JP2004361864A - Selective transfer method of pixel controlling element - Google Patents

Selective transfer method of pixel controlling element Download PDF

Info

Publication number
JP2004361864A
JP2004361864A JP2003163100A JP2003163100A JP2004361864A JP 2004361864 A JP2004361864 A JP 2004361864A JP 2003163100 A JP2003163100 A JP 2003163100A JP 2003163100 A JP2003163100 A JP 2003163100A JP 2004361864 A JP2004361864 A JP 2004361864A
Authority
JP
Japan
Prior art keywords
liquid crystal
control element
substrate
film
pixel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003163100A
Other languages
Japanese (ja)
Inventor
Hideki Matsumura
英樹 松村
Kenichiro Kida
健一郎 木田
Shigehira Minami
茂平 南
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishikawa Seisakusho Ltd
Original Assignee
Ishikawa Seisakusho Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishikawa Seisakusho Ltd filed Critical Ishikawa Seisakusho Ltd
Priority to JP2003163100A priority Critical patent/JP2004361864A/en
Publication of JP2004361864A publication Critical patent/JP2004361864A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Formation Of Insulating Films (AREA)
  • Thin Film Transistor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for forming a protective film of dense film quality at a low temperature of ≤200°C on an upper part of a pixel controlling element and a wiring pattern for preventing mixing of impurities into a liquid crystal cell layer when the pixel controlling element is selectively transferred to a liquid crystal display substrate. <P>SOLUTION: A polycarbonate film 102 is formed at an upper part of a non-alkaline glass 101 and a pixel electrode layers 103 having an identical pitch are formed thereon. The pixel controlling element 104 is placed on the polycarbonate film 102 and the pixel controlling layer 104 is pushed downward to the polycarbonate film 102 and fixed to the polycarbonate film while the non-alkaline glass 101 is heated on a hot plate. The wiring pattern 105 connecting to the pixel electrode layer 103 and the pixel controlling layer 104 is further formed to constitute the liquid crystal display substrate. A silicon nitride film or a silicon oxide film is formed as the protective film on the liquid crystal display substrate using a catalyst CVD method. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、液晶ディスプレイ基板に、薄膜トランジスタなどの画素制御素子が予め複数形成された基板から選択転写する画素制御素子の選択転写方法に関するもので、特に、画素制御素子が複数の画素を制御する画素制御素子である場合の画素制御素子の選択転写方法に関するものである。
【0002】
【従来の技術】
画素制御素子の選択転写方法については、「特開平2003−033289」において既に開示されているように、無アルカリ性などのガラス基板を母材とし、基板母材の上部にポリカーボネートなどの透明な熱可塑性樹脂の膜を形成し、液晶ディスプレイ基板とする。複数の画素を制御する画素制御素子を前記液晶ディスプレイ基板に選択的に転写した後、液晶ディスプレイ基板に熱を加えながら、画素制御素子をプレスして押し込み、液晶ディスプレイ基板全面を平坦にする。さらに、液晶ディスプレイ基板上に、必要な配線パターンを形成する。このようにして作成した液晶ディスプレイ基板に、対向基板の貼り付け、カラーフィルター取り付け、液晶注入、等の工程を加えて液晶ディスプレイを作成している。
【0003】
【発明が解決しようとする課題】
画素制御素子の選択転写方法によらない、通常の液晶ディスプレイ基板においては、画素制御トランジスタ、及び、配線パターンの上部にプラズマ励起CVD法などを用いて、シリコン窒化膜などの保護膜を形成し、液晶セル層への不純物混入を防止している。しかし、画素制御素子の選択転写方法において、液晶ディスプレイ基板の熱可塑性樹脂膜は、CVD法で発生する温度では熱変形を引き起こしてしまうため、保護膜は形成されていない。このため、液晶セル層への不純物が混入し液晶の特性劣化をおこし、結果として液晶ディスプレイの重要品質である表示品質を劣化させてしまうという課題がある。
【0004】
【課題を解決するための手段】
本発明は、上記の問題を解決するため、画素制御素子、及び、配線パターンの上部に、シリコン窒化膜、或いは、シリコン酸化膜を、触媒CVD法を用いて200℃以下の低温で形成するものである。前記シリコン窒化膜、或いは、シリコン酸化膜は緻密膜が形成されるため、液晶セル層への不純物混入を防止し、結果として、液晶の特性劣化を防ぐ保護膜として働く。さらに、前記保護膜は200℃以下の低温で形成されるため、液晶ディスプレイ基板の熱可塑性樹脂膜の熱変形によって引き起こされる、画素制御素子のディスプレイ基板内での位置ズレを防止することができ、画素制御素子、さらには液晶ディスプレイの動作劣化・異常を防止することができる。
【0005】
【発明の実施の形態】
以下に、本発明の実施の形態について図面を引用しながら説明する。
【0006】
【実施例1】
図1に断面構造を示した、液晶ディスプレイ基板を以下のように作成した。厚さ5mmの無アルカリ性ガラス101の上部に、ラミネート加工法を用いて厚さ1mmのポリカーボネート膜102を形成した。102の上部に、200μm×200μm×厚さ10μmの画素電極層103を250μmピッチで形成した。但し、整数個に1個の割合で102上には103を形成していない。前述の103未形成の位置に100μm×100μm×厚さ20μmの画素制御素子104を配置した。101を180℃ホットプレートにのせて加熱しながら、104を、102に対して10μm下方に押し込み固定した。次に、スクリーン印刷法用いて、103及び104に接続する配線パターン105を形成した。
【0007】
図2に平行平板電極方式のプラズマ励起CVD装置の概略図を示した。チャンバー201の内部に陰極板202と陽極板203を配置し、202には高周波電源204が接続され、203の下部には基板加熱ヒーター205が設置され、外部に直流電源206が接続されている。202と203との間ではプラズマ207が形成される。201の内部に原料ガス208とキャリヤガス209を流し込み、他方、排気系210からポンプ排気を行いながら201の真空度を維持する。203にはデポ対象基板211が載せられる。
【0008】
図2に示したCVD装置、及び、上述のように作成した液晶ディスプレイ基板を207として用い、以下の条件でシリコン窒化膜を形成した。原料ガス種・流量;SiH・1cc/min及びNH・60cc/min、キャリヤガス;Ar、基板加熱温度;300℃、高周波投入電力;13.56MHz,200W、真空度;1Torr。
【0009】
以上のようにして作成した液晶ディスプレイ基板を、走査型電子顕微鏡を用いて断面観察したところ、図3に示すようになっており、シリコン窒化膜301は厚さ1.0μmの緻密構造となっていたが、ポリカーボネート層102の熱変形が発生し、画素制御素子104の位置ズレが起こっていた。
【0010】
【実施例2】
実施例1に述べた内容の中で、基板加熱温度;300℃→150℃、高周波投入電力; 200W→80W、と変更し、実施例1よりも長時間のデポを行った。作成した液晶ディスプレイ基板を、走査型電子顕微鏡を用いて断面観察したところ、ポリカーボネート層の熱変形は観察されなかったが、シリコン窒化膜は非緻密構造、且つ、厚さ0.05μmと保護膜として必要とする膜厚が得られなかった。
【0011】
【実施例3】
図4に触媒CVD装置の概略図を示した。チャンバー401は、基板加熱ヒーター402を内蔵した基板ホルダー403、触媒体404、ガス導入ノズル405、にて構成されている。404は触媒体加熱電源406によって加熱される。405を通じて原料ガス407を流し込み、他方、排気系408からポンプ排気を行いながら401の真空度を維持する。403にはデポ対象基板409が取り付けられる。図4に示した触媒CVD装置、及び、実施例1と同様にして配線パターン105までを形成した液晶ディスプレイ基板を409として用い、以下の条件でシリコン窒化膜を形成した。原料ガス種・流量;SiH・1cc/min及びNH・60cc/min、基板加熱温度;150℃、触媒体投入電力;400W、真空度;0.02Torr。作成した液晶ディスプレイ基板を、走査型電子顕微鏡を用いて断面観察したところ、図5に示すようになっており、シリコン窒化膜501は厚さ1.0μmの緻密構造となっており、ポリカーボネート層102の熱変形は観察されなかった。
【0012】
【発明の効果】
本発明の画素制御素子の選択転写方法によれば、画素制御素子、及び、配線パターンの上部に、シリコン窒化膜、或いは、シリコン酸化膜が緻密な膜質で形成されるため、液晶セル層への不純物混入を防止し、結果として、液晶の特性劣化を防ぐ保護膜として働く。さらに、前記保護膜は200℃以下の低温で形成されるため、液晶ディスプレイ基板の熱可塑性樹脂膜の熱変形を引き起こすこともなく、従って画素制御素子の選択転写品質を損なうことは起きない。前述の効果により、液晶特性の安定化が得られ、長期間にわたる液晶ディスプレイの表示品質安定化がもたらされる。本発明の画素制御素子の選択転写方法により、安定した表示品質であり、且つ、安価である、液晶ディスプレイを簡便に製造できることとなり、産業に与える効果は大きい。
【図面の簡単な説明】
【図1】配線パターンを形成した後の、液晶ディスプレイ基板の断面構造を示す概略図。
【図2】プラズマ励起CVD装置の概略図。
【図3】シリコン窒化膜を形成した後の、液晶ディスプレイ基板の断面構造を示す概略図。
【図4】触媒CVD装置の概略図。
【図5】シリコン窒化膜を形成した後の、液晶ディスプレイ基板の断面構造を示す概略図。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for selectively transferring a pixel control element from a substrate on which a plurality of pixel control elements such as thin film transistors are formed in advance on a liquid crystal display substrate, and more particularly, to a pixel in which the pixel control element controls a plurality of pixels. The present invention relates to a method for selectively transferring a pixel control element when the element is a control element.
[0002]
[Prior art]
As for the selective transfer method of the pixel control element, as already disclosed in “JP-A-2003-033289”, a glass substrate such as an alkali-free glass is used as a base material, and a transparent thermoplastic resin such as polycarbonate is provided on the base material of the substrate. A liquid crystal display substrate is formed by forming a resin film. After selectively transferring pixel control elements for controlling a plurality of pixels to the liquid crystal display substrate, the pixel control elements are pressed and pressed while applying heat to the liquid crystal display substrate, thereby flattening the entire surface of the liquid crystal display substrate. Further, necessary wiring patterns are formed on the liquid crystal display substrate. A liquid crystal display is produced by adding processes such as attaching a counter substrate, attaching a color filter, and injecting liquid crystal to the liquid crystal display substrate thus produced.
[0003]
[Problems to be solved by the invention]
In a normal liquid crystal display substrate, which does not depend on the selective transfer method of the pixel control element, a protective film such as a silicon nitride film is formed on the pixel control transistor and the wiring pattern by using a plasma excitation CVD method or the like, This prevents impurities from entering the liquid crystal cell layer. However, in the selective transfer method of the pixel control element, the protective film is not formed on the thermoplastic resin film of the liquid crystal display substrate because the thermoplastic resin film is thermally deformed at the temperature generated by the CVD method. For this reason, there is a problem in that impurities are mixed into the liquid crystal cell layer to cause deterioration of characteristics of the liquid crystal, and as a result, display quality, which is an important quality of the liquid crystal display, is deteriorated.
[0004]
[Means for Solving the Problems]
The present invention solves the above problem by forming a silicon nitride film or a silicon oxide film on a pixel control element and a wiring pattern at a low temperature of 200 ° C. or lower by using a catalytic CVD method. It is. Since the silicon nitride film or the silicon oxide film is formed as a dense film, the silicon nitride film or the silicon oxide film prevents impurities from being mixed into the liquid crystal cell layer and, as a result, functions as a protective film for preventing the deterioration of liquid crystal characteristics. Further, since the protective film is formed at a low temperature of 200 ° C. or less, it is possible to prevent a positional shift of the pixel control element in the display substrate caused by thermal deformation of the thermoplastic resin film of the liquid crystal display substrate, It is possible to prevent operation deterioration and abnormalities of the pixel control element and the liquid crystal display.
[0005]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0006]
Embodiment 1
A liquid crystal display substrate whose cross-sectional structure is shown in FIG. 1 was prepared as follows. A 1 mm-thick polycarbonate film 102 was formed on the 5 mm-thick non-alkali glass 101 by using a laminating method. The pixel electrode layer 103 having a size of 200 μm × 200 μm × 10 μm in thickness was formed on the top of 102 at a pitch of 250 μm. However, 103 is not formed on 102 at a ratio of one for every integer. The pixel control element 104 of 100 μm × 100 μm × 20 μm in thickness was arranged at the position where the above-mentioned 103 was not formed. While 101 was placed on a hot plate at 180 ° C. and heated, 104 was pressed down 10 μm below 102 and fixed. Next, a wiring pattern 105 connected to 103 and 104 was formed using a screen printing method.
[0007]
FIG. 2 is a schematic view of a parallel plate electrode type plasma excitation CVD apparatus. A cathode plate 202 and an anode plate 203 are arranged inside a chamber 201, a high frequency power supply 204 is connected to 202, a substrate heater 205 is installed below 203, and a DC power supply 206 is connected to the outside. Between 202 and 203, a plasma 207 is formed. The raw material gas 208 and the carrier gas 209 are flowed into the inside of 201, while maintaining the degree of vacuum of 201 while performing pump exhaust from the exhaust system 210. A substrate 211 to be deposited is placed on the substrate 203.
[0008]
Using the CVD apparatus shown in FIG. 2 and the liquid crystal display substrate prepared as described above as 207, a silicon nitride film was formed under the following conditions. Raw material gas species, flow rate; SiH 4 · 1cc / min and NH 3 · 60cc / min, carrier gas; Ar, substrate heating temperature; 300 ° C., a high frequency input power; 13.56 MHz, 200 W, degree of vacuum; 1 Torr.
[0009]
When the cross section of the liquid crystal display substrate prepared as described above was observed using a scanning electron microscope, the cross section was as shown in FIG. 3, and the silicon nitride film 301 had a dense structure with a thickness of 1.0 μm. However, thermal deformation of the polycarbonate layer 102 occurred, and the position of the pixel control element 104 was shifted.
[0010]
Embodiment 2
In the contents described in Example 1, the substrate heating temperature was changed from 300 ° C. to 150 ° C., and the high-frequency input power was changed from 200 W to 80 W, and the deposition was performed for a longer time than in Example 1. When the cross section of the prepared liquid crystal display substrate was observed using a scanning electron microscope, no thermal deformation of the polycarbonate layer was observed, but the silicon nitride film had a non-dense structure and a thickness of 0.05 μm as a protective film. The required film thickness could not be obtained.
[0011]
Embodiment 3
FIG. 4 shows a schematic view of a catalytic CVD apparatus. The chamber 401 includes a substrate holder 403 containing a substrate heater 402, a catalyst 404, and a gas introduction nozzle 405. 404 is heated by a catalyst heating power supply 406. A source gas 407 is supplied through 405, and a vacuum degree of 401 is maintained while pump exhaust is performed from an exhaust system 408. A deposition target substrate 409 is attached to 403. Using the catalytic CVD apparatus shown in FIG. 4 and the liquid crystal display substrate on which the wiring pattern 105 was formed in the same manner as in Example 1, a silicon nitride film was formed under the following conditions. Raw material gas species, flow rate; SiH 4 · 1cc / min and NH 3 · 60cc / min, a substrate heating temperature; 0.99 ° C., the catalyst body applied power; 400W, vacuum; 0.02 Torr. A cross section of the prepared liquid crystal display substrate was observed using a scanning electron microscope. As shown in FIG. 5, the silicon nitride film 501 had a dense structure with a thickness of 1.0 μm. No thermal deformation was observed.
[0012]
【The invention's effect】
According to the selective transfer method of the pixel control element of the present invention, the silicon nitride film or the silicon oxide film is formed with a dense film quality on the pixel control element and the wiring pattern. It functions as a protective film that prevents the contamination of impurities and consequently prevents deterioration of the characteristics of the liquid crystal. Further, since the protective film is formed at a low temperature of 200 ° C. or less, it does not cause thermal deformation of the thermoplastic resin film of the liquid crystal display substrate, and therefore does not impair the selective transfer quality of the pixel control element. With the above-described effects, the liquid crystal characteristics can be stabilized, and the display quality of the liquid crystal display can be stabilized for a long period of time. According to the selective transfer method of the pixel control element of the present invention, an inexpensive liquid crystal display having stable display quality and can be easily manufactured, and the effect on the industry is great.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing a cross-sectional structure of a liquid crystal display substrate after a wiring pattern is formed.
FIG. 2 is a schematic view of a plasma excitation CVD apparatus.
FIG. 3 is a schematic diagram showing a cross-sectional structure of a liquid crystal display substrate after a silicon nitride film is formed.
FIG. 4 is a schematic diagram of a catalytic CVD apparatus.
FIG. 5 is a schematic view showing a cross-sectional structure of a liquid crystal display substrate after a silicon nitride film is formed.

Claims (2)

複数の画素を制御する画素制御素子を液晶ディスプレイ基板上に転写する画素制御素子の転写方法において、複数画素を制御する複数の集積回路が表面に形成された画素制御素子用基板を保持基板に固定する工程と、画素制御素子用基板を集積回路ごとに切断した画素制御素子をピックアップ用基板に固定する工程と、ピックアップ用基板上の画素制御素子を選択的にピックアップ装置に吸着保持させて平面ディスプレイ基板に転写する工程と、平面ディスプレイ基板に配線パターンを形成する工程とを備え、前記工程の後に、液晶の特性劣化を招く液晶セル層への不純物混入を防止する機能を有する保護膜として、画素制御素子、及び、配線パターンの上部にシリコン窒化膜、或いは、シリコン酸化膜を形成することを特徴とする画素制御素子の選択転写方法。In a pixel control element transfer method for transferring a pixel control element for controlling a plurality of pixels onto a liquid crystal display substrate, a pixel control element substrate having a plurality of integrated circuits for controlling a plurality of pixels formed on a surface is fixed to a holding substrate. And fixing a pixel control element obtained by cutting the pixel control element substrate for each integrated circuit to a pickup substrate, and selectively adsorbing and holding the pixel control element on the pickup substrate to a pickup device. A protective film having a function of preventing impurities from being mixed into a liquid crystal cell layer which causes deterioration of liquid crystal characteristics after the step, comprising a step of transferring to a substrate and a step of forming a wiring pattern on a flat display substrate. Pixel control characterized by forming a silicon nitride film or a silicon oxide film on the control element and the wiring pattern Select transfer method of the child. 前記シリコン窒化膜、或いは、シリコン酸化膜の形成手法は、200℃以下の低温で形成、かつ、緻密な膜形成、する目的から、触媒CVD法であることを特徴とする請求項1記載の画素制御素子の選択転写方法。2. The pixel according to claim 1, wherein the method of forming the silicon nitride film or the silicon oxide film is a catalytic CVD method for the purpose of forming a dense film at a low temperature of 200 ° C. or less. Control element selective transfer method.
JP2003163100A 2003-06-09 2003-06-09 Selective transfer method of pixel controlling element Pending JP2004361864A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003163100A JP2004361864A (en) 2003-06-09 2003-06-09 Selective transfer method of pixel controlling element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003163100A JP2004361864A (en) 2003-06-09 2003-06-09 Selective transfer method of pixel controlling element

Publications (1)

Publication Number Publication Date
JP2004361864A true JP2004361864A (en) 2004-12-24

Family

ID=34055008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003163100A Pending JP2004361864A (en) 2003-06-09 2003-06-09 Selective transfer method of pixel controlling element

Country Status (1)

Country Link
JP (1) JP2004361864A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007067241A (en) * 2005-08-31 2007-03-15 Fujitsu Ltd Manufacturing method of semiconductor device
JP2013045851A (en) * 2011-08-23 2013-03-04 Daido Steel Co Ltd Thin-film magnetic sensor and method of manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007067241A (en) * 2005-08-31 2007-03-15 Fujitsu Ltd Manufacturing method of semiconductor device
JP2013045851A (en) * 2011-08-23 2013-03-04 Daido Steel Co Ltd Thin-film magnetic sensor and method of manufacturing the same

Similar Documents

Publication Publication Date Title
US8076727B2 (en) Magnesium-doped zinc oxide structures and methods
US7517783B2 (en) Molybdenum-doped indium oxide structures and methods
CN1222413C (en) Pattern forming apparatus and method, mfg. method of conducting film wiring and electronic device
US7927996B2 (en) Tungsten-doped indium oxide structures and methods
US20070095284A1 (en) Gas treating device and film forming device
US6934001B2 (en) Structure and method for supporting a flexible substrate
US20080193791A1 (en) Zirconium-doped zinc oxide structures and methods
JP4018625B2 (en) Multi-stage CVD method for thin film transistors
CN1875488A (en) Liquid crystal display device, its manufacturing method, and liquid crystal television receiver
KR20040032958A (en) Process for controlling thin film uniformity and products produced thereby
KR20070055898A (en) Method for forming silicon film by atomic layer deposition
KR20070083363A (en) Manufacturing method of display device
KR101002936B1 (en) Carrier plate, method of laminating plastic plate using the same, and method of manufacturing display device having the flexibility
US8506710B2 (en) Apparatus for fabricating semiconductor device
US20080124901A1 (en) Method for maintaining semiconductor manufacturing apparatus, semiconductor manufacturing apparatus, and method for manufacturing semiconductor
JP2005089781A (en) Thin film deposition system
JP2004361864A (en) Selective transfer method of pixel controlling element
JP2011040615A (en) Apparatus and method for manufacturing semiconductor
KR101062589B1 (en) Atomic layer deposition apparatus
JP2001127143A (en) Substrate supporting device
US8951921B2 (en) Method of forming thin film poly silicon layer and method of forming thin film transistor
JPH06302519A (en) Semiconductor manufacturing equipment
JP2001035794A (en) Method and device for manufacturing semiconductor device
JPH0383894A (en) Gaseous phase growth device
JP2008218995A (en) Susceptor heater assembly of large-area substrate processing system