた。特に、木材防腐剤及び/または木材の寸法安定性を高める材料を材木に含浸させるための超臨界二酸化炭素溶剤の使用が発表されている(米国特許第5,094,892号明細書を参照されたい)。しかし、本発明におけるような、拡散性抗菌物質レザバーを作成するための超臨界流体溶剤の使用の、医療分野に属さない研究による発表ないし示唆はこれまでなかった。
【0014】
SCO2は、脂質、油及びその他の低分子量有機化合物に対する強力な溶剤である。SCO2は水に不溶であり、その溶媒和力は上記特許文献及び、例えば、本明細書にその全体が参照として含まれる、米国特許第5,533,538号明細書に開示されるように、温度及び/または圧力の変化により制御することができる。SCO2は、種子及び農産食材から直接に香辛料及び油を抽出するために、工業的に用いられている。生理活性物質の微粒子の形成(例えば、本明細書に参照として含まれる、米国特許第5,639,441号明細書を参照されたい)、及びそのような粒子の人間または動物への直接投与(例えば、本明細書に参照として含まれる、米国特許第5,301,664号明細書を参照されたい)におけるSCO2の効用が開示されている、発行済特許もある。しかし、上掲の特許文献のいずれも、本発明におけるような、拡散性抗菌物質レザバーの作成におけるSCO2またはその他の超臨界流体の使用を開示していない。
【0015】
SCO2は、上掲の特許文献に言及されているように、補助溶剤(例:亞酸化窒素またはエタノール)及び/または界面活性剤(例:ポリソルベート80またはジパルミトイルレシチン)のような、1つまたはそれより多くの佐剤と組み合されて使用されることが多い。二酸化炭素自体は環境に比較的優しく、よって二酸化炭素の使用により溶剤廃棄費用が低減される。本発明において、SCO2を含むことが好ましい超臨界流体溶剤の溶媒和力は、そのような溶剤により運ばれる選択された抗菌物質の析出があらかじめ定められた抗菌物質レザバー内分布で生じるように制御される。本発明の1つより多くの抗菌物質が超臨界流体溶剤により運ばれる場合、そのような抗菌物質のそれぞれの選択的析出は溶媒温度及び溶媒周囲圧力の制御により得ることができる。
【0016】
超臨界流体溶剤からの抗菌物質の選択的析出は、例えば、そのような溶剤を(運ばれる溶質に依存して)加熱または冷却することにより、及び/または溶剤化合物の臨界未満状態への復帰を生じさせるに十分に溶剤周囲圧力を低下させることにより、おこり得る。好ましい実施形態において、SCO2及び(亞酸化窒素のような)超臨界補助溶剤は、抗菌物質の選択的析出をおこさせるために、同時にまたは続けて、超臨界状態から臨界未満状態に転換させることができる。すなわち、抗菌物質レザバーの予備加熱または予備冷却された部分を、選択された抗菌物質を優先的に取り込むためにつくることができる。
【0017】
あるいは、抗菌物質レザバー内の好ましい位置に既に存在する超臨界流体溶剤から抗菌物質を析出させるために、加熱または冷却を選択的に適用することができる。さらに、抗菌物質レザバーの好ましい部分への抗菌物質の選択的装荷は、実質的に所定の位置への(すなわち、実質的な溶質再分布なしの)析出溶質の装荷を生じさせる溶剤周囲圧力の低下により達成することができる。抗菌物質レザバーコア内の動的な溶剤周囲圧力勾配の確立により、例えば、コア内の1つまたはそれより多くの好ましい位置における抗菌物質の析出が容易になり得る。
【0018】
本発明の埋込可能抗菌性医療装置の埋込後、あらかじめ定められた期間にわたり感染因子に対して臨床上有効な装置に隣接する阻害帯(ZOI)をつくるために、少なくとも1つのレザバーから、少なくとも1つの既に取り込まれている拡散性抗菌物質が拡散する。したがって、埋込可能抗菌性医療装置は、術後期間のあらかじめ定められた部分の間、埋込レシピエントにおける感染性罹病率を改善する能力を有する。
【0019】
本発明の埋込可能抗菌性医療装置は埋込可能医療装置に結合された1つまたはそれより多くの拡散性抗菌物質レザバーを備え、そのようなレザバーのそれぞれは少なくとも1つの多孔質で疎水性のレザバーコアを含み、レザバーコア自体は、例えばポリエステル布地及び/またはポリテトラフルオロエチレン(PTFE)/シリコーンゴムフェルトを含む。拡散性抗菌物質レザバーの医療装置への結合は、対応するレザバーコアの医療装置への直接結合により、あるいはそれ自体は対応するレザバーコアに結合されている浸透性レザバーコアカバーを医療装置に結合することにより達成される。好ましい実施形態において、抗菌物質レザバーは、人工心臓弁の縫付けカフに、及び弁形成リングの内部に、組み込まれる。
【0020】
そのようなレザバーコアまたはレザバーコアの浸透性カバーの医療装置への結合は、例えば、接着、縫付け、締付け、融着、クリップ止め、及び当業者には既知の類似の技法により達成することができる。好ましい結合技法は、結合に必要な機械的強度及びそれぞれのレザバーコア及び/または存在し得るレザバーコアの何らかの浸透性カバーの固有の機械的強度に、ある程度依存するであろう。
【0021】
抗菌物質レザバーの多孔質で疎水性のコアのそれぞれは、1つまたはそれより多くの拡散性抗菌物質を(例として、結晶化抗菌物質の吸着及び/または機械的閉込めにより)取り込む。そのような物質のそれぞれは、レザバーコアに浸透し、埋め込まれた装置に隣接する体液とも通じる、体液内の溶質として生体内で制御された放出を受ける。
【0022】
拡散性抗菌物質が本発明の抗菌物質レザバーから放出される期間はあらかじめ、レザバー内に取り込まれた拡散性抗菌物質の分子量、極性、分布及び濃度に加えて、対応する疎水性コアのそれぞれの多孔度の選択によっても、ある程度定められる。拡散性抗菌物質の好ましい選択には、スルファジアジン銀、硝酸銀、リファンピン、ミノサイクリンまたは二酢酸クロルヘキシジンがあるが、これらには限定されない。生体内に有効なZOIを得るためのそのような抗菌物質の放出動態を決定できるその他の要因には、関係する体液の流量に加えて、それを通して拡散がおこる組織及び/または体液の性質もある。
【0023】
体液及び実質的に固体の組織のいずれとも接触するようにされている、心臓弁のような埋込可能装置は、2つまたはそれより多くの相異なる拡散性抗菌物質レザバーを備え得ることが好ましい。多数の拡散可能抗菌物質レザバー内に(必要に応じて)相異なる拡散速度を有する相異なる拡散性抗菌物質を取り込むことは、選択された用途において、埋め込まれた抗菌性医療装置に接触しているそれぞれの組織及び体液における微生物活動をより有効に阻害するために役立ち得る。すなわち、例えば、初期感染発症期間内(一般に埋込後60日以内)に埋め込まれた装置に影響し得る臨床上重要な感染因子の、タイプ、位置及び出現順序に対して、より正確に微生物阻害を合せ込むことができる。
【0024】
発明を実施するための最良の態様
本発明の一態様にしたがえば、生体内において抗菌特性を有する埋込可能医療装置を作成するための方法が提供される。そのような好ましい方法の1つは、超臨界抗菌物質溶液を形成するために、必要に応じて1つまたはそれより多くの補助溶剤または界面活性剤またはこれらの組合せを含む適当な超臨界流体溶剤に、1つまたはそれより多くの抗菌物質を溶かす工程を、一部に、含む。超臨界抗菌物質溶液は、その後、1つまたはそれより多くの抗菌物質があらかじめ定められた分布で析出する、1つまたはそれより多くの多孔質で疎水性のレザバーコアに取り込まれる。そのような析出は、超臨界抗菌物質溶液への加熱、冷却、または周囲圧力の低下の適用によりおこる。その後の、そのような析出をおこさせるために加熱または冷却だけが用いられた場合のいかなる超臨界溶剤化合物の除去、あるいはそのような析出をおこさせるために周囲圧力の低下が用いられた場合のいかなる臨界未満溶剤化合物の除去により、抗菌物質レザバーが得られる。
【0025】
超臨界抗菌物質溶液の使用により、上記方法に関していくつかの利点が得られる。例えば、そのような溶液の粘度は比較的低く、よって、多孔質で疎水性のレザバーコアへの急速な溶液浸透が容易になる。また、レザバーコア内に析出した抗菌物質溶質の所望の(あらかじめ定められた)分布も、溶液の選択的加熱または冷却により、及び/または周囲圧力の全体的な低下により、得ることができる。いかなる超臨界抗菌物質溶液においても二酸化炭素からなる部分は、比較的容易に回収され、環境にも比較的優しく、したがって処理費用が低減される。
【0026】
超臨界流体溶剤使用の欠点には、溶剤化合物の対応する超臨界状態に適合する温度及び圧力の達成及び維持に用いられる装置の費用が比較的高いことがある。臨界未満状態と超臨界状態との間の循環にともなうエネルギー費用もかなりの大きさになり得る。しかし、これらの費用は、超臨界抗菌物質溶液からの抗菌物質の析出が、超臨界流体溶剤化合物を臨界未満状態に転換するための周囲圧力の低下にはよらず、好ましくは、超臨界状態にある溶液の加熱または冷却により達成されるならば、低減することができる。
【0027】
本発明にしたがえば、抗菌物質レザバーは、抗菌物質を取り込み、浸透性ポリエステル布地で覆われた、ポリテトラフルオロエチレンフェルトレザバーコアを含む。浸透性カバーは圧締リングにより人工心臓弁にクランプ止めされ、よってレザバーが人工心臓弁に結合される。
【0028】
抗菌物質レザバーコア内または上への抗菌物質の取込みは、あらかじめ定められた有用な分布をとるようになされる。本発明にしたがう埋込可能抗菌性医療装置にそのように取り込まれた抗菌物質は、生体内環境への曝露後に、医療装置からの臨床上望ましい抗菌物質放出動態を示す。したがって、そのような医療装置には、埋込後の微生物コロニー形成が極めておこりにくい。
【0029】
本明細書で用いられる“取り込まれた”及び“取り込んでいる”のような語句は、少なくとも何らかの拡散性抗菌物質が、抗菌物質レザバーに含まれる1つまたはそれより多くの多孔質で疎水性の構造体(レザバーコア)に浸透するか、付着するか、構造体内に滞留するか、あるいは何か別の形で構造体に結合されるようになることを意味する。すなわち、そのような拡散性抗菌物質は、コアの表面に(被膜内にあるように)主として結合されることができ、コアの細孔内または細孔間に浸透することができ、コア構造と共有結合またはイオン結合することができ、また他の存在態様をとることもできる。拡散性抗菌物質と本発明の抗菌物質レザバーコアとの間の結合の好ましい性質は、用いられる特定の拡散性抗菌物質、埋め込まれた抗菌性医療装置に望ましい(例えば放出動態を含む)抗菌活性、及び/または医療装置自体のタイプ及び構造に依存する。
【0030】
埋め込まれた抗菌性医療装置の抗菌物質レザバーコア内または上に取り込まれた抗菌性物質の拡散性分画は、例えば、処置前後のコアまたは装置全体の質量分析により評価することができる。あるいは、処置後に残存する取り込まれた抗菌性物質は、初めに取り込まれた量との比較のために、適切な方法を用いて装置から抽出するか、さもなければ除去することができる。
【0031】
本発明にしたがって作成及び/または使用される埋込可能抗菌性医療装置は、心臓血管装置、整形インプラント及びその他の様々なプロテーゼ装置を含む、開業医が利用できるタイプの数多くの装置のいずれからも選択することができる。そのような装置の例には、弁形成リング、心臓弁縫付けカフ、カテーテル縫付けカフ、心臓パッチ、移植血管、創傷包帯、縫合糸、外科用綿撤糸及びその他の同様な装置を含めることができるが、これらには限定されない。さらなる例には、固定器ピン、大腿プロテーゼ、股臼プロテーゼ、義歯等を含めることができる。
【0032】
本明細書で用いられる“抗菌物質”は、1つまたはそれより多くの微生物の成長及び/または増殖の阻害に有効な、本質的にいかなる抗生物質、防腐薬、消毒薬等も、またはこれらの組合せも指す。数多くの抗生物質類が知られており、本発明にしたがう使用に適し得る。そのような抗生物質類には、テトラサイクリン類(例:ミノサイクリン)、リファマイシン類(例:リファンピン)、マクロライド類(例:エリスロマイシン)、ペニシリン類(例:ナフシリン)、セファロスポリン類(例:セファゾリン)、その他のβ−ラクタム抗生物質類(例:イミペネム及びアズトレオナム)、アミノ配糖体類(例:ゲンタマイシン)、クロラムフェニコール、スルホンアミド類(例:スルファメトキシアゾール)、グリコペプチド類(例:バンコマイシン)、キノロン類(例:シプロフロキサシン)、フシジン酸、トリメトプリム、メトロニダゾル、クリンダマイシン、ミューピロシン(muprocin)、ポリエン類(例:アンホテリシンB)、アゾート(azote)類(例:フルコナゾール(fluconazole))、β−ラクタム阻害薬等があるが、必ずしもこれらには限定されない。
【0033】
本発明にしたがって用いられ得る抗生物質の実例には、ミノサイクリン、リファンピン、エリスロマイシン、ナフシリン、セファゾリン、イミペネム、アズトレオナム、ゲンタマイシン、スルファメトキシアゾール、バノマイシン(vanomycin)、シプロフロキサン、トリメトプリム、メトロニダゾル、クリンダマイシン、テルコプラニン(telcoplanin)、ミューピロシン、アジスロマイシン(azithromycin)、クラリスロマイシン(clarithromycin)、オフロキサシン(ofloxacin)、ロメフロキサシン(lomefloxacin)、ノルフロキサシン、ナリジクス酸、スパルフロキサシン(sparfloxacin)、ペフロキサシン(pefloxacin)、アミフロキサシン(amifloxacin)、エノキサシン(enoxacin)、フレロキサシン(fleroxacin)、テルナフロキサシン(ternafloxacin)、トスフロキサシン(tosufloxacin)、クリナフロキサシン(clinafloxacin)、スルバクタム、クラブラン酸、アンホテリシンB、フルコナゾール、イトラコナゾール(itraconazole)、ケトコナゾール、ナイスタチン、及びその他の同様な化合物がある。本発明にしたがって用いられる抗生物質は一般に、比較的低い水溶度を有し、よって長時間かけて体液に溶解していくように、選ばれることになろう。さらに、広範囲な抗微生物活性を得るために相異なる作用態様を有する1つまたはそれより多くの抗生物質を抗菌物質レザバーに取り込むことが、多くの用途でおそらく望ましいであろう。
【0034】
本発明での使用に適する防腐剤及び消毒薬には、例えば、ヘキサクロロフェン、陽イオン性ビスグアニド類(例:クロロヘキシジン(chlorohexidine)、シクロヘキシジエン(cyclohexidiene)等)、ヨウ素及びヨードフォア類(例:ポビドンヨード)、パラクロロメタキシレノール、医用フラン製剤(例:ニトロフラントイン、ニトロフラゾン)、メテナミン、アルデヒド類(グルタルアルデヒド、ホルムアルデヒド等)、アルコール等を含めることができる。
【0035】
本発明の好ましい実施形態において、本発明にしたがう抗菌物質レザバーに取り込まれる抗菌物質は、ミノサイクリンまたはリファンピンあるいはこれらの混合物を含む。ミノサイクリンは、タンパク質合成を阻害することにより機能するテトラサイクリンから誘導された半合成抗生物質である。リファンピンは、糸状菌のストレプトミセス・メディタレイニク(Streptomuces mediterranic)により生成される大環状抗生化合物である、リファマイシンBの半合成誘導体である。リファンピンは、細菌のDNA依存性RNAポリメラーゼ活性を阻害し、本質上殺菌性である。ミノサイクリン及びリファンピンはいずれも市販されており、数多くの有機溶剤に可溶であり、広汎なグラム陽性及びグラム陰性の有機体に対して活性である。
【0036】
本発明の抗菌物質レザバー内に抗菌物質を取り込むために、所望の抗菌物質がまず適切な超臨界流体溶剤に溶かされて、超臨界抗菌物質溶液が形成される。好ましい超臨界流体溶剤には、注目する抗菌物質を完全に溶解させ、抗菌物質レザバーコアへのあらかじめ定められた分布での、溶解された抗菌物質の内の少なくともいくらかの取込みを容易にするであろう、SCO2を含む超臨界流体がある。所望の特性を得るため、必要に応じて、補助溶剤及び/または界面活性剤をSCO2に添加することができる。
【0037】
本発明の超臨界流体溶剤は、溶剤が与えられる特定の抗菌物質レザバーコア上及び/または内に容易に広がるであろう超臨界流体溶剤から選ばれることが好ましい。この広がりの程度は、溶剤成分の表面張力効果により、また抗菌物質レザバーコアの材料の表面の特性及び形状により、影響され得る。本発明での使用に適する補助溶剤の実例には、C1〜C6アルコール類(例:メタノール、エタノール等)、C1〜C6エーテル類(例:テトラヒドロフラン)、C1〜C6アルデヒド類、非プロトン性複素環式化合物(例:n−メチルピロリジノン、ジメチルスルホキシド、ジメチルホルムアミド)、アセトニトリル及び酢酸があるが、必ずしもこれらには限定されない。
【0038】
超臨界抗菌物質溶液内の抗菌物質濃度は、特に限定はされない。最適濃度範囲は、用いられる特定の抗菌物質及び溶剤、超臨界抗菌物質溶液が抗菌物質レザバーと接触させられる条件、及び抗菌物質レザバーコアの多孔度及び疎水性の強さに依存して変化するであろう。それにもかかわらず、最適濃度範囲は当業者により容易に決定され得る。一般に、超臨界抗菌物質溶液内の抗菌物質濃度が高くなるほど、他の全ての印加条件は一定の下で、抗菌物質レザバーコア内または上に取り込まれる量は多くなるであろう。しかし、一般に超臨界抗菌物質溶液と抗菌物質レザバーコアとの特定の組合せにより上限濃度が定まり、上限より高い濃度では抗菌物質のさらなる取込みが制限されることになろう。一般に、超臨界抗菌物質溶液内の抗菌物質濃度は、存在する抗菌物質のそれぞれについて本質的に約1mg/mlから60mg/mlの範囲である。
【0039】
本発明の超臨界抗菌物質溶液は、レザバーコアへの抗菌物質の取込みを行うために、注目する抗菌物質レザバーコアの少なくともある部分に与えられるか。さもなければ接触させられる。当業者には明らかであろうように、抗菌物質溶液を医療装置に接触させる手段は厳密である必要はなく、レザバーコアのタイプ、寸法及び形状等に依存して変わり得る。一般に、抗菌物質レザバーは単に超臨界抗菌物質溶液に浸漬されるだけであろう。あるいは、例えば、注入、フラッシング、吹付等により、超臨界抗菌物質溶液をレザバーに与えることができる。超臨界抗菌物質溶液を抗菌物質レザバーに接触させるためのその他の技法は、当業者には容易に明らかであろう。
【0040】
超臨界抗菌物質溶液の抗菌物質レザバーコアとの接触後、抗菌物質溶液は一般に、レザバーコア内または上への所望の量の抗菌物質の取込みを生じるに有効な持続時間にわたり、またそれに有効な温度、圧力等の条件の下で、接触したままにされる。最適な接触が多くのパラメータ、例えば、用いられる特定の超臨界抗菌物質溶液、接触温度等に依存して変わり得ることは当然であり、これらのパラメータは全て当業者により容易に決定され得る。
【0041】
本発明の抗菌物質レザバーは一般に、レザバーコアからいかなる残留溶剤成分も排除するため(超臨界抗菌物質溶液からの、所望のあらかじめ定められた分布での、抗菌物質の析出後)乾燥される。(例えば、自然乾燥、加熱、真空乾燥等による)乾燥後、レザバーコア内または上に取り込まれた抗菌物質は、生体内に埋め込まれるか、さもなければ同等の環境に曝露されるまでは、実質的な拡散をおこすことはない。取り込まれた抗菌物質が再び溶解するようになれば必ず、抗菌物質はレザバーから周囲の(流体の)環境に拡散することになる。
【0042】
本発明の埋込可能抗菌性医療装置には本質的に、抗菌物質の有効な取込みが達成され得る1つまたはそれより多くの抗菌物質レザバーに結合されたいかなる埋込可能医療装置も含めることができる。そのような埋込可能医療装置には、ゴム、プラスチック、ポリエチレン、ポリウレタン、シリコーン樹脂、PTFE、ポリエチレンテレフタレート、ラテックス、エラストマー及びその他の同様な材料のような熱可塑性のまたは重合体の材料からなる医療装置を含めることができる。そのような埋込可能医療装置は、海綿状、すなわち多孔質の形状にある、金属(例えば、チタン、コバルト−クロム、ステンレス鋼)及びセラミック(水酸アパタイト、熱分解炭素)を含むこともできる。
【0043】
そのような医療装置の多くは、抗菌物質レザバーコアを対応する医療装置に結合するだけでなく、コアを覆い、収め、コアに形をつけることができる、布地または布地様形態の少なくともいくつかの材料を含んでいる。そのような布地または布地様材料は、PETE、ポリエチレンテレフタレート及び同様の材料からなる高分子材繊維を含むことが好ましい。上記の材料の少なくともいくつかを含むそのような装置の例には、弁形成リング、心臓弁縫付けカフ、カテーテル縫付けカフ、心臓パッチ、移植血管、創傷包帯、縫合糸、外科用綿撤糸等を含めることができるが、これらには限定されない。
【0044】
患者の処置のための本発明の好ましい実施形態の使用に際しては、装置が生体内環境に曝露された後に、ある時間にわたる1つまたはそれより多くの抗菌物質の装置からの拡散を示す、埋込可能抗菌性医療装置が埋め込まれる。装置からの抗菌物質の放出動態は、様々な手法の内のいずれか1つを用いて評価することができる。
【0045】
例えば、装置が浸されている溶液内への装置からの抗菌物質の拡散を、時間の経過にしたがって継続的に測定できる。溶液をある時点時点で交換し、様々な時点における抗菌物質の量を、高性能液体クロマトグラフィのような、適当な分析手法により評価することができる。阻害帯(ZOI)分析及び及びその変形を用いることもできる(例えば、シェレツ(Sheretz)等著,「抗菌剤及び化学療法」,1989年8月,p.1174を参照されたい)。この手法を用いれば、成長しつつある細菌で覆われた寒天平板の上に埋込可能抗菌性医療装置が直接置かれる。装置周囲の寒天における細菌の成長の度合を決定するため、時間の経過にしたがって平板が評価される。例えば、本明細書で説明されるような、抗菌性人工心臓弁の縫付けカフを囲む(阻害帯と呼ばれる)無菌帯が、カフから周囲の寒天に拡散している物質による細菌成長の阻害を示す。
【0046】
抗菌物質レザバーからの抗菌物質放出動態及び/または活性は一般に数日間、あるいは数週間も、維持される。このようにすれば、患者の術後感染への感受性を装置埋込後の臨床上妥当な期間にわたり低めることができる。
【0047】
上に開示された特定の実施形態は、本明細書の教示の恩恵を有する当業者には明らかな、異なりはするが等価な態様で本発明が改変及び実施され得るから、例示に過ぎない。さらに、本明細書に示される構造または構成の詳細には、特許請求の範囲に述べられていることを除いて、何らかの限定を課す目的は全くない。したがって、上に開示された特定の実施形態が変更または改変され得ること、並びにそのような変形の全てが本発明の範囲及び精神内にあると見なされることは明白である。したがって本明細書で求められる保護は、特許請求の範囲に規定されるものである。
[0001]
Background art
The present invention relates generally to medical devices intended for implantation in a patient. More particularly, the present invention relates to the uptake of antimicrobial substances in medical devices to prevent infection at or near the implanted medical device.
[0002]
Implantable medical devices have become extremely important in the management of various human diseases and other conditions. Microbial colonization on the surface of such medical devices after implantation is relatively rare, but involves the need to remove and / or replace the implanted device, along with the determined treatment of secondary infections. Can cause serious and costly complications.
[0003]
Although the infection rate associated with implanted medical devices is not relatively high, the threat to the infected patient and the cost of the medical system if such an infection does occur is significant. For example, one of the most serious complications in heart valve replacement surgery is valvular endocarditis (PVE). PVE is the result of a bacterial infection at or near the junction where the suturing cuff abuts the anatomical tissue (ring) to which the prosthetic valve suturing cuff is attached at the time of implantation. Although the overall incidence of PVE is only about 1% per patient per year, this situation is associated with high morbidity and mortality (up to 60%).
[0004]
Various approaches have been attempted to control infections in implanted medical devices with limited success. For example, it has been reported that a coating containing an immobilized antimicrobial compound effectively suppresses bacterial colonization of the device in a laboratory environment, but it has been difficult to reproduce similar results in a clinical environment. To be effective in vivo, the immobilized antimicrobial material on the surface of the medical device must be in direct contact with the colonizing bacteria that have contaminated the device. Unfortunately, pathogenic bacteria make viscoprotective substances, called biofilms, in which they grow. Biofilms, inter alia, prevent direct contact of bacterial cells with the surface of the substrate to which the bacteria are attached, rendering the bacteria resistant to materials that may be present on the surface of the substrate, which would otherwise be toxic.
[0005]
In the laboratory, the antimicrobial efficacy of medical devices that have been treated one or another way to provide some antimicrobial activity has often been evaluated by exposing the device to bacterial culture. The selection and source of bacteria for such tests is based on the fact that microorganisms that are freely suspended in cell culture (called planktonic bacteria) adhere to substrates such as bacterial culture vessels or implanted medical devices. Because they behave differently, they are crucial for obtaining significant results. Plankton-like bacteria are more sensitive to antimicrobial agents immobilized on the surface than biofilm-forming bacteria. Thus, devices coated with immobilized antimicrobial substances can effectively prevent colonization by planktonic bacteria in the lab, but not to prevent device infection in vivo by pathogenic biofilm-forming bacteria. Can be completely invalid. As a result, many medical devices that lack clinical efficacy against biofilm-type bacteria will be commercialized by the experimental use of planktonic bacteria cultured in the laboratory instead of biofilm-type bacteria resulting from clinical infection. became.
[0006]
To effectively inhibit the growth of biofilm bacteria, antimicrobial agents should penetrate the biofilm. To achieve this, the antimicrobial must be able to diffuse from the medical device into the surrounding tissue after implantation. Thus, immobilized (ie, non-diffusing) antimicrobial agents on the surface of a medical device are less effective against many pathogenic microorganisms. A more effective medical device will have the ability to deliver the diffusible antimicrobial material to the local environment after implantation.
[0007]
Various methods have been announced for coating or otherwise incorporating antimicrobial agents onto medical devices in a manner that allows release of the antimicrobial agent into the local environment of the implanted medical device Have been. For example, U.S. Patent No. 5,624,704, incorporated herein by reference, discloses a method for dissolving an antimicrobial material into a non-metallic material by first dissolving the antimicrobial material in an organic solvent to form an antimicrobial formulation. A method for impregnating a medical implant is disclosed. Thereafter, another penetrant and an alkalizing agent are added to the antimicrobial formulation. The resulting antimicrobial formulation is then provided to a target medical device for incorporation of the formulation into medical device materials for release after implantation.
[0008]
Antimicrobial substances originally provided to implantable medical devices as solutes in organic solvents should ideally remain entrapped in the device in a predetermined distribution when the solvent is removed. Would. Maintaining a desired predetermined distribution within such a device is important for obtaining predictable release kinetics of the antimicrobial substance in vivo (ie, after implantation). Such predictable release kinetics can subsequently be used to avoid over-application of the drug (i.e., at any time avoiding excessive concentrations of any antimicrobial around the device) while maintaining clinical efficacy around the device. It is essential to establish a zone of inhibition (ZOI) for an antimicrobial over a period of time.
[0009]
Since conventional solvent removal is generally by evaporation from the surface of the medical device, it is virtually unavoidable that a solute concentration gradient will occur in the device during extraction of the organic solvent. In the presence of such a gradient, precipitation of the antimicrobial from the solvent carrier is likely to occur near the periphery of the device, reducing the amount of incorporated antimicrobial and reducing the desired predetermined antimicrobial ZOI around the device. The challenge of maintaining a certain period of time will be complicated. The presence of an antimicrobial concentration gradient within an implantable medical device reduces the efficiency of diffusion of the antimicrobial from the device in vivo and thus reduces clinical antimicrobial efficacy after implantation.
[0010]
Typical attempts to maintain at least a minimum effective ZOI during the duration of antimicrobial release following implantation generally result in overapplication of the drug (which may be toxic) over at least a portion of the duration of release. Would. In contrast, the present invention minimizes unwanted solute redistribution within implantable antimicrobial medical devices during solvent extraction, while maximizing solvent removal. These conditions complement each other in increasing the antimicrobial efficacy of the implantable medical device while reducing the potential for the implantable medical device to cause toxicity.
[0011]
Disclosure of the invention
The present invention includes, as non-limiting examples, methods and devices for implantable antimicrobial medical devices, such as prosthetic heart valves, annuloplasty rings, pacemakers, pumps and catheters. An implantable antimicrobial medical device according to the present invention includes an implantable antimicrobial medical device coupled to at least one diffusible antimicrobial reservoir that incorporates one or more antimicrobial agents into at least one porous hydrophobic reservoir core. Including implantable medical devices. The desired distribution of the antimicrobial substance is achieved by using one or more antimicrobial substances through the use of a supercritical fluid solvent comprising at least one supercritical fluid or near supercritical fluid, preferably comprising supercritical carbon dioxide (SCO2). This is achieved by selectively loading the corresponding reservoir portion. In a preferred embodiment, the antimicrobial is present in the reservoir core in a predetermined non-uniform distribution.
[0012]
The distribution of the antimicrobial within the diffusible antimicrobial reservoir in accordance with the present invention allows for a sufficient amount of the substance to maintain a medically effective ZOI around the implantable antimicrobial medical device in vivo over a clinically effective period. Timed release occurs. Initially establishing a ZOI generally requires relatively fast diffusion of the antimicrobial from the reservoir to increase the antimicrobial concentration in the tissue to an effective level and / or to eliminate infectious agent contamination during implantation. There will be. Thereafter, one or more antimicrobial agents are released from the reservoir quickly enough to maintain a clinically effective ZOI without over-application of the drug over the clinically effective period.
[0013]
Establish a predetermined, preferably non-uniform, distribution of one or more antimicrobial substances in one or more porous hydrophobic reservoir cores for subsequent diffusion in vivo The use of supercritical fluid solvents to provide substantial clinical benefits not previously available in implantable medical devices. The use of supercritical fluids to impregnate materials with desired substances has been described outside the medical field. In particular, the use of supercritical carbon dioxide solvents to impregnate timber with wood preservatives and / or materials that enhance the dimensional stability of the wood has been disclosed (see US Pat. No. 5,094,892). Want). However, there has been no publication or suggestion by non-medical research of the use of a supercritical fluid solvent to make a diffusible antimicrobial reservoir as in the present invention.
[0014]
SCO2 is a strong solvent for lipids, oils and other low molecular weight organic compounds. SCO2 is insoluble in water and its solvating power is as disclosed in the above patents and, for example, US Pat. No. 5,533,538, which is hereby incorporated by reference in its entirety, It can be controlled by changes in temperature and / or pressure. SCO2 is used industrially to extract spices and oils directly from seeds and agricultural ingredients. Formation of microparticles of bioactive agents (see, for example, US Pat. No. 5,639,441, incorporated herein by reference), and direct administration of such particles to humans or animals ( For example, there are issued patents that disclose the utility of SCO2 in US Pat. No. 5,301,664, incorporated herein by reference). However, none of the patents listed above disclose the use of SCO2 or other supercritical fluids in making a diffusible antimicrobial reservoir, as in the present invention.
[0015]
The SCO2 may comprise one or more co-solvents (e.g., nitrous oxide or ethanol) and / or surfactants (e.g., polysorbate 80 or dipalmitoyl lecithin), as mentioned in the above referenced patents. It is often used in combination with more adjuvants. Carbon dioxide itself is relatively friendly to the environment, and the use of carbon dioxide reduces solvent disposal costs. In the present invention, the solvating power of the supercritical fluid solvent, preferably containing SCO2, is controlled such that the precipitation of selected antimicrobial substances carried by such solvent occurs at a predetermined antimicrobial substance distribution in the reservoir. You. Where more than one antimicrobial substance of the present invention is carried by a supercritical fluid solvent, the selective deposition of each such antimicrobial substance can be obtained by controlling the solvent temperature and solvent ambient pressure.
[0016]
Selective deposition of antimicrobial substances from supercritical fluid solvents can be accomplished, for example, by heating or cooling such solvents (depending on the solutes carried) and / or by returning the solvent compound to a subcritical state. This can occur by lowering the solvent ambient pressure sufficiently to cause it to occur. In a preferred embodiment, the SCO2 and supercritical co-solvent (such as nitrous oxide) may be converted from supercritical to subcritical at the same time or sequentially to cause selective deposition of the antimicrobial. it can. That is, a pre-heated or pre-cooled portion of the antimicrobial reservoir can be created to preferentially take up the selected antimicrobial.
[0017]
Alternatively, heating or cooling can be selectively applied to precipitate the antimicrobial from a supercritical fluid solvent already present at a preferred location within the antimicrobial reservoir. Further, the selective loading of the antimicrobial material into a preferred portion of the antimicrobial reservoir can result in a reduced ambient pressure of the solvent that results in the loading of deposited solutes substantially in place (ie, without substantial solute redistribution). Can be achieved by: Establishing a dynamic solvent ambient pressure gradient within the antimicrobial reservoir core may facilitate, for example, deposition of the antimicrobial at one or more preferred locations within the core.
[0018]
After implantation of the implantable antimicrobial medical device of the present invention, from at least one reservoir to create a zone of inhibition (ZOI) adjacent to the device that is clinically effective against infectious agents for a predetermined period of time: At least one already incorporated diffusible antimicrobial substance diffuses. Thus, implantable antimicrobial medical devices have the ability to improve infectious morbidity in implant recipients during a predetermined portion of the post-operative period.
[0019]
The implantable antimicrobial medical device of the present invention comprises one or more diffusible antimicrobial reservoirs coupled to the implantable medical device, each such reservoir having at least one porous and hydrophobic material. The reservoir core itself comprises, for example, polyester fabric and / or polytetrafluoroethylene (PTFE) / silicone rubber felt. The coupling of the diffusible antimicrobial reservoir to the medical device may be by direct coupling of the corresponding reservoir core to the medical device, or by coupling the permeable reservoir core cover, which is itself coupled to the corresponding reservoir core, to the medical device. Is achieved by In a preferred embodiment, the antimicrobial reservoir is incorporated into the suturing cuff of the prosthetic heart valve and inside the annuloplasty ring.
[0020]
The coupling of such a reservoir core or permeable cover of the reservoir core to the medical device can be accomplished, for example, by gluing, sewing, fastening, fusing, clipping, and similar techniques known to those skilled in the art. The preferred bonding technique will depend in part on the mechanical strength required for bonding and the inherent mechanical strength of each reservoir core and / or any permeable cover of the reservoir core that may be present.
[0021]
Each of the porous, hydrophobic cores of the antimicrobial reservoir entraps one or more diffusible antimicrobial substances (eg, by adsorption and / or mechanical confinement of crystallized antimicrobial substances). Each such material undergoes a controlled release in vivo as a solute in the body fluid that penetrates the reservoir core and also communicates with the body fluid adjacent to the implanted device.
[0022]
The period during which the diffusible antibacterial substance is released from the antibacterial substance reservoir of the present invention is determined in advance in addition to the molecular weight, polarity, distribution and concentration of the diffusible antibacterial substance incorporated in the reservoir, and the respective pores of the corresponding hydrophobic core. It is also determined to some extent by the choice of degree. Preferred choices of diffusible antimicrobial agents include, but are not limited to, silver sulfadiazine, silver nitrate, rifampin, minocycline or chlorhexidine diacetate. Other factors that can determine the release kinetics of such an antimicrobial to obtain an effective ZOI in vivo include the flow rate of the relevant body fluid as well as the nature of the tissue and / or body fluid through which diffusion occurs. .
[0023]
Preferably, an implantable device, such as a heart valve, adapted to contact both bodily fluids and substantially solid tissue can be equipped with two or more different diffusible antimicrobial reservoirs. . Incorporating different diffusible antimicrobial materials with different diffusion rates (as needed) in multiple diffusible antimicrobial material reservoirs is in contact with the implanted antimicrobial medical device in selected applications It can help to more effectively inhibit microbial activity in the respective tissues and body fluids. That is, for example, more accurate microbial inhibition of the type, location and order of clinically important infectious agents that can affect implanted devices within the initial infection onset period (typically within 60 days after implantation). Can be combined.
[0024]
BEST MODE FOR CARRYING OUT THE INVENTION
According to one aspect of the present invention, there is provided a method for making an implantable medical device having antimicrobial properties in vivo. One such preferred method is to use a suitable supercritical fluid solvent, optionally containing one or more co-solvents or surfactants or combinations thereof, to form a supercritical antimicrobial solution. And, in part, dissolving one or more antimicrobial agents. The supercritical antimicrobial solution is then incorporated into one or more porous, hydrophobic reservoir cores where one or more antimicrobial substances precipitate in a predetermined distribution. Such precipitation occurs by heating, cooling, or applying a drop in ambient pressure to the supercritical antimicrobial solution. Subsequent removal of any supercritical solvent compounds when only heating or cooling was used to cause such precipitation, or when a decrease in ambient pressure was used to cause such precipitation. Removal of any subcritical solvent compounds results in an antimicrobial reservoir.
[0025]
The use of a supercritical antimicrobial solution offers several advantages over the above method. For example, the viscosity of such solutions is relatively low, thus facilitating rapid solution penetration into the porous, hydrophobic reservoir core. Also, a desired (predetermined) distribution of the antimicrobial solute deposited in the reservoir core can be obtained by selective heating or cooling of the solution and / or by an overall reduction in ambient pressure. The carbon dioxide fraction of any supercritical antimicrobial solution is relatively easy to recover and environmentally friendly, thus reducing processing costs.
[0026]
A disadvantage of using supercritical fluid solvents is the relatively high cost of the equipment used to achieve and maintain the temperature and pressure compatible with the corresponding supercritical state of the solvent compound. The energy costs associated with cycling between subcritical and supercritical states can also be significant. However, these costs are due to the fact that the deposition of antimicrobial from the supercritical antimicrobial solution does not depend on lowering the ambient pressure to convert the supercritical fluid solvent compound to a subcritical state, but preferably in the supercritical state. If achieved by heating or cooling certain solutions, it can be reduced.
[0027]
In accordance with the present invention, the antimicrobial reservoir comprises a polytetrafluoroethylene felt reservoir core that incorporates the antimicrobial and is covered with a permeable polyester fabric. The permeable cover is clamped to the prosthetic heart valve by a clamping ring, thus connecting the reservoir to the prosthetic heart valve.
[0028]
The uptake of the antimicrobial in or on the antimicrobial reservoir core is such that it has a predetermined useful distribution. An antimicrobial so incorporated into an implantable antimicrobial medical device according to the present invention exhibits a clinically desirable antimicrobial release kinetics from the medical device after exposure to an in vivo environment. Therefore, microbial colonization after implantation is extremely unlikely to occur in such medical devices.
[0029]
As used herein, phrases such as “entrapped” and “incorporating” refer to at least some of the diffusible antimicrobial substance as one or more porous, hydrophobic, and hydrophobic substances contained in the antimicrobial reservoir. It means penetrating, adhering to the structure (reservoir core), dwelling in the structure, or becoming attached to the structure in some other way. That is, such diffusible antimicrobial materials can be primarily bound to the surface of the core (as in the coating), can penetrate within or between the pores of the core, and It can be covalently or ionicly bonded, and can take other forms of existence. The preferred nature of the bond between the diffusible antimicrobial material and the antimicrobial reservoir core of the present invention is the specific diffusible antimicrobial material used, the antimicrobial activity desired for the implanted antimicrobial medical device (including, for example, release kinetics), and And / or depends on the type and structure of the medical device itself.
[0030]
The diffusible fraction of the antimicrobial substance incorporated into or on the antimicrobial reservoir core of the implanted antimicrobial medical device can be assessed, for example, by mass spectrometry of the core or the entire device before and after treatment. Alternatively, the incorporated antimicrobial substance remaining after the treatment can be extracted from the device using an appropriate method or otherwise removed for comparison with the amount initially incorporated.
[0031]
The implantable antimicrobial medical device made and / or used in accordance with the present invention is selected from any of a number of devices of the type available to practitioners, including cardiovascular devices, orthopedic implants and various other prosthetic devices. can do. Examples of such devices include annuloplasty rings, heart valve suturing cuffs, catheter suturing cuffs, cardiac patches, graft vessels, wound dressings, sutures, surgical pledgets and other similar devices. But not limited to these. Further examples may include fixator pins, femoral prostheses, acetabular prostheses, dentures, and the like.
[0032]
As used herein, "antimicrobial" refers to essentially any antibiotic, preservative, disinfectant, or the like, or any of these, that is effective in inhibiting the growth and / or growth of one or more microorganisms. Also refers to combinations. Numerous antibiotics are known and may be suitable for use according to the present invention. Such antibiotics include tetracyclines (eg, minocycline), rifamycins (eg, rifampin), macrolides (eg, erythromycin), penicillins (eg, nafcillin), cephalosporins (eg, Cefazolin), other β-lactam antibiotics (eg, imipenem and aztreonam), aminoglycosides (eg, gentamicin), chloramphenicol, sulfonamides (eg, sulfamethoxyazole), glycopeptides (E.g., vancomycin), quinolones (e.g., ciprofloxacin), fusidic acid, trimethoprim, metronidazole, clindamycin, muprocin (muprocin), polyenes (e.g., amphotericin B), azotes (e.g., Fluconazole zole)), there is a β- lactam inhibitors like, but are not necessarily limited to.
[0033]
Illustrative antibiotics that may be used in accordance with the present invention include minocycline, rifampin, erythromycin, nafcillin, cefazolin, imipenem, aztreonam, gentamicin, sulfamethoxyazole, vanomycin, ciprofloxane, trimethoprim, metronidazole, clindamycin, Telcoplanin, mupirocin, azithromycin, clarithromycin, ofloxacin, lomefloxacin (lomefloxacin), norfloxacin, nalidixic acid, sparfloxacin (sparfloxacin), sparfloxacin (sparfloxacin) Sashin (amifloxacin), enoxacin (enoxacin), fleroxacin (fleroxacin), ether Na ciprofloxacin (ternafloxacin), tosufloxacin (tosufloxacin), clinafloxacin (clinafloxacin), sulbactam, clavulanic acid, amphotericin B, fluconazole, itraconazole (itraconazole ), Ketoconazole, nystatin, and other similar compounds. Antibiotics used in accordance with the present invention will generally be chosen to have relatively low water solubility and thus to dissolve in body fluids over time. In addition, it would probably be desirable in many applications to incorporate one or more antibiotics with different modes of action into an antimicrobial reservoir to obtain a wide range of antimicrobial activity.
[0034]
Preservatives and disinfectants suitable for use in the present invention include, for example, hexachlorophene, cationic bisguanides (eg, chlorohexidine, cyclohexidiene, etc.), iodine and iodophors (eg, povidone-iodine). ), Parachlorometa-xylenol, medical furan preparations (eg, nitrofurantoin, nitrofurazone), methenamine, aldehydes (glutaraldehyde, formaldehyde, etc.), alcohols and the like.
[0035]
In a preferred embodiment of the invention, the antimicrobial incorporated into the antimicrobial reservoir according to the invention comprises minocycline or rifampin or a mixture thereof. Minocycline is a semi-synthetic antibiotic derived from tetracycline that functions by inhibiting protein synthesis. Rifampin is a semisynthetic derivative of rifamycin B, a macrocyclic antibiotic produced by the filamentous fungus Streptomyces mediterranic. Rifampin inhibits bacterial DNA-dependent RNA polymerase activity and is bactericidal in nature. Both minocycline and rifampin are commercially available, soluble in a number of organic solvents, and active against a wide range of Gram-positive and Gram-negative organisms.
[0036]
To incorporate the antimicrobial into the antimicrobial reservoir of the present invention, the desired antimicrobial is first dissolved in a suitable supercritical fluid solvent to form a supercritical antimicrobial solution. Preferred supercritical fluid solvents will completely dissolve the antimicrobial substance of interest and facilitate the incorporation of at least some of the dissolved antimicrobial substance in a predetermined distribution into the antimicrobial reservoir core. , SCO2. Cosolvents and / or surfactants can be added to the SCO2 as needed to achieve the desired properties.
[0037]
The supercritical fluid solvent of the present invention is preferably selected from supercritical fluid solvents that will readily spread on and / or into the particular antimicrobial reservoir core in which the solvent is provided. The extent of this spreading can be affected by the surface tension effects of the solvent component and by the surface properties and shape of the antimicrobial reservoir core material. Illustrative examples of co-solvents suitable for use in the present invention include C1-C6 alcohols (eg, methanol, ethanol, etc.), C1-C6 ethers (eg, tetrahydrofuran), C1-C6 aldehydes, aprotic heterocycles. Formula compounds (eg, n-methylpyrrolidinone, dimethylsulfoxide, dimethylformamide), acetonitrile, and acetic acid include, but are not necessarily limited to.
[0038]
The antibacterial substance concentration in the supercritical antibacterial substance solution is not particularly limited. The optimum concentration range will vary depending on the particular antimicrobial and solvent used, the conditions under which the supercritical antimicrobial solution is contacted with the antimicrobial reservoir, and the porosity and hydrophobicity of the antimicrobial reservoir core. Would. Nevertheless, optimal concentration ranges can be readily determined by those skilled in the art. In general, the higher the antimicrobial concentration in the supercritical antimicrobial solution, the higher the amount incorporated in or on the antimicrobial reservoir core, with all other applied conditions constant. However, in general, the particular combination of the supercritical antimicrobial solution and the antimicrobial reservoir core will set an upper concentration limit, and concentrations above the upper limit will limit further uptake of the antimicrobial material. In general, the antimicrobial concentration in the supercritical antimicrobial solution is essentially in the range of about 1 mg / ml to 60 mg / ml for each antimicrobial present.
[0039]
Is the supercritical antimicrobial solution of the present invention applied to at least a portion of the antimicrobial reservoir core of interest to effect uptake of the antimicrobial into the reservoir core? Otherwise they are contacted. As will be apparent to those skilled in the art, the means by which the antimicrobial solution is brought into contact with the medical device need not be exact and can vary depending on the type, size and shape of the reservoir core, and the like. Generally, the antimicrobial reservoir will simply be immersed in the supercritical antimicrobial solution. Alternatively, the supercritical antimicrobial solution can be provided to the reservoir, for example, by injection, flushing, spraying, or the like. Other techniques for contacting a supercritical antimicrobial solution with an antimicrobial reservoir will be readily apparent to those skilled in the art.
[0040]
Following contact of the supercritical antimicrobial solution with the antimicrobial reservoir core, the antimicrobial solution generally has a temperature, pressure, and pressure effective for a duration effective to effect uptake of the desired amount of antimicrobial material into or on the reservoir core. Under such conditions, it is left in contact. It will be appreciated that the optimal contact can vary depending on a number of parameters, such as the particular supercritical antimicrobial solution used, the contact temperature, etc., all of which can be readily determined by one skilled in the art.
[0041]
The antimicrobial reservoir of the present invention is generally dried (after deposition of the antimicrobial in a desired predetermined distribution from the supercritical antimicrobial solution) to eliminate any residual solvent components from the reservoir core. After drying (e.g., by natural drying, heating, vacuum drying, etc.), the antimicrobial material incorporated into or on the reservoir core is substantially free from being embedded in a living organism or otherwise exposed to an equivalent environment. It does not cause significant diffusion. Whenever the incorporated antimicrobial material dissolves again, it will diffuse from the reservoir into the surrounding (fluid) environment.
[0042]
The implantable antimicrobial medical device of the present invention may include essentially any implantable medical device coupled to one or more antimicrobial reservoirs in which effective uptake of the antimicrobial may be achieved. it can. Such implantable medical devices include medical or polymeric materials such as rubber, plastic, polyethylene, polyurethane, silicone resin, PTFE, polyethylene terephthalate, latex, elastomers and other similar materials. A device can be included. Such implantable medical devices can also include metals (eg, titanium, cobalt-chromium, stainless steel) and ceramics (hydroxyapatite, pyrolytic carbon) in a spongy, ie, porous, form. .
[0043]
Many such medical devices include at least some materials in a fabric or fabric-like form that can not only couple the antimicrobial reservoir core to the corresponding medical device, but also cover, house, and shape the core. Contains. Such fabrics or fabric-like materials preferably include polymeric fibers of PETE, polyethylene terephthalate and similar materials. Examples of such devices that include at least some of the above materials include annuloplasty rings, heart valve stitching cuffs, catheter stitching cuffs, heart patches, graft vessels, wound dressings, sutures, surgical cotton ploughs And the like, but are not limited to these.
[0044]
In using the preferred embodiments of the present invention for treatment of a patient, an implant may be used that exhibits diffusion of one or more antimicrobial substances from the device over a period of time after the device has been exposed to an in vivo environment. A possible antimicrobial medical device is implanted. The release kinetics of the antimicrobial substance from the device can be assessed using any one of a variety of techniques.
[0045]
For example, the diffusion of an antimicrobial substance from a device into a solution in which the device is immersed can be continuously measured over time. The solution can be changed at some point and the amount of antimicrobial at various points can be assessed by a suitable analytical technique, such as high performance liquid chromatography. Zone of inhibition (ZOI) analysis and variants thereof can also be used (see, for example, Sheretz et al., "Antimicrobial and Chemotherapy", August 1989, p. 1174). Using this technique, an implantable antimicrobial medical device is placed directly on an agar plate covered with growing bacteria. Plates are evaluated over time to determine the degree of bacterial growth on the agar around the device. For example, a sterile band surrounding the suturing cuff of an antimicrobial prosthetic heart valve (referred to as an inhibitory band), as described herein, inhibits bacterial growth from spreading from the cuff into the surrounding agar. Show.
[0046]
Antimicrobial release kinetics and / or activity from the antimicrobial reservoir is generally maintained for days or even weeks. In this way, the patient's susceptibility to post-operative infection can be reduced for a clinically relevant period after implantation of the device.
[0047]
The specific embodiments disclosed above are merely exemplary, as the present invention may be modified and practiced in different but equivalent ways apparent to those skilled in the art having the benefit of the teachings herein. Furthermore, the details of structure or construction set forth herein are not intended to impose any limitations, except as set forth in the following claims. It is therefore evident that the particular embodiments disclosed above may be changed or modified, and that all such variations are deemed to be within the scope and spirit of the invention. Accordingly, the protection sought herein is as set forth in the claims below.

Claims (15)

拡散性抗菌物質レザバーにおいて:
多孔質で疎水性のレザバーコアを提供する工程;
拡散性抗菌物質を提供する工程;
超臨界抗菌物質溶液を得るために、超臨界二酸化炭素を含む流体溶剤に前記拡散性抗菌物質を溶解させる工程;
前記超臨界抗菌物質溶液と前記多孔質で疎水性のレザバーコアとを接触させる工程;
前記疎水性のレザバーコア上に前記拡散性抗菌物質の少なくとも一部を前記超臨界抗菌物質溶液から析出させる工程;及び
前記レザバーコアから超臨界二酸化炭素を含む前記流体溶剤を除去する工程;を特徴とするプロセスにより作成される拡散性抗菌物質レザバー。
In the diffusible antimicrobial reservoir:
Providing a porous, hydrophobic reservoir core;
Providing a diffusible antimicrobial substance;
Dissolving the diffusible antibacterial substance in a fluid solvent containing supercritical carbon dioxide to obtain a supercritical antibacterial substance solution;
Contacting the supercritical antimicrobial solution with the porous hydrophobic reservoir core;
Depositing at least a portion of the diffusible antimicrobial substance from the supercritical antimicrobial substance solution on the hydrophobic reservoir core; and removing the fluid solvent containing supercritical carbon dioxide from the reservoir core. A diffusible antimicrobial reservoir created by the process.
前記析出させる工程が前記溶液を加熱または冷却する工程を含むことを特徴とする請求項1記載の拡散性抗菌物質レザバー。The diffusible antimicrobial substance reservoir according to claim 1, wherein the step of depositing comprises a step of heating or cooling the solution. 前記析出させる工程が前記流体溶液の圧力を二酸化炭素の臨界圧より低下させる工程を含むことを特徴とする請求項1記載の拡散性抗菌物質レザバー。The diffusible antimicrobial substance reservoir according to claim 1, wherein the depositing step includes a step of lowering the pressure of the fluid solution below a critical pressure of carbon dioxide. 前記流体溶剤が少なくとも1つの補助溶剤または少なくとも1つの界面活性剤をさらに含むことを特徴とする請求項1記載の拡散性抗菌物質レザバー。The diffusible antimicrobial reservoir of claim 1, wherein the fluid solvent further comprises at least one co-solvent or at least one surfactant. 埋込可能医療装置を有する埋込可能抗菌性医療装置において:
前記埋込可能医療装置に結合された拡散性抗菌物質レザバーを備え;
前記レザバーが:
多孔質で疎水性のレザバーコアを提供する工程;
拡散性抗菌物質を提供する工程;
超臨界抗菌物質溶液を得るために、超臨界二酸化炭素を含む流体溶剤に前記拡散性抗菌物質を溶解させる工程;
前記超臨界抗菌物質溶液と前記多孔質で疎水性のレザバーコアとを接触させる工程;
前記疎水性のレザバーコア上に前記拡散性抗菌物質の少なくとも一部を前記超臨界抗菌物質溶液から析出させる工程;及び
前記レザバーコアから超臨界二酸化炭素を含む前記流体溶剤を除去する工程;を含むプロセスで作成されている;
ことを特徴とする埋込可能抗菌性医療装置。
In an implantable antimicrobial medical device having an implantable medical device:
A diffusible antimicrobial reservoir coupled to the implantable medical device;
The reservoir is:
Providing a porous, hydrophobic reservoir core;
Providing a diffusible antimicrobial substance;
Dissolving the diffusible antibacterial substance in a fluid solvent containing supercritical carbon dioxide to obtain a supercritical antibacterial substance solution;
Contacting the supercritical antimicrobial solution with the porous hydrophobic reservoir core;
Depositing at least a portion of the diffusible antimicrobial material from the supercritical antimicrobial solution on the hydrophobic reservoir core; and removing the fluid solvent containing supercritical carbon dioxide from the reservoir core. Has been created;
An implantable antimicrobial medical device, characterized in that:
前記医療装置が人工心臓弁であることを特徴とする請求項5記載の埋込可能抗菌性医療装置。The implantable antimicrobial medical device according to claim 5, wherein the medical device is a prosthetic heart valve. 前記拡散性抗菌物質がリファンピン、ミノサイクリン、またはこれらの混合物であることを特徴とする請求項5または6記載の埋込可能抗菌性医療装置。7. The implantable antibacterial medical device according to claim 5, wherein the diffusible antibacterial substance is rifampin, minocycline, or a mixture thereof. 前記抗菌物質レザバーがポリエステル布地を含むことを特徴とする請求項5,6または7記載の埋込可能抗菌性医療装置。The implantable antimicrobial medical device according to claim 5, 6 or 7, wherein the antimicrobial reservoir comprises a polyester fabric. 前記疎水性のレザバーコアがポリテトラフルオロエチレン/シリコーンゴムフェルトを含むことを特徴とする請求項5,6または7記載の埋込可能抗菌性医療装置。8. The implantable antimicrobial medical device according to claim 5, 6 or 7, wherein the hydrophobic reservoir core comprises polytetrafluoroethylene / silicone rubber felt. 前記拡散性抗菌物質レザバーが浸透性カバーを介して前記埋込可能医療装置に結合されていることを特徴とする請求項5,6または7記載の埋込可能抗菌性医療装置。8. The implantable antimicrobial medical device of claim 5, 6 or 7, wherein the diffusible antimicrobial reservoir is coupled to the implantable medical device via a permeable cover. 埋込可能抗菌性医療装置を作成する方法において:
埋込可能医療装置を提供する工程;及び
抗菌物質レザバーを前記埋込可能医療装置に結合する工程;
を含み;
前記抗菌物質レザバーが:
多孔質で疎水性のレザバーコアを提供する工程;
拡散性抗菌物質を提供する工程;
超臨界抗菌物質溶液を得るために、超臨界二酸化炭素を含む流体溶剤に前記拡散性抗菌物質を溶解させる工程;
前記超臨界抗菌物質溶液と前記多孔質で疎水性のレザバーコアとを接触させる工程;
前記疎水性のレザバーコア上に前記拡散性抗菌物質の少なくとも一部を前記超臨界抗菌物質溶液から析出させる工程;及び
前記レザバーコアから超臨界二酸化炭素を含む前記流体溶剤を除去する工程;を含むプロセスで作成されている;
ことを特徴とする方法。
In a method of making an implantable antimicrobial medical device:
Providing an implantable medical device; and coupling an antimicrobial reservoir to the implantable medical device;
Including;
The antimicrobial reservoir is:
Providing a porous, hydrophobic reservoir core;
Providing a diffusible antimicrobial substance;
Dissolving the diffusible antibacterial substance in a fluid solvent containing supercritical carbon dioxide to obtain a supercritical antibacterial substance solution;
Contacting the supercritical antimicrobial solution with the porous hydrophobic reservoir core;
Depositing at least a portion of the diffusible antimicrobial material from the supercritical antimicrobial solution on the hydrophobic reservoir core; and removing the fluid solvent containing supercritical carbon dioxide from the reservoir core. Has been created;
A method comprising:
前記埋込可能抗菌性医療装置が人工心臓弁であることを特徴とする請求項11記載の方法。The method of claim 11, wherein the implantable antimicrobial medical device is a prosthetic heart valve. 前記抗菌物質レザバーがポリエステル布地を含むことを特徴とする請求項11または12記載の方法。13. The method of claim 11 or claim 12, wherein the antimicrobial reservoir comprises a polyester fabric. 前記疎水性のレザバーコアがポリテトラフルオロエチレン/シリコーンゴムフェルトを含むことを特徴とする請求項11または12記載の方法。13. The method of claim 11 or claim 12, wherein the hydrophobic reservoir core comprises polytetrafluoroethylene / silicone rubber felt. 前記抗菌物質がリファンピン、ミノサイクリン、またはこれらの混合物であることを特徴とする請求項11または12記載の方法。13. The method according to claim 11, wherein the antibacterial substance is rifampin, minocycline, or a mixture thereof.
JP2002505055A 2000-06-28 2001-06-28 Antimicrobial reservoir for implantable medical devices Withdrawn JP2004501683A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US60580400A 2000-06-28 2000-06-28
PCT/US2001/020810 WO2002000274A1 (en) 2000-06-28 2001-06-28 Antimicrobial reservoirs for implantable medical devices

Publications (1)

Publication Number Publication Date
JP2004501683A true JP2004501683A (en) 2004-01-22

Family

ID=24425286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002505055A Withdrawn JP2004501683A (en) 2000-06-28 2001-06-28 Antimicrobial reservoir for implantable medical devices

Country Status (4)

Country Link
EP (1) EP1303320A1 (en)
JP (1) JP2004501683A (en)
CA (1) CA2412492A1 (en)
WO (1) WO2002000274A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008503320A (en) * 2004-06-22 2008-02-07 ボストン サイエンティフィック サイムド, インコーポレイテッド Composite vascular graft having an antimicrobial agent, a biodegradable matrix, and an outer fabric layer
CN105353062A (en) * 2015-11-25 2016-02-24 北京化工大学 HPLC analysis method for measuring minocycline and related substances thereof

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2387115A (en) * 2002-04-04 2003-10-08 Univ London Endoprosthetic implant
WO2006026325A2 (en) 2004-08-26 2006-03-09 Pathak Chandrashekhar P Implantable tissue compositions and method
GB0421164D0 (en) 2004-09-23 2004-10-27 Univ Nottingham Medical devices and methods of making medical devices
WO2010096771A2 (en) 2009-02-20 2010-08-26 The General Hospital Corporation Dba High temperature melting
EP2475406B1 (en) 2009-09-09 2015-10-21 Cook Medical Technologies LLC Methods of manufacturing drug-loaded substrates
AU2016352992A1 (en) * 2015-11-12 2018-05-24 The General Hospital Corporation Methods of making therapeutic polymeric material

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4917686A (en) * 1985-12-16 1990-04-17 Colorado Biomedical, Inc. Antimicrobial device and method
CA2017332A1 (en) * 1989-06-29 1990-12-29 Richard W. Greiner Pharmaceutically impregnated catheters
DE4202320A1 (en) * 1992-01-29 1993-08-05 Dierk Dr Knittel Impregnating substrate by contact with supercritical fluid contg. impregnant - followed by conversion of fluid to subcritical state
US5340614A (en) * 1993-02-11 1994-08-23 Minnesota Mining And Manufacturing Company Methods of polymer impregnation
US5879697A (en) * 1997-04-30 1999-03-09 Schneider Usa Inc Drug-releasing coatings for medical devices
US7081133B2 (en) * 1999-01-19 2006-07-25 Carbomedics Inc. Antibiotic treated implantable medical devices

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008503320A (en) * 2004-06-22 2008-02-07 ボストン サイエンティフィック サイムド, インコーポレイテッド Composite vascular graft having an antimicrobial agent, a biodegradable matrix, and an outer fabric layer
CN105353062A (en) * 2015-11-25 2016-02-24 北京化工大学 HPLC analysis method for measuring minocycline and related substances thereof

Also Published As

Publication number Publication date
CA2412492A1 (en) 2002-01-03
EP1303320A1 (en) 2003-04-23
WO2002000274A1 (en) 2002-01-03

Similar Documents

Publication Publication Date Title
ES2248809T3 (en) CATHETERS AND MEDICAL IMPLANTS IMPREGNATED WITH AN ANTIMICROBIAL AGENT AND METHOD TO IMPREGATE THEMSELVES.
AU635197B2 (en) Antimicrobial device and method
US6528107B2 (en) Method for producing antimicrobial antithrombogenic medical devices
US20170354813A1 (en) Medical devices and methods of making medical devices
US7081133B2 (en) Antibiotic treated implantable medical devices
ES2327492T3 (en) ANTIMICROBIAL MEDICAL DEVICES.
JP2665399B2 (en) Antimicrobial-coated medical implants
US6843784B2 (en) Triclosan and silver compound containing medical devices
US6416548B2 (en) Antimicrobial annuloplasty ring having a biodegradable insert
US7238363B2 (en) Modification of medical prostheses
JP5095608B2 (en) Catheter assembly with bactericidal effect
US20050049181A1 (en) Synergistic antimicrobial compositions and methods of inhibiting biofilm formation
KR20040077753A (en) Infection-resistant medical devices
JP2000507842A (en) Triclosan-containing drug device
JP2003527209A (en) Matrix containing nitric oxide donor and reducing agent and use thereof
CN1111509A (en) Protracted-release administration forms containing clindamycin palmitate
JPH0924093A (en) Grafting body, its application during surgical operation, and its preparation
CN101060867A (en) Biofilm formation inhibitor and treatment device
JP5209159B2 (en) Anti-infectious device and method of manufacturing the same
US20120064372A1 (en) Method for imparting antimicrobial activity to a medical device
JP2004501683A (en) Antimicrobial reservoir for implantable medical devices
WO2005018701A1 (en) Synergistic antimicrobial compositions and methods of inhibiting biofilm formation

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080902