JP2004360142A - Nonwoven fabric, interior materials and method for producing the same - Google Patents

Nonwoven fabric, interior materials and method for producing the same Download PDF

Info

Publication number
JP2004360142A
JP2004360142A JP2003162897A JP2003162897A JP2004360142A JP 2004360142 A JP2004360142 A JP 2004360142A JP 2003162897 A JP2003162897 A JP 2003162897A JP 2003162897 A JP2003162897 A JP 2003162897A JP 2004360142 A JP2004360142 A JP 2004360142A
Authority
JP
Japan
Prior art keywords
fiber
water
fibers
nonwoven fabric
interior material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003162897A
Other languages
Japanese (ja)
Other versions
JP4180979B2 (en
Inventor
Kazuo Kodera
和男 小寺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIHON GLASSFIBER INDUSTRIAL CO Ltd
Original Assignee
NIHON GLASSFIBER INDUSTRIAL CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIHON GLASSFIBER INDUSTRIAL CO Ltd filed Critical NIHON GLASSFIBER INDUSTRIAL CO Ltd
Priority to JP2003162897A priority Critical patent/JP4180979B2/en
Publication of JP2004360142A publication Critical patent/JP2004360142A/en
Application granted granted Critical
Publication of JP4180979B2 publication Critical patent/JP4180979B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inexpensive nonwoven fabric that is resistant to breakage caused by pulling because the fabric undergoes no embrittlement by exposure to heat from the production process and can retain the strength even when the unit weight of the fabric is low and is not restricted to the fiber length, different from the wet process. <P>SOLUTION: The backing fiber comprising carbon fiber as inorganic fiber 5, polypropylene fiber as water-insoluble thermoplastic organic fiber 6 and polyvinyl alcohol fiber as water-soluble organic fiber 7 are mixed and the resultant fiber assembly is needle punched whereby a fabric sheet is formed. Then, the water-soluble organic fiber 7 is softened or fused and solidified by drying whereby the contact points between the fibers in the fiber assembly are connected. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、無機繊維を用いた不織布、該不織布が内装材本体に重ねられた内装材(例えば、車両用又は建築用)及びそれらの製造方法に関するものである。
【0002】
【従来の技術及び発明が解決しようとする課題】
自動車等の車両用の内装材で特に天井材は、断熱性、制振性、防音性、成形性、軽量性等が重要視され、成形された天井材においては、従来、レジンフェルトやダンボールにフェノール樹脂を含浸させたものが用いられていたが、これらは、剛性はあるものの、目付量が大きいという欠点があった。
そこで現在では、ポリウレタンフォームの表面に、補強材としてガラス繊維やカーボン繊維等の無機繊維よりなる不織布を貼り付け一体化させた内装材が知られている。しかし、ガラス繊維やカーボン繊維等の無機繊維は高価であるため、その混率量が直接コストに反映されコスト高になるという問題があった。
【0003】
他には、無機繊維と、ポリオレフィン系のポリプロピレン又はポリエチレン樹脂等よりなる繊維とを混繊したマットの表面に、樹脂シート又は無機繊維と熱可塑性有機繊維とからなる不織布を熱をかけて融着して一体化させたりした内装材が知られている。特許文献としては、例えば、主として無機繊維のマットに熱可塑性有機樹脂フィルムを積層し融着した内装材(特許文献1参照)、無機繊維と熱可塑性樹脂繊維とからなるマットの表面に無機繊維と熱可塑性樹脂とからなる層を融着した内装材(特許文献2参照)、無機繊維のような強化繊維と熱可塑性有機繊維の混合繊維マットを加熱加圧し熱可塑性有機繊維を溶融した繊維強化熱可塑性のシート(特許文献3参照)を用いた内装材、無機繊維と熱可塑性有機繊維との混合比が異なるマット状物を重ねて熱可塑性有機繊維の溶融点以上に加圧加熱することで一体化させた積層体(特許文献4参照)が知られている。
これらの混合繊維マットは、マット製造の際の加熱圧着時に熱可塑性有機繊維を溶融させて無機繊維同士を融着しているため、例えば、目付量が約150g/m未満の軽くて薄いマットを製造する場合、加熱圧着時に型付きが発生した際、搬送方向へ引張抜いたりすると、破れやすく強度が弱くなる。そのため、連続した成形体を得ることが困難であったので、途中で継いだ状態の不均質の成形体となる。そこで、引張抜きに対しても強度が十分備わり、連続した成形体として均質な不織布を製造するには、目付量が150g/m以上になるような厚さが必要であったが、そのように目付量の高いマットは、高価な無機繊維を多量に必要とするためコスト高になってしまうという問題があった。
【0004】
内装材に限らず広く不織布の製造方法を見ると、加熱により繊維同士を接着しない方法として、湿式抄紙法が知られている。しかし、この湿式抄紙法は、繊維長が25mm以下の短繊維を用いた方が好ましく、短繊維で製造された不織布は、繊維同士の接触交点が少なく、靭性に欠け低強度になりやすい。逆に、繊維長が25mm以上の繊維を用いて湿式抄紙法を試みると、繊維同士が絡まって二次凝集が発生し、分散性が悪くなり、均質な不織布を安定的に製造することが困難となる。さらに、熱可塑性有機繊維として比重が1以下のもの、例えば比重0.91のポリプロピレン繊維は水に浮くため湿式抄紙法の工程である攪拌分散ができず、不織布の軽量化の障壁となっている。
【0005】
本発明の目的は、上記課題を解決し、基材繊維等を水溶性有機繊維を利用して接着することにより、製造時の熱による脆弱化がないので、引張りに対しても破れにくく、目付量が低い不織布であっても強度を保つことができ、湿式抄紙法のように、繊維の長さが制限されず、低価格な不織布を提供することである。また、強度を保った不織布を内装材本体に重ねて一体成形した内装材とすることで、不織布が内装材の補強材としての役割を果たすことになるので、高弾性で高強度な内装材を提供することである。
【0006】
なお、内装材以外の分野では、不織布の製造に水溶性有機繊維を使用している例があり、衣料用(例えば、特許文献5参照)、クッション材(例えば、特許文献6参照)、プリント配線用(例えば、特許文献7参照)、人口皮革(例えば、特許文献8参照)等が知られている。この場合、水溶性有機繊維は、製品の風合いを高めたり嵩高くしたりするために用いられており、それらの製造方法は、主として加熱により他の繊維同士を融着させた後、水洗により水溶性有機繊維を溶出除去させたり、水流交絡処理を行うことで短繊維同士を交絡させると同時に水溶性有機繊維を溶出除去させたりしており、製品自体にはほとんど含まれないので、本発明の水溶性有機繊維を利用して繊維同士を接着するという契機付けにはならない。
【0007】
【特許文献1】
特開昭64−77664号公報
【特許文献2】
特開平02−80652号公報
【特許文献3】
特開昭61−130345号公報
【特許文献4】
特開平09−123327号公報
【特許文献5】
特開平07−316962号公報
【特許文献6】
特開2000−192358公報
【特許文献7】
特開2001−192955公報
【特許文献8】
特開平05−33256号公報
【0008】
【課題を解決するための手段】
上記目的を達成するために、本発明は、次の手段(1−1)(1−2)(2−1)(2−2)(3)(4)を採った。
(1−1)無機繊維、耐熱性有機繊維及び天然繊維から選ばれる少なくとも1種を含む基材繊維と水溶性有機繊維とが混繊されてなる繊維集合体がニードルパンチ加工により布状に賦形された後、水溶性有機繊維が加水により軟化又は融化して乾燥固化したことにより繊維集合体の繊維同士の接触点が接着されてなる不織布。
【0009】
(1−2)無機繊維、耐熱性有機繊維及び天然繊維から選ばれる少なくとも1種を含む基材繊維と、水溶性有機繊維と非水溶性熱可塑性有機繊維とが混繊されてなる繊維集合体がニードルパンチ加工により布状に賦形された後、水溶性有機繊維が加水により溶出減量を伴って軟化又は融化して乾燥固化したことにより繊維集合体の繊維同士の接触点が接着されてなる不織布。
【0010】
手段(1−1)(1−2)の不織布の目付量は、特に限定されないが、15g/m以上150g/m未満であることが好ましい。
【0011】
(2−1)無機繊維、耐熱性有機繊維及び天然繊維から選ばれる少なくとも1種を含む基材繊維と水溶性有機繊維とを混繊して繊維集合体とし、繊維集合体をニードルパンチ加工により布状に賦形してから、水溶性有機繊維を加水により軟化又は融化させて乾燥固化させることにより繊維集合体の繊維同士の接触点を接着して製造する不織布の製造方法。
【0012】
(2−2)無機繊維、耐熱性有機繊維及び天然繊維から選ばれる少なくとも1種を含む基材繊維と、水溶性有機繊維と非水溶性熱可塑性有機繊維とを混繊して繊維集合体とし、繊維集合体をニードルパンチ加工により布状に賦形してから、水溶性有機繊維を加水により溶出減量を伴って軟化又は融化させて乾燥固化させることにより繊維集合体の繊維同士の接触点を接着して製造する不織布の製造方法。
乾燥固化させるための加熱の温度は、特に限定されないが、加圧時に非水溶性熱可塑性繊維の溶融点未満で加熱して乾燥処理することにより、水溶性有機繊維を乾燥固化させることが好ましい。
【0013】
手段(2−1)(2−2)の製造方法において、特に限定されないが、水溶性有機繊維の軟化又は融化後であって固化前に、繊維集合体を加圧して脱水処理及び圧着処理することが好ましい。
【0014】
(3)上記手段(1−1)又は(1−2)の不織布が内装材本体に重ねられて一体化している内装材。
【0015】
内装材が一体化している態様としては、以下の▲1▼▲2▼▲3▼を例示できる。
▲1▼ 不織布と内装材本体との間に挟んだ融着フィルムを加熱により溶融し、不織布と内装材本体とを一体化している態様。
▲2▼ 重ね合わせる不織布の表面と内装材本体の表面の少なくとも一方に、接着剤のスプレーを吹き付けて、不織布と内装材本体とを貼り合わせる態様。
▲3▼ 特に手段(1−2)の場合には、それよりなる不織布が内装材本体に重ねられ、非水溶性熱可塑性有機繊維と内装材本体との融着により不織布と内装材本体とが一体化している態様。
【0016】
(4)上記手段(2−1)又は(2−2)の製造方法により製造した不織布を内装材本体に重ねて一体化する内装材の製造方法。
【0017】
内装材を一体化する方法としては、以下の▲1▼▲2▼▲3▼を例示できる。
▲1▼ 不織布と内装材本体との間に挟んだ融着フィルムを加熱により溶融し、不織布と内装材本体と一体化する方法。
▲2▼ 重ね合わせる不織布の表面と内装材本体の表面の少なくとも一方に、接着剤のスプレーを吹き付けて、不織布と内装材本体とを貼り合わせる方法。
▲3▼ 特に(2−2)の場合には、それを用いる製造方法により製造した不織布を内装材本体に重ねて、非水溶性熱可塑性有機繊維の溶融点以上に加熱してから冷却して非水溶性熱可塑性有機繊維と内装材本体とを融着することにより不織布と内装材本体とを一体化する方法。
【0018】
上記(1−1)(1−2)(2−1)(2−2)(3)及び(4)における構成要素の態様を、以下に例示する。
「基材繊維」は、無機繊維として、ガラス繊維、金属繊維、セラミック繊維、カーボン繊維、バサルト繊維を含む鉱物繊維等を例示でき、耐熱性有機繊維として、アラミド繊維、ポリエチレンテレフタレート、ポリプロピレン繊維等に液晶ポリマーを添加した繊維を例示でき、天然繊維として、麻、綿、椰子、竹、ケナフ、羊毛、絹等を例示でき、これらから選ばれる少なくとも1種又は2種以上の組み合わせを例示できる。この中でも、特に限定されないが、カーボン繊維が高弾性率、高強度、軽量、焼却処理可能という利点から好ましい。この基材繊維の平均繊維長は、特に限定されないが、25〜200mmであることが、不織布の靭性や強度を高く保つための繊維同士の接触交点を十分に持てるので好ましい。また、繊維集合体を100重量%として、基材繊維の割合は、特に限定されないが、30〜50重量%であることが好ましい。
【0019】
「非水溶性熱可塑性有機繊維」としては、オレフィン系のポリエチレン、ポリプロピレン、低融点ポリエステル等からなる繊維を例示でき、これらから選ばれる1種又は2種以上の組み合わせを例示できる。この中でも、特に限定されないが、低比重のポリプロピレン繊維が好ましい。また、繊維集合体を100重量%として、非水溶性熱可塑性有機繊維の割合は、特に限定されないが、30〜50重量%であることが好ましい。
【0020】
「水溶性有機繊維」としては、特に限定されないが、ポリビニルアルコール(水溶性ビニロン)からなる繊維を例示できる。繊維集合体を100重量%として、加水処理前の繊維集合体における水溶性有機繊維の割合は、特に限定されないが、10〜40重量%であることが好ましい。この水溶性有機繊維を繊維集合体に多めに混繊することによって、基材繊維として用いられるカーボン繊維のように繊維表面が滑りやすく折れやすい繊維を絡め易くする効果が得られ、ニードルパンチ加工の際のニードルのバーブ深さが0.11mm〜0.18mmでキックアップがないものを使用しなくても、良好なニードルマットが得られる。
また、水溶性有機繊維が乾燥固化した不織布を100重量%として、加水処理後の乾燥固化した不織布の水溶性有機繊維の割合は、特に限定されないが、5〜35重量%となることが好ましい。乾燥固化した水溶性有機繊維は、接着層化することにより繊維集合体の繊維同士の接触点を接着層で接着する働きが考えられるので、水溶性繊維が5%未満のように、溶出減量されすぎると繊維同士を接着する働きが弱すぎて繊維同士の接触点が離れやすくなり、水溶性繊維が35%以上となると、高湿度下での強度低下が著しく生じるためである。
加水処理前の繊維集合体と加水処理後の乾燥固化した不織布とで水溶性有機繊維の含有される割合は、変化する場合も変化しない場合もある。変化する場合は、主として加水により水溶性有機繊維が溶出減量を伴って、水溶性有機繊維の含有される割合が減少することを例示できる。
【0021】
「加水」とは、繊維に水分を加えることを指し、特にその方法に限定されない。例えば、液体の水を加える方法や、加湿による方法が挙げられる。
【0022】
「内装材本体」の素材は、特に限定されないが、無機繊維、天然繊維等が含まれる強化樹脂材料、発泡ポリウレタン、液晶ポリマーとの複合樹脂材等を例示でき、内装材本体の構造は、天然繊維強化複合材料や発泡ポリウレタンを用いた場合の発泡体、ハニカム構造体等を例示できる。具体的には、ポリウレタンフォーム、ガラス繊維と樹脂繊維とからなる繊維状マットを例示でき、繊維状マットに用いられる樹脂繊維は、ポリオレフィン系のポリプロピレン、ポリエチレンテレフタレート、ポリエチレン樹脂、ポリエチレン共重合体樹脂から選ばれる樹脂を用いた繊維の少なくとも1つ以上の繊維を例示できる。
「内装材」の適応される分野は、特に限定されず、どのような種類の内装材にも適応されるが、特に適している分野は、車両用、建築用を例示でき、車両用としては、自動車用天井材を例示できる。
【0023】
上記手段(3)(4)において、不織布を内装材本体に重ねる態様は、特に限定されないが、不織布を内装材本体を挟むように両表面に重ねる態様、不織布を内装材本体の一方の表面にのみ重ねる態様、不織布を内装材本体の内部に積層する態様を例示できる。また、重ねられた不織布の表面や不織布が重ねられていない内装材本体の表面に、本発明ではない不織布又は樹脂シートを重ねて一体化させてもよい。
融着フィルムとしては、ポリプロピレン、ポリエチレンテレフタレート、ポリエチレン樹脂等を例示でき、接着剤としては、ポリイソシアナートを例示できる。
【0024】
【発明の実施の形態】
以下、図1及び図2に示すように、本発明を不織布1a、内装材2及びそれらの製造方法を具体化した実施形態について説明する。なお、実施形態で記す材料、構成、数値等は例示であって、適宜変更できる。
【0025】
この不織布1aは、無機繊維5として平均繊維長55mmのカーボン繊維の基材繊維と、水溶性有機繊維7として株式会社クラレ製の水溶性ビニロン繊維(商標名:クラロンK−II)と、非水溶性熱可塑性有機繊維6としてポリプロピレン繊維とが混繊されてなる繊維集合体がニードルパンチ加工により布状に賦形された後、水溶性有機繊維7が加水により溶出減量を伴って軟化又は融化して乾燥固化したことにより繊維集合体の繊維同士の接触点が接着されてなる。不織布1aは、不織布1aの全量を100重量%とすると水溶性ビニロン繊維が5重量%で、目付量約125g/m、厚み約0.2mmの平板形状である。
【0026】
内装材2は、不織布1aが空隙を有する内装材本体3aとしてのガラス繊維とポリプロピレン繊維が各50重量%である目付量700g/mの複合マット材の片面に重ねられ、不織布1aを構成している非水溶性熱可塑性有機繊維6としてポリプロピレン繊維と、内装材本体3aを構成しているポリプロピレン繊維とが溶融し、不織布1aが不織布1bの状態となり、内装材本体3aが内装材本体3bの状態になり、それぞれの融着により不織布1bと内装材本体3bとが一体化している。
【0027】
この不織布1a、内装材2は次の方法により製造したものである。
繊維集合体は、それぞれの繊維の割合を繊維集合体を100重量%として、無機繊維5としてのカーボン繊維が40重量%、非水溶性熱可塑性有機繊維6としてのポリプロピレン繊維が40重量%、水溶性有機繊維7としての水溶性ビニロン繊維が20重量%で混繊したものである。
この繊維集合体をニードルパンチ加工により布状に賦形して、図1(a)に示すような目付量150g/mのマット10を作成する。次に、このマット10を温水中で全含浸して、水溶性ビニロン繊維を加水により溶出減量を伴って軟化又は融化させ、ローラー絞りにて脱水して、含水量を300g/mにする。次に、加熱温度120℃にて2分間、上下の間隔を0.15mmにゲージにて合わせた熱プレス機にて加圧し脱水排出と圧着を同時に行い、水溶性ビニロン繊維を乾燥固化させ、図1(b)に示すように、接着層化させ不織布1aとした。この乾燥固化した水溶性ビニロン繊維の接着層化によりカーボン繊維及びポリプロピレン繊維の繊維同士の接触点を接着層で接着している。
この加水・脱水続く乾燥固化工程で、布状の繊維集合体内の一部の不要な水溶性ビニロン繊維を外部に溶出し、布状の繊維集合体の軽量化をはかると共に、最終的な不織布としての目付量を調整することが可能であり、ニードル加工では製造が困難である目付量15g/m以上150g/m未満にできる。乾燥固化の際の加熱温度、時間及び圧力は、使用材料と所望硬さにより設定され、ポリプロピレン繊維の溶融温度以上とすると、より硬い繊維質シートが得られる。さらに、この加熱温度を高くする(例えば160℃にする)ことによって、軟化又は融化した水溶性ビニロン繊維が乾燥固化する際の結晶化を高め、耐吸湿性・耐吸水性に改質することができる。
【0028】
この不織布1aを、空隙を有する内装材本体3aとしてのガラス繊維とポリプロピレン繊維が各50重量%である目付量700g/mの複合マット材の片面に重ね、非水溶性熱可塑性有機繊維6であるポリプロピレン繊維の溶融点(164〜170℃)以上である約190℃に不織布1a内及び複合マット材と不織布1aとの重ねた部分の温度がなるように、190℃の加熱板の間で7分加熱する。その後、重ねたマットを対向する両側から冷間プレスで圧締し、不織布1aを構成するポリプロピレン繊維と内装材本体3aを構成するポリプロピレン繊維とが溶融し、繊維間を相互に融着することにより不織布1bと内装材本体3bとを一体成形して平板形状の車両用の内装材2とする。
内装材本体3bと一体化した後の不織布1b内の状態を図1(c)に示す。この車両用の内装材2は、図2に示すように、自動車の天井材4として、自動車の外装材15との間に空間を介して、内装材2を内装材本体3b、不織布1b、そして車内側となるの表材17の順になるように利用される。
【0029】
本実施形態の不織布1b、内装材2及びそれらの製造方法によれば、以下の▲1▼〜▲5▼の作用効果が得られる。
▲1▼ 溶出減量した残りの水溶性有機繊維7を乾燥固化して接着層化したことにより、繊維同士の接触点を接着することができるので、使用する繊維のながさを制限せず、長い繊維を使用しても製造できる製造方法であり、製造時に熱による脆弱化がないので、所定の異形形状に加熱圧着したり、型付きが発生した際搬送方向へ引張抜いたりしても、破れにくく、弱くならないので連続的に一体成形することできる。
▲2▼ 目付量が低い不織布であっても、強度を保ち、均質な不織布が容易に得られる製造方法であるので、含有する無機繊維5の割合が少なくなり、低価格とすることができる。
▲3▼ 非水溶性熱可塑性有機繊維6を含んだ不織布1bとすることで、弾力性が強くクリンプを有しやすいので、内装材2として、吸音性能が高まる効果がある。
▲4▼ また、非水溶性熱可塑性有機繊維6を含んだ不織布1bとすることで、不織布1aと内装材本体3とを熱圧着にてドット方式で一体化する接着効果を与えるとともに、内装材2として、耐吸湿性と高湿度下での強度、寸法安定性や形状維持を確保できるようになる。特に車両用の内装材2は、基材繊維と熱可塑性繊維との混合マットを圧着成形するので、重ねるとともに一体成形が可能となる。この一体化は、不織布1aと内装材本体3aとの双方に含有されるポリプロピレン繊維の溶融によってなされるので、溶剤や有機樹脂の高温時の揮発性ガスによる臭気を低減できるので、製造時の作業環境及び製品を使用する空間を快適に保てる。
▲5▼ 本発明の不織布1aを、内装材本体3aに重ね、融着により一体成形された内装材2とすることで、不織布1bが補強材の役割を果たし、高弾性で高強度な内装材2とすることができる。
【0030】
なお、本発明は上記実施形態に限定されるものではなく、発明の趣旨から逸脱しない範囲で適宜変更して具体化することもできる。
(1)図3(a)に示すように、不織布1aと内装材本体3aとの間に、融着フィルム11を挟み、加熱により溶融し、不織布1bと内装材本体3と一体化すること。
(2)図3(b)に示すように、不織布1aの表面に、接着剤12のスプレーを吹き付けて、不織布1aと内装材本体3aとを貼り合わせること。
【0031】
【発明の効果】
以上詳述したように、本発明によれば、製造時の熱による脆弱化がないので、引張りに対しても破れにくく、目付量が低い不織布であっても強度を保つことができ、湿式抄紙法のように、繊維の長さが制限されず、低価格な不織布を提供することができるという優れた効果を奏する。
【0032】
さらに、本発明の請求項9、10、11又は12記載の発明によれば、強度を保った不織布を内装材本体に重ねて一体成形した内装材とすることで、不織布が内装材の補強材としての役割を果たすことになるので、高弾性で高強度な内装材を提供することができるという優れた効果を奏する。
【図面の簡単な説明】
【図1】本発明の実施形態を示し、(a)マットの断面図及び繊維の拡大図、(b)不織布の断面図及び繊維の拡大図、(c)内装材の断面図及び一体化された不織布の拡大図である。
【図2】同実施形態の自動車用の天井材の部分断面図である。
【図3】本発明の変更例を示し、(a)融着フイルムを用いて一体化させた内装材の断面図、(b)接着剤を用いて一体化させた内装材の断面図である。
【符号の説明】
1a、1b 不織布
2 内装材
3a、3b 内装材本体
5 無機繊維
6 非水溶性熱可塑性有機繊維
7 水溶性有機繊維
10 マット
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a nonwoven fabric using inorganic fibers, an interior material in which the nonwoven fabric is laminated on an interior material main body (for example, for a vehicle or a building), and a method for producing the same.
[0002]
Problems to be solved by the prior art and the invention
In interior materials for vehicles such as automobiles, especially for ceiling materials, heat insulation, vibration damping, soundproofing, moldability, light weight, etc. are regarded as important, and molded ceiling materials are conventionally used for resin felt and cardboard. Although those impregnated with a phenol resin have been used, they have a drawback in that although they have rigidity, they have a large basis weight.
Therefore, at present, there is known an interior material in which a nonwoven fabric made of an inorganic fiber such as glass fiber or carbon fiber is attached as a reinforcing material to the surface of a polyurethane foam and integrated. However, since inorganic fibers such as glass fibers and carbon fibers are expensive, there is a problem that the mixing ratio is directly reflected in the cost and the cost is increased.
[0003]
Alternatively, a resin sheet or a non-woven fabric composed of inorganic fibers and thermoplastic organic fibers is heated and fused to the surface of a mat in which inorganic fibers and fibers made of polyolefin-based polypropylene or polyethylene resin are mixed. There is known an interior material which is integrated with the interior. Patent Literatures include, for example, an interior material obtained by laminating and fusing a thermoplastic organic resin film to a mat of inorganic fibers (see Patent Literature 1), and a mat composed of inorganic fibers and thermoplastic resin fibers having inorganic fibers on the surface thereof. An interior material in which a layer made of a thermoplastic resin is fused (see Patent Literature 2), a fiber-reinforced heat in which a mixed fiber mat of a reinforcing fiber such as an inorganic fiber and a thermoplastic organic fiber is heated and pressed to melt the thermoplastic organic fiber. An interior material using a plastic sheet (see Patent Literature 3), a mat-like material having a different mixing ratio of inorganic fiber and thermoplastic organic fiber are stacked and integrally heated and heated above the melting point of the thermoplastic organic fiber. A laminated body (see Patent Document 4) is known.
These mixed fiber mats are made by melting thermoplastic organic fibers at the time of thermocompression bonding during the production of the mats and fusing the inorganic fibers together. Therefore, for example, a light and thin mat having a basis weight of less than about 150 g / m 2. In the case of manufacturing, when a mold occurs during the heat compression bonding, if the mold is pulled out in the transport direction or the like, it is easily broken and the strength is weakened. For this reason, it was difficult to obtain a continuous molded body, so that a heterogeneous molded body joined in the middle was obtained. Therefore, in order to produce a uniform non-woven fabric as a continuous molded body that has sufficient strength against pull-out, it was necessary to have a thickness such that the basis weight became 150 g / m 2 or more. In addition, a mat having a high basis weight requires a large amount of expensive inorganic fibers, and thus has a problem that the cost increases.
[0004]
Looking at the manufacturing method of nonwoven fabrics widely, not limited to interior materials, a wet papermaking method is known as a method of not bonding fibers by heating. However, in this wet papermaking method, it is preferable to use short fibers having a fiber length of 25 mm or less, and a nonwoven fabric made of short fibers has few contact intersections between the fibers and tends to have low toughness due to lack of toughness. Conversely, when the wet papermaking method is attempted using fibers having a fiber length of 25 mm or more, the fibers are entangled with each other, secondary aggregation occurs, dispersibility is deteriorated, and it is difficult to stably produce a uniform nonwoven fabric. It becomes. Furthermore, thermoplastic organic fibers having a specific gravity of 1 or less, for example, polypropylene fibers having a specific gravity of 0.91, cannot be stirred and dispersed in the wet papermaking process because they float in water, and are barriers to the weight reduction of the nonwoven fabric. .
[0005]
An object of the present invention is to solve the above-mentioned problems and to bond base fibers and the like using water-soluble organic fibers, so that there is no weakening due to heat at the time of manufacturing. An object of the present invention is to provide a low-priced nonwoven fabric which can maintain its strength even with a small amount of nonwoven fabric and is not limited in fiber length as in the wet papermaking method. In addition, since the non-woven fabric plays a role as a reinforcing material for the interior material by layering the non-woven fabric with the strength kept on the interior material body and integrally molding the interior material, the interior material with high elasticity and high strength is used. To provide.
[0006]
In addition, in fields other than interior materials, there are examples of using water-soluble organic fibers in the production of nonwoven fabrics, for clothing (for example, see Patent Document 5), cushion materials (for example, see Patent Document 6), printed wiring. Applications (for example, see Patent Document 7) and artificial leather (for example, see Patent Document 8) are known. In this case, the water-soluble organic fibers are used to increase the texture and bulk of the product, and their production method is mainly to fuse other fibers together by heating and then to wash them with water. The water-soluble organic fibers are eluted and removed at the same time as the water-soluble organic fibers are entangled with each other by performing the water entanglement treatment, and the water itself is hardly contained in the product itself. It does not provide an opportunity to bond the fibers using water-soluble organic fibers.
[0007]
[Patent Document 1]
JP-A-64-77664 [Patent Document 2]
Japanese Patent Application Laid-Open No. 02-80652 [Patent Document 3]
JP-A-61-130345 [Patent Document 4]
JP 09-123327 A [Patent Document 5]
JP 07-316962 A [Patent Document 6]
JP 2000-192358 A [Patent Document 7]
JP 2001-192555 A [Patent Document 8]
Japanese Patent Application Laid-Open No. 05-33256
[Means for Solving the Problems]
In order to achieve the above object, the present invention employs the following means (1-1) (1-2) (2-1) (2-2) (3) (4).
(1-1) A fiber aggregate formed by mixing a base fiber containing at least one selected from inorganic fibers, heat-resistant organic fibers and natural fibers with a water-soluble organic fiber is formed into a cloth by needle punching. A non-woven fabric in which the water-soluble organic fibers are softened or melted by water and dried and solidified after being formed, so that the contact points between the fibers of the fiber assembly are bonded.
[0009]
(1-2) A fiber assembly in which a base fiber containing at least one selected from inorganic fibers, heat-resistant organic fibers and natural fibers, a water-soluble organic fiber and a water-insoluble thermoplastic organic fiber are mixed. Is formed into a cloth shape by needle punching, and then the water-soluble organic fibers are softened or melted with the addition of elution loss due to water and solidified by drying, so that the contact points between the fibers of the fiber assembly are bonded. Non-woven fabric.
[0010]
The basis weight of the nonwoven fabric of the means (1-1) and (1-2) is not particularly limited, but is preferably 15 g / m 2 or more and less than 150 g / m 2 .
[0011]
(2-1) A base fiber containing at least one selected from inorganic fibers, heat-resistant organic fibers and natural fibers and a water-soluble organic fiber are mixed to form a fiber aggregate, and the fiber aggregate is subjected to needle punching. A method for producing a nonwoven fabric, in which a water-soluble organic fiber is softened or melted with water and dried and solidified after being shaped into a cloth, thereby bonding the contact points between the fibers of the fiber assembly to produce the nonwoven fabric.
[0012]
(2-2) A base fiber containing at least one selected from inorganic fibers, heat-resistant organic fibers and natural fibers, a water-soluble organic fiber and a water-insoluble thermoplastic organic fiber are mixed to form a fiber aggregate. After the fiber aggregate is shaped into a cloth by needle punching, the contact points between the fibers of the fiber aggregate are dried and solidified by softening or melting the water-soluble organic fibers with elution and reduction by adding water. A method for manufacturing a nonwoven fabric that is manufactured by bonding.
The heating temperature for drying and solidifying is not particularly limited. However, it is preferable that the water-soluble organic fiber is dried and solidified by heating at a temperature lower than the melting point of the water-insoluble thermoplastic fiber at the time of pressurization and drying.
[0013]
In the production method of the means (2-1) and (2-2), the fiber aggregate is subjected to dehydration treatment and pressure treatment after the softening or melting of the water-soluble organic fiber and before the solidification, although not particularly limited. Is preferred.
[0014]
(3) An interior material in which the nonwoven fabric of the above-mentioned means (1-1) or (1-2) is overlaid and integrated with the interior material body.
[0015]
The following (1), (2), and (3) can be exemplified as a mode in which the interior material is integrated.
{Circle around (1)} An aspect in which the fusion film sandwiched between the nonwoven fabric and the interior material main body is melted by heating to integrate the nonwoven fabric with the interior material body.
{Circle around (2)} A mode in which the nonwoven fabric and the interior material main body are bonded by spraying an adhesive spray on at least one of the surface of the nonwoven fabric to be overlapped and the surface of the interior material main body.
{Circle around (3)} In particular, in the case of the means (1-2), a nonwoven fabric made of the nonwoven fabric is overlaid on the interior material main body, and the nonwoven fabric and the interior material main body are fused by fusion of the water-insoluble thermoplastic organic fiber and the interior material main body. An integrated mode.
[0016]
(4) A method for producing an interior material in which the nonwoven fabric produced by the production method according to the means (2-1) or (2-2) is overlaid and integrated with the interior material body.
[0017]
The following methods (1), (2) and (3) can be exemplified as a method of integrating the interior materials.
{Circle around (1)} A method in which a fusion film sandwiched between a nonwoven fabric and an interior material main body is melted by heating to integrate the nonwoven fabric with the interior material body.
{Circle over (2)} A method of spraying an adhesive spray on at least one of the surface of the nonwoven fabric to be overlapped and the surface of the interior material main body, and bonding the nonwoven fabric and the interior material main body.
{Circle around (3)} Particularly in the case of (2-2), the nonwoven fabric manufactured by the manufacturing method using the nonwoven fabric is superimposed on the interior material body, heated to a temperature higher than the melting point of the water-insoluble thermoplastic organic fiber, and then cooled. A method of integrating a nonwoven fabric and an interior material body by fusing the water-insoluble thermoplastic organic fiber and the interior material body.
[0018]
The modes of the constituent elements in the above (1-1) (1-2) (2-1) (2-2) (3) and (4) are exemplified below.
"Base fiber" can be exemplified as inorganic fibers, such as glass fibers, metal fibers, ceramic fibers, carbon fibers, mineral fibers including basalt fibers, and heat-resistant organic fibers such as aramid fibers, polyethylene terephthalate, and polypropylene fibers. Fibers to which a liquid crystal polymer is added can be exemplified, and natural fibers include hemp, cotton, coconut, bamboo, kenaf, wool, silk and the like, and at least one or a combination of two or more selected from these can be exemplified. Among them, carbon fibers are not particularly limited, but carbon fibers are preferable because of their advantages of high elastic modulus, high strength, light weight, and incineration. The average fiber length of the base fiber is not particularly limited, but is preferably from 25 to 200 mm, since the contact intersection point between the fibers for keeping the toughness and strength of the nonwoven fabric high can be sufficiently obtained. Further, assuming that the fiber aggregate is 100% by weight, the ratio of the base fiber is not particularly limited, but is preferably 30 to 50% by weight.
[0019]
Examples of the “water-insoluble thermoplastic organic fibers” include fibers made of olefin-based polyethylene, polypropylene, low-melting polyester, and the like, and one or a combination of two or more selected from these. Among them, although not particularly limited, polypropylene fibers having a low specific gravity are preferable. Further, assuming that the fiber aggregate is 100% by weight, the ratio of the water-insoluble thermoplastic organic fibers is not particularly limited, but is preferably 30 to 50% by weight.
[0020]
The “water-soluble organic fiber” is not particularly limited, but a fiber made of polyvinyl alcohol (water-soluble vinylon) can be exemplified. Assuming that the fiber aggregate is 100% by weight, the ratio of the water-soluble organic fibers in the fiber aggregate before the water treatment is not particularly limited, but is preferably 10 to 40% by weight. By mixing a large amount of the water-soluble organic fibers into the fiber aggregate, an effect is obtained in which the fiber surface is easily entangled with fibers that are slippery and easily breakable, such as carbon fibers used as a base fiber, and are used for needle punching. A good needle mat can be obtained without using a needle having a barb depth of 0.11 mm to 0.18 mm and no kick-up.
Further, the ratio of the water-soluble organic fibers in the dried and solidified nonwoven fabric after the water treatment is not particularly limited, assuming that the nonwoven fabric in which the water-soluble organic fibers are dried and solidified is 100% by weight, but is preferably 5 to 35% by weight. The dried and solidified water-soluble organic fiber is considered to have a function of bonding the contact points of the fibers of the fiber assembly with the adhesive layer by forming an adhesive layer, so that the amount of the water-soluble fiber is reduced by elution so as to be less than 5%. If the amount is too large, the function of adhering the fibers is too weak, so that the contact points between the fibers tend to separate, and if the amount of the water-soluble fiber is 35% or more, the strength is significantly reduced under high humidity.
The ratio of the water-soluble organic fibers contained in the fiber aggregate before the water treatment and the dried and solidified nonwoven fabric after the water treatment may or may not change. When it changes, it can be exemplified that the water-soluble organic fiber is mainly dissolved in water and the content of the water-soluble organic fiber is reduced with the elution loss.
[0021]
“Hydration” refers to adding water to the fiber, and is not particularly limited to that method. For example, there are a method of adding liquid water and a method of humidification.
[0022]
The material of the “interior material main body” is not particularly limited, and examples thereof include a reinforced resin material containing inorganic fibers and natural fibers, a foamed polyurethane, a composite resin material with a liquid crystal polymer, and the like. A foam, a honeycomb structure, and the like when using a fiber-reinforced composite material or foamed polyurethane can be exemplified. Specifically, polyurethane foam, a fibrous mat composed of glass fibers and resin fibers can be exemplified, and the resin fibers used for the fibrous mat are polyolefin-based polypropylene, polyethylene terephthalate, polyethylene resin, polyethylene copolymer resin. At least one or more fibers using the selected resin can be exemplified.
The field to which the "interior material" is applied is not particularly limited, and is applicable to any type of interior material. However, particularly suitable fields include those for vehicles and buildings, and those for vehicles. And ceiling materials for automobiles.
[0023]
In the above means (3) and (4), the mode of overlapping the nonwoven fabric on the interior material main body is not particularly limited, but the mode of overlapping the nonwoven fabric on both surfaces so as to sandwich the interior material main body, and the method of applying the nonwoven fabric on one surface of the interior material main body. A mode in which only the nonwoven fabric is stacked and a mode in which the nonwoven fabric is laminated inside the interior material body can be exemplified. Further, a nonwoven fabric or a resin sheet, which is not the present invention, may be integrated on the surface of the laminated nonwoven fabric or the surface of the interior material body on which the nonwoven fabric is not laminated.
Examples of the fusion film include polypropylene, polyethylene terephthalate, and polyethylene resin, and examples of the adhesive include polyisocyanate.
[0024]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, as shown in FIG. 1 and FIG. 2, an embodiment in which the present invention embodies a nonwoven fabric 1 a, an interior material 2, and a manufacturing method thereof will be described. The materials, configurations, numerical values, and the like described in the embodiments are merely examples, and can be changed as appropriate.
[0025]
This nonwoven fabric 1a is composed of a base fiber of carbon fiber having an average fiber length of 55 mm as the inorganic fiber 5, a water-soluble vinylon fiber (Kuraron K-II) manufactured by Kuraray Co., Ltd. as the water-soluble organic fiber 7, After the fiber aggregate formed by blending polypropylene fibers as the water-soluble thermoplastic organic fibers 6 is shaped into a cloth by needle punching, the water-soluble organic fibers 7 are softened or melted by the addition of water with elution and weight loss. By drying and solidifying, the contact points between the fibers of the fiber assembly are bonded. The nonwoven fabric 1a has a water-soluble vinylon fiber content of 5% by weight, assuming that the total amount of the nonwoven fabric 1a is 100% by weight, and is a flat plate shape having a basis weight of about 125 g / m 2 and a thickness of about 0.2 mm.
[0026]
The interior material 2 has a nonwoven fabric 1a in which a glass fiber and a polypropylene fiber as an interior material main body 3a having a void are overlapped on one surface of a composite mat material having a basis weight of 700 g / m 2 , each of which is 50% by weight, to constitute the nonwoven fabric 1a. The polypropylene fiber as the water-insoluble thermoplastic organic fiber 6 and the polypropylene fiber constituting the interior material main body 3a are melted, the nonwoven fabric 1a becomes a nonwoven fabric 1b, and the interior material main body 3a is formed of the interior material main body 3b. The nonwoven fabric 1b and the interior material main body 3b are integrated by each fusion.
[0027]
The nonwoven fabric 1a and the interior material 2 are manufactured by the following method.
Assuming that the ratio of each fiber is 100% by weight, the carbon fiber as the inorganic fiber 5 is 40% by weight, the polypropylene fiber as the water-insoluble thermoplastic organic fiber 6 is 40% by weight, A water-soluble vinylon fiber as the conductive organic fiber 7 is mixed at 20% by weight.
This fiber aggregate is shaped into a cloth by needle punching to prepare a mat 10 having a basis weight of 150 g / m 2 as shown in FIG. Next, the mat 10 is completely impregnated in warm water, and the water-soluble vinylon fibers are softened or melted by dissolution and weight loss with water, and dewatered by roller squeezing to make the water content 300 g / m 2 . Next, at a heating temperature of 120 ° C. for 2 minutes, pressurization is performed by a hot press machine with a vertical gap adjusted to 0.15 mm by a gauge, and dehydration discharge and compression are simultaneously performed to dry and solidify the water-soluble vinylon fiber. As shown in FIG. 1 (b), a nonwoven fabric 1a was formed by forming an adhesive layer. By making the dried and solidified water-soluble vinylon fibers into an adhesive layer, the contact points between the carbon fibers and the polypropylene fibers are adhered by the adhesive layer.
In the drying and solidification process following the addition and dehydration, some unnecessary water-soluble vinylon fibers in the cloth-like fiber aggregate are eluted to the outside to reduce the weight of the cloth-like fiber aggregate and to form a final nonwoven fabric. Can be adjusted, and the basis weight, which is difficult to manufacture by needle processing, can be set to 15 g / m 2 or more and less than 150 g / m 2 . The heating temperature, time and pressure during drying and solidification are set according to the material used and the desired hardness. If the heating temperature is higher than the melting temperature of the polypropylene fibers, a harder fibrous sheet can be obtained. Further, by increasing the heating temperature (for example, to 160 ° C.), the crystallization of the softened or melted water-soluble vinylon fiber when it is dried and solidified can be increased, and the water-soluble vinylon fiber can be modified to have moisture absorption resistance and water absorption resistance. it can.
[0028]
This nonwoven fabric 1a is overlaid on one surface of a composite mat material having a weight per unit area of 700 g / m 2 in which glass fiber and polypropylene fiber as the interior material body 3a having voids are each 50% by weight, and the non-water-soluble thermoplastic organic fibers 6 are used. Heating between 190 ° C heating plate for 7 minutes so that the temperature of the nonwoven fabric 1a and the overlapping portion of the composite mat material and the nonwoven fabric 1a become about 190 ° C which is higher than the melting point (164 to 170 ° C) of a certain polypropylene fiber. I do. Thereafter, the laminated mats are pressed with cold press from both sides facing each other, so that the polypropylene fibers constituting the nonwoven fabric 1a and the polypropylene fibers constituting the interior material body 3a are melted, and the fibers are fused to each other. The nonwoven fabric 1b and the interior material main body 3b are integrally molded to form a flat interior material 2 for a vehicle.
FIG. 1C shows a state in the nonwoven fabric 1b after being integrated with the interior material body 3b. As shown in FIG. 2, the interior material 2 for a vehicle is used as a ceiling material 4 of an automobile, with the interior material 2 being an interior material body 3 b, a nonwoven fabric 1 b, It is used so that it becomes the order of the surface material 17 inside a vehicle.
[0029]
According to the nonwoven fabric 1b, the interior material 2 and the method for producing them according to the present embodiment, the following effects (1) to (5) can be obtained.
{Circle around (1)} Since the remaining water-soluble organic fibers 7 that have been reduced in dissolution amount are dried and solidified to form an adhesive layer, the contact points between the fibers can be bonded to each other. It is a manufacturing method that can be manufactured even if it is used.Since there is no weakening due to heat at the time of manufacturing, it is hard to be broken even if it is heated and pressed to a predetermined irregular shape or pulled out in the transport direction when a mold occurs. , So that it can be continuously and integrally molded.
{Circle around (2)} Even in the case of a nonwoven fabric having a low basis weight, since the manufacturing method is such that a uniform nonwoven fabric can be easily obtained while maintaining the strength, the ratio of the inorganic fibers 5 to be contained is reduced and the cost can be reduced.
{Circle around (3)} By forming the nonwoven fabric 1b containing the water-insoluble thermoplastic organic fibers 6, the elasticity is high and the crimp is apt to be provided, so that the interior material 2 has the effect of increasing the sound absorbing performance.
{Circle around (4)} The nonwoven fabric 1b containing the water-insoluble thermoplastic organic fibers 6 provides an adhesive effect of integrating the nonwoven fabric 1a and the interior material body 3 in a dot manner by thermocompression bonding. Second, moisture absorption resistance, strength under high humidity, dimensional stability and shape maintenance can be secured. In particular, since the interior material 2 for a vehicle is formed by press-molding a mixed mat of a base fiber and a thermoplastic fiber, it is possible to stack and integrally mold the mat. Since this integration is performed by melting polypropylene fibers contained in both the nonwoven fabric 1a and the interior material main body 3a, the odor due to the volatile gas at high temperature of the solvent or the organic resin can be reduced. The environment and the space where the product is used can be kept comfortable.
{Circle around (5)} The nonwoven fabric 1b is superimposed on the interior material main body 3a to form the interior material 2 integrally formed by fusion, so that the nonwoven fabric 1b serves as a reinforcing material, and has high elasticity and high strength. It can be 2.
[0030]
Note that the present invention is not limited to the above embodiment, and can be embodied with appropriate modifications without departing from the spirit of the invention.
(1) As shown in FIG. 3A, the fusion film 11 is sandwiched between the nonwoven fabric 1a and the interior material main body 3a, melted by heating, and integrated with the nonwoven fabric 1b and the interior material main body 3.
(2) As shown in FIG. 3B, the surface of the nonwoven fabric 1a is sprayed with a spray of an adhesive 12 to bond the nonwoven fabric 1a and the interior material body 3a.
[0031]
【The invention's effect】
As described above in detail, according to the present invention, since there is no weakening due to heat at the time of production, it is hard to be broken even under tension, and the strength can be maintained even with a nonwoven fabric having a low basis weight, and wet papermaking. Unlike the method, the length of the fiber is not limited, and an excellent effect that a low-priced nonwoven fabric can be provided is exhibited.
[0032]
Furthermore, according to the ninth, tenth, eleventh, or twelfth aspect of the present invention, the nonwoven fabric is a reinforcing material for the interior material by forming a nonwoven fabric having high strength over the interior material body and integrally forming the interior material. Therefore, an excellent effect that an interior material having high elasticity and high strength can be provided can be provided.
[Brief description of the drawings]
FIG. 1 shows an embodiment of the present invention, in which (a) a cross-sectional view of a mat and an enlarged view of a fiber, (b) a cross-sectional view of a nonwoven fabric and an enlarged view of a fiber, and (c) a cross-sectional view of an interior material and are integrated. FIG.
FIG. 2 is a partial cross-sectional view of the vehicle ceiling material of the embodiment.
FIG. 3 shows a modification of the present invention, in which (a) is a cross-sectional view of an interior material integrated using a fusion film, and (b) is a cross-sectional view of an interior material integrated using an adhesive. .
[Explanation of symbols]
1a, 1b Nonwoven fabric 2 Interior material 3a, 3b Interior material body 5 Inorganic fiber 6 Water-insoluble thermoplastic organic fiber 7 Water-soluble organic fiber 10 Mat

Claims (12)

無機繊維、耐熱性有機繊維及び天然繊維から選ばれる少なくとも1種を含む基材繊維と水溶性有機繊維とが混繊されてなる繊維集合体がニードルパンチ加工により布状に賦形された後、前記水溶性有機繊維が加水により軟化又は融化して乾燥固化したことにより前記繊維集合体の繊維同士の接触点が接着されてなる不織布。After a fiber aggregate formed by blending a base fiber containing at least one selected from inorganic fibers, heat-resistant organic fibers and natural fibers and a water-soluble organic fiber is shaped into a cloth by needle punching, A nonwoven fabric in which the water-soluble organic fibers are softened or melted by water and dried and solidified, whereby the contact points between the fibers of the fiber assembly are bonded. 無機繊維、耐熱性有機繊維及び天然繊維から選ばれる少なくとも1種を含む基材繊維と、水溶性有機繊維と非水溶性熱可塑性有機繊維とが混繊されてなる繊維集合体がニードルパンチ加工により布状に賦形された後、前記水溶性有機繊維が加水により溶出減量を伴って軟化又は融化して乾燥固化したことにより前記繊維集合体の繊維同士の接触点が接着されてなる不織布。A base fiber containing at least one selected from inorganic fibers, heat-resistant organic fibers and natural fibers, and a fiber assembly formed by mixing a water-soluble organic fiber and a water-insoluble thermoplastic organic fiber are subjected to needle punching. A nonwoven fabric in which, after being shaped into a cloth, the water-soluble organic fibers are softened or melted with the addition of elution and reduced in weight with water and solidified by drying, so that the contact points between the fibers of the fiber aggregate are bonded. 目付量が15g/m以上150g/m未満である請求項1又は2記載の不織布。Basis weight 15 g / m 2 or more 150 g / m 2 less than a is claim 1 or 2 wherein the nonwoven fabric. 前記基材繊維が、主に平均繊維長25〜200mmのカーボン繊維からなる請求項1、2又は3記載の不織布。The nonwoven fabric according to claim 1, 2 or 3, wherein the base fiber mainly comprises carbon fiber having an average fiber length of 25 to 200 mm. 無機繊維、耐熱性有機繊維及び天然繊維から選ばれる少なくとも1種を含む基材繊維と水溶性有機繊維とを混繊して繊維集合体とし、前記繊維集合体をニードルパンチ加工により布状に賦形してから、前記水溶性有機繊維を加水により軟化又は融化させて乾燥固化させることにより前記繊維集合体の繊維同士の接触点を接着して製造する不織布の製造方法。A base fiber containing at least one selected from inorganic fibers, heat-resistant organic fibers, and natural fibers is mixed with a water-soluble organic fiber to form a fiber aggregate, and the fiber aggregate is formed into a cloth by needle punching. A method for producing a nonwoven fabric, wherein the nonwoven fabric is produced by shaping and then softening or melting the water-soluble organic fiber with water and drying and solidifying the water-soluble organic fiber to bond the contact points between the fibers of the fiber assembly. 無機繊維、耐熱性有機繊維及び天然繊維から選ばれる少なくとも1種を含む基材繊維と、水溶性有機繊維と非水溶性熱可塑性有機繊維とを混繊して繊維集合体とし、前記繊維集合体をニードルパンチ加工により布状に賦形してから、前記水溶性有機繊維を加水により溶出減量を伴って軟化又は融化させて乾燥固化させることにより前記繊維集合体の繊維同士の接触点を接着して製造する不織布の製造方法。Mixing a base fiber containing at least one selected from inorganic fibers, heat-resistant organic fibers and natural fibers with a water-soluble organic fiber and a water-insoluble thermoplastic organic fiber to form a fiber aggregate; Is formed into a cloth by needle punching, and then the water-soluble organic fibers are softened or melted together with the elution and weight loss by adding water and solidified by drying to adhere the contact points between the fibers of the fiber assembly. Manufacturing method of non-woven fabric. 前記加圧時に前記非水溶性熱可塑性繊維の溶融点未満で加熱して乾燥処理することにより、水溶性有機繊維を乾燥固化させる請求項6記載の不織布の製造方法。7. The method for producing a nonwoven fabric according to claim 6, wherein the water-soluble organic fibers are dried and solidified by heating and heating at a temperature lower than the melting point of the water-insoluble thermoplastic fibers during the pressurization. 前記水溶性有機繊維の軟化又は融化後であって固化前に、前記繊維集合体を加圧して脱水処理及び圧着処理する請求項5、6又は7記載の不織布の製造方法。The method for producing a nonwoven fabric according to claim 5, 6 or 7, wherein the fiber aggregate is subjected to dehydration treatment and pressure bonding treatment after softening or melting and before solidification of the water-soluble organic fiber. 請求項1、2、3又は4記載の不織布が内装材本体に重ねられて一体化している内装材。An interior material in which the nonwoven fabric according to claim 1, 2, 3, or 4 is overlaid and integrated with the interior material body. 請求項2記載の不織布が内装材本体に重ねられ、前記非水溶性熱可塑性有機繊維と前記内装材本体との融着により前記不織布と前記内装材本体とが一体化している内装材。An interior material in which the nonwoven fabric according to claim 2 is overlaid on an interior material body, and the nonwoven fabric and the interior material body are integrated by fusion of the water-insoluble thermoplastic organic fiber and the interior material body. 請求項5、6、7又は8記載の製造方法により製造した不織布を内装材本体に重ねて一体化する内装材の製造方法。A method for producing an interior material, wherein the nonwoven fabric produced by the production method according to claim 5, 6, 7, or 8 is overlaid on and integrated with the interior material body. 請求項6又は7記載の製造方法により製造した不織布を内装材本体に重ねて、前記非水溶性熱可塑性有機繊維の溶融点以上に加熱してから冷却して前記非水溶性熱可塑性有機繊維と前記内装材本体とを融着することにより前記不織布と前記内装材本体とを一体化する内装材の製造方法。The non-woven fabric produced by the production method according to claim 6 or 7, which is superimposed on the interior material body, heated to a temperature equal to or higher than the melting point of the water-insoluble thermoplastic organic fiber, and then cooled to form the non-water-soluble thermoplastic organic fiber. A method of manufacturing an interior material in which the nonwoven fabric and the interior material body are integrated by fusing the interior material body.
JP2003162897A 2003-06-06 2003-06-06 Manufacturing method of automotive interior materials Expired - Lifetime JP4180979B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003162897A JP4180979B2 (en) 2003-06-06 2003-06-06 Manufacturing method of automotive interior materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003162897A JP4180979B2 (en) 2003-06-06 2003-06-06 Manufacturing method of automotive interior materials

Publications (2)

Publication Number Publication Date
JP2004360142A true JP2004360142A (en) 2004-12-24
JP4180979B2 JP4180979B2 (en) 2008-11-12

Family

ID=34054908

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003162897A Expired - Lifetime JP4180979B2 (en) 2003-06-06 2003-06-06 Manufacturing method of automotive interior materials

Country Status (1)

Country Link
JP (1) JP4180979B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4887167A (en) * 1972-02-23 1973-11-16
JPS6426768A (en) * 1987-07-21 1989-01-30 Sekisui Chemical Co Ltd Production of interior material for car
JPH05269908A (en) * 1992-03-30 1993-10-19 Sekisui Chem Co Ltd Fiber composite
JP2000229369A (en) * 1998-12-11 2000-08-22 Japan Vilene Co Ltd Nonwoven fabric laminate and interior finish material for automobile
JP2001355171A (en) * 2000-06-14 2001-12-26 Kuraray Co Ltd Hard board and partion

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4887167A (en) * 1972-02-23 1973-11-16
JPS6426768A (en) * 1987-07-21 1989-01-30 Sekisui Chemical Co Ltd Production of interior material for car
JPH05269908A (en) * 1992-03-30 1993-10-19 Sekisui Chem Co Ltd Fiber composite
JP2000229369A (en) * 1998-12-11 2000-08-22 Japan Vilene Co Ltd Nonwoven fabric laminate and interior finish material for automobile
JP2001355171A (en) * 2000-06-14 2001-12-26 Kuraray Co Ltd Hard board and partion

Also Published As

Publication number Publication date
JP4180979B2 (en) 2008-11-12

Similar Documents

Publication Publication Date Title
CN101065526B (en) Composite thermoplastic sheets including natural fibers
US4751134A (en) Non-woven fibrous product
EP1756374B1 (en) Decorative interior sound absorbing panel
US9586380B2 (en) Moulded multilayer lining for heat and sound insulation
US6702914B2 (en) Method for fabricating non-fiberglass sound absorbing moldable thermoplastic structure
WO2012164977A1 (en) Automobile body undercover
US20140124972A1 (en) Production process for a moulded multilyer lining
JPH10245755A (en) Acoustic material and its production
JP2011224968A (en) Method for manufacturing of interior member for vehicle
JP2018513309A (en) Light engine mounting trim parts
US20080075911A1 (en) Multilayer, composite, fleece material and a method for manufacturing a multilayer, composite, fleece material
KR100285726B1 (en) Manufacturing method of non-woven fabric mat for car interior material
JP2002144976A (en) Molded ceiling for car and its manufacturing method
KR101582647B1 (en) Multi-layer sound-absorbing material for vehicle using micro-fiber and manufacturing method thereof
JPH08323903A (en) Interior material for car and production thereof
JP2002178397A (en) Soundproofing material for vehicle and manufacturing method therefor
KR102228540B1 (en) Non-woven Fabric with Improved Weight Lightening and Sound Absorbency, and Method for Manufacturing the Same
JP4180979B2 (en) Manufacturing method of automotive interior materials
JP2004122545A (en) Thermoformable core material and interior finish material for car using the core material
JP2002028997A (en) Plate-shaped foamed molded item with skin
JP2009029219A (en) Interior material for automobile
JPH11263169A (en) Interior trim base material
JPH0911818A (en) Hood insulator
JP2005028864A (en) Laminated surface material and laminate for interior triming material using same
JPH0776052A (en) Laminated structure and interior material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060403

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080704

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080819

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080828

R150 Certificate of patent or registration of utility model

Ref document number: 4180979

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120905

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120905

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120905

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130905

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130905

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term