【0001】
【発明の属する技術分野】
本発明は炭素質微細繊維状体の精製方法及び分散液に係り、特に炭素質微細繊維状体が炭素源ガスを触媒の存在下で反応させて製造することができる炭素質微細繊維状体である場合に好適な精製方法及び分散液に関する。
【0002】
【従来の技術】
従来、二酸化炭素、水素、バイオガス(二酸化炭素(CO2)とメタン(CH4)とを主成分とするガス)等の排出ガスを回収し、これを炭素源として触媒の存在下で反応させることにより炭素質生成物として固定化する方法が知られている(特開平11−29314号公報、特開平11−322315号公報)。この方法によれば、炭素質生成物としてカーボンナノチューブと呼称される炭素質微細中空繊維状体が得られることが確認されている。また、カーボンナノチューブは、炭化水素類などの炭素源原料を、高温で触媒存在下にて気相反応させて得られることも知られている(特公平3−64606号公報、特公平3−77288号公報等)。
【0003】
この触媒粒子としては、金属、金属酸化物、これらを担体粒子に担持させたものなどが用いられている。
【0004】
このようにして製造されるカーボンナノチューブに代表される炭素質微細繊維状体は、従来の炭素材料と比較して著しく高導電性であるなどの優れた特性により、近年、新材料として特に注目されている。
【0005】
【特許文献1】
特開平11−29314号公報
【特許文献2】
特開平11−322315号公報
【特許文献3】
特公平3−64606号公報
【特許文献4】
特公平3−77288号公報
【0006】
【発明が解決しようとする課題】
上記方法により製造された炭素質微細繊維状体は、触媒粒子から延出したものであり、炭素質微細繊維状体と触媒粒子とは一体となっている。この触媒粒子が残っている炭素質微細繊維状体(炭素質微細繊維状体素体)は、触媒粒子の分だけ純度が低いことになる。
【0007】
本発明は、純度の高い炭素質微細繊維状体を得るための精製方法と、この炭素質微細繊維状体が分散した分散液を提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明の炭素質微細繊維状体の精製方法は、触媒粒子と、該触媒粒子から延出した炭素質微細繊維状体とからなる炭素質微細繊維状体素体から該触媒粒子を除去する炭素質微細繊維状体の精製方法において、該炭素質微細繊維状体素体を液体中に分散させ、外部からエネルギーを加えて触媒粒子と炭素質微細繊維状体とを離反させることを特徴とするものである。
【0009】
かかる本発明方法によると、炭素質微細繊維状体素体から触媒粒子が除去された高純度の炭素質微細繊維状体が得られる。この高純度の炭素質微細繊維状体は、樹脂などへの分散性が良好であると共に、炭素質微細繊維状体分散樹脂製品の導電性等の物性、表面性状を良好なものとする。
【0010】
本発明の炭素質微細繊維状体分散液は、触媒粒子と、該触媒粒子から延出した炭素質微細繊維状体とからなる炭素質微細繊維状体素体を液体中に分散させ、外部からエネルギーを加えて炭素質微細繊維状体と触媒粒子とを離反させ、次いでこの触媒粒子を分散液中から除去することにより得られた分散液よりなるものである。
【0011】
この炭素質微細繊維状体分散液は、炭素質微細繊維状体素体を分散させた液から触媒粒子のみを分離することにより得られたものであり、炭素質微細繊維状体が高純度であると共に、この分散液を効率よく製造することができる。
【0012】
【発明の実施の形態】
本発明で精製される炭素質微細繊維状体素体は、触媒と炭素源ガスとを接触させて該反応を行わせることができれば、特に製造方法に制限はない。この場合、反応器内に触媒を投入しておき、続いて炭素源ガスを流通させる方法でもよく、また、炭素源ガスと触媒とを同時に反応装置に投入する方法でもよい。いずれの場合でも、炭素源ガスは反応装置内に適当な割合で流通させる。この際、反応装置については、例えば、従来から知られている固定床反応装置、流動床反応装置等で行うことができる。また、製造方法の一態様としては、例えば、噴流層反応器内に触媒粒子及び炭素源ガスを導入して、噴流層を形成しながら、炭素質微細繊維状体の平均粒径10〜200μmの微粒子凝集体と、流動床反応器内に、炭素源ガスと前記噴流層反応器から取り出された該微粒子凝集体とを導入して、該微粒状凝集体の流動層を形成しながら該凝集体を成長させる工程とを有する方法により製造することも可能である。
【0013】
反応に用いる炭素源ガスとしては、反応系にガス状で導入することができる炭素化合物であれば良く、特に制限はないが、好ましくは炭化水素及び/又は水素と炭素酸化物とを含むガスが用いられる。特に、炭素源ガスとして、例えば二酸化炭素、水素、バイオガス等のプロセス排ガスを回収利用することは、製造コストの低減のみならず、環境維持にも有効である。二酸化炭素及びメタンを炭素源ガスとして使用する場合、両者が等モルであれば、下記のような反応式に従って、メタン及び二酸化炭素を炭素質生成物として固定化させることが可能となる。
CH4 → C+2H2
2H2+CO2 → C+2H2O
【0014】
炭素源ガスとして、二酸化炭素や一酸化炭素のような炭素酸化物のガスを用いる場合、同時に反応に用いるガスとしては還元性ガスを用いる。ここでいう還元性ガスとは、それ自体が還元性を有しているか、又はそのガスが反応系中にて分解して、かかる還元性を有するガスを発生するガスを指す。上記の反応式ではメタンガスが炭素源ガスであると同時に、分解して還元性を有する水素を発生するため、還元性ガスでもある。このような還元性ガスには、水素ガス、更には各種炭化水素ガス、即ちメタン、エタン、プロパン、ブタンのような化合物が挙げられる。
【0015】
一方、触媒としては、炭素源ガスからの炭素質微細繊維状体の生成反応を効率的に行うことのできるものであれば、化学的組成並びに形状等において特に制限されないが、通常、遷移金属及びその化合物が好ましく用いられる。触媒としては特に、ニッケル、コバルト、鉄などの金属触媒が好ましい。これら金属は1種を単独で用いても、2種以上を適宜組み合わせて使用しても良い。また、これら金属は、元素状態でも、酸化物、水酸化物、炭酸塩といった化合物でも使用することができる。更に、これらの触媒成分をシリカなどの担体に担持したものであっても良い。この場合、担体に対する触媒成分の担持量は、担体重量に対して1〜90重量%程度とするのが好ましい。その触媒のパーティクル形状には特に制限はなく、一般に知られている形状、例えば球状等の粒状であっても良い。またそのパーティクルの大きさは、例えば球状等の粒状である場合、直径で1〜20μm程度のものが通常好適に用いられる。
【0016】
このような触媒粒子の使用量には特に制限はないが、反応装置に導入されるガスの流量は、固定床反応装置の場合は触媒に対して10〜500L/g・hr程度、また、流動床反応器や噴流層反応器を用いる場合は同じく10〜60L/g・hr程度となるような量とすることが好ましい。
【0017】
また、反応条件は、通常反応温度400〜800℃、好ましくは500℃以上700℃未満である。反応温度がこの範囲よりも低いと十分な反応速度が得られず炭素質微細繊維状体の製造効率の点で不利であり、この範囲よりも高いと、一旦生成した炭素と反応雰囲気ガスとの反応が生起して炭素質微細繊維状体の収率が低下する場合があり好ましくない。さらに、反応圧力は、原料の炭素源ガスが効率的に反応するような条件であれば良く、常圧・減圧・加圧のいずれにおいて反応を行っても良い。
【0018】
かかる反応によって、炭素質微細繊維状体が得られるが、ここで言う炭素質微細繊維状体とは、透過型電子顕微鏡(TEM)にて観察されたグラファイト面の結晶構造が繊維軸に対して角度をなすフィッシュボーン(魚骨状)構造であってもよく、また、グラファイト面が繊維軸に対して平行(すなわち、カーボンナノチューブ)であってもよい。また、得られる炭素質微細繊維状体の外観は、用いた反応装置にも依存するが、凝集体粒子状であっても良く、また、微粉末状であってもよい。
【0019】
本発明では、上記の如くして製造した、炭素質微細繊維状体から触媒粒子を除去して炭素質微細繊維状体を精製する。
【0020】
この精製を行うには、炭素質微細繊維状体を液体中に分散させ、外部から超音波等のエネルギーを加えて炭素質微細繊維状体と触媒粒子とを離反させ、触媒粒子を除去する。
【0021】
この加えるエネルギーとしては超音波が好適であるが、その他には、例えば、顔料の分散等において当業者に知られている分散装置、すなわち、サンドミルのような装置を使用して物理的なエネルギーを加えて炭素質微細繊維状体と触媒粒子とを離反させることも可能である。
【0022】
液体としては、水または極性有機溶媒が好適である。極性有機溶媒として具体的には、メタノール、エタノール、n−プロパノール、イソプロパノールのようなアルコール類、フェノール、クレゾールのようなフェノール類、アセトン、メチルエチルケトンのようなケトン類、酢酸メチル、酢酸エチルのようなエステル類、アセトニトリルのようなニトリル類、ジメチルホルムアミド(DMF)のようなアミド類、ジメチルスルホキシド(DMSO)のようなスルホキシド類が挙げられる。これらの中ではアルコール類が特に好適であり、とりわけエタノールが安全性と炭素質微細繊維状体の分散性、ならびに除去・再利用の容易な点から好適である。液体は、上記の水、極性有機溶媒の1種であっても良く、2種以上の混合物であってもよい。
【0023】
超音波を分散液に与えるには、分散液を収容した容器を超音波振動させてもよく、分散液中に加振器を浸漬し、該加振器を超音波振動させてもよい。
【0024】
分散液にエネルギーを加えることにより、触媒粒子と炭素質微細繊維状体とが離反する。触媒粒子の方が炭素質微細繊維状体よりも比重が大きく、またこの比重は上記水や極性有機溶媒の比重よりも大きいので、触媒粒子は重力によって沈降するので、沈降した触媒粒子を取り出すことにより精製された炭素質微細繊維状体が得られる。なお、触媒粒子の沈降分離を促進させるために遠心分離してもよい。
【0025】
触媒粒子が除去された分散液から液体を蒸発や、濾過及び乾燥などの方法によって除去することにより炭素質微細繊維状体乾燥物が得られる。蒸発法としては、減圧法(エバポレーション)、加熱蒸発などいずれでもよい。
【0026】
炭素質微細繊維状体を塗料、インキ等の製造に用いるときには、分散液のままでもこの製造に供し得る。この場合、液体を一部だけ除去(即ち、濃縮)してもよく、全く濃縮しなくてもよい。
【0027】
このように触媒粒子が除去された炭素質微細繊維状体は、樹脂等への分散性が良好であると共に、純度が高いので、樹脂製品の導電性等の物性や表面性状を良好なものとする。
【0028】
本発明方法によって触媒を除去した炭素質微細繊維状体は、混練性、分散性、加工性、機能発現性に優れ、かつ安価である。この炭素質微細繊維状体は、従来のカーボンブラックと同様の方法で混練することが可能であり、同様の用途、例えば樹脂、ゴム、エラストマー等の補強、着色、導電性付与等の機能性付与のための添加剤として、また、機能性顔料として塗料、インキ、トナー等の配合成分として用いることができる。
【0029】
【実施例】
以下に実施例及び比較例を挙げて本発明をより具体的に説明するが、本発明はその要旨を超えない限り、以下の実施例に何ら限定されるものではない。
【0030】
<炭素質微細繊維状体の製造>
固定床型反応器に、ニッケルをシリカに担持した触媒2gを仕込み、窒素ガスを流通しながら反応器の温度を650℃まで昇温した。ついで、反応ガスをメタン/二酸化炭素の混合ガス(1:1)に切替え、ガス流量60NL/hで3時間反応を行った。反応終了後、装置から得られた粉末状の、触媒を含む炭素質微細繊維状体を取り出した。生成物は8.0g(触媒含む)であった。この反応によって得られた生成物は、TEM観察によればグラファイト面の結晶構造が、繊維軸に対して角度をなすフィッシュボーン(魚骨状)構造であった。
【0031】
この反応は複数回行ったが、同一条件では生成する炭素質微細繊維状体の量はほぼ一定であった。
【0032】
実施例1
このようにして製造された炭素質微細繊維状体素体4gに、エタノール150mLを加え、超音波装置(日本精機(株)製,US−3001超音波分散機)にて30分間処理し、その後1分間静置した。上澄みと沈降物がみられたが、上澄みをピペットにて回収し、残った沈降物にさらにエタノールを加えて同様に超音波処理(10分)を行ったところ、上記と同様に上澄みと沈殿が得られたので、同様に上澄みをピペットにて回収した。この操作を4回繰り返し、得られた上澄みを集めてエバポレータにてエタノールを回収し、上澄みに移行した炭素質微細繊維状体3.1gを回収した。SEM(走査型電子顕微鏡)観察の結果、得られた炭素質微細繊維状体には殆ど触媒ならびに担体シリカはみられなかった。
【0033】
比較例1
上記の処理を行う前の炭素質微細繊維状体をSEMにて観測したところ、触媒及び担体シリカが多く含まれていた。又、混練性・分散性・加工性は劣るものであった。
【0034】
【発明の効果】
以上の通り、本発明によると、触媒粒子が分散された高純度の炭素質微細繊維状体及びこの炭素質微細繊維状体の分散液が提供される。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for purifying a carbonaceous fine fibrous body and a dispersion liquid, and particularly to a carbonaceous fine fibrous body that can be produced by reacting a carbon source gas in the presence of a catalyst. It relates in some cases to a suitable purification method and dispersion.
[0002]
[Prior art]
BACKGROUND ART Conventionally, exhaust gases such as carbon dioxide, hydrogen, and biogas (gas containing carbon dioxide (CO 2 ) and methane (CH 4 ) as main components) and the like are collected, and are reacted as a carbon source in the presence of a catalyst. Thus, a method for immobilization as a carbonaceous product is known (JP-A-11-29314, JP-A-11-322315). According to this method, it has been confirmed that a carbonaceous fine hollow fibrous body called a carbon nanotube can be obtained as a carbonaceous product. It is also known that carbon nanotubes can be obtained by subjecting a carbon source material such as hydrocarbons to a gas phase reaction at a high temperature in the presence of a catalyst (JP-B-3-64606, JP-B-3-77288). No.).
[0003]
As the catalyst particles, metals, metal oxides, and those in which these are supported on carrier particles are used.
[0004]
In recent years, carbonaceous fine fibrous bodies represented by carbon nanotubes produced in this way have attracted particular attention as new materials in recent years due to their excellent properties such as significantly higher conductivity than conventional carbon materials. ing.
[0005]
[Patent Document 1]
JP-A-11-29314 [Patent Document 2]
JP-A-11-322315 [Patent Document 3]
Japanese Patent Publication No. 3-64606 [Patent Document 4]
Japanese Patent Publication No. 3-77288 [0006]
[Problems to be solved by the invention]
The carbonaceous fine fibrous material produced by the above method is extended from the catalyst particles, and the carbonaceous fine fibrous material and the catalyst particles are integrated. The purity of the carbonaceous fine fibrous body (carbonaceous fine fibrous body) on which the catalyst particles remain is low by the amount of the catalyst particles.
[0007]
An object of the present invention is to provide a purification method for obtaining a high-purity carbonaceous fine fibrous body, and a dispersion in which the carbonaceous fine fibrous body is dispersed.
[0008]
[Means for Solving the Problems]
The method for purifying a carbonaceous fine fibrous body according to the present invention comprises removing carbon particles from a carbonaceous fine fibrous body comprising catalyst particles and carbonaceous fine fibrous bodies extended from the catalyst particles. In the method for purifying a fine carbonaceous fibrous body, the carbonaceous fine fibrous body is dispersed in a liquid, and energy is applied from the outside to separate the catalyst particles and the carbonaceous fine fibrous body. Things.
[0009]
According to the method of the present invention, a high-purity carbonaceous fine fibrous body in which catalyst particles have been removed from the carbonaceous fine fibrous body can be obtained. This high-purity carbonaceous fine fibrous material has good dispersibility in resin and the like, and also has good physical properties such as conductivity and surface properties of the carbonaceous fine fibrous body-dispersed resin product.
[0010]
The carbonaceous fine fibrous body dispersion of the present invention is obtained by dispersing a carbonaceous fine fibrous body composed of catalyst particles and a carbonaceous fine fibrous body extended from the catalyst particles in a liquid, and from the outside. It is composed of a dispersion obtained by applying energy to separate the carbonaceous fine fibrous material from the catalyst particles and then removing the catalyst particles from the dispersion.
[0011]
This carbonaceous fine fibrous body dispersion is obtained by separating only the catalyst particles from the liquid in which the carbonaceous fine fibrous body is dispersed, and the carbonaceous fine fibrous body has high purity. In addition, this dispersion can be efficiently produced.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
The production method of the carbonaceous fine fibrous body to be purified in the present invention is not particularly limited as long as the reaction can be carried out by contacting the catalyst with a carbon source gas. In this case, a method in which a catalyst is charged into the reactor and then a carbon source gas is allowed to flow, or a method in which the carbon source gas and the catalyst are simultaneously charged into the reactor may be used. In any case, the carbon source gas is circulated in the reactor at an appropriate ratio. At this time, the reaction can be carried out, for example, using a conventionally known fixed bed reactor, fluidized bed reactor, or the like. In one embodiment of the production method, for example, catalyst particles and a carbon source gas are introduced into a spouted bed reactor to form a spouted bed while forming an average particle diameter of the carbonaceous fine fibrous material of 10 to 200 μm. Introducing the carbon source gas and the fine particle aggregates taken out of the spouted bed reactor into a fluidized bed reactor to form a fluidized bed of the fine particle aggregates; Can be produced by a method having a step of growing
[0013]
The carbon source gas used for the reaction is not particularly limited as long as it is a carbon compound that can be introduced into the reaction system in a gaseous state, and is preferably a gas containing hydrocarbon and / or hydrogen and carbon oxide. Used. In particular, collecting and utilizing process exhaust gas such as carbon dioxide, hydrogen, biogas, etc. as a carbon source gas is effective not only for reducing the production cost but also for maintaining the environment. When carbon dioxide and methane are used as the carbon source gas, if both are equimolar, methane and carbon dioxide can be immobilized as carbonaceous products according to the following reaction formula.
CH 4 → C + 2H 2
2H 2 + CO 2 → C + 2H 2 O
[0014]
When a carbon oxide gas such as carbon dioxide or carbon monoxide is used as the carbon source gas, a reducing gas is used as the gas used for the reaction. As used herein, the term "reducing gas" refers to a gas which has a reducing property itself or which is decomposed in a reaction system to generate a gas having such a reducing property. In the above reaction formula, methane gas is a reducing gas as well as a carbon source gas because it is decomposed to generate hydrogen having a reducing property. Examples of such reducing gas include hydrogen gas, and various hydrocarbon gases, that is, compounds such as methane, ethane, propane, and butane.
[0015]
On the other hand, the catalyst is not particularly limited in chemical composition and shape, etc., as long as it can efficiently perform a reaction for producing a carbonaceous fine fibrous material from a carbon source gas. The compound is preferably used. As the catalyst, a metal catalyst such as nickel, cobalt and iron is particularly preferable. These metals may be used alone or in an appropriate combination of two or more. In addition, these metals can be used in an elemental state or in compounds such as oxides, hydroxides, and carbonates. Further, these catalyst components may be supported on a carrier such as silica. In this case, the amount of the catalyst component carried on the carrier is preferably about 1 to 90% by weight based on the weight of the carrier. The particle shape of the catalyst is not particularly limited, and may be a generally known shape, for example, a spherical shape or the like. When the particles are in the form of particles such as spheres, for example, particles having a diameter of about 1 to 20 μm are preferably used.
[0016]
The amount of such catalyst particles used is not particularly limited, but the flow rate of the gas introduced into the reactor is about 10 to 500 L / g · hr with respect to the catalyst in the case of a fixed bed reactor. When a bed reactor or a spouted bed reactor is used, the amount is preferably about 10 to 60 L / g · hr.
[0017]
The reaction conditions are usually a reaction temperature of 400 to 800 ° C, preferably 500 ° C or more and less than 700 ° C. If the reaction temperature is lower than this range, a sufficient reaction rate cannot be obtained, which is disadvantageous in terms of the production efficiency of the carbonaceous fine fibrous body.If the reaction temperature is higher than this range, the reaction between the once generated carbon and the reaction atmosphere gas may occur. A reaction may occur to lower the yield of the carbonaceous fine fibrous material, which is not preferable. Further, the reaction pressure may be any condition under which the raw material carbon source gas efficiently reacts, and the reaction may be performed at any of normal pressure, reduced pressure, and increased pressure.
[0018]
By such a reaction, a carbonaceous fine fibrous body is obtained. The term "carbonaceous fine fibrous body" as used herein means that the crystal structure of the graphite surface observed by a transmission electron microscope (TEM) is different from the fiber axis. It may have an angled fishbone (fishbone) structure, and the graphite surface may be parallel to the fiber axis (ie, carbon nanotubes). Further, the appearance of the obtained carbonaceous fine fibrous body depends on the used reactor, but may be in the form of aggregate particles or fine powder.
[0019]
In the present invention, the fine carbonaceous fibrous material is purified by removing the catalyst particles from the fine carbonaceous fibrous material produced as described above.
[0020]
To perform this purification, the carbonaceous fine fibrous material is dispersed in a liquid, and energy such as ultrasonic waves is applied from the outside to separate the carbonaceous fine fibrous material from the catalyst particles, thereby removing the catalyst particles.
[0021]
Ultrasonic waves are suitable as the added energy, but in addition, for example, a dispersing device known to those skilled in the art for dispersing pigments, that is, using a device such as a sand mill to transfer physical energy In addition, it is possible to separate the carbonaceous fine fibrous material from the catalyst particles.
[0022]
As the liquid, water or a polar organic solvent is suitable. Specific examples of the polar organic solvent include methanol, ethanol, n-propanol, alcohols such as isopropanol, phenols, phenols such as cresol, acetone, ketones such as methyl ethyl ketone, methyl acetate, and ethyl acetate. Examples include esters, nitriles such as acetonitrile, amides such as dimethylformamide (DMF), and sulfoxides such as dimethylsulfoxide (DMSO). Among them, alcohols are particularly preferred, and ethanol is particularly preferred in terms of safety, dispersibility of the carbonaceous fine fibrous material, and easy removal and reuse. The liquid may be one of the above-mentioned water and polar organic solvent, or may be a mixture of two or more.
[0023]
In order to apply ultrasonic waves to the dispersion, the container containing the dispersion may be subjected to ultrasonic vibration, or a vibrator may be immersed in the dispersion, and the vibrator may be subjected to ultrasonic vibration.
[0024]
By applying energy to the dispersion, the catalyst particles and the carbonaceous fine fibrous material separate from each other. Since the specific gravity of the catalyst particles is higher than that of the carbonaceous fine fibrous material, and the specific gravity is larger than the specific gravity of the water or the polar organic solvent, the catalyst particles are settled by gravity. Thus, a purified carbonaceous fine fibrous material is obtained. Note that centrifugation may be performed to promote sedimentation and separation of the catalyst particles.
[0025]
By removing the liquid from the dispersion from which the catalyst particles have been removed by a method such as evaporation, filtration, and drying, a dried carbonaceous fine fibrous material can be obtained. As the evaporation method, any of a reduced pressure method (evaporation), heating evaporation, and the like may be used.
[0026]
When the carbonaceous fine fibrous material is used for the production of paints, inks and the like, the dispersion can be used as it is for the production. In this case, the liquid may be partially removed (that is, concentrated) or may not be concentrated at all.
[0027]
The carbonaceous fine fibrous material from which the catalyst particles have been removed has good dispersibility in resin and the like, and has high purity, so that the properties and surface properties such as conductivity of the resin product are good. I do.
[0028]
The carbonaceous fine fibrous material from which the catalyst has been removed by the method of the present invention is excellent in kneading properties, dispersibility, workability, and function expression and is inexpensive. This carbonaceous fine fibrous material can be kneaded in the same manner as conventional carbon black, and has similar uses, for example, reinforcement of resin, rubber, elastomer, etc., coloring, and imparting functionality such as imparting conductivity. And as a functional pigment as a compounding component for paints, inks, toners and the like.
[0029]
【Example】
Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples. However, the present invention is not limited to the following Examples at all without departing from the gist thereof.
[0030]
<Production of carbonaceous fine fibrous material>
A fixed bed reactor was charged with 2 g of a catalyst supporting nickel on silica, and the temperature of the reactor was raised to 650 ° C. while flowing nitrogen gas. Then, the reaction gas was switched to a mixed gas of methane / carbon dioxide (1: 1), and the reaction was performed at a gas flow rate of 60 NL / h for 3 hours. After completion of the reaction, the powdery carbonaceous fine fibrous material containing the catalyst obtained from the apparatus was taken out. The product was 8.0 g (including the catalyst). According to TEM observation, the product obtained by this reaction had a fishbone (fish bone) structure in which the crystal structure of the graphite surface was at an angle to the fiber axis.
[0031]
This reaction was carried out a plurality of times, but under the same conditions, the amount of carbonaceous fine fibrous bodies produced was almost constant.
[0032]
Example 1
To 4 g of the carbonaceous fine fibrous body thus produced, 150 mL of ethanol was added, and the mixture was treated for 30 minutes with an ultrasonic apparatus (US-3001 ultrasonic disperser, manufactured by Nippon Seiki Co., Ltd.), and thereafter Let stand for 1 minute. A supernatant and a sediment were observed, but the supernatant was collected with a pipette, and ethanol was further added to the remaining sediment and subjected to the same ultrasonic treatment (10 minutes). Since it was obtained, the supernatant was similarly collected with a pipette. This operation was repeated four times, and the obtained supernatant was collected, ethanol was recovered by an evaporator, and 3.1 g of the carbonaceous fine fibrous material transferred to the supernatant was recovered. As a result of SEM (scanning electron microscope) observation, almost no catalyst or carrier silica was found in the obtained carbonaceous fine fibrous body.
[0033]
Comparative Example 1
When the carbonaceous fine fibrous material before the above treatment was observed by SEM, a large amount of the catalyst and the carrier silica were contained. In addition, kneading, dispersing, and processability were poor.
[0034]
【The invention's effect】
As described above, according to the present invention, a high-purity carbonaceous fine fibrous body in which catalyst particles are dispersed and a dispersion of the carbonaceous fine fibrous body are provided.