JP2004362292A - Self-propelled apparatus and its program - Google Patents

Self-propelled apparatus and its program Download PDF

Info

Publication number
JP2004362292A
JP2004362292A JP2003160259A JP2003160259A JP2004362292A JP 2004362292 A JP2004362292 A JP 2004362292A JP 2003160259 A JP2003160259 A JP 2003160259A JP 2003160259 A JP2003160259 A JP 2003160259A JP 2004362292 A JP2004362292 A JP 2004362292A
Authority
JP
Japan
Prior art keywords
traveling
parallel
coordinates
main body
traveling direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003160259A
Other languages
Japanese (ja)
Inventor
Keiko Noda
桂子 野田
Hideji Abe
秀二 安倍
Yumiko Hara
由美子 原
Tetsuya Koda
哲也 甲田
Hirotsugu Kamiya
洋次 上谷
Hiroaki Kako
裕章 加来
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003160259A priority Critical patent/JP2004362292A/en
Publication of JP2004362292A publication Critical patent/JP2004362292A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a self-propelled apparatus for easily correcting the reference direction of a traveling direction even on a narrow flat surface. <P>SOLUTION: This self-propelled apparatus is provided with a traveling direction detecting means 4, a traveling distance detecting means 6, a coordinate detecting means 8 for detecting coordinates in traveling by the traveling direction detecting means 4 and the traveling distance detecting means 6 and parallel detecting means 9a and 9b for detecting that the traveling direction of a main body 1 is made in parallel with an obstacle 12. When the coordinates in traveling detected by the coordinate detecting means 8 are matched with predetermined coordinates, a control means 2 makes the main body 1 rotate or travel so that the traveling direction of the main body 1 can be made in parallel with the obstacle 12, and when they are made in parallel, the control means 2 turns the traveling direction detected by the traveling direction detecting means 4 into the predetermined direction of the following traveling. Thus, it is possible to easily correct the reference direction of the traveling direction even on a narrow flat surface. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、人間の介助なしに自立して走行する自走式機器に関するものである。
【0002】
【従来の技術】
従来、この種の自走式機器は、例えば走行範囲内で直線走行を行なうために、定期的に左前障害物検知手段の出力と右前障害物検知手段の出力の差を複数回記憶し、本体前方の連続な平面を見つけて走行方向の基準方向を補正していた(例えば、特許文献1参照)。
【0003】
【特許文献1】
特開平8−215116号公報
【0004】
【発明が解決しようとする課題】
しかしながら、前記従来の構成では、連続した平面がなければ走行方向の基準方向を補正することができず、特に一般の家では家具や荷物等が置かれて平面部分はわずかしかないことが多く、走行方向の基準方向を補正することが難しいという課題を有していた。
【0005】
本発明は、前記従来の課題を解決するもので、わずかな平面でも、走行方向の基準方向を容易に補正して走行できる自走式機器の提供を目的とする。
【0006】
【課題を解決するための手段】
前記従来の課題を解決するために本発明は、本体と、前記本体の制御手段と、前記本体を移動走行させる走行手段と、前記本体の走行方向を検知するための走行方向検知手段と、前記本体が走行した距離を検知するための走行距離検知手段と、前記走行方向検知手段および前記走行距離検知手段での検知内容から走行中の座標を検知する座標検知手段と、本体の走行方向と障害物とが平行であるかどうかを検知するための平行検知手段とを備え、前記制御手段は、前記座標検知手段が検知する走行中の座標が予め定めた所定範囲の座標内に入ったときに、前記本体の走行方向と障害物とが平行になるように前記本体を回転または走行させ、平行になった時点で前記走行方向検知手段が検知している走行方向を、その後の走行の所定方向とする自走式機器としたものである。これによって、わずかな平面しかなくても、その所定座標で障害物との平行方向を探し出して、その後の走行の所定方向とすることにより、走行方向の基準方向を容易に補正できるようになる。
【0007】
【発明の実施の形態】
請求項1に記載の発明は、本体と、前記本体の制御手段と、前記本体を移動走行させる走行手段と、前記本体の走行方向を検知するための走行方向検知手段と、前記本体が走行した距離を検知するための走行距離検知手段と、前記走行方向検知手段および前記走行距離検知手段での検知内容から走行中の座標を検知する座標検知手段と、本体の走行方向と障害物とが平行であるかどうかを検知するための平行検知手段とを備え、前記制御手段は、前記座標検知手段が検知する走行中の座標が予め定めた所定範囲の座標内に入ったときに、前記本体の走行方向と障害物とが平行になるように前記本体を回転または走行させ、平行になった時点で前記走行方向検知手段が検知している走行方向を、その後の走行の所定方向とすることにより、わずかな平面でも予めわかっている平面のある所定座標で平行部分を念入りに探して走行方向の基準方向を含む所定方向に補正し、その所定座標を通る度に所定方向に補正して直進走行することができる。
【0008】
請求項2に記載の発明は、特に、請求項1に記載の自走式機器に、ターゲット座標入力手段を備え、予め定めた所定範囲の座標は、前記ターゲット座標入力手段により入力した座標とすることにより、走行中または走行前に平行をとりたい理想的な平面を自走式機器に教えることができ、その位置で平行部分を念入りに探して走行方向の基準方向を含む所定方向へ補正し、かつその走行開始座標を通る度に走行方向の基準方向を含む所定方向として補正して直進走行することができる。
【0009】
請求項3に記載の発明は、特に、請求項1に記載の予め定めた所定範囲の座標を、本体が走行を開始したときの座標とすることにより、わずかな平面でも予めわかっている平面があれば、その位置から走行開始すれば、平行部分を念入りに探して走行方向の基準方向を含む所定方向へ補正し、かつその走行開始座標を通る度に走行方向の基準方向を含む所定方向として補正して直進走行することができる。
【0010】
請求項4に記載の発明は、特に、請求項1〜3のいずれか1項に記載の平行検知手段は、障害物からの距離を検知することにより本体の走行方向と障害物とが平行であるかどうかの検知を行うものとし、制御手段は、座標検知手段が検知する走行中の座標が予め定めた所定範囲の座標内に入り、且つ前記平行検知手段が検知する距離が予め定めた所定範囲の距離内に入った場合に、前記本体の走行方向と障害物とが平行になるように前記本体を回転または走行させ、平行になった時点で前記走行方向検知手段が検知している走行方向を、その後の走行の所定方向とすることにより、平行検知手段の検知精度の良い距離範囲で平行をより正確に検知してその平行方向を所定方向として直進走行することができる。
【0011】
請求項5に記載の発明は、特に、請求項4に記載の座標検知手段が検知する座標が、予め定めた所定範囲の座標内に入っているが、平行検知手段が検知する距離が予め定めた所定範囲の距離内に入っていない場合には、平行検知手段が検知する距離が予め定めた所定範囲の距離に入るように、本体を回転または走行させることにより、予め定めた所定範囲の座標と、平行検知手段が検知する距離の両方を用いて本体の走行方向と障害物とが平行になるように制御でき、精度がよりいっそう高まるものである。
【0012】
請求項6に記載の発明は、特に、請求項1〜3のいずれか1項に記載の自走式機器に計時手段を備え、座標検知手段が検知する座標が予め定めた所定範囲の座標内に入った後、制御手段が、本体の走行方向と障害物とが平行になるように制御し、所定時間内に本体の走行方向と障害物とが平行にならなければ、予め定めた所定範囲の座標から所定値内にある座標において、再度、本体の走行方向と障害物とが平行になるように前記本体を回転または走行させ、平行になった時点で前記走行方向検知手段が検知している走行方向を、その後の走行の所定方向とすることにより、走行方向検知手段または走行距離検知手段で誤差が生じることにより座標決定手段で決定される座標に誤差が生じても平行を検知してその平行方向を所定方向として直進走行することができる。
【0013】
請求項7に記載の発明は、特に、請求項6に記載の自走式機器に報知手段を備え、制御手段は、予め定めた所定範囲の座標から所定値内にある座標においても、本体の走行方向と障害物とが平行になるように制御した結果、所定時間内に本体の走行方向と障害物とが平行にならなければ、報知を行なうことにより、使用者にその後の直進走行に支障が出ることを予め知らせることができる。
【0014】
請求項8に記載の発明は、特に、請求項6に記載の自走式機器に平行検知手段よりも検知精度が低い緩平行検知手段を備え、制御手段は、予め定めた所定範囲の座標から所定値内にある座標においても、本体の走行方向と障害物とが平行になるように制御した結果、所定時間内に本体の走行方向と障害物とが平行にならなければ、予め定めた所定範囲の座標または予め定めた所定範囲の座標から所定値内にある座標で、前記緩平行検知手段により本体の走行方向と障害物とが平行になるように制御することにより、精度のよい平行がとれない場合は、少し精度を落とした平行をとって、その後の直進走行のずれを大きくしないようにすることができる。
【0015】
請求項9に記載の発明は、特に、請求項1〜8のいずれか1項に記載の制御手段は、予め定めた所定範囲の座標から所定値内にある座標では、通常走行中の走行速度よりも走行速度を下げるようにしたことにより、走行速度を落として、より精度良く平行をとって、その平行方向を所定方向として直進走行することができる。
【0016】
請求項10に記載の発明は、特に、請求項1〜9のいずれか1項に記載の自走式機器に、作業手段と、作業能力切り換え手段を備え、制御手段は、走行方向検知手段で検知している方向を、その後の走行の所定方向とする際には、前記作業能力切り換え手段で前記作業手段の作業能力を低くすることにより、本体の振動を押さえて走行方向検知手段の検知精度を安定させ、より精度良く平行をとって、その平行方向を所定方向として直進走行することができる。
【0017】
請求項11に記載した発明は、コンピュータを請求項1〜10のいずれか1項記載の自走式機器の全てもしくは一部として機能させるためのプログラムとする構成として、コンピュータを請求項1〜9のいずれか1項記載の自走式機器の全てもしくは一部として機能させることで、汎用コンピュータやサーバーを用いて本発明の自走式機器の全てもしくは一部を容易に実現することができる。
【0018】
【実施例】
以下本発明の実施例について、図面を参照しながら説明する。
【0019】
(実施例1)
図1は本発明の実施例1における自走式機器の構成を示すブロック図である。1は本体、2は制御手段、3aは走行手段である左駆動輪、3bは同じく走行手段である右駆動輪、4は走行方向を検知するための走行方向検知手段を構成するジャイロセンサで、5は、同じく走行方向検知手段を構成する走行方向演算部、6は走行距離検知手段を構成する走行センサ、7は同じく走行距離検知手段を構成する走行距離演算部、8は座標検知決定手段、9a、9bは平行検知手段を構成する測距センサ、10は同じく平行検知手段を構成する平行判断部、11は障害物を検知するための測距センサ、12は壁や家具等の障害物である。走行方向演算部5、走行距離演算部7、平行判断部10は、制御手段2の一部として機能するものである。
【0020】
また、図2は本発明の実施例1における自走式機器の走行図である。12は壁や家具等の障害物、13は走行開始位置であり原点座標となる走行開始座標、14は平行をとるべきターゲット座標、15は本体の走行軌跡である。
【0021】
以下、本実施例の動作について図1および図2を用いて説明する。予め、壁等で走行方向の基準をとるのに最適な平行な面がターゲット座標13の近辺にあることがわかっているものとする。
【0022】
まず、制御手段2は、走行開始位置である走行開始座標13を原点座標と位置付ける。走行方向演算部5は、ジャイロセンサ4で検知される角速度を積分し走行角度を演算する。走行距離演算部7は、走行センサ6で検出される回転数から1回転あたりの距離を積算して走行距離を演算する。座標検知手段8は、1座標単位を予め本体1の縦及び横の幅として、走行方向演算部5で演算された走行方向と走行距離演算部7で演算されたその方向への進行距離から、本体1の位置する座標を決定する。制御手段2は、図2で示した走行図で、まず直進走行を開始するために走行開始座標13で障害物12との仮の平行をとる。障害物との平行は、測距センサ9aと測距センサ9bで測距される障害物との距離の差が所定値以内になるように左駆動輪3aと右駆動輪3bを制御して行なう。制御手段2は、平行検知手段である測距センサ9aと測距センサ9bで障害物12との平行がとれたことを検知すると、直線走行を開始する。制御手段2は、走行中は、その都度座標検知手段8で走行中の座標位置を検知し、ターゲット座標14に入ったことを検知すると、障害物12との平行をとり、平行がとれれば、走行を一時停止して走行方向演算部5で走行方向を0°に補正する。その後、走行を再開し、前に障害物12を検知するとターンして走行軌跡15のように往復走行を繰り返す。走行範囲の縦往復走行が終了すると、今までの直進方向とは90°方向の横往復走行を繰り返す。横往復走行中も、ターゲット座標14に入ったことを検知すると、再び障害物15との平行をとる。平行が取れれば、その時の本体方向が0°から所定値以内の時は0°に、180°から所定値以内の時は180°に走行方向を補正する。
【0023】
尚、本実施例では、走行方向演算部5、走行距離演算部7、平行判断部10は、制御手段2の一部として機能する構成としたが、制御手段2とは独立のものとしてもかまわない。また、本実施例では、走行範囲にターゲット座標を1箇所としたが、平行面が数多くある場合には、複数のターゲット座標としてもかまわない。また、本実施例では、補正する角度を0°、180°としたが、ターゲット座標によっては、平行をとった時の走行方向に応じて90°や270°等の所定角度に補正してもかまわない。
【0024】
以上のように本実施例によれば、わずかな平面でも予めわかっている平面のある所定座標で平行部分を念入りに探して走行方向の基準方向(0°)を含む所定方向に補正し、かつその所定座標を通る度に所定方向に補正して直進走行することができる。
【0025】
(実施例2)
図3は、実施例2における自走式機器の構成を示すブロック図である。図1の構成に加えて、ターゲット座標入力手段であるリモコン送信部16とリモコン受信部17を備えている。
【0026】
以下、本実施例の動作について図3を用いて説明する。まず、制御手段2が、走行開始座標13で障害物12との仮の平行をとり、直線走行を開始し、走行中に、その都度座標検知手段8で走行中の座標位置を検知するまでの動作は、実施例1と同様である。使用者は、平行な面があれば、その時点でリモコン送信部16を操作してターゲット座標として送信する。制御手段2は、リモコン受信部17を介して受信して、障害物15との平行をとり、平行がとれれば、走行を一時停止して走行方向演算部5で平行をとる前の走行角度が0°、90°、180°、270°のいずれかの角度に所定置内の角度であったならば、所定値内にあったその4つのいずれかの角度に補正する。
【0027】
尚、本実施例では、ターゲット座標入力手段としてリモコン送信部16とリモコン受信部17で構成したが、本体にキー等の入力操作部を設けてもかまわない。また、記憶手段を設けてリモコン送信部から送られたターゲット座標を記憶するようにして、受信した後にその座標に入った時に平行をとるようにしてもかまわない。
【0028】
以上のように本実施例によれば、走行中または走行前に平行をとりたい理想的な平面を自走式機器に教えることができ、その位置で平行部分を念入りに探して走行方向の基準方向を含む所定方向へ補正し、かつその走行開始座標を通る度に走行方向の基準方向を含む所定方向として補正して直進走行することができる。
【0029】
(実施例3)
本発明の実施例3における自走式機器の構成を示すブロック図は、実施例2同様の図3である。走行図は実施例1同様の図2である。但し、図2において、走行開始座標13とターゲット座標14は等しいものとする。
【0030】
以下、本実施例の動作について説明する。まず、使用者は、掃除範囲内の平行をとりたい面のある障害物沿いに本体1を置き、走行開始させる。制御手段2は、その走行開始座標13で障害物12との平行をとり、直線走行を開始し、走行中に、その都度座標検知手段8で走行中の座標位置を検知し、走行開始座標13に入ったことを検知した時には、障害物12との平行をとる。平行が取れれば、走行を一時停止して、その時の本体方向が0°から所定値以内の時は0°に、180°から所定値以内の時は180°に走行方向を補正する。
【0031】
以上のように本実施例によれば、わずかな平面でも予めわかっている平面があれば、その位置から走行開始すれば、平行部分を念入りに探して走行方向の基準方向を含む所定方向へ補正し、かつその走行開始座標を通る度に走行方向の基準方向を含む所定方向として補正して直進走行することができる。
【0032】
(実施例4)
本発明の実施例4における自走式機器の構成を示すブロック図は、実施例2、実施例3同様の図3である。図4は実施例4の動作の流れを示すフローチャートである。
【0033】
以下、本実施例の動作について、図3のブロック図及び図4のフローチャートを用いて説明する。但し、測距センサ9a、9bは4cm〜15cmにおいて検知レベルと実際の距離との直線性が良く、検知性能が良いものとする。
【0034】
制御手段2は、座標検知手段8で平行をとるべきターゲット座標に入ったことを検知すると、平行検知手段である測距センサ9a、9bが検知している障害物との距離が共に所定範囲内(本実施例では4cm以上15cm以下)に入っているかどうかチェックして入っていない場合は所定範囲内になるように走行し近づく(ステップ1〜3)。所定範囲内に入れば、測距センサ9aと9bとの差が5mm以内になるように左駆動輪3a、右駆動輪3bを制御して本体1を回転させて平行をとる(ステップ4〜5)。平行がとれれば、走行を一時停止して、現在の走行方向が0°±30°なら0°に補正し、180°±30°なら180°に補正する(ステップ6〜10)。
【0035】
以上のように本実施例によれば、予め定めた所定の座標だけに基ずくのではなく、予め定めた平行検知手段である測距センサ9a、9bの検知精度の良い距離範囲で平行をより正確に検知し、その平行方向を、その後の所定方向として直進走行することができるようになる。
【0036】
(実施例5)
図5は、本発明の実施例5における自走式機器の構成を示すブロック図である。図3の構成に加えて、計時手段18を備えている。また、図6は本発明の実施例5における自走式機器の走行図である。
【0037】
以下、本実施例の動作について、図5のブロック図及び図6の走行図を用いて説明する。まず、制御手段2が、ターゲット座標14で障害物12との平行を狙うまでの動作は、実施例4と同様である。計時手段18は、座標決定手段8がで平行をとるべきターゲット座標に入ったことを検知し、制御手段2が平行をとる動作を開始する時点で計時を開始する。制御手段2は、左駆動輪3a、右駆動輪3bを制御して回転または走行を行い、平行をとろうとする。制御手段2は、計時手段18が所定時間(本実施例では1分間)を計時した時点でターゲット座標で平行をとる動作を止め、図6に○で示したターゲット座標から障害物12に沿って±2座標分をターゲット候補座標19を新たなターゲット座標として平行を狙う。ターゲット候補座標19で平行をとる際にも、計時手段18は1分間の計時を行い、1分間以内に平行がとれなければ、順次、別のターゲット候補座標19をターゲット座標として平行を狙う。
【0038】
尚、本実施例では、ターゲット候補座標19をターゲット座標14から障害物12に沿う軸上±2座標分としたが、任意の座標分としてもかまわないし、障害物12に沿うか否かに関わらずターゲット座標14のX軸上またはY軸上の任意の座標分としてもかまわない。
【0039】
以上のように本実施例によれば、走行方向検知手段または走行距離検知手段で誤差が生じることにより座標決定手段で決定される座標に誤差が生じても平行を検知してその平行方向を所定方向として直進走行することができる。
【0040】
(実施例6)
図7は、本発明の実施例6における自走式機器の構成を示すブロック図である。図5の構成に加えて、報知手段20を備えている。
【0041】
以下、本実施例の動作について説明する。制御手段2が、ターゲット座標14またはターゲット候補座標19で各々の座標につき1分間内に障害物12との平行を狙う動作は実施例5と同様である。ターゲット座標14およびターゲット候補座標19のいずれも各々の座標につき1分間内に平行がとれなければ、制御手段2は、報知手段20で平行がとれなかった旨とターゲット座標14の変更を促す報知を行う。
【0042】
以上のように本実施例によれば、使用者にその後の直進走行に支障が出ることを予め知らせることができ、使用者の平行な面のあるターゲット座標の新たな入力によって、より理想的な直進走行ができる。
【0043】
(実施例7)
図8は、本発明の実施例7における自走式機器の構成を示すブロック図である。図7の構成に加えて、緩平行判断部21を備え、測距センサ9a、9bと共に緩平行判断手段を構成している。
【0044】
以下、本実施例の動作について説明する。制御手段2が、ターゲット座標14またはターゲット候補座標19で各々の座標につき1分間内に障害物12との平行を狙う動作は実施例5、実施例6と同様である。ターゲット座標14およびターゲット候補座標19のいずれも各々の座標につき1分間内に平行がとれなければ、制御手段2は、報知手段20で平行がとれなかった旨を報知し、再度ターゲット座標に走行を戻し、測距センサ9aと測距センサ9bの入力をもとに平行判断部10よりも両者の差の制限の緩い緩平行判断部21で障害物12との平行を狙う(本実施例では、平行判断部での差は5mm以下、緩平行判断部での差は1cm以下)。制御手段2は、緩平行判断部21で平行がとれたことを検知すると、その時の本体方向が0°から所定値以内の時は0°に、180°から所定値以内の時は180°に走行方向を補正する。
【0045】
以上のように本実施例によれば、精度のよい平行がとれない場合は、少し精度を落とした平行をとって、その後の直進走行のずれを大きくしないようにすることができる。
【0046】
(実施例8)
図9は本実施例の実施例8の動作の流れを示すフローチャートである。
【0047】
以下、本実施例の動作について、図9のフローチャートを用いて説明する。制御手段2が、ターゲット座標14またはターゲット候補座標19で各々の座標につき1分間内に障害物12との平行を狙う動作は実施例5と同様である。制御手段2は、座標決定手段8でターゲット候補座標19のいずれかの座標に入っていることを検知すると、左右の走行速度を通常の走行速度の1/2に左駆動輪3a、右駆動輪3bを制御する(ステップ11、12)。
【0048】
また、ターゲット座標14に入っていることを検知すると左右の走行速度を通常の走行速度の1/4に制御する(ステップ13、14)。それ以外の座標にいる場合には、通常走行速度に制御する(ステップ15)。
【0049】
以上のように本実施例によれば、走行速度を落として、より精度良く平行をとって、その平行方向を所定方向として直進走行することができる。
【0050】
(実施例9)
図10は、本発明の実施例9における自走式機器の構成を示すブロック図である。図8の構成に加えて、作業手段である吸引ノズル22と、作業能力切り換え手段である吸引能力切り換え部23を備えている。
【0051】
以下、本実施例の動作について説明する。制御手段2が、ターゲット座標14またはターゲット候補座標19で各々の座標につき1分間内に障害物12との平行を狙う動作は実施例8と同様である。平行判断部10または緩平行判断部21で平行が検知できれば、まず走行を一時停止し、吸引能力切り換え部23で吸引ノズルの吸引を通常能力より落とし(本実施例では通常能力の1/2)、所定時間後(本実施例では1秒後)その時の本体方向が0°から所定値以内の時は0°に、180°から所定値以内の時は180°に走行方向を補正する。補正後は、吸引能力切り換え部23で吸引ノズル22の吸引力を通常に戻し、走行を再開する。
【0052】
尚、本実施例では、吸引能力切り換え部23で吸引ノズル22の吸引力を通常の1/2としたが、停止してもかまわない。
【0053】
以上のように本実施例によれば、振動に弱い走行方向検知手段であるジャイロの検知精度を安定させ、より精度良く平行をとって、その平行方向を所定方向として直進走行することができる。
【0054】
(実施例10)
次に本発明の実施例10について図1を用いて説明する。本実施例は、コンピュータを、制御手段2の全てもしくは一部として機能させるためのプログラムとする構成として、コンピュータを全てもしくは一部として機能させるものである。
【0055】
以上のように本実施例によれば、汎用コンピュータやサーバーを用いて本発明の自走式機器の全てもしくは一部を容易に実現することができる。
【0056】
尚、上記実施例1〜10において、座標検知手段が検知する走行中の座標が予め定めた所定の座標と一致したときに、本体の走行方向と障害物とが平行になるように前記本体を回転または走行させるようにしたが、予め定める所定の座標を、予め定める所定範囲の座標とし、ある広がりを持った座標としておいても、支障がないものである。
【0057】
【発明の効果】
以上のように、本発明によれば、わずかな平面しかなくてもその所定座標で障害物との平行方向を探し出して、その後の走行の所定方向とすることにより、走行方向の基準方向を容易に補正できるようになる。
【図面の簡単な説明】
【図1】本発明の実施例1における自走式機器の構成を示すブロック図
【図2】同、実施例1および実施例3における自走式機器の走行図
【図3】同、実施例2および実施例3における自走式機器の構成を示すブロック図
【図4】同、実施例4の動作の流れを示すフローチャート
【図5】同、実施例5における自走式機器の構成を示すブロック図
【図6】同、実施例5における自走式機器の走行図
【図7】同、実施例6における自走式機器の構成を示すブロック図
【図8】同、実施例7における自走式機器の構成を示すブロック図
【図9】同、実施例8の動作の流れを示すフローチャート
【図10】同、実施例9における自走式機器の構成を示すブロック図
【符号の説明】
1 本体
2 制御手段
3a 左駆動輪(走行手段)
3b 右駆動輪(走行手段)
4 ジャイロセンサ(走行方向検知手段)
5 走行方向演算部(走行方向検知手段)
6 走行センサ(走行距離検知手段)
7 走行距離演算部(走行距離検知手段)
8 座標検知手段
9a 測距センサ(平行検知手段)
9b 測距センサ(平行検知手段)
10 平行判断部
11 測距センサ
12 障害物
13 走行開始座標
14 ターゲット座標
15 走行軌跡
16 リモコン送信部
17 リモコン受信部
18 計時手段
19 ターゲット候補座標
20 報知手段
21 緩平行判断部
22 吸引ノズル
23 吸引能力切り換え部
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a self-propelled device that travels independently without human assistance.
[0002]
[Prior art]
Conventionally, this type of self-propelled device periodically stores the difference between the output of the left front obstacle detection unit and the output of the right front obstacle detection unit a plurality of times, for example, in order to perform straight traveling within the traveling range, A reference plane of the traveling direction is corrected by finding a continuous front plane (for example, see Patent Document 1).
[0003]
[Patent Document 1]
JP-A-8-215116
[Problems to be solved by the invention]
However, in the conventional configuration, the reference direction of the traveling direction cannot be corrected unless there is a continuous plane. There was a problem that it was difficult to correct the reference direction of the traveling direction.
[0005]
An object of the present invention is to solve the above-mentioned conventional problems, and an object of the present invention is to provide a self-propelled device capable of traveling by easily correcting the reference direction of the traveling direction even on a small plane.
[0006]
[Means for Solving the Problems]
In order to solve the conventional problem, the present invention includes a main body, control means for the main body, running means for moving and running the main body, running direction detecting means for detecting a running direction of the main body, Travel distance detection means for detecting the distance traveled by the main body, coordinate detection means for detecting coordinates during travel from the detection content of the travel direction detection means and the content detected by the travel distance detection means, the travel direction of the main body and obstacles Parallel detection means for detecting whether the object is parallel to the object, the control means, when the coordinates during traveling detected by the coordinate detection means is within a predetermined range of coordinates. The main body is rotated or run so that the running direction of the main body and the obstacle are parallel to each other, and the running direction detected by the running direction detecting means at the time when the main body becomes parallel is determined as a predetermined direction of the subsequent running. To be Hashishiki is obtained by the device. Thus, even if there is only a slight plane, the reference direction of the traveling direction can be easily corrected by searching for the parallel direction with the obstacle at the predetermined coordinates and setting the parallel direction to the subsequent traveling direction.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
According to the first aspect of the present invention, a main body, a control unit for the main body, a traveling unit for moving and traveling the main body, a traveling direction detection unit for detecting a traveling direction of the main body, and the main body travels Traveling distance detecting means for detecting a distance, coordinate detecting means for detecting coordinates during traveling based on the detected contents of the traveling direction detecting means and the traveling distance detecting means, and the traveling direction of the main body and the obstacle are parallel. And parallel detection means for detecting whether or not the main body of the main body when the coordinates during traveling detected by the coordinate detection means fall within the coordinates of a predetermined range. By rotating or running the main body so that the running direction and the obstacle are parallel, and by setting the running direction detected by the running direction detecting means at the time when the body is parallel to the predetermined direction of the subsequent running, , Carefully search for a parallel part at a certain coordinate on a plane that is known in advance even in a simple plane, correct in a predetermined direction including the reference direction of the running direction, and correct in a predetermined direction each time the vehicle passes through the predetermined coordinate, and travel straight. Can be.
[0008]
According to a second aspect of the present invention, in particular, the self-propelled device according to the first aspect includes target coordinate input means, and coordinates in a predetermined range are coordinates input by the target coordinate input means. By doing so, it is possible to teach the self-propelled equipment the ideal plane to be parallelized during or before traveling, and to carefully search for parallel parts at that position and correct it in a predetermined direction including the reference direction of the traveling direction. Each time the vehicle passes through the traveling start coordinates, the traveling direction can be corrected as a predetermined direction including the reference direction of the traveling direction, and the vehicle can travel straight.
[0009]
According to the third aspect of the present invention, in particular, by setting the coordinates of the predetermined range defined in the first aspect as the coordinates when the main body starts traveling, a plane which is known in advance even with a slight plane can be obtained. If there is, if it starts running from that position, it carefully searches for a parallel portion and corrects it to a predetermined direction including the reference direction of the running direction, and every time the vehicle passes through the running start coordinates as a predetermined direction including the reference direction of the running direction. The vehicle can travel straight ahead with correction.
[0010]
According to a fourth aspect of the present invention, in particular, the parallel detection means according to any one of the first to third aspects detects the distance from the obstacle so that the traveling direction of the main body is parallel to the obstacle. The control means controls whether the coordinates during travel detected by the coordinate detection means fall within the coordinates of a predetermined range, and the distance detected by the parallel detection means is a predetermined distance. When the vehicle enters the range, the main body is rotated or run so that the running direction of the main body and the obstacle are parallel to each other, and the running direction detected by the running direction detecting means at the time when the main body becomes parallel is detected. By setting the direction as the predetermined direction of the subsequent traveling, it is possible to more accurately detect parallelism within a distance range where the detection accuracy of the parallel detection means is good, and drive straight ahead with the parallel direction as the predetermined direction.
[0011]
According to a fifth aspect of the present invention, in particular, the coordinates detected by the coordinate detecting means according to the fourth aspect fall within a predetermined range of coordinates, but the distance detected by the parallel detecting means is predetermined. If the distance is not within the predetermined range, the body is rotated or run so that the distance detected by the parallel detection means falls within the predetermined range. By using both the distance detected by the parallel detection means and the obstacle, the traveling direction of the main body and the obstacle can be controlled so as to be parallel, and the accuracy is further improved.
[0012]
According to a sixth aspect of the present invention, in particular, the self-propelled device according to any one of the first to third aspects further comprises a time keeping means, and the coordinates detected by the coordinate detecting means are within a predetermined range of coordinates. After entering, the control means controls the traveling direction of the main body and the obstacle to be parallel, and if the traveling direction of the main body and the obstacle do not become parallel within a predetermined time, a predetermined predetermined range. Again, at coordinates within a predetermined value from the coordinates, the main body is rotated or run again so that the running direction of the main body and the obstacle are parallel, and at the time when the main body becomes parallel, the running direction detecting means detects By setting the traveling direction to be a predetermined direction for the subsequent traveling, even if an error occurs in the coordinates determined by the coordinate determining means due to an error occurring in the traveling direction detecting means or the traveling distance detecting means, parallel detection is performed. With the parallel direction as the predetermined direction, It is possible to travel.
[0013]
According to a seventh aspect of the present invention, in particular, the self-propelled device according to the sixth aspect further comprises a notifying unit, and the control unit controls the body of the main body even at coordinates within a predetermined value from coordinates in a predetermined range. If the traveling direction and the obstacle are controlled so that they are parallel to each other and the traveling direction of the main body and the obstacle do not become parallel within a predetermined time, the user is notified to hinder the subsequent straight traveling. Is notified in advance.
[0014]
The invention according to claim 8 includes, in particular, the self-propelled device according to claim 6 further including a gentle parallel detection unit having lower detection accuracy than the parallel detection unit, and the control unit performs the control based on coordinates in a predetermined range. Even at coordinates within the predetermined value, if the traveling direction of the main body and the obstacle are not parallel within a predetermined time as a result of controlling the traveling direction of the main body and the obstacle to be parallel, a predetermined predetermined By controlling the traveling direction of the main body and the obstacle to be parallel with the coordinates of the range or the coordinates within a predetermined value from the coordinates of the predetermined range by the gentle parallel detection means, accurate parallel is achieved. In the case where it cannot be taken, it is possible to take parallelism with a slight decrease in accuracy so as not to increase the deviation of the straight running thereafter.
[0015]
According to a ninth aspect of the present invention, in particular, the control means according to any one of the first to eighth aspects further comprises a control unit configured to control the traveling speed during normal traveling at coordinates within a predetermined value from coordinates in a predetermined range. By making the traveling speed lower than the traveling speed, the traveling speed can be reduced, the vehicle can be parallelized with higher accuracy, and the vehicle can travel straight ahead with the parallel direction as a predetermined direction.
[0016]
According to a tenth aspect of the present invention, in particular, the self-propelled device according to any one of the first to ninth aspects includes a working means and a work capacity switching means, and the control means includes a traveling direction detecting means. When the detected direction is set to a predetermined direction of the subsequent traveling, the working ability switching means lowers the working ability of the working means, thereby suppressing vibration of the main body and detecting accuracy of the traveling direction detecting means. , And the vehicle can travel in a straight line with the parallel direction being a predetermined direction.
[0017]
According to an eleventh aspect of the present invention, a computer is configured as a program for causing a computer to function as all or a part of the self-propelled device according to any one of the first to tenth aspects. By functioning all or part of the self-propelled device according to any one of the above, all or part of the self-propelled device of the present invention can be easily realized using a general-purpose computer or server.
[0018]
【Example】
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0019]
(Example 1)
FIG. 1 is a block diagram illustrating a configuration of a self-propelled device according to the first embodiment of the present invention. 1 is a main body, 2 is a control means, 3a is a left driving wheel which is a traveling means, 3b is a right driving wheel which is also a traveling means, 4 is a gyro sensor which constitutes a traveling direction detecting means for detecting a traveling direction, Reference numeral 5 denotes a traveling direction computing unit also constituting traveling direction detecting means, 6 represents a traveling sensor constituting traveling distance detecting means, 7 represents a traveling distance computing unit also constituting traveling distance detecting means, 8 represents coordinate detection determining means, 9a and 9b are distance measuring sensors constituting parallel detecting means, 10 is a parallel judging unit also constituting parallel detecting means, 11 is a distance measuring sensor for detecting an obstacle, and 12 is an obstacle such as a wall or furniture. is there. The traveling direction calculation unit 5, the traveling distance calculation unit 7, and the parallel determination unit 10 function as a part of the control unit 2.
[0020]
FIG. 2 is a traveling diagram of the self-propelled device according to the first embodiment of the present invention. Reference numeral 12 denotes an obstacle such as a wall or furniture, reference numeral 13 denotes a travel start position, which is the origin coordinate, reference numeral 14 denotes a target coordinate to be parallelized, and reference numeral 15 denotes a travel locus of the main body.
[0021]
Hereinafter, the operation of the present embodiment will be described with reference to FIGS. It is assumed that it is known in advance that a parallel surface that is optimal for taking a reference in the traveling direction by a wall or the like is near the target coordinates 13.
[0022]
First, the control means 2 positions the traveling start coordinates 13 as the traveling start position as the origin coordinates. The traveling direction calculation unit 5 calculates the traveling angle by integrating the angular velocity detected by the gyro sensor 4. The traveling distance calculation unit 7 calculates the traveling distance by integrating the distance per rotation from the number of rotations detected by the traveling sensor 6. The coordinate detecting means 8 calculates the one coordinate unit as the vertical and horizontal width of the main body 1 in advance and calculates the travel direction calculated by the travel direction calculator 5 and the travel distance in the direction calculated by the travel distance calculator 7. The coordinates where the main body 1 is located are determined. The control means 2 takes a tentative parallel with the obstacle 12 at the traveling start coordinates 13 in order to start straight traveling, in the traveling diagram shown in FIG. Parallelism with the obstacle is performed by controlling the left driving wheel 3a and the right driving wheel 3b such that the difference in distance between the obstacle measured by the distance measuring sensor 9a and the distance measuring sensor 9b is within a predetermined value. . When detecting that the obstacle 12 has become parallel with the distance measuring sensors 9a and 9b, which are parallel detecting means, the control means 2 starts straight traveling. When the control means 2 is running, the coordinate detection means 8 detects the running coordinate position each time, and detects that the vehicle has entered the target coordinates 14, the control means 2 takes a parallel with the obstacle 12, and if the parallel is taken, The traveling is temporarily stopped, and the traveling direction is corrected to 0 ° by the traveling direction calculation unit 5. Thereafter, the traveling is restarted, and when the obstacle 12 is detected before, the vehicle turns and repeats the reciprocating traveling like the traveling locus 15. When the vertical reciprocating traveling in the traveling range is completed, the horizontal reciprocating traveling in the direction of 90 ° with respect to the straight traveling direction is repeated. Even during the lateral reciprocation, when it is detected that the target coordinates 14 have been entered, the obstacles 15 are again parallelized. If parallelism is obtained, the traveling direction is corrected to 0 ° when the body direction at that time is within a predetermined value from 0 °, and to 180 ° when the body direction is within a predetermined value from 180 °.
[0023]
In this embodiment, the traveling direction calculation unit 5, the traveling distance calculation unit 7, and the parallel determination unit 10 are configured to function as a part of the control unit 2, but may be independent of the control unit 2. Absent. In the present embodiment, one target coordinate is set in the traveling range. However, when there are many parallel planes, a plurality of target coordinates may be used. In the present embodiment, the angles to be corrected are 0 ° and 180 °. However, depending on the target coordinates, the angles may be corrected to a predetermined angle such as 90 ° or 270 ° depending on the running direction when the vehicle is parallel. I don't care.
[0024]
As described above, according to the present embodiment, even a slight plane is carefully searched for a parallel portion at a predetermined coordinate on a plane which is known in advance, and is corrected to a predetermined direction including the reference direction (0 °) of the traveling direction, and Each time the vehicle passes through the predetermined coordinates, it can be corrected in a predetermined direction and travel straight ahead.
[0025]
(Example 2)
FIG. 3 is a block diagram illustrating a configuration of a self-propelled device according to the second embodiment. In addition to the configuration of FIG. 1, a remote control transmitting unit 16 and a remote control receiving unit 17 as target coordinate input means are provided.
[0026]
Hereinafter, the operation of this embodiment will be described with reference to FIG. First, the control means 2 takes a tentative parallel with the obstacle 12 at the traveling start coordinates 13 and starts a straight traveling, and during the traveling, the coordinate detecting means 8 detects the traveling coordinate position each time. The operation is the same as in the first embodiment. If there is a parallel surface, the user operates the remote control transmission unit 16 at that time to transmit the target coordinates. The control means 2 receives the signal through the remote control receiving unit 17, sets parallelism with the obstacle 15, and if parallelism is established, temporarily stops running and sets the running angle before the running direction calculation unit 5 takes parallelism. If the angle is within the predetermined position at any one of 0 °, 90 °, 180 °, and 270 °, the angle is corrected to any of the four angles within the predetermined value.
[0027]
In this embodiment, the remote controller transmitting unit 16 and the remote controller receiving unit 17 are used as the target coordinate input unit. However, an input operation unit such as a key may be provided on the main body. Further, a storage means may be provided to store the target coordinates transmitted from the remote control transmission unit, and the target coordinates may be parallelized when the coordinates are entered after the reception.
[0028]
As described above, according to the present embodiment, it is possible to teach the self-propelled device an ideal plane to be parallelized during or before traveling, and carefully look for a parallel portion at that position to determine a reference for the traveling direction. It is possible to correct the vehicle in a predetermined direction including the direction, and to correct the vehicle as a predetermined direction including the reference direction of the traveling direction every time the vehicle travels through the traveling start coordinates, thereby traveling straight.
[0029]
(Example 3)
A block diagram illustrating the configuration of the self-propelled device according to the third embodiment of the present invention is FIG. 3 similar to the second embodiment. The traveling diagram is FIG. 2 similar to the first embodiment. However, in FIG. 2, it is assumed that the traveling start coordinates 13 and the target coordinates 14 are equal.
[0030]
Hereinafter, the operation of the present embodiment will be described. First, the user places the main body 1 along an obstacle having a surface to be parallelized within the cleaning range and starts traveling. The control means 2 takes a parallel with the obstacle 12 at the traveling start coordinates 13 and starts straight traveling. During the traveling, the coordinate detecting means 8 detects the traveling coordinate position each time, and the traveling starting coordinates 13 When it is detected that the vehicle has entered the vehicle, it is parallel to the obstacle 12. If the parallelism is obtained, the traveling is temporarily stopped, and the traveling direction is corrected to 0 ° when the main body direction at that time is within a predetermined value from 0 °, and to 180 ° when the main body direction is within a predetermined value from 180 °.
[0031]
As described above, according to the present embodiment, if there is a plane that is known in advance even if it is a slight plane, if it starts traveling from that position, it carefully searches for parallel parts and corrects it in a predetermined direction including the reference direction of the traveling direction. Each time the vehicle passes through the traveling start coordinates, the traveling direction can be corrected as a predetermined direction including the reference direction of the traveling direction.
[0032]
(Example 4)
A block diagram illustrating the configuration of the self-propelled device according to the fourth embodiment of the present invention is FIG. 3 similar to the second and third embodiments. FIG. 4 is a flowchart showing the flow of the operation of the fourth embodiment.
[0033]
Hereinafter, the operation of this embodiment will be described with reference to the block diagram of FIG. 3 and the flowchart of FIG. However, it is assumed that the distance measuring sensors 9a and 9b have good linearity between the detection level and the actual distance between 4 cm and 15 cm, and have good detection performance.
[0034]
When the coordinate detection means 8 detects that the coordinates have entered the target coordinates to be parallelized, the control means 2 sets both the distance to the obstacle detected by the distance measurement sensors 9a and 9b as the parallel detection means within a predetermined range. (4 cm or more and 15 cm or less in this embodiment) It is checked whether or not the vehicle is in the vehicle. If the vehicle is not in the vehicle, the vehicle runs close to the predetermined range (steps 1 to 3). When the distance falls within the predetermined range, the left driving wheel 3a and the right driving wheel 3b are controlled so that the difference between the distance measuring sensors 9a and 9b is within 5 mm, and the main body 1 is rotated to be parallel (steps 4 to 5). ). If the parallelism is obtained, the traveling is suspended, and the current traveling direction is corrected to 0 ° if the current traveling direction is 0 ° ± 30 °, and is corrected to 180 ° if the current traveling direction is 180 ° ± 30 ° (steps 6 to 10).
[0035]
As described above, according to the present embodiment, the parallelism is improved not only based on the predetermined coordinates, but also within a distance range where the detection accuracy of the distance measuring sensors 9a and 9b as the predetermined parallel detection means is good. Accurate detection is performed, and the vehicle can travel straight ahead with the parallel direction as the predetermined direction thereafter.
[0036]
(Example 5)
FIG. 5 is a block diagram illustrating a configuration of a self-propelled device according to a fifth embodiment of the present invention. A timing unit 18 is provided in addition to the configuration shown in FIG. FIG. 6 is a traveling diagram of the self-propelled device according to the fifth embodiment of the present invention.
[0037]
Hereinafter, the operation of the present embodiment will be described with reference to the block diagram of FIG. 5 and the traveling diagram of FIG. First, the operation until the control means 2 aims at the target coordinates 14 in parallel with the obstacle 12 is the same as that of the fourth embodiment. The timing unit 18 detects that the coordinate determination unit 8 has entered the target coordinates to be parallelized, and starts timing when the control unit 2 starts the operation of parallelizing. The control means 2 controls the left driving wheel 3a and the right driving wheel 3b to rotate or run and try to be parallel. The control means 2 stops the operation of taking parallel at the target coordinates when the time counting means 18 times a predetermined time (one minute in this embodiment), and moves along the obstacle 12 from the target coordinates indicated by a circle in FIG. Aim at parallelism by ± 2 coordinates with the target candidate coordinates 19 as new target coordinates. Even when the target candidate coordinates 19 are set to be parallel, the timing unit 18 measures the time for one minute. If the parallelism cannot be obtained within one minute, the parallel target is sequentially set to another target candidate coordinate 19 as the target coordinates.
[0038]
In the present embodiment, the target candidate coordinates 19 are ± 2 coordinates on the axis from the target coordinates 14 along the obstacle 12, but may be arbitrary coordinates, regardless of whether or not along the obstacle 12. Alternatively, any coordinates on the X axis or the Y axis of the target coordinates 14 may be used.
[0039]
As described above, according to the present embodiment, even if an error occurs in the coordinates determined by the coordinate determining means due to an error occurring in the traveling direction detecting means or the traveling distance detecting means, parallelism is detected and the parallel direction is determined. The vehicle can travel straight ahead.
[0040]
(Example 6)
FIG. 7 is a block diagram illustrating a configuration of a self-propelled device according to Embodiment 6 of the present invention. A notification unit 20 is provided in addition to the configuration of FIG.
[0041]
Hereinafter, the operation of the present embodiment will be described. The operation of the control unit 2 aiming at the target coordinates 14 or the target candidate coordinates 19 in parallel with the obstacle 12 within one minute for each coordinate is the same as in the fifth embodiment. If neither of the target coordinates 14 and the target candidate coordinates 19 can be parallelized within one minute for each coordinate, the control means 2 notifies the notification means 20 that the parallelism could not be obtained and informs the user of the change of the target coordinates 14. Do.
[0042]
As described above, according to the present embodiment, the user can be notified in advance that hindrance will occur in the subsequent straight-ahead traveling, and a new input of the target coordinates with the parallel plane of the user makes it more ideal. You can go straight.
[0043]
(Example 7)
FIG. 8 is a block diagram illustrating a configuration of a self-propelled device according to a seventh embodiment of the present invention. In addition to the configuration shown in FIG. 7, a loose parallel determination unit 21 is provided, and together with the distance measuring sensors 9a and 9b, a loose parallel determination unit is configured.
[0044]
Hereinafter, the operation of the present embodiment will be described. The operation in which the control means 2 aims at the target coordinates 14 or the target candidate coordinates 19 to aim parallel to the obstacle 12 within one minute for each coordinate is the same as in the fifth and sixth embodiments. If none of the target coordinates 14 and the target candidate coordinates 19 can be parallelized within one minute for each coordinate, the control means 2 notifies the notifying means 20 that the parallelism has not been achieved, and travels again to the target coordinates. Then, based on the inputs of the distance measuring sensor 9a and the distance measuring sensor 9b, the parallel judging unit 10 aims at the parallelism with the obstacle 12 by the gradual parallel judging unit 21 in which the difference between the two is less restricted (in the present embodiment, The difference in the parallel judging unit is 5 mm or less, and the difference in the gentle parallel judging unit is 1 cm or less. When the gentle parallel determination unit 21 detects that the parallelism has been taken, the control unit 2 sets the main body direction at that time to 0 ° when the main body direction is within a predetermined value from 0 °, and to 180 ° when the main body direction is within a predetermined value from 180 °. Correct the direction of travel.
[0045]
As described above, according to the present embodiment, when high-precision parallelism cannot be obtained, parallelism with slightly reduced accuracy can be taken, so that the deviation of the straight traveling after that can be prevented from increasing.
[0046]
(Example 8)
FIG. 9 is a flowchart showing the flow of the operation of the eighth embodiment of the present embodiment.
[0047]
Hereinafter, the operation of this embodiment will be described with reference to the flowchart of FIG. The operation of the control unit 2 aiming at the target coordinates 14 or the target candidate coordinates 19 in parallel with the obstacle 12 within one minute for each coordinate is the same as in the fifth embodiment. When the coordinate determining means 8 detects that the coordinates are in any of the target candidate coordinates 19, the control means 2 reduces the left and right running speeds to half of the normal running speed by the left driving wheel 3a and the right driving wheel. 3b is controlled (steps 11 and 12).
[0048]
Further, when it is detected that the vehicle is in the target coordinates 14, the right and left traveling speeds are controlled to 1/4 of the normal traveling speed (steps 13 and 14). If the coordinates are other than the above, control is performed at the normal traveling speed (step 15).
[0049]
As described above, according to the present embodiment, the traveling speed can be reduced, the parallel can be obtained more accurately, and the vehicle can travel straight ahead with the parallel direction being the predetermined direction.
[0050]
(Example 9)
FIG. 10 is a block diagram illustrating a configuration of a self-propelled device according to Embodiment 9 of the present invention. In addition to the configuration shown in FIG. 8, a suction nozzle 22 as a working means and a suction capacity switching unit 23 as a working capacity switching means are provided.
[0051]
Hereinafter, the operation of the present embodiment will be described. The operation of the control means 2 for aiming parallel to the obstacle 12 within one minute for each coordinate at the target coordinates 14 or the target candidate coordinates 19 is the same as in the eighth embodiment. If parallelism can be detected by the parallel judging unit 10 or the gentle parallel judging unit 21, the traveling is temporarily stopped, and the suction capability switching unit 23 lowers the suction of the suction nozzle from the normal capability (in this embodiment, 1 / of the normal capability). After a predetermined time (after one second in this embodiment), the traveling direction is corrected to 0 ° when the main body direction is within a predetermined value from 0 °, and to 180 ° when the main body direction is within a predetermined value from 180 °. After the correction, the suction capacity switching unit 23 returns the suction force of the suction nozzle 22 to normal, and restarts traveling.
[0052]
In this embodiment, the suction force of the suction nozzle 22 is reduced to half of the normal suction force by the suction capacity switching unit 23, but may be stopped.
[0053]
As described above, according to the present embodiment, it is possible to stabilize the detection accuracy of the gyro, which is a traveling direction detecting means that is vulnerable to vibration, to take a parallel with higher precision, and to travel straight with the parallel direction as a predetermined direction.
[0054]
(Example 10)
Next, a tenth embodiment of the present invention will be described with reference to FIG. In the present embodiment, the computer is configured to function as all or part of the control unit 2 as a program for causing the computer to function as all or part of the control unit 2.
[0055]
As described above, according to the present embodiment, all or a part of the self-propelled device of the present invention can be easily realized using a general-purpose computer or a server.
[0056]
In the first to tenth embodiments, the main body is moved so that the traveling direction of the main body and the obstacle are parallel to each other when the traveling coordinates detected by the coordinate detecting means coincide with predetermined coordinates. Although the vehicle is caused to rotate or run, there is no problem even if the predetermined coordinates are set as coordinates in a predetermined range and the coordinates have a certain spread.
[0057]
【The invention's effect】
As described above, according to the present invention, even if there is only a slight plane, the parallel direction with the obstacle is searched for at the predetermined coordinates, and is set as the predetermined direction for the subsequent running, so that the reference direction of the running direction can be easily set. Can be corrected.
[Brief description of the drawings]
FIG. 1 is a block diagram showing the configuration of a self-propelled device according to a first embodiment of the present invention; FIG. 2 is a traveling diagram of the self-propelled device according to the first and third embodiments; FIG. FIG. 4 is a block diagram showing a configuration of a self-propelled device according to the second and third embodiments. FIG. 4 is a flowchart showing an operation flow of the fourth embodiment. FIG. FIG. 6 is a block diagram showing the configuration of the self-propelled device according to the sixth embodiment. FIG. 8 is a block diagram showing the configuration of the self-propelled device according to the sixth embodiment. FIG. 9 is a block diagram illustrating a configuration of a self-propelled device according to the eighth embodiment. FIG. 10 is a block diagram illustrating a configuration of a self-propelled device according to a ninth embodiment.
DESCRIPTION OF SYMBOLS 1 Main body 2 Control means 3a Left drive wheel (running means)
3b Right drive wheel (running means)
4 Gyro sensor (running direction detecting means)
5 Travel direction calculation unit (travel direction detection means)
6. Travel sensor (travel distance detection means)
7 Travel distance calculation unit (travel distance detection means)
8 Coordinate detecting means 9a Distance measuring sensor (parallel detecting means)
9b Distance measuring sensor (parallel detection means)
DESCRIPTION OF SYMBOLS 10 Parallel judging part 11 Distance measuring sensor 12 Obstacle 13 Running start coordinate 14 Target coordinate 15 Running locus 16 Remote control transmitting part 17 Remote control receiving part 18 Clocking means 19 Target candidate coordinate 20 Reporting means 21 Slow parallel judging part 22 Suction nozzle 23 Suction ability Switching unit

Claims (11)

本体と、前記本体の制御手段と、前記本体を移動走行させる走行手段と、前記本体の走行方向を検知するための走行方向検知手段と、前記本体が走行した距離を検知するための走行距離検知手段と、前記走行方向検知手段および前記走行距離検知手段での検知内容から走行中の座標を検知する座標検知手段と、本体の走行方向と障害物とが平行であるかどうかを検知するための平行検知手段とを備え、前記制御手段は、前記座標検知手段が検知する走行中の座標が予め定めた所定範囲の座標内に入ったときに、前記本体の走行方向と障害物とが平行になるように前記本体を回転または走行させ、平行になった時点で前記走行方向検知手段が検知している走行方向を、その後の走行の所定方向とする自走式機器。A main body, a control means for the main body, a traveling means for moving and traveling the main body, a traveling direction detecting means for detecting a traveling direction of the main body, and a traveling distance detection for detecting a distance traveled by the main body. Means, coordinate detecting means for detecting coordinates during traveling from the detection contents of the traveling direction detecting means and the traveling distance detecting means, and detecting whether or not the traveling direction of the main body is parallel to the obstacle. Parallel detection means, the control means, when the coordinates during traveling detected by the coordinate detection means fall within a predetermined range of coordinates, the traveling direction of the main body and the obstacle in parallel. A self-propelled device in which the main body is rotated or travels so that the traveling direction detected by the traveling direction detecting means at the time when the main body becomes parallel is a predetermined direction for subsequent traveling. ターゲット座標入力手段を備え、予め定めた所定範囲の座標は、前記ターゲット座標入力手段により入力した座標とする請求項1に記載の自走式機器。The self-propelled device according to claim 1, further comprising target coordinate input means, wherein coordinates in a predetermined range are coordinates input by the target coordinate input means. 予め定めた所定範囲の座標を、本体が走行を開始したときの座標とする請求項1に記載の自走式機器。2. The self-propelled device according to claim 1, wherein the coordinates in a predetermined range are coordinates when the main body starts running. 平行検知手段は、障害物からの距離を検知することにより本体の走行方向と障害物とが平行であるかどうかの検知を行うものとし、制御手段は、座標検知手段が検知する走行中の座標が予め定めた所定範囲の座標内に入り、且つ前記平行検知手段が検知する距離が予め定めた所定範囲の距離内に入った場合に、前記本体の走行方向と障害物とが平行になるように前記本体を回転または走行させ、平行になった時点で前記走行方向検知手段が検知している走行方向を、その後の走行の所定方向とする請求項1〜3のいずれか1項に記載の自走式機器。The parallel detecting means detects whether or not the traveling direction of the main body is parallel to the obstacle by detecting a distance from the obstacle, and the control means is configured to detect coordinates during traveling detected by the coordinate detecting means. Is within the coordinates of a predetermined range, and when the distance detected by the parallel detection means is within the distance of the predetermined range, the traveling direction of the main body is parallel to the obstacle. The body according to any one of claims 1 to 3, wherein the main body is rotated or run, and the running direction detected by the running direction detecting means at the time when the main body becomes parallel is set as a predetermined direction of the subsequent running. Self-propelled equipment. 座標検知手段が検知する座標が予め定めた所定範囲の座標内に入っているが、平行検知手段が検知する距離が予め定めた所定範囲の距離内に入っていない場合には、平行検知手段が検知する距離が予め定めた所定範囲の距離に入るように、本体を回転または走行させる請求項4に記載の自走式機器。If the coordinates detected by the coordinate detecting means are within the coordinates of a predetermined range, but the distance detected by the parallel detecting means is not within the distance of the predetermined range, the parallel detecting means The self-propelled device according to claim 4, wherein the main body is rotated or run so that the distance to be detected is within a predetermined range. 計時手段を備え、座標検知手段が検知する座標が予め定めた所定範囲の座標内に入った後、制御手段が、本体の走行方向と障害物とが平行になるように制御し、所定時間内に本体の走行方向と障害物とが平行にならなければ、予め定めた所定範囲の座標から所定値内にある座標において、再度、本体の走行方向と障害物とが平行になるように前記本体を回転または走行させ、平行になった時点で前記走行方向検知手段が検知している走行方向を、その後の走行の所定方向とする請求項1〜3のいずれか1項に記載の自走式機器。After the time detected by the coordinate detecting means is within a predetermined range of coordinates, the control means controls the traveling direction of the main body to be parallel to the obstacle, and within a predetermined time. If the traveling direction of the main body and the obstacle are not parallel to each other, the main body is moved again so that the traveling direction of the main body and the obstacle are parallel at coordinates within a predetermined value from coordinates in a predetermined range. The self-propelled type according to any one of claims 1 to 3, wherein the traveling direction detected by the traveling direction detection means at the time when the vehicle is rotated or travels parallel is set as a predetermined direction for subsequent traveling. machine. 報知手段を備え、制御手段は、予め定めた所定範囲の座標から所定値内にある座標においても、本体の走行方向と障害物とが平行になるように制御した結果、所定時間内に本体の走行方向と障害物とが平行にならなければ、報知を行なう請求項6に記載の自走式機器。The control means controls the traveling direction of the main body so that the obstacle is parallel to the obstacle even at coordinates within a predetermined value from coordinates in a predetermined range. 7. The self-propelled device according to claim 6, wherein the notification is performed if the traveling direction and the obstacle are not parallel. 平行検知手段よりも検知精度が低い緩平行検知手段を備え、制御手段は、予め定めた所定範囲の座標から所定値内にある座標においても、本体の走行方向と障害物とが平行になるように制御した結果、所定時間内に本体の走行方向と障害物とが平行にならなければ、予め定めた所定範囲の座標または予め定めた所定範囲の座標から所定値内にある座標で、前記緩平行検知手段により本体の走行方向と障害物とが平行になるように制御する請求項6に記載の自走式機器。The control device includes a gentle parallel detection unit having a lower detection accuracy than the parallel detection unit, and the control unit controls the traveling direction of the main body to be parallel to the obstacle even at coordinates within a predetermined value from coordinates in a predetermined range. As a result of the control, if the traveling direction of the main body and the obstacle do not become parallel within a predetermined time, the coordinates of the predetermined range or a coordinate within a predetermined value from the coordinates of the predetermined range are used as the speed. 7. The self-propelled device according to claim 6, wherein the parallel detection means controls the traveling direction of the main body to be parallel to the obstacle. 制御手段は、予め定めた所定範囲の座標から所定値内にある座標では、通常走行中の走行速度よりも走行速度を下げるようにした請求項1〜8のいずれか1項に記載の自走式機器。The self-propelled vehicle according to any one of claims 1 to 8, wherein the control means lowers the traveling speed from the traveling speed during normal traveling at coordinates within a predetermined value from coordinates in a predetermined range. Expression equipment. 作業手段と、作業能力切り換え手段を備え、制御手段は、走行方向検知手段で検知している方向を、その後の走行の所定方向とする際には、前記作業能力切り換え手段で前記作業手段の作業能力を低くする請求項1〜9のいずれか1項に記載の自走式機器。A work means, and a work capacity switching means, wherein the control means, when the direction detected by the traveling direction detection means is a predetermined direction of the subsequent traveling, the work capacity switching means performs the work of the working means. The self-propelled device according to any one of claims 1 to 9, wherein the capability is reduced. コンピュータを請求項1〜10のいずれか1項記載の自走式機器の全てもしくは一部として機能させるためのプログラム。A program for causing a computer to function as all or a part of the self-propelled device according to any one of claims 1 to 10.
JP2003160259A 2003-06-05 2003-06-05 Self-propelled apparatus and its program Withdrawn JP2004362292A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003160259A JP2004362292A (en) 2003-06-05 2003-06-05 Self-propelled apparatus and its program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003160259A JP2004362292A (en) 2003-06-05 2003-06-05 Self-propelled apparatus and its program

Publications (1)

Publication Number Publication Date
JP2004362292A true JP2004362292A (en) 2004-12-24

Family

ID=34053088

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003160259A Withdrawn JP2004362292A (en) 2003-06-05 2003-06-05 Self-propelled apparatus and its program

Country Status (1)

Country Link
JP (1) JP2004362292A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100772912B1 (en) * 2006-05-16 2007-11-05 삼성전자주식회사 Robot using absolute azimuth and method for mapping by the robot

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100772912B1 (en) * 2006-05-16 2007-11-05 삼성전자주식회사 Robot using absolute azimuth and method for mapping by the robot

Similar Documents

Publication Publication Date Title
EP3552532B1 (en) Method for angle correction of mobile robot in working area and mobile robot
CN102455182B (en) Positioning apparatus and positioning method
CN109394095B (en) Robot movement carpet deviation control method, chip and cleaning robot
KR100560966B1 (en) Method compensating gyro sensor for robot cleaner
CN108638053A (en) A kind of detection method and its antidote of robot skidding
SE518683C2 (en) Method and apparatus for determining the position of an autonomous apparatus
CN108844553B (en) Method and device for correcting mileage in robot moving process and robot
CN107179091B (en) A kind of AGV walking vision positioning error correcting method
KR20070015082A (en) Method for determining a relative position of a mobile unit by comparing scans of an environment and mobile unit
JPH01219610A (en) Running azimuth detector for vehicle
US20220351011A1 (en) Printing systems
CN106843206B (en) Auxiliary positioning method based on existing road network
JP2004362292A (en) Self-propelled apparatus and its program
CN103542864B (en) A kind of inertial navigation fall into a trap step method and device
CN113064430A (en) Quality inspection trolley obstacle avoidance and path planning algorithm based on Android mobile phone
CN107977001A (en) A kind of robot and its air navigation aid, system, equipment
JP3076648B2 (en) Self-propelled vacuum cleaner
CN115990880A (en) Robot course adjustment method, robot, device and computer storage medium
JP3855292B2 (en) Moving body guidance device
JP2004355208A (en) Autonomous travelling device
JP2004139265A (en) Autonomous traveling robot
JP3596943B2 (en) Current position calculation system and current position calculation method
JPH10253372A (en) Recognition apparatus for position of moving body
WO2020222790A1 (en) Positioning autonomous vehicles
JP3569028B2 (en) Current position calculation device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060518

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060613

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20070613