JP2004360090A - Flame-retardant fiber composite material - Google Patents

Flame-retardant fiber composite material Download PDF

Info

Publication number
JP2004360090A
JP2004360090A JP2003156981A JP2003156981A JP2004360090A JP 2004360090 A JP2004360090 A JP 2004360090A JP 2003156981 A JP2003156981 A JP 2003156981A JP 2003156981 A JP2003156981 A JP 2003156981A JP 2004360090 A JP2004360090 A JP 2004360090A
Authority
JP
Japan
Prior art keywords
acrylonitrile
polymer
meth
flame
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003156981A
Other languages
Japanese (ja)
Other versions
JP4157428B2 (en
Inventor
Akinori Shu
明▲徳▼ 周
Ryotaro Tsuji
良太郎 辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP2003156981A priority Critical patent/JP4157428B2/en
Publication of JP2004360090A publication Critical patent/JP2004360090A/en
Application granted granted Critical
Publication of JP4157428B2 publication Critical patent/JP4157428B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a flame-retardant composite material which can be melt-spun in a state maintaining various excellent processing properties such as drawability and excellent physical properties such as flame retardancy, which satisfies the demands such as the reduction of running costs, the reduction of plant and equipment investments to enhance competitiveness and the decrease of environmental loads caused in a wet-spinning process using a large amount of an organic solvent in the production of modacrylic synthetic fibers having been produced only by wet spinning processes, because the plasticization temperatures of the modacrylic polymers are near to their decomposition temperatures. <P>SOLUTION: This flame-retardant fiber composite material is produced by compounding 100 pts.wt. melt-spun fiber (A) of a polymer and 0-600 pts.wt. at least one fiber (B) selected from the group consisting of natural fibers and chemical fibers. The polymer comprises 100 pts.wt. a polymer (a) containing 17-86 wt% halogen atoms and, as a processability improvement agent, 1-50 pts.wt. (meth)acrylonitrile-based polymer (b) comprising 10-90 wt% (meth)acrylonitrile and 10-90 wt% at least one vinyl monomer (b1) selected from vinyl monomers copolymerizable with the above (meth)acrylonitrile. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は加工性改良剤により溶融紡糸が可能となったハロゲン含有繊維および該繊維と天然繊維または化学繊維を複合した難燃繊維複合体に関する。さらに詳しくは、分子量分布を制御した低分子量(メタ)アクリロニトリル系重合体を配合する事で湿式紡糸法のみが適用されていたハロゲン含有繊維を溶融紡糸可能にせしめ、他の繊維のもつ風合や吸湿性などの優れた特性を有し、かつ難燃性を有する難燃繊維複合体に関する。
【0002】
【従来の技術】
アクリル系合成繊維のうちハロゲン化ビニルを比較的多く含むいわゆるモダクリル合成繊維が、アクリルの風合を保ちつつ、難燃性の点においてアクリル繊維よりはるかに優れていることはよく知られている。モダクリル合成繊維とは一般的に繊維を構成する合成高分子において、重合されたアクリロニトリル単位が35%〜85%であるものと米国連邦取引委員会によって規定されているが、当業者間においてはハロゲン化ビニル系モノマーを共重合成分として含むものと広く認識されており、以下本文で述べるモダクリルとは(メタ)アクリロニトリルおよびハロゲン化ビニル系モノマーからなる共重合体を指す。すなわち、モダクリル合成繊維にはハロゲン化ビニルが比較的多く共重合されているため繊維自体が難燃性であり、その特性を生かしてカーテン、カーペットなどのインテリア製品に広く利用されている。
【0003】
しかしながら、紡糸方法の点ではモダクリル合成繊維は可塑化温度と分解温度が近いため、湿式紡糸が必須であった。近年、環境問題への対応は社会的急務であり、大量の有機溶剤を用いる湿式紡糸工程で生ずる環境負荷の低減が求められている。また、ランニングコストおよび設備投資の削減が競争力向上には不可欠であり、モダクリル合成繊維の溶融紡糸化が望まれている。
【0004】
前記のような問題を解決するために、特表2003−507503号公報には、オレフィン性不飽和モノマーをモダクリル繊維中にマルチポリマー(多成分系共重合体)として導入する方法が提案されており、モダクリル樹脂の重合制御にて溶融押出可能としているが、繊維としての特性は具体的に提示されておらず、溶融紡糸法により優れたモダクリル繊維がえられているとは言い難い。
【0005】
【特許文献1】
特表2003−507503
【0006】
【発明が解決しようとする課題】
本発明の目的は、これまで湿式紡糸のみ可能であったハロゲン含有繊維において、(メタ)アクリロニトリル系重合体を加工性改良剤として使用することで、可塑化温度を低下せしめ、延伸性等の加工性および難燃性等の諸物性に優れたまま、溶融紡糸を可能とせしめた難燃繊維複合体を提供することである。
【0007】
【課題を解決するための手段】
本発明者らは、鋭意検討を行った結果、ハロゲン含有繊維に特定の(メタ)アクリロニトリル系重合体を添加することにより、従来知られた湿式紡糸法による繊維に比べて延伸性等の加工性を維持したまま、溶融紡糸が可能となる組成物がえられることを見出し、以下に示す本発明を完成した。
(請求項1) ハロゲン原子を17〜86重量%含む重合体(a)100重量部と、加工性改良剤として(メタ)アクリロニトリル10〜90重量%およびこれと共重合可能なビニル系単量体から選ばれた少なくとも1種のビニル系単量体(b1)10〜90重量%よりなる(メタ)アクリロニトリル系重合体(b)1〜50重量部からなり、溶融紡糸によりえられる繊維(A)100重量部に対して、天然繊維および化学繊維よりなる群から選ばれた少なくとも1種の繊維(B)0〜600重量部を複合した難燃繊維複合体。
(請求項2) 該ハロゲン原子を17〜86重量%含む重合体(a)が、アクリロニトリル30〜70重量%、ハロゲン含有ビニル系単量体70〜30重量%およびこれらと共重合可能なビニル系単量体(a1)0〜10重量%よりなる共重合体である請求項1記載の難燃繊維複合体。
(請求項3) 前記共重合可能なビニル系単量体(a1)の少なくとも1種がスルホン酸基含有ビニル系単量体である請求項2記載の難燃繊維複合体。
(請求項4) 該(メタ)アクリロニトリル系重合体(b)において、(メタ)アクリロニトリルと共重合可能なビニル系単量体(b1)が芳香族ビニル系単量体(b2)を含み、該(メタ)アクリロニトリル系重合体(b)がアクリロニトリル10〜90重量%、芳香族ビニル系単量体(b2)90〜10重量%およびこれらと共重合可能なビニル系単量体(b3)0〜60重量%よりなる共重合体である請求項1〜3のいずれかに記載の、難燃繊維複合体。
(請求項5) 該(メタ)アクリロニトリル系重合体(b)が、ゲル透過クロマトグラフィー(GPC)測定でえられる重量平均分子量(Mw)と数平均分子量(Mn)との比で表される分子量分布(Mw/Mn)が1.6以下であることを特徴とする、請求項1〜4のいずれかに記載の、難燃繊維複合体。
(請求項6) 該(メタ)アクリロニトリル系重合体(b)が、可逆的付加脱離連鎖移動重合によりえられたものである事を特徴とする、請求項1〜5のいずれかに記載の、難燃繊維複合体。
(請求項7) 該(メタ)アクリロニトリル系重合体(b)において、一分子中に少なくとも一つのチオカルボニルチオ構造を有する分子鎖が50%以上存在することを特徴とする、請求項1〜6のいずれかに記載の、難燃繊維複合体。
(請求項8) 該(メタ)アクリロニトリル系重合体(b)が、一分子中に少なくとも一つのチオカルボニルチオ構造を有する分子鎖が70%以上存在することを特徴とする、請求項1〜7のいずれかに記載の、難燃繊維複合体。
(請求項9) 該繊維(A)を溶融紡糸により製造する際、可塑剤および安定剤を配合することを特徴とする、請求項1〜8のいずれかに記載の、難燃繊維複合体。
【0008】
【発明の実施の形態】
本発明の特徴は、特定の(メタ)アクリロニトリル系重合体(b)をハロゲン原子含有繊維の加工性改良剤として用いることにある。該加工性改良剤を用いることにより、ハロゲン原子含有繊維が本来有する、優れた物理的、化学的特性および延伸性等の加工性を損なうことなく、溶融紡糸させることができるという効果を、顕著に発現させることができる。
【0009】
本発明に用いるハロゲン原子を17〜86%含む重合体(a)としては、たとえばハロゲン含有単量体の重合体、ハロゲン含有単量体を含有する単量体の共重合体、ハロゲン原子を含有しない単量体からの重合体にハロゲン含有化合物を添加した重合体、後加工によりハロゲン原子を導入した重合体、これら重合体の混合物またはこれら重合体もしくはこれら重合体の混合物とハロゲン原子を含有しない単量体からの重合体との混合物などがあげられる。これらのうちではハロゲン含有単量体の単独重合体や共重合体が好ましい。
【0010】
このような重合体の具体例としては、たとえば塩化ビニル、塩化ビニリデン、臭化ビニル、臭化ビニリデンなどのハロゲン含有単量体の単独重合体または2種以上の共重合体、アクリロニトリル−塩化ビニリデン、アクリロニトリル−塩化ビニル、アクリロニトリル−塩化ビニル−塩化ビニリデン、アクリロニトリル−臭化ビニル、アクリロニトリル−塩化ビニリデン−臭化ビニル、アクリロニトリル−塩化ビニル−臭化ビニルなどハロゲン含有ビニル系単量体とアクリロニトリルとの共重合体、塩化ビニル、塩化ビニリデン、臭化ビニル、臭化ビニリデンなどのハロゲン含有ビニル系単量体の1種以上とアクリロニトリルおよびこれらと共重合可能なビニル系単量体との共重合体、アクリロニトリル単独重合体にハロゲン含有化合物(たとえばデカブロモジフェニルオキサイドなど)を添加した重合体、ハロゲン含有ポリエステル、ポリ塩化ビニルなどとポリビニルアルコールやポリアクリロニトリルとの混合物などがあげられるが、これらに限定されるものではない。また前記単独重合体や共重合体を適宜混合して使用してもよい。これらのうちではアクリロニトリルを共重合したモダクリル重合体が好ましい。
【0011】
前記共重合可能なビニル系単量体(a1)としては、繊維としての特性を改良するためのたとえばアクリル酸やそのエステル、メタクリル酸やそのエステル、アクリルアミド、メタクリルアミド、酢酸ビニルなどのビニル系単量体が1種または2種以上用いられうる。また共重合可能なビニル系単量体(a1)の少なくとも1種がスルホン酸基含有ビニル系単量体のばあいには、染色性が向上するので好ましい。そのスルホン酸基含有ビニル系単量体としては、ビニルスルホン酸やその塩、メタクリルスルホン酸やその塩、スチレンスルホン酸やその塩などがあげられる。
【0012】
前記ハロゲン原子を17〜86%含む重合体(a)がアクリロニトリル30〜70%、ハロゲン含有ビニル系単量体70〜30%およびこれらと共重合可能なビニル系単量体(a1)0〜10%からなる重合体のばあいには、えられる繊維が所望の難燃性を有しつつアクリル繊維の風合を有するため好ましい。
【0013】
なお、前記ハロゲン原子を17〜86%含む重合体(a)中のハロゲン含量が17%未満では、繊維を難燃化することが困難となり、また86%をこえると、製造された繊維の物性(強度、伸度、耐熱性など)、染色性、風合などの性能が充分でなくなり、いずれも好ましくない。
【0014】
本発明で使用される加工性改良剤(b)は、前記ハロゲン原子含有重合体の可塑化温度を低減させる目的で用いられる成分であり、(メタ)アクリロニトリルおよび共重合可能なビニル系単量体を含む単量体混合物(b1)を重合してえられる(共)重合体であり、可塑化温度低減効果からは該(共)重合体のゲル透過クロマトグラフィー(GPC)測定による重量平均分子量(Mw)20万未満が好ましく、より好ましくは15万以下、更に好ましくは10万以下である。重量平均分子量(Mw)が20万以上になると可塑化温度低減効果がえられない。
【0015】
前記単量体混合物中の各成分の割合は、(メタ)アクリロニトリル10〜90%、えられる可塑化温度低減効果が良好な点から好ましくは10〜80%、さらに好ましくは15〜75%、(メタ)アクリロニトリルを除く共重合可能なビニル系単量体(b1)から選ばれる単量体10〜90%、ハロゲン原子含有重合体への相容性から好ましくは20〜90%、さらに好ましくは25〜85%である。紡糸時の一次および二次延伸性が良好な点から(メタ)アクリロニトリルを除く共重合可能なビニル系単量体(b1)として、芳香族ビニル系単量体(b2)を10〜90%含むことが好ましく、(メタ)アクリロニトリルおよび芳香族ビニル系単量体と共重合可能なその他ビニル系単量体(b3)は0〜60%であることが好ましい。
【0016】
芳香族ビニル系単量体(b2)としては、たとえばスチレン、α−メチルスチレン、ビニルトルエン等があげられ、入手性、価格、および物性向上の観点から好ましくはスチレン、α−メチルスチレンなどがあげられる。
【0017】
共重合可能なその他ビニル系単量体(b3)としては、たとえばアクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、アクリル酸2−エチルヘキシルなどのアクリル酸アルキル単量体;メタクリル酸メチル、メタクリル酸n−ブチル、メタクリル酸2−エチルヘキシルなどのメタクリル酸アルキル単量体;2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、2−アクリロイルオキシエチルフタル酸等の極性基含有ビニル系単量体;塩化ビニリデンなどのハロゲン含有不飽和化合物;酢酸ビニル、プロピオン酸ビニル等のビニルエステル;ブタジエン、イソプレン、クロロプレンなどの共役ジエン化合物などが挙げられ、これらは単独で用いられてもよく、2種以上が併用されてもよい。入手性、価格、および物性向上の観点から好ましくはメタクリル酸メチル、メタクリル酸n−ブチルなどがあげられる。
【0018】
前記単量体混合物中の(メタ)アクリロニトリルの割合が10%未満の場合、すなわち、前記(メタ)アクリロニトリルを除くビニル系単量体の割合が90%をこえると、ハロゲン原子含有重合体への相容性が低下し、可塑化温度低減効果が低下する傾向が生じる。
【0019】
また本発明で使用される加工性改良剤(b)は、可塑化温度低減効果が良好なことからゲル透過クロマトグラフィー(GPC)測定でえられる重量平均分子量(Mw)と数平均分子量(Mn)との比で表される分子量分布(Mw/Mn)が1.6以下であることが好ましい。
【0020】
本発明の加工性改良剤(b)は一般に知られている各種重合により合成できる。その重合法としては、可塑化温度低減効果から分子量を制御するリビング重合が好ましく、(メタ)アクリロニトリルの制御に優れる点でさらに好ましくは、チオカルボニルチオ構造を有する化合物の存在下で行うラジカル重合法(可逆的付加脱離連鎖移動重合法)が挙げられる。このようなラジカル重合に関しては、Macromolecules1998年31巻16号5559〜5562ページ、Macromolecules1999年32巻6号2071〜2074ページ、Polym.Prepr.1999年40巻2号342〜343ページ、Polym.Prepr.1999年40巻2号397〜398ページ、Polym.Prepr.1999年40巻2号899〜900ページ、Polym.Prepr.1999年40巻2号1080〜1081ページ、Macromolecules1999年32巻21号6977〜6980ページ、Macromolecules2000年33巻2号243〜245ページ、Macromol.Symp.2000年150巻33〜38ページなどに記載されている。本発明において使用する、チオカルボニルチオ構造を有する化合物としては、上記文献記載の化合物を用いることができる。
【0021】
チオカルボニルチオ構造を有する化合物の存在下、単量体をラジカル重合することにより、重合体中にチオカルボニルチオ構造が導入される。本発明における難燃繊維複合体の場合、この重合体中に導入されたチオカルボニルチオ構造が、加工性改良剤である重合体(b)自身とハロゲン原子含有重合体(a)との相容性および、安定剤や滑剤等添加物のハロゲン原子含有重合体(a)中における相容性を向上させ、(溶融紡糸時における引き取り性や二次延伸性等)加工性向上およびハロゲン原子含有重合体それ自身が有する(難燃性等)諸物性維持に寄与する。したがって本発明の難燃繊維複合体に於ける加工性向上および諸物性維持の点で、一分子中に少なくとも一つのチオカルボニルチオ構造を有する分子鎖が50%以上存在することが好ましく、一分子中に少なくとも一つのチオカルボニルチオ構造を有する分子鎖が70%以上存在することがより好ましい。ここで言う割合は、重合体分子の数(モル数)を基準としている。
【0022】
本発明において使用する、チオカルボニルチオ構造を有する化合物の具体例としては、一般式(1)
【0023】
【化1】

Figure 2004360090
(式中、Meはメチル基、Etはエチル基、Phはフェニル基を示す。)で示される化合物などが挙げられるが、これらに限定されるものではない。
【0024】
チオカルボニルチオ構造を有する化合物のうち、えられる重合体の分子量、および分子量分布を精密に制御できる点で、適用する重合条件における連鎖移動定数が0.1以上の化合物を使用することが好ましい。連鎖移動定数については上記文献、および上記文献中に引用されている文献に記載されている。本発明で使用する、チオカルボニルチオ構造を有する化合物としては、より分子量分布の小さい重合体をえ、溶融紡糸時における引き取り性等の加工性が良好な繊維をえられる点で、連鎖移動定数が1以上であることが好ましく、10以上であることがより好ましい。
【0025】
このようなチオカルボニルチオ構造を有する化合物の存在下にラジカル重合を行う場合、特に重合方法に制限はなく、従来公知の溶液重合、乳化重合、懸濁重合、塊状重合などを適用可能であり、これらの重合反応系にチオカルボニル構造を有する化合物を添加するだけでよい。重合の実施形態についても特に制限はなく、回分法、連続法、逐次添加法など従来公知の方法を広く適用可能である。チオカルボニルチオ構造を有する化合物の添加量については特に限定されないが、モノマーとのモル比を調節することにより重合体の重合度、数平均分子量を制御可能である。たとえば重合度1000の重合体を合成する場合には、ジチオカルボニルチオ構造を有する化合物の含有量がモノマーに対して1000分の1当量となるように該化合物を添加する。チオカルボニルチオ構造を有する化合物の添加時期については特に制限はなく、重合開始前に反応容器に仕込んでおいてもよく、重合開始と共に反応容器内に導入してもよく、あるいは重合途中で反応容器内に導入してもよい。種々の添加法のうち、分子量分布の小さい重合体をえられる点で、重合開始前に反応容器に仕込んでおく方法や重合開始と共に反応容器内に導入する方法が好ましく、重合開始前に反応容器に仕込んでおく方法がより好ましい。
【0026】
本発明で用いられる加工性改良剤(b)は、通常の重合法によりえられるが、たとえば以下の方法でえることができる。
【0027】
まず(メタ)アクリロニトリルおよびこれと共重合可能なビニル系単量体として芳香族ビニル系単量体を含む単量体混合物を適当な媒体および重合開始剤などの存在下で重合させ、単量体混合物の重合体溶液をえる。ついで、必要に応じて単量体を順次添加して重合を行う。このように各々の単量体混合物を逐次重合させることにより、単量体混合物の重合体に対して、必要に応じて多段のブロックを形成した多段ブロック重合体をうることができる。
【0028】
本発明で用いられる加工性改良剤(b)の添加量は、前記ハロゲン原子含有重合体(a)100部に対して、1〜50部、好ましくは4〜45部、さらに好ましくは10〜40部である。加工性改良剤の添加量が1部未満の場合、加工性改良剤を添加する効果が充分えられなくなり溶融紡糸が出来ず、50部をこえると延伸性のようなモダクリル繊維の優れた特性が損なわれる。
【0029】
本発明におけるハロゲン原子含有繊維(A)と天然繊維および化学繊維よりなる群から選ばれた少なくとも1種の繊維(B)との使用割合は、最終製品に要求される難燃性、視感、風合、吸湿性、耐洗濯性、耐久性などの性能により決定されるものである。なお、ハロゲン原子含有繊維の種類およびその構成割合、混合する他の繊維の種類および組み合わせなどにより前記使用割合が決められる。
【0030】
前記ハロゲン原子含有繊維100重量部に対して、混合する他の繊維が600部をこえるばあいには、難燃繊維複合体の難燃性が不足し、好ましくない。
【0031】
本発明の難燃繊維複合体が所望の難燃性を有し、しかも混合する天然繊維や化学繊維の特徴をはっきりとださせるためには、ハロゲン原子含有繊維100重量部に対して、混合する天然繊維や化学繊維が15〜500重量部であることがより好ましい。さらに好ましくはハロゲン原子含有繊維100重量部に対して、混合する天然繊維や化学繊維が15〜400重量部であることが混合する天然繊維や化学繊維の特徴を明確にしめした上で、難燃繊維複合体が所望の難燃性をしめす。
【0032】
前記天然繊維の具体例としては、たとえば綿、麻などの植物繊維や、羊毛、らくだ毛、山羊毛、絹などの動物繊維など、また化学繊維の具体例としては、たとえばビスコースレーヨン繊維、キュプラ繊維などの再生繊維、アセテート繊維などの半合成繊維、あるいはナイロン繊維、ポリエステル繊維、アクリル繊維などの合成繊維などがあげられるが、これらに限定されるものではない。これらのうちでは、天然繊維、再生繊維と複合したばあいに顕著に難燃性を向上させうる。これらの天然繊維や化学繊維は単独でハロゲン原子含有繊維と複合してもよく、2種以上で複合してもよい。
【0033】
難燃繊維複合体を製造する方法としては、ハロゲン難燃剤含有繊維と他の繊維を単繊維の状態で混綿したり、混紡したりしてもよく、それらの糸またはそれぞれの糸を交撚してもよく、あるいは前記糸の一部または全部の糸を長繊維にして交撚してもよく、それぞれの糸を製造したのち交織してもよく、紡績のときに固まりにしてスラブやネップにしたり、巻きつけたりしてもよい。
【0034】
なお、本発明における難燃繊維複合体には、長繊維、短繊維のごときいわゆる繊維のみならず、糸、織物、編物、不織布などのごとき繊維製品も含まれる。
【0035】
本発明の難燃繊維複合体の難燃性が優れていることは、可燃性の天然繊維や化学繊維が複合体中に局在しているほど、すなわち混紡より交撚、交織のものほど、実用的に高度な難燃性をうることが難しいにもかかわらず、本発明の難燃繊維複合体が交撚、交織のばあいにもその効果が顕著であることからも明らかである。
【0036】
本発明の難燃複合繊維体においては、成形時の加工性を向上させる目的で可塑剤を添加することができる。このような可塑剤としては、たとえば、ジメチルフタレート、ジブチルフタレート、ジ−2−エチルヘキシルフタレート、ジ−2−エチルヘキシルアジペート等が用いられる。
【0037】
本発明の難燃複合繊維体においては、溶融紡糸時の熱安定性向上を目的として熱安定剤、熱安定化助剤等を添加することができる。このような熱安定剤としては、たとえば、ジブチル錫メルカプト、ジオクチル錫メルカプト、ジメチル錫メルカプト、ジブチル錫マレート、ジブチル錫マレートポリマー、ジオクチル錫マレート、ジオクチル錫マレートポリマー、ジブチル錫ラウレート、ジブチル錫ラウレートポリマー等の有機錫系安定剤;ステアリン酸鉛、二塩基性亜燐酸鉛、三塩基性硫酸鉛等の鉛系安定剤;カルシウム−亜鉛系安定剤;バリウム−亜鉛系安定剤;バリウム−カドミウム系安定剤などが挙げられる。これらは単独で使用されても、2種以上が併用されてもよい。また、熱安定化助剤としては、たとえば、エポキシ化大豆油、リン酸エステル等が挙げられ、これらは単独で使用されても、2種以上が併用されてもよい。
【0038】
本発明の難燃繊維複合体には、必要に応じて帯電防止剤、熱着色防止剤、耐光性向上剤、白度向上剤、失透性防止剤、着色剤および難燃剤などの添加剤を単独または2種以上を組み合わせて添加してもよい。
【0039】
このようにしてえられる本発明の難燃繊維複合体は、所望の実用的な難燃性を有し、しかも混合する他の繊維の視感、風合、吸湿性、耐洗濯性、耐久性などが良好であるという特性を有している。
【0040】
本発明の難燃繊維複合体をさらに具体的に説明するために、以下に実施例および比較例を示すが、本発明はかかる実施例のみに限定されるものではない。
【0041】
【実施例】
以下の実施例では特にことわりのない限り「部」は重量部、「%」は重量%を表す。
【0042】
なお、実施例および比較例で用いた評価方法を以下にまとめて示す。
【0043】
本実施例に示す数平均分子量(Mn)、重量平均分子量(Mw)、および分子量分布(Mw/Mn)は以下に示すゲル浸透クロマトグラフィー(GPC)分析装置及び方法で測定した。システム:Waters社製GPCシステム(製品名510)、カラム:昭和電工(株)製Shodex K−806およびK−805(ポリスチレンゲル)、移動相:クロロホルム。数平均分子量等はポリスチレン換算で求めた。
【0044】
重合転化率は次式により算出した。
重合転化率(%)={重合体生成量/単量体仕込み量}×100
チオカルボニルチオ構造の同定にはVARIAN製NMR(Gemini−300)を用い、重水素化溶媒としてDMF−d(重ジメチルホルムアミド)を用いた試料溶液を作製して測定した。
【0045】
チオカルボニル構造を有する分子鎖の含有率は以下の方法で算出した。まず試料中の全硫黄含有量を元素分析(酸素フラスコ燃焼法を利用;吸収液として過酸化水素水を使用し、イオンクロマトグラフィにより測定;ダイオネクス製DX−500 GP40,ED40)により定量した。次にえられた硫黄濃度から上記GPCによりえられた各試料の数平均分子量を元にチオカルボニルチオ構造含有率を算出した。
【0046】
紡糸性:湿式又は溶融紡糸工程において、糸切れなく引取可能か否かを目視判定により、○、△、×の3段階で評価した。
【0047】
延伸性:延伸性評価には延伸工程の代用として、延伸工程前にえられた押出ストランドを用い、JIS K 7113に準じて引張試験にて測定した。測定温度は100℃、引張速度は200mm/分とした。その伸びとしては250%以上を良、250%未満を不良とするが、押出時のメルトフラクチャーが激しいと延伸前にストランド間で融着することがあり、加工性としては目視によるメルトフラクチャー観察と引張試験による伸び評価の総合判定とし、○、△、×の3段階で評価した。
【0048】
(製造例1)
((メタ)アクリロニトリル系重合体(1)の合成)アクリロニトリル(AN)100部およびスチレン(ST)100部からなる単量体混合物にトルエンを加え、単量体濃度がそれぞれ25%となる単量体溶液を調整する。その単量体溶液を撹拌機付き反応器に仕込み、2−(2−フェニルプロピル)ジチオベンゾエート0.5部および2,2’−アゾビス(イソブチロニトリル)0.1部を加え、完全に溶解させた。前記反応器内にチッ素を流通させることにより空間部および溶液中の酸素を除去したのち、撹拌しながら内容物を80℃に昇温した。12時間撹拌を続け、重合を実質的に完結させた。重合転化率は99.5%であった。えられた混合溶液を大量のメタノールに加え、重合体を再沈殿させたのちに、濾過し、えられた重合体を50℃に設定した真空乾燥機で減圧下15時間乾燥させて粉末状の(メタ)アクリロニトリル系重合体(1)をえた。
【0049】
えられた重合体のGPC測定の結果、Mn=80,000、Mw/Mn=1.23であり、H NMR測定から、末端にチオカルボニル基を有するポリアクリロニトリル−スチレン ランダム共重合体であることを確認した。チオカルボニルチオ構造含有量は84.7%であった。
【0050】
(実施例1)
アクリロニトリル49.0%および塩化ビニル51.0%よりなる共重合体100部に、加工性改良剤として上記(メタ)アクリロニトリル系重合体(1)5部を加え、可塑剤としてジメチルフタレートを20部および安定剤としてジオクチル錫メルカプトを3部配合した。えられた樹脂をヘンシェルミキサーにて撹拌した。この樹脂を溶融紡糸装置の40mm単軸押出機に投入し溶融混練した後、紡糸温度150℃にて、孔径が1.0mmφ、孔数200の紡糸口金より定量的に1時間あたり5キログラムの速度で吐出し、押出ストランドをえた。押出後5倍に熱延伸し、ハロゲン原子含有繊維(1)をえた。えられたハロゲン原子含有繊維(1)に油剤を付与し、捲縮、切断したのち紡績して綿番手10/1の紡績糸をえた。
【0051】
さらに製織、仕上げなどの工程を経て織布(難燃繊維複合体)(1)をえた。
【0052】
延伸工程前、紡糸工程にてえられた押出ストランドを用いて延伸性評価を行った。
【0053】
結果を表1に示す。なお、表中PMMAは市販のポリメチルメタクリレート樹脂を示す。
【0054】
(実施例2および3)
上記実施例1で用いたアクリロニトリル49.0%および塩化ビニル51.0%よりなるハロゲン原子含有共重合体100部に対して、前記(メタ)アクリロニトリル系重合体(1)を表1に示した所定部数配合し、実施例1と同様に可塑剤および安定剤を加え、溶融紡糸およびストランドの延伸処理を行いハロゲン原子含有繊維(2)および(3)をえた。えられたハロゲン原子含有繊維(2)および(3)を用いて実施例1と同様にして紡績糸をえ、さらに製織、仕上げなどの工程を経て織布(難燃繊維複合体)(2)および(3)をえた。延伸工程前、紡糸工程にてえられた押出ストランドを用いて実施例1と同様に延伸性評価を行った。
【0055】
結果を表1に示す。
【0056】
(実施例4)
塩化ビニリデン重合体100部に、加工性改良剤として上記(メタ)アクリロニトリル系重合体(1)40部を加え、実施例1と同様に可塑剤および安定剤を加え、溶融紡糸およびストランドの延伸処理を行いハロゲン原子含有繊維(4)をえた。えられた押出ストランドを用いて実施例1と同様に延伸性評価を行った。えられたハロゲン原子含有繊維(4)を用いて実施例1と同様にして紡績糸をえ、さらに製織、仕上げなどの工程を経て織布(難燃繊維複合体)(4)をえた。延伸工程前、紡糸工程にてえられた押出ストランドを用いて実施例1と同様に延伸性評価を行った。
【0057】
結果を表1に示す。
【0058】
(比較例1)
前記実施例1で用いたアクリロニトリル49.0%および塩化ビニル51.0%よりなるハロゲン原子含有共重合体100部に、実施例1と同様に可塑剤および安定剤を加え、溶融押出を試みたが、延伸性評価を行える実用的強度を有する押出ストランドおよび紡績糸、織布はえられなかった。
【0059】
結果を表1に示す。
【0060】
(比較例2)
臭化ビニリデン重合体100部に、加工性改良剤として上記(メタ)アクリロニトリル系重合体(1)40部を加え、実施例1と同様に可塑剤および安定剤を加え、溶融押出を試みたが、延伸性評価を行える実用的強度を有する押出ストランドおよび紡績糸、織布はえられなかった。
【0061】
結果を表1に示す。
【0062】
(比較例3)
アクリロニトリル56.0%およびフッ化ビニル44.0%よりなる共重合体100部に、加工性改良剤として上記(メタ)アクリロニトリル系重合体(1)40部を加え、実施例1と同様に可塑剤および安定剤を加え、溶融押出を試みたが、延伸性評価を行える実用的強度を有する押出ストランドおよび紡績糸、織布はえられなかった。
【0063】
結果を表1に示す。
【0064】
(比較例4および5)
前記実施例1で用いたアクリロニトリル49.0%および塩化ビニル51.0%よりなるハロゲン原子含有共重合体100部に対して、前記(メタ)アクリロニトリル系重合体(1)を表1に示した所定部数配合し、実施例1と同様に可塑剤および安定剤を加え、溶融紡糸後、延伸工程を実施したが、実用的強度を有するハロゲン原子含有繊維は何れの場合もえられなかった。延伸工程前、紡糸工程にてえられた押出ストランドを用いて実施例1と同様に延伸性評価を行った。
【0065】
結果を表1に示す。
【0066】
(比較例6)
前記実施例1で用いたアクリロニトリル49.0%および塩化ビニル51.0%よりなるハロゲン原子含有共重合体100部に対して、加工性改良剤としてGPC測定によるMn=112000、Mw/Mn=1.81、メチルアクリレート7%含有である住友化学製ポリメチルメタクリレート樹脂を40部配合し、実施例1と同様に可塑剤および安定剤を加え、溶融紡糸およびストランドの延伸処理を行いハロゲン原子含有繊維(5)をえた。えられたハロゲン原子含有繊維(5)を用いて実施例1と同様にして紡績糸をえ、さらに製織、仕上げなどの工程を経て織布(難燃繊維複合体)(5)をえた。延伸工程前、紡糸工程にてえられた押出ストランドを用いて実施例1と同様に延伸性評価を行った。
【0067】
結果を表1に示す。
【0068】
(比較例7)
前記実施例1で用いたアクリロニトリル49.0%および塩化ビニル51.0%よりなるハロゲン原子含有共重合体をアセトンに樹脂濃度が27.0%になるように溶解した。えられた樹脂溶液の一部をアセトンで3倍に希釈して、紡糸原液を調製した。
【0069】
えられた紡糸原液をノズル孔径0.08mmおよび孔数300ホールのノズルを用い、30%アセトン水溶液中へ押出し、水洗したのち120℃で乾燥し、ついで3倍に熱延伸して、さらに140℃で5分間熱処理を行うことにより、ハロゲン原子含有繊維(6)をえた。えられた押出ストランドを用いて実施例1と同様に延伸性評価を行った。えられたハロゲン原子含有繊維(6)を用いて実施例1と同様にして紡績糸をえ、さらに製織、仕上げなどの工程を経て織布(難燃繊維複合体)(6)をえた。
【0070】
結果を表1に示す。
【0071】
表1の結果により、実施例1〜4で示したようにハロゲン原子含有重合体のハロゲン原子含有量および(メタ)アクリロニトリル系重合体の添加量が本発明の範囲内である場合には、溶融紡糸が可能であり、えられたハロゲン原子含有繊維(1)〜(4)は良好な延伸性を示した。一方、比較例1で示した(メタ)アクリロニトリル系重合体を添加しない系では溶融紡糸が不可能であり、比較例2および3で示したハロゲン原子含有量が本発明の範囲外にある場合も同様に溶融紡糸が不可能であり、比較例4および5で示したように(メタ)アクリロニトリル系重合体の添加量が本発明の範囲外である場合には、延伸性が低下することがわかる。同様に比較例6で示した加工性改良剤として(メタ)アクリロニトリル非含有重合体を用いた場合は、押出ストランドのメルトフラクチャーが大きく、延伸時の加工性も低下していた。
【0072】
【表1】
Figure 2004360090
(製造例2)
((メタ)アクリロニトリル系重合体(2)の合成)撹拌機付き反応器にメチルメタクリレート(MMA)100部、2−(2−フェニルプロピル)ジチオベンゾエート0.5部および2,2’−アゾビス(イソブチロニトリル)0.1部からなる単量体混合物を仕込み、該単量体混合物にトルエンを加え、単量体濃度が25%となるよう調整した。前記反応器内にチッ素を流通させることにより空間部および溶液中の酸素を除去したのち、撹拌しながら内容物を60℃に昇温した。8時間撹拌を続けた後に未完の状態で重合を停止させた。重合転化率は20%であった。えられた混合溶液を大量のメタノールに加え、重合体を再沈殿させたのちに、重合体を単離し、50℃に設定した真空乾燥機で減圧下15時間乾燥させて重合体をえた。
【0073】
撹拌機付き反応器にえられた重合体を50部、2,2’−アゾビス(イソブチロニトリル)0.1部を仕込み、別途アクリロニトリル(AN)100部およびスチレン(ST)100部からなる単量体混合物にトルエンを加え、単量体濃度がそれぞれ25%となるよう調整した単量体溶液を加え、完全に溶解させた。前記反応器内にチッ素を流通させることにより空間部および溶液中の酸素を除去したのち、撹拌しながら内容物を80℃に昇温した。12時間撹拌を続け、重合を実質的に完結させた。重合転化率は99%であった。えられた混合溶液を大量のメタノールに加え、重合体を再沈殿させたのちに、濾過し、えられた重合体を50℃に設定した真空乾燥機で減圧下15時間乾燥させて粉末状の(メタ)アクリロニトリル系重合体(2)をえた。
【0074】
えられた重合体のGPC測定の結果、Mn=60,000、Mw/Mn=1.48であり、H NMR測定から、末端にチオカルボニル基を有するポリメチルメタクリレート−(ランダム アクリロニトリル/スチレン)ブロック共重合体であることを確認した。チオカルボニルチオ構造含有量は78.2%であった。
【0075】
(実施例5)
前記実施例1で用いたアクリロニトリル49.0%および塩化ビニル51.0%よりなるハロゲン原子含有共重合体100部に、加工性改良剤として上記(メタ)アクリロニトリル系重合体(2)40部を加え、可塑剤としてジメチルフタレートを20部および安定剤としてジオクチル錫メルカプトを3部配合した。えられた樹脂をヘンシェルミキサーにて撹拌した。この樹脂を溶融紡糸装置の40mm単軸押出機に投入し溶融混練した後、紡糸温度150℃にて、孔径が1.0mmφ、孔数200の紡糸口金より定量的に1時間あたり5キログラムの速度で吐出し、押出ストランドをえた。押出後3倍に熱延伸し、ハロゲン原子含有繊維(7)をえた。えられたハロゲン原子含有繊維(7)を用いて実施例1と同様にして紡績糸をえ、さらに製織、仕上げなどの工程を経て織布(難燃繊維複合体)(7)をえた。延伸工程前、紡糸工程にてえられた押出ストランドを用いて実施例1と同様に延伸性評価を行った。
【0076】
結果を表2に示す。なお、表中PASは市販のポリアクリロニトリル−スチレン ランダム共重合体樹脂を示す。
【0077】
(製造例3)
((メタ)アクリロニトリル系重合体(3)の合成)アクリロニトリル(AN)100部およびスチレン(ST)100部からなる単量体混合物にトルエンを加え、単量体濃度がそれぞれ25%となる単量体溶液を調整する。その単量体溶液を撹拌機付き反応器に仕込み、2−(2−フェニルプロピル)ジチオベンゾエート0.5部および2,2’−アゾビス(イソブチロニトリル)0.1部を加え、完全に溶解させた。前記反応器内にチッ素を流通させることにより空間部および溶液中の酸素を除去したのち、撹拌しながら内容物を60℃に昇温した。8時間撹拌を続けた後、未完の状態で重合を停止させた。重合転化率は50%であった。えられた混合溶液を大量のメタノールに加え、重合体を再沈殿させたのちに、重合体を単離し、50℃に設定した真空乾燥機で減圧下15時間乾燥させて重合体をえた。
【0078】
撹拌機付き反応器にえられた重合体を100部、2,2’−アゾビス(イソブチロニトリル)0.1部を仕込み、n−ブチルアクリレート(BA)50部を加え、更にトルエンを加え、単量体濃度が25%となるよう調整し、完全に溶解させた。前記反応器内にチッ素を流通させることにより空間部および溶液中の酸素を除去したのち、撹拌しながら内容物を80℃に昇温した。12時間撹拌を続け、重合を実質的に完結させた。重合転化率は96%であった。えられた混合溶液を大量のメタノールに加え、重合体を再沈殿させたのちに、濾過し、えられた重合体を50℃に設定した真空乾燥機で減圧下15時間乾燥させて粉末状の(メタ)アクリロニトリル系重合体(3)をえた。
【0079】
えられた重合体のGPC測定の結果、Mn=56,000、Mw/Mn=1.56であり、H NMR測定から、末端にチオカルボニル基を有するポリ(ランダム アクリロニトリル/スチレン)−ブチルアクリレート ブロック共重合体であることを確認した。チオカルボニルチオ構造含有量は67.3%であった。
【0080】
(実施例6)
加工性改良剤として前記(メタ)アクリロニトリル系重合体(3)を用いること以外は実質実施例5と同様の配合、手法にてハロゲン原子含有繊維(8)をえた。えられた押出ストランドを用いて実施例5と同様に延伸性評価を行った。えられたハロゲン原子含有繊維(8)を用いて実施例5と同様にして紡績糸をえ、さらに製織、仕上げなどの工程を経て織布(難燃繊維複合体)(8)をえた。
【0081】
結果を表2に示す。
【0082】
(実施例7)
加工性改良剤としてアクリロニトリル含量23%、GPC測定によるMn=67000、Mw/Mn=1.77である市販の東洋スチレン製ポリアクリロニトリル−スチレン ランダム共重合体AS−Qを用いること以外は実質実施例5と同様の配合、手法にてハロゲン原子含有繊維(9)をえた。えられた押出ストランドを用いて実施例5と同様に延伸性評価を行った。えられたハロゲン原子含有繊維(9)を用いて実施例5と同様にして紡績糸をえ、さらに製織、仕上げなどの工程を経て織布(難燃繊維複合体)(9)をえた。
【0083】
結果を表2に示す。
【0084】
(製造例4)
((メタ)アクリロニトリル系重合体(4)の合成)アクリロニトリル(AN)100部およびスチレン(ST)5部からなる単量体混合物にトルエンを加え、単量体濃度が25%となる単量体溶液を調整する。その単量体溶液を撹拌機付き反応器に仕込み、2,2’−アゾビス(イソブチロニトリル)0.5部を加え、完全に溶解させた。前記反応器内にチッ素を流通させることにより空間部および溶液中の酸素を除去したのち、撹拌しながら内容物を60℃に昇温した。10時間撹拌を続け、重合を実質的に完結させた。重合転化率は98%であった。えられた混合溶液を大量のメタノールに加え、重合体を再沈殿させたのちに、濾過し、えられた重合体を50℃に設定した真空乾燥機で減圧下15時間乾燥させて粉末状の(メタ)アクリロニトリル系重合体(4)をえた。
【0085】
えられた重合体のGPC測定の結果、Mn=98,000、Mw/Mn=1.78であり、H NMR測定から、ポリアクリロニトリル−スチレン ランダム共重合体であることを確認した。
【0086】
(比較例8)
アクリロニトリル95%およびスチレン5%よりなる上記(メタ)アクリロニトリル系重合体(4)を加工性改良剤として用いること以外は実質実施例5と同様の配合、手法にて溶融紡糸後、延伸工程を実施したが、実用的強度を有するハロゲン原子含有繊維はえられなかった。延伸工程前、紡糸工程にてえられた押出ストランドを用いて実施例5と同様に延伸性評価を行った。
【0087】
結果を表2に示す。
【0088】
(製造例5)
((メタ)アクリロニトリル系重合体(5)の合成)スチレン(ST)100部およびアクリロニトリル(AN)5部からなる単量体混合物にトルエンを加え、単量体濃度が25%となる単量体溶液を調整する。その単量体溶液を撹拌機付き反応器に仕込み、2,2’−アゾビス(イソブチロニトリル)0.5部を加え、完全に溶解させた。前記反応器内にチッ素を流通させることにより空間部および溶液中の酸素を除去したのち、撹拌しながら内容物を60℃に昇温した。10時間撹拌を続け、重合を実質的に完結させた。重合転化率は99%であった。えられた混合溶液を大量のメタノールに加え、重合体を再沈殿させたのちに、濾過し、えられた重合体を50℃に設定した真空乾燥機で減圧下15時間乾燥させて粉末状の(メタ)アクリロニトリル系重合体(5)をえた。
【0089】
えられた重合体のGPC測定の結果、Mn=136,000、Mw/Mn=1.84であり、H NMR測定から、ポリアクリロニトリル−スチレン ランダム共重合体であることを確認した。
【0090】
(比較例9)
アクリロニトリル5%およびスチレン95%よりなる上記(メタ)アクリロニトリル系重合体(5)を加工性改良剤として用いること以外は実質実施例5と同様の配合、手法にて溶融紡糸後、延伸工程を実施したが、実用的強度を有するハロゲン原子含有繊維はえられなかった。延伸工程前、紡糸工程にてえられた押出ストランドを用いて実施例5と同様に延伸性評価を行った。
【0091】
結果を表2に示す。
【0092】
(製造例6)
((メタ)アクリロニトリル系重合体(6)の合成)メチルメタクリレート(MMA)100部、スチレン(ST)12部およびアクリロニトリル(AN)6部からなる単量体混合物にトルエンを加え、単量体濃度が25%となる単量体溶液を調整する。その単量体溶液を撹拌機付き反応器に仕込み、2,2’−アゾビス(イソブチロニトリル)0.5部を加え、完全に溶解させた。前記反応器内にチッ素を流通させることにより空間部および溶液中の酸素を除去したのち、撹拌しながら内容物を60℃に昇温した。10時間撹拌を続け、重合を実質的に完結させた。重合転化率は74%であった。えられた混合溶液を大量のメタノールに加え、重合体を再沈殿させたのちに、濾過し、えられた重合体を50℃に設定した真空乾燥機で減圧下15時間乾燥させて粉末状の(メタ)アクリロニトリル系重合体(6)をえた。
【0093】
えられた重合体のGPC測定の結果、Mn=48,000、Mw/Mn=1.64であり、H NMR測定から、ポリアクリロニトリル−スチレン−メチルメタクリレート ランダム共重合体であることを確認した。
【0094】
(比較例10)
アクリロニトリル5%、スチレン10%およびメチルメタクリレート85%よりなる上記(メタ)アクリロニトリル系重合体(6)を加工性改良剤として用いること以外は実質実施例5と同様の配合、手法にてハロゲン原子含有繊維(10)をえた。えられた押出ストランドを用いて実施例5と同様に延伸性評価を行った。えられたハロゲン原子含有繊維(10)を用いて実施例1と同様にして紡績糸をえ、さらに製織、仕上げなどの工程を経て織布(難燃繊維複合体)(10)をえた。
【0095】
結果を表2に示す。
【0096】
それらの結果を表2に示す。
【0097】
表2の結果により、実施例3および5〜7で示したように(メタ)アクリロニトリル系重合体の組成比が本発明の範囲内である場合には、溶融紡糸が可能であり、えられたハロゲン原子含有繊維(3)および(7)〜(9)は良好な延伸性を示した。一方、比較例6および8〜10で示したように(メタ)アクリロニトリル系重合体の組成比が本発明の範囲外である場合には、溶融紡糸は可能であったものの、押出ストランドのメルトフラクチャーが大きく、延伸性が低下することがわかる。
【0098】
【表2】
Figure 2004360090
(実施例8)
実施例3でえられたハロゲン原子含有繊維(3)からなる紡績糸と木綿を用い、製織、仕上げなどの工程を経て織布(難燃繊維複合体)(15)をえた。えられた織布中における繊維の混合割合を表3に示した。
【0099】
えられた織布の残燼時間(秒)およびLOI値を下記方法にしたがって測定した。また、残燼時間測定時の残燼時間以外の評価項目(残炎時間、炭化面積など)、LOI値、燃焼状態(炎の大きさが小さくて燃え拡がらないか)、燃焼後のサンプルの状態(炭の硬さが硬くなっており燃え拡がらないか)を含めて総合的に難燃性に優れたものを、優、良、不良の3段階で評価した。
【0100】
結果を表3に示す。
【0101】
(残燼時間)JIS L 1091A−1法に準じて測定したときの最大残燼時間(秒)によって評価した。残燼時間は小さいほど、難燃性が高い。
【0102】
(LOI値)難燃繊維と易燃繊維との複合体のばあいには、複合体の組成に応じて混綿して測定される。
【0103】
所定の割合で混綿した綿を2g取り、これを8等分して約6cmのコヨリを8本作って酸素指数試験器のホルダーに直立させ、この試料が5cm燃え続けるのに必要な最少酸素濃度を測定し、これをLOI値とした。なお、一般に繊維の難燃性は織物の状態で測定、評価されているが、織物では糸の撚数、太さ、打込本数などにより燃焼性に差を生じ、繊維複合体自体の実用的な燃焼性を正しく評価しえないため、コヨリを用いたLOI値を難燃性評価の値として記載した。LOI値が大きいほど燃えにくく、難燃性が高い。
【0104】
(実施例9および比較例11、12)
上記実施例8と同様にしてハロゲン原子含有繊維(3)からえられた紡績糸に対して、木綿を用いて織布(16)〜(18)をえた。えられた織布中における繊維の混合割合を表3に示した。えられた織布の残燼時間(秒)およびLOI値を測定した。
【0105】
それらの結果を表3に示す。
【0106】
表3の結果により、実施例3、8および9で示したようにハロゲン原子含有繊維と木綿の混合割合が本発明の範囲内である場合には、比較例11で示したようにハロゲン原子含有繊維と木綿の混合割合が本発明の範囲外である場合に比較して残燼時間およびLOI値に優れ、実用的な難燃性に優れていることがわかる。
また比較例12は燃焼試験において全焼してしまうなど、難燃性の総合評価で劣る。
【0107】
【表3】
Figure 2004360090
【0108】
【発明の効果】
本発明の(メタ)アクリロニトリル系重合体を加工性改良剤として添加したハロゲン原子含有重合体組成物は、従来なしえなかった溶融紡糸を可能とする。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a halogen-containing fiber which can be melt-spun by a processability improver, and a flame-retardant fiber composite obtained by combining the fiber with a natural fiber or a chemical fiber. More specifically, by blending a low molecular weight (meth) acrylonitrile-based polymer with a controlled molecular weight distribution, it is possible to melt-spin halogen-containing fibers, for which only the wet spinning method has been applied, and to improve the texture of other fibers. The present invention relates to a flame-retardant fiber composite having excellent properties such as hygroscopicity and flame retardancy.
[0002]
[Prior art]
It is well known that among acrylic synthetic fibers, so-called modacrylic synthetic fibers containing a relatively large amount of vinyl halide are far superior to acrylic fibers in flame retardancy while maintaining the feeling of acrylic. Modacrylic synthetic fiber is a synthetic polymer that generally constitutes a fiber. The Federal Trade Commission stipulates that the polymerized acrylonitrile unit is 35% to 85%. It is widely recognized that a vinyl halide-based monomer is contained as a copolymer component, and modacrylic described in the following text refers to a copolymer composed of (meth) acrylonitrile and a vinyl halide-based monomer. That is, since modacrylic synthetic fibers are copolymerized with a relatively large amount of vinyl halide, the fibers themselves are flame-retardant, and utilizing their properties, are widely used in interior products such as curtains and carpets.
[0003]
However, in the spinning method, since the modacrylic synthetic fiber has a plasticizing temperature and a decomposition temperature close to each other, wet spinning is essential. In recent years, responding to environmental problems is an urgent social issue, and there is a demand for a reduction in the environmental load generated in a wet spinning process using a large amount of an organic solvent. Further, reduction of running cost and capital investment is indispensable for improvement of competitiveness, and it is desired to melt-spin modacrylic synthetic fibers.
[0004]
In order to solve the above problems, Japanese Patent Application Publication No. 2003-507503 proposes a method of introducing an olefinically unsaturated monomer into a modacrylic fiber as a multipolymer (multicomponent copolymer). Although the polymer can be melt extruded by controlling the polymerization of the modacrylic resin, the properties of the fiber are not specifically disclosed, and it is hard to say that a superior modacrylic fiber has been obtained by the melt spinning method.
[0005]
[Patent Document 1]
Special table 2003-507503
[0006]
[Problems to be solved by the invention]
An object of the present invention is to use a (meth) acrylonitrile-based polymer as a processability improver in a halogen-containing fiber, which was hitherto only wet spinning, thereby lowering the plasticization temperature and improving the processability such as stretchability. An object of the present invention is to provide a flame-retardant fiber composite which is capable of being melt-spun while having excellent physical properties such as heat resistance and flame retardancy.
[0007]
[Means for Solving the Problems]
The present inventors have conducted intensive studies and have found that by adding a specific (meth) acrylonitrile-based polymer to a halogen-containing fiber, processability such as stretchability can be improved as compared with a conventionally known wet spinning fiber. It was found that a composition capable of melt spinning was obtained while maintaining the above, and the present invention described below was completed.
(Claim 1) 100 parts by weight of a polymer (a) containing 17 to 86% by weight of a halogen atom, 10 to 90% by weight of (meth) acrylonitrile as a processability improver and a vinyl monomer copolymerizable therewith Fiber (A) comprising 1 to 50 parts by weight of (meth) acrylonitrile-based polymer (b) comprising 10 to 90% by weight of at least one vinyl monomer (b1) selected from the group consisting of: A flame-retardant fiber composite comprising 100 parts by weight and 0 to 600 parts by weight of at least one kind of fiber (B) selected from the group consisting of natural fibers and chemical fibers.
(2) The polymer (a) containing 17 to 86% by weight of the halogen atom comprises 30 to 70% by weight of acrylonitrile, 70 to 30% by weight of a halogen-containing vinyl monomer, and a vinyl copolymer copolymerizable therewith. The flame-retardant fiber composite according to claim 1, which is a copolymer comprising 0 to 10% by weight of the monomer (a1).
(Claim 3) The flame-retardant fiber composite according to claim 2, wherein at least one of the copolymerizable vinyl monomers (a1) is a sulfonic acid group-containing vinyl monomer.
(Claim 4) In the (meth) acrylonitrile-based polymer (b), the vinyl-based monomer (b1) copolymerizable with (meth) acrylonitrile includes an aromatic vinyl-based monomer (b2); The (meth) acrylonitrile-based polymer (b) contains 10 to 90% by weight of acrylonitrile, 90 to 10% by weight of an aromatic vinyl monomer (b2), and a vinyl monomer (b3) 0 copolymerizable therewith. The flame-retardant fiber composite according to any one of claims 1 to 3, which is a copolymer comprising 60% by weight.
(Claim 5) The (meth) acrylonitrile-based polymer (b) has a molecular weight represented by a ratio of a weight average molecular weight (Mw) to a number average molecular weight (Mn) obtained by gel permeation chromatography (GPC) measurement. The flame-retardant fiber composite according to any one of claims 1 to 4, wherein the distribution (Mw / Mn) is 1.6 or less.
(Claim 6) The (meth) acrylonitrile-based polymer (b) obtained by reversible addition-elimination chain transfer polymerization, according to any one of claims 1 to 5, , Flame retardant fiber composite.
(Claim 7) The (meth) acrylonitrile-based polymer (b) has a molecular chain having at least one thiocarbonylthio structure in one molecule in an amount of 50% or more. The flame-retardant fiber composite according to any one of the above.
(Claim 8) The (meth) acrylonitrile-based polymer (b) has a molecular chain having at least one thiocarbonylthio structure in one molecule in an amount of 70% or more. The flame-retardant fiber composite according to any one of the above.
(9) The flame-retardant fiber composite according to any one of (1) to (8), wherein a plasticizer and a stabilizer are blended when the fiber (A) is produced by melt spinning.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
The feature of the present invention resides in that a specific (meth) acrylonitrile-based polymer (b) is used as a processability improving agent for a halogen atom-containing fiber. By using the processability improver, the effect of being able to be melt-spun, without impairing the processability such as excellent physical and chemical properties and stretchability inherently possessed by the halogen atom-containing fiber, is remarkable. Can be expressed.
[0009]
Examples of the polymer (a) containing 17 to 86% of a halogen atom used in the present invention include a polymer of a halogen-containing monomer, a copolymer of a monomer containing a halogen-containing monomer, and a polymer containing a halogen atom. A polymer obtained by adding a halogen-containing compound to a polymer from a monomer that does not contain, a polymer having a halogen atom introduced by post-processing, a mixture of these polymers, or a mixture of these polymers or a mixture of these polymers and containing no halogen atom Examples thereof include a mixture of a monomer and a polymer. Of these, homopolymers and copolymers of halogen-containing monomers are preferred.
[0010]
Specific examples of such polymers include homopolymers or copolymers of two or more halogen-containing monomers such as vinyl chloride, vinylidene chloride, vinyl bromide, and vinylidene bromide, acrylonitrile-vinylidene chloride, Copolymerization of acrylonitrile with halogen-containing vinyl monomers such as acrylonitrile-vinyl chloride, acrylonitrile-vinyl chloride-vinylidene chloride, acrylonitrile-vinyl bromide, acrylonitrile-vinylidene chloride-vinyl bromide, and acrylonitrile-vinyl chloride-vinyl bromide. Copolymer, copolymer of at least one halogen-containing vinyl monomer such as vinyl chloride, vinylidene chloride, vinyl bromide, and vinylidene bromide with acrylonitrile and a vinyl monomer copolymerizable therewith, acrylonitrile alone The polymer contains a halogen-containing compound ( If deca like decabromodiphenyl oxide) polymer with the addition of a halogen-containing polyesters, but such as a mixture of polyvinyl chloride such as polyvinyl alcohol or polyacrylonitrile, but is not limited thereto. Further, the above-mentioned homopolymers and copolymers may be appropriately mixed and used. Of these, modacrylic polymers obtained by copolymerizing acrylonitrile are preferred.
[0011]
Examples of the copolymerizable vinyl monomer (a1) include vinyl monomers such as acrylic acid and its esters, methacrylic acid and its esters, acrylamide, methacrylamide, and vinyl acetate for improving the properties as fibers. One or more monomers can be used. When at least one of the copolymerizable vinyl monomers (a1) is a sulfonic acid group-containing vinyl monomer, the dyeability is improved, which is preferable. Examples of the sulfonic acid group-containing vinyl monomer include vinyl sulfonic acid and salts thereof, methacryl sulfonic acid and salts thereof, and styrene sulfonic acid and salts thereof.
[0012]
The polymer (a) containing 17 to 86% of the halogen atom is composed of 30 to 70% of acrylonitrile, 70 to 30% of a halogen-containing vinyl monomer, and a vinyl monomer (a1) 0 to 10 copolymerizable therewith. % Polymer is preferred because the resulting fiber has the desired feel of acrylic fiber while having the desired flame retardancy.
[0013]
If the halogen content in the polymer (a) containing 17 to 86% of the halogen atoms is less than 17%, it is difficult to make the fiber flame-retardant, and if it exceeds 86%, the physical properties of the produced fiber are reduced. (Strength, elongation, heat resistance, etc.), dyeing properties, feeling, etc. are not sufficient, and all are not preferred.
[0014]
The processability improver (b) used in the present invention is a component used for the purpose of lowering the plasticizing temperature of the halogen atom-containing polymer, and comprises (meth) acrylonitrile and a copolymerizable vinyl monomer. Is a (co) polymer obtained by polymerizing a monomer mixture (b1) containing the following. The weight average molecular weight (GPC) of the (co) polymer measured by gel permeation chromatography (GPC) Mw) It is preferably less than 200,000, more preferably 150,000 or less, further preferably 100,000 or less. When the weight average molecular weight (Mw) is 200,000 or more, the effect of reducing the plasticization temperature cannot be obtained.
[0015]
The proportion of each component in the monomer mixture is 10 to 90% of (meth) acrylonitrile, preferably 10 to 80%, more preferably 15 to 75%, from the viewpoint that the obtained plasticizing temperature reduction effect is good. 10-90% of a monomer selected from copolymerizable vinyl monomers (b1) excluding (meth) acrylonitrile, preferably 20-90%, more preferably 25%, in view of compatibility with a halogen atom-containing polymer. ~ 85%. Contains 10 to 90% of an aromatic vinyl monomer (b2) as a copolymerizable vinyl monomer (b1) excluding (meth) acrylonitrile from the viewpoint of good primary and secondary stretchability during spinning. Preferably, the content of the other vinyl monomer (b3) copolymerizable with (meth) acrylonitrile and the aromatic vinyl monomer is preferably 0 to 60%.
[0016]
Examples of the aromatic vinyl monomer (b2) include styrene, α-methylstyrene, vinyltoluene, and the like, and preferably styrene, α-methylstyrene, and the like from the viewpoints of availability, price, and improvement in physical properties. Can be
[0017]
Other copolymerizable vinyl monomers (b3) include, for example, alkyl acrylate monomers such as methyl acrylate, ethyl acrylate, butyl acrylate and 2-ethylhexyl acrylate; methyl methacrylate, n-methacrylate Alkyl methacrylate monomers such as -butyl and 2-ethylhexyl methacrylate; vinyl groups containing polar groups such as 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate and 2-acryloyloxyethyl phthalic acid; Halogen-containing unsaturated compounds such as vinylidene chloride; vinyl esters such as vinyl acetate and vinyl propionate; conjugated diene compounds such as butadiene, isoprene, and chloroprene; and these may be used alone. More than one species may be used in combination. Methyl methacrylate, n-butyl methacrylate, and the like are preferable from the viewpoints of availability, price, and improvement in physical properties.
[0018]
When the ratio of (meth) acrylonitrile in the monomer mixture is less than 10%, that is, when the ratio of the vinyl monomer excluding the (meth) acrylonitrile exceeds 90%, the halogen atom-containing polymer There is a tendency that the compatibility is reduced and the effect of reducing the plasticizing temperature is reduced.
[0019]
In addition, the processability improver (b) used in the present invention has a good plasticizing temperature reducing effect, and thus has a weight average molecular weight (Mw) and a number average molecular weight (Mn) obtained by gel permeation chromatography (GPC) measurement. Is preferably 1.6 or less.
[0020]
The processability improver (b) of the present invention can be synthesized by various commonly known polymerizations. As the polymerization method, living polymerization for controlling the molecular weight from the effect of reducing the plasticization temperature is preferable, and in view of excellent control of (meth) acrylonitrile, radical polymerization is more preferable in the presence of a compound having a thiocarbonylthio structure. (Reversible addition-elimination chain transfer polymerization method). Regarding such radical polymerization, Macromolecules 1998 Vol. 31, No. 16, pp. 5559-5562, Macromolecules 1999 Vol. 32, No. 6, pp. 2071-2074, Polym. Prepr. 1999 Vol. 40, No. 2, pages 342-343, Polym. Prepr. 1999 Vol. 40, No. 2, pp. 397-398, Polym. Prepr. 1999 Vol. 2, No. 2, pp. 899-900, Polym. Prepr. Vol. 1999, Vol. 2, No. 1, pp. 1080-1081, Macromolecules 1999 Vol. 32, No. 6, pp. 6977-6980, Macromolecules 2000, Vol. 33, No. 2, pp. 243-245, Macromol. Symp. 2000, vol. 150, pp. 33-38. As the compound having a thiocarbonylthio structure used in the present invention, the compounds described in the above documents can be used.
[0021]
By subjecting a monomer to radical polymerization in the presence of a compound having a thiocarbonylthio structure, the thiocarbonylthio structure is introduced into the polymer. In the case of the flame-retardant fiber composite of the present invention, the thiocarbonylthio structure introduced into the polymer is compatible with the polymer (b) itself as a processability improver and the halogen atom-containing polymer (a). And the compatibility of additives such as stabilizers and lubricants in the halogen atom-containing polymer (a), improve the processability (such as take-up properties during melt spinning and secondary stretchability) and improve the halogen atom-containing weight. It contributes to maintaining various physical properties (such as flame retardancy) of the coalescence itself. Therefore, from the viewpoint of improving processability and maintaining various physical properties in the flame-retardant fiber composite of the present invention, it is preferable that 50% or more of the molecular chains having at least one thiocarbonylthio structure exist in one molecule. It is more preferable that 70% or more of the molecular chains having at least one thiocarbonylthio structure exist therein. The ratio mentioned here is based on the number (mol number) of polymer molecules.
[0022]
Specific examples of the compound having a thiocarbonylthio structure used in the present invention include compounds represented by general formula (1)
[0023]
Embedded image
Figure 2004360090
(In the formula, Me represents a methyl group, Et represents an ethyl group, and Ph represents a phenyl group.), But are not limited thereto.
[0024]
Of the compounds having a thiocarbonylthio structure, it is preferable to use a compound having a chain transfer constant of 0.1 or more under the applied polymerization conditions in that the molecular weight and the molecular weight distribution of the obtained polymer can be precisely controlled. Chain transfer constants are described in the above references and in the references cited therein. As the compound having a thiocarbonylthio structure used in the present invention, a polymer having a smaller molecular weight distribution is obtained, and a chain transfer constant is obtained in that a fiber having good processability such as take-off property during melt spinning can be obtained. It is preferably at least 1, more preferably at least 10.
[0025]
When performing radical polymerization in the presence of a compound having such a thiocarbonylthio structure, there is no particular limitation on the polymerization method, and conventionally known solution polymerization, emulsion polymerization, suspension polymerization, bulk polymerization, and the like can be applied. It is only necessary to add a compound having a thiocarbonyl structure to these polymerization reaction systems. The embodiment of the polymerization is not particularly limited, and a conventionally known method such as a batch method, a continuous method, and a sequential addition method can be widely applied. The amount of the compound having a thiocarbonylthio structure is not particularly limited, but the degree of polymerization and the number average molecular weight of the polymer can be controlled by adjusting the molar ratio with the monomer. For example, when synthesizing a polymer having a degree of polymerization of 1,000, the compound having a dithiocarbonylthio structure is added so that the content of the compound is 1/1000 equivalent to the monomer. There is no particular limitation on the timing of addition of the compound having a thiocarbonylthio structure, and the compound may be charged in the reaction vessel before the start of polymerization, may be introduced into the reaction vessel at the start of polymerization, or may be introduced during the polymerization. It may be introduced inside. Among various addition methods, a method in which a polymer having a small molecular weight distribution can be obtained is preferably a method in which the polymer is charged into a reaction vessel before the start of polymerization or a method in which the polymer is introduced into the reaction vessel at the start of polymerization. Is more preferable.
[0026]
The processability improver (b) used in the present invention can be obtained by a usual polymerization method, for example, by the following method.
[0027]
First, a monomer mixture containing (meth) acrylonitrile and an aromatic vinyl monomer as a vinyl monomer copolymerizable therewith is polymerized in the presence of a suitable medium and a polymerization initiator. A polymer solution of the mixture is obtained. Next, if necessary, a monomer is sequentially added to carry out polymerization. By sequentially polymerizing each monomer mixture in this manner, a multi-stage block polymer can be obtained in which a multi-stage block is formed as needed with respect to the polymer of the monomer mixture.
[0028]
The amount of the processability improver (b) used in the present invention is 1 to 50 parts, preferably 4 to 45 parts, more preferably 10 to 40 parts, per 100 parts of the halogen atom-containing polymer (a). Department. When the addition amount of the processability improver is less than 1 part, the effect of adding the processability improver cannot be sufficiently obtained and the melt spinning cannot be performed. Be impaired.
[0029]
In the present invention, the use ratio of the halogen atom-containing fiber (A) and at least one kind of fiber (B) selected from the group consisting of natural fibers and chemical fibers depends on the flame retardancy, luminosity, It is determined by performance such as feeling, moisture absorption, washing resistance, and durability. The usage ratio is determined by the type and composition of the halogen atom-containing fiber and the type and combination of other fibers to be mixed.
[0030]
If the other fiber to be mixed exceeds 600 parts by weight with respect to 100 parts by weight of the halogen atom-containing fiber, the flame retardancy of the flame retardant fiber composite is insufficient, which is not preferable.
[0031]
In order for the flame-retardant fiber composite of the present invention to have the desired flame retardancy and to clarify the characteristics of the natural and chemical fibers to be mixed, it is mixed with 100 parts by weight of the halogen-containing fiber. More preferably, the natural fiber or the chemical fiber is 15 to 500 parts by weight. More preferably, the natural fiber or the chemical fiber to be mixed is 15 to 400 parts by weight based on 100 parts by weight of the halogen atom-containing fiber. The fiber composite exhibits the desired flame retardancy.
[0032]
Specific examples of the natural fiber include plant fibers such as cotton and hemp, animal fibers such as wool, camel, goat wool, and silk. Specific examples of the chemical fibers include viscose rayon fiber and cupra fiber. Examples include, but are not limited to, regenerated fibers such as fibers, semi-synthetic fibers such as acetate fibers, and synthetic fibers such as nylon fibers, polyester fibers, and acrylic fibers. Among them, the flame retardancy can be remarkably improved when it is combined with natural fibers and regenerated fibers. These natural fibers and chemical fibers may be singly combined with a halogen atom-containing fiber, or may be combined with two or more kinds.
[0033]
As a method of producing a flame-retardant fiber composite, a halogen-containing flame retardant-containing fiber and another fiber may be blended in a single fiber state, or may be blended, and the yarn or each yarn may be twisted. Alternatively, some or all of the yarns may be made into long fibers and twisted, and each yarn may be manufactured and then interwoven, and the yarns may be lumped into slabs or neps during spinning. Or may be wrapped.
[0034]
The flame-retardant fiber composite of the present invention includes not only so-called fibers such as long fibers and short fibers, but also fiber products such as yarn, woven fabric, knitted fabric, and non-woven fabric.
[0035]
The flame retardancy of the flame-retardant fiber composite of the present invention is excellent, the more the flammable natural fibers and chemical fibers are localized in the composite, that is, the twist twist from the mixed spinning, the one of the interwoven, Although it is difficult to obtain high flame retardancy practically, it is clear from the fact that the effect of the flame-retardant fiber composite of the present invention is remarkable also in the case of twisting and weaving.
[0036]
In the flame-retardant composite fiber of the present invention, a plasticizer can be added for the purpose of improving the processability during molding. As such a plasticizer, for example, dimethyl phthalate, dibutyl phthalate, di-2-ethylhexyl phthalate, di-2-ethylhexyl adipate and the like are used.
[0037]
In the flame-retardant conjugate fiber of the present invention, a heat stabilizer, a heat stabilization aid, and the like can be added for the purpose of improving the heat stability during melt spinning. Examples of such heat stabilizers include dibutyltin mercapto, dioctyltin mercapto, dimethyltin mercapto, dibutyltin malate, dibutyltin malate polymer, dioctyltin malate, dioctyltin malate polymer, dibutyltin laurate, dibutyltin laurate. Organic tin stabilizers such as rate polymers; lead stabilizers such as lead stearate, dibasic lead phosphite, and tribasic lead sulfate; calcium-zinc stabilizers; barium-zinc stabilizers; barium-cadmium. System stabilizers and the like. These may be used alone or in combination of two or more. Examples of the heat stabilizing aid include, for example, epoxidized soybean oil, phosphate esters, and the like. These may be used alone or in combination of two or more.
[0038]
In the flame-retardant fiber composite of the present invention, if necessary, additives such as an antistatic agent, a thermal coloring inhibitor, a light resistance improving agent, a whiteness improving agent, a devitrification preventing agent, a coloring agent and a flame retardant are added. You may add individually or in combination of 2 or more types.
[0039]
The flame-retardant fiber composite of the present invention thus obtained has a desired practical flame retardancy, and furthermore, the sensation, feeling, moisture absorption, washing resistance and durability of other fibers to be mixed. And the like are good.
[0040]
Examples and Comparative Examples will be shown below to describe the flame-retardant fiber composite of the present invention more specifically, but the present invention is not limited to only these Examples.
[0041]
【Example】
In the following examples, “parts” means “parts by weight” and “%” means “% by weight” unless otherwise specified.
[0042]
The evaluation methods used in the examples and comparative examples are summarized below.
[0043]
The number average molecular weight (Mn), weight average molecular weight (Mw), and molecular weight distribution (Mw / Mn) shown in this example were measured by the following gel permeation chromatography (GPC) analyzer and method. System: GPC system (product name 510) manufactured by Waters, column: Shodex K-806 and K-805 (polystyrene gel) manufactured by Showa Denko KK, mobile phase: chloroform. The number average molecular weight and the like were determined in terms of polystyrene.
[0044]
The polymerization conversion was calculated by the following equation.
Polymerization conversion (%) = {Amount of polymer produced / Amount of monomer charged} × 100
For identification of the thiocarbonylthio structure, NMR (Gemini-300) manufactured by VARIAN was used, and DMF-d was used as a deuterated solvent. 8 A sample solution using (deuterated dimethylformamide) was prepared and measured.
[0045]
The content of the molecular chain having a thiocarbonyl structure was calculated by the following method. First, the total sulfur content in the sample was quantified by elemental analysis (using an oxygen flask combustion method; using hydrogen peroxide as an absorbing solution and measuring by ion chromatography; DX-500 GP40, ED40, manufactured by Dionex). Next, from the obtained sulfur concentration, the thiocarbonylthio structure content was calculated based on the number average molecular weight of each sample obtained by the GPC.
[0046]
Spinnability: In the wet or melt spinning process, it was evaluated by visual judgment whether or not the yarn could be taken off without breaking, in three stages of ○, Δ, and ×.
[0047]
Stretchability: The stretchability was evaluated by a tensile test according to JIS K 7113 using an extruded strand obtained before the stretch step as a substitute for the stretch step. The measurement temperature was 100 ° C., and the tensile speed was 200 mm / min. The elongation is 250% or more as good and less than 250% as poor, but if the melt fracture at the time of extrusion is severe, fusion may occur between the strands before stretching, and the workability may be determined by visually observing the melt fracture. Comprehensive evaluation of elongation evaluation by a tensile test was performed, and evaluation was made in three stages of ○, Δ, and ×.
[0048]
(Production Example 1)
(Synthesis of (meth) acrylonitrile-based polymer (1)) Toluene was added to a monomer mixture composed of 100 parts of acrylonitrile (AN) and 100 parts of styrene (ST), and a monomer having a monomer concentration of 25% was obtained. Prepare body solution. The monomer solution was charged into a reactor equipped with a stirrer, and 0.5 parts of 2- (2-phenylpropyl) dithiobenzoate and 0.1 part of 2,2′-azobis (isobutyronitrile) were added. Dissolved. After oxygen was removed from the space and the solution by flowing nitrogen through the reactor, the contents were heated to 80 ° C. while stirring. Stirring was continued for 12 hours to substantially complete the polymerization. The polymerization conversion was 99.5%. The obtained mixed solution was added to a large amount of methanol to reprecipitate the polymer, followed by filtration. The obtained polymer was dried for 15 hours under reduced pressure with a vacuum dryer set at 50 ° C to obtain a powdery product. (Meth) acrylonitrile polymer (1) was obtained.
[0049]
As a result of GPC measurement of the obtained polymer, Mn = 80,000 and Mw / Mn = 1.23, 1 From 1 H NMR measurement, it was confirmed to be a polyacrylonitrile-styrene random copolymer having a thiocarbonyl group at a terminal. The thiocarbonylthio structure content was 84.7%.
[0050]
(Example 1)
To 100 parts of a copolymer consisting of 49.0% of acrylonitrile and 51.0% of vinyl chloride, 5 parts of the above (meth) acrylonitrile-based polymer (1) was added as a processability improver, and 20 parts of dimethyl phthalate was added as a plasticizer. And 3 parts of dioctyltin mercapto as a stabilizer. The obtained resin was stirred with a Henschel mixer. This resin was put into a 40 mm single screw extruder of a melt spinning apparatus, melted and kneaded, and then, at a spinning temperature of 150 ° C., a speed of 5 kg per hour from a spinneret having a hole diameter of 1.0 mmφ and 200 holes quantitatively. And extruded strands were obtained. After the extrusion, it was hot stretched 5 times to obtain a halogen atom-containing fiber (1). An oil agent was applied to the obtained halogen atom-containing fiber (1), crimped, cut, and spun to obtain a spun yarn having a cotton count of 10/1.
[0051]
Furthermore, a woven fabric (flame retardant fiber composite) (1) was obtained through steps such as weaving and finishing.
[0052]
Before the stretching step, stretchability was evaluated using the extruded strand obtained in the spinning step.
[0053]
Table 1 shows the results. In the table, PMMA indicates a commercially available polymethyl methacrylate resin.
[0054]
(Examples 2 and 3)
Table 1 shows the (meth) acrylonitrile-based polymer (1) with respect to 100 parts of a halogen atom-containing copolymer composed of 49.0% of acrylonitrile and 51.0% of vinyl chloride used in Example 1 above. A predetermined number of parts were blended, a plasticizer and a stabilizer were added in the same manner as in Example 1, and melt spinning and strand stretching were performed to obtain halogen atom-containing fibers (2) and (3). Using the obtained halogen atom-containing fibers (2) and (3), a spun yarn is obtained in the same manner as in Example 1, and further subjected to weaving, finishing, and other steps to obtain a woven fabric (flame-retardant fiber composite) (2). And (3) were obtained. Before the stretching step, the extensibility was evaluated in the same manner as in Example 1 using the extruded strand obtained in the spinning step.
[0055]
Table 1 shows the results.
[0056]
(Example 4)
To 100 parts of vinylidene chloride polymer, 40 parts of the above (meth) acrylonitrile polymer (1) were added as a processability improver, and a plasticizer and a stabilizer were added in the same manner as in Example 1, and melt spinning and strand stretching were performed. And a halogen atom-containing fiber (4) was obtained. The stretchability was evaluated in the same manner as in Example 1 using the obtained extruded strand. Using the obtained halogen atom-containing fiber (4), a spun yarn was obtained in the same manner as in Example 1, and a woven fabric (flame-retardant fiber composite) (4) was obtained through steps such as weaving and finishing. Before the stretching step, the extensibility was evaluated in the same manner as in Example 1 using the extruded strand obtained in the spinning step.
[0057]
Table 1 shows the results.
[0058]
(Comparative Example 1)
A plasticizer and a stabilizer were added to 100 parts of a halogen atom-containing copolymer consisting of 49.0% of acrylonitrile and 51.0% of vinyl chloride used in Example 1 in the same manner as in Example 1, and melt extrusion was attempted. However, extruded strands, spun yarns and woven fabrics having practical strength capable of evaluating stretchability were not obtained.
[0059]
Table 1 shows the results.
[0060]
(Comparative Example 2)
To 100 parts of the vinylidene bromide polymer, 40 parts of the above (meth) acrylonitrile polymer (1) were added as a processability improver, and a plasticizer and a stabilizer were added in the same manner as in Example 1, and melt extrusion was attempted. Extruded strands, spun yarns, and woven fabrics having practical strength capable of evaluating stretchability were not obtained.
[0061]
Table 1 shows the results.
[0062]
(Comparative Example 3)
To 100 parts of a copolymer consisting of 56.0% of acrylonitrile and 44.0% of vinyl fluoride, 40 parts of the above (meth) acrylonitrile-based polymer (1) was added as a processability improver. Melting extrusion was attempted by adding an agent and a stabilizer, but no extruded strand, spun yarn, or woven fabric having practical strength capable of evaluating stretchability was obtained.
[0063]
Table 1 shows the results.
[0064]
(Comparative Examples 4 and 5)
Table 1 shows the (meth) acrylonitrile-based polymer (1) with respect to 100 parts of a halogen atom-containing copolymer consisting of 49.0% of acrylonitrile and 51.0% of vinyl chloride used in Example 1. A predetermined number of parts were blended, a plasticizer and a stabilizer were added in the same manner as in Example 1, and after the melt spinning, a drawing step was performed. However, no halogen atom-containing fiber having practical strength was obtained in any case. Before the stretching step, the extensibility was evaluated in the same manner as in Example 1 using the extruded strand obtained in the spinning step.
[0065]
Table 1 shows the results.
[0066]
(Comparative Example 6)
For 100 parts of a halogen atom-containing copolymer consisting of 49.0% of acrylonitrile and 51.0% of vinyl chloride used in Example 1, Mn = 112000 and Mw / Mn = 1 by GPC measurement as a processability improver. .81, 40 parts of a polymethyl methacrylate resin manufactured by Sumitomo Chemical containing 7% of methyl acrylate, and a plasticizer and a stabilizer were added thereto in the same manner as in Example 1; I got (5). Using the obtained halogen atom-containing fiber (5), a spun yarn was obtained in the same manner as in Example 1, and a woven fabric (flame retardant fiber composite) (5) was obtained through steps such as weaving and finishing. Before the stretching step, the extensibility was evaluated in the same manner as in Example 1 using the extruded strand obtained in the spinning step.
[0067]
Table 1 shows the results.
[0068]
(Comparative Example 7)
The halogen atom-containing copolymer composed of 49.0% of acrylonitrile and 51.0% of vinyl chloride used in Example 1 was dissolved in acetone so that the resin concentration became 27.0%. A part of the obtained resin solution was diluted three-fold with acetone to prepare a spinning stock solution.
[0069]
The obtained spinning stock solution was extruded into a 30% acetone aqueous solution using a nozzle having a nozzle hole diameter of 0.08 mm and a number of holes of 300, washed with water, dried at 120 ° C, and then hot-stretched three times, and further heated at 140 ° C. And heat treatment was performed for 5 minutes to obtain a halogen atom-containing fiber (6). The stretchability was evaluated in the same manner as in Example 1 using the obtained extruded strand. Using the obtained halogen atom-containing fiber (6), a spun yarn was obtained in the same manner as in Example 1, and a woven fabric (flame retardant fiber composite) (6) was obtained through steps of weaving and finishing.
[0070]
Table 1 shows the results.
[0071]
According to the results in Table 1, when the halogen atom content of the halogen atom-containing polymer and the addition amount of the (meth) acrylonitrile-based polymer were within the range of the present invention as shown in Examples 1 to 4, Spinning was possible, and the obtained halogen atom-containing fibers (1) to (4) showed good stretchability. On the other hand, melt spinning is impossible in the system shown in Comparative Example 1 to which the (meth) acrylonitrile polymer is not added, and the halogen atom content shown in Comparative Examples 2 and 3 is out of the range of the present invention. Similarly, melt spinning is impossible, and as shown in Comparative Examples 4 and 5, when the amount of the (meth) acrylonitrile-based polymer added is out of the range of the present invention, it can be seen that the stretchability decreases. . Similarly, when a polymer containing no (meth) acrylonitrile was used as the processability improver shown in Comparative Example 6, the melt fracture of the extruded strand was large, and the processability during stretching was also reduced.
[0072]
[Table 1]
Figure 2004360090
(Production Example 2)
(Synthesis of (meth) acrylonitrile-based polymer (2)) In a reactor equipped with a stirrer, 100 parts of methyl methacrylate (MMA), 0.5 part of 2- (2-phenylpropyl) dithiobenzoate and 2,2'-azobis ( A monomer mixture consisting of 0.1 part of isobutyronitrile) was charged, and toluene was added to the monomer mixture to adjust the monomer concentration to 25%. After oxygen was removed from the space and the solution by flowing nitrogen through the reactor, the contents were heated to 60 ° C. while stirring. After stirring was continued for 8 hours, the polymerization was stopped in an incomplete state. The polymerization conversion was 20%. The obtained mixed solution was added to a large amount of methanol to reprecipitate the polymer. After that, the polymer was isolated and dried for 15 hours under reduced pressure with a vacuum dryer set at 50 ° C. to obtain a polymer.
[0073]
50 parts of a polymer obtained in a reactor equipped with a stirrer, 0.1 part of 2,2′-azobis (isobutyronitrile) are charged, and 100 parts of acrylonitrile (AN) and 100 parts of styrene (ST) are separately prepared. Toluene was added to the monomer mixture, and a monomer solution adjusted to have a monomer concentration of 25% was added and completely dissolved. After oxygen was removed from the space and the solution by flowing nitrogen through the reactor, the contents were heated to 80 ° C. while stirring. Stirring was continued for 12 hours to substantially complete the polymerization. The polymerization conversion was 99%. The obtained mixed solution was added to a large amount of methanol to reprecipitate the polymer, followed by filtration. The obtained polymer was dried for 15 hours under reduced pressure with a vacuum dryer set at 50 ° C to obtain a powdery product. (Meth) acrylonitrile polymer (2) was obtained.
[0074]
As a result of GPC measurement of the obtained polymer, Mn = 60,000 and Mw / Mn = 1.48, 1 From 1 H NMR measurement, it was confirmed to be a polymethyl methacrylate- (random acrylonitrile / styrene) block copolymer having a thiocarbonyl group at a terminal. The thiocarbonylthio structure content was 78.2%.
[0075]
(Example 5)
To 100 parts of a halogen atom-containing copolymer composed of 49.0% of acrylonitrile and 51.0% of vinyl chloride used in Example 1, 40 parts of the above (meth) acrylonitrile-based polymer (2) was used as a processability improver. In addition, 20 parts of dimethyl phthalate as a plasticizer and 3 parts of dioctyltin mercapto as a stabilizer were blended. The obtained resin was stirred with a Henschel mixer. This resin was put into a 40 mm single screw extruder of a melt spinning apparatus, melted and kneaded, and then, at a spinning temperature of 150 ° C., a speed of 5 kg per hour from a spinneret having a hole diameter of 1.0 mmφ and 200 holes quantitatively. And extruded strands were obtained. After the extrusion, it was hot-drawn three times to obtain a halogen atom-containing fiber (7). Using the obtained halogen atom-containing fiber (7), a spun yarn was obtained in the same manner as in Example 1, and a woven fabric (flame-retardant fiber composite) (7) was obtained through steps such as weaving and finishing. Before the stretching step, the extensibility was evaluated in the same manner as in Example 1 using the extruded strand obtained in the spinning step.
[0076]
Table 2 shows the results. In the table, PAS indicates a commercially available polyacrylonitrile-styrene random copolymer resin.
[0077]
(Production Example 3)
(Synthesis of (meth) acrylonitrile-based polymer (3)) Toluene was added to a monomer mixture composed of 100 parts of acrylonitrile (AN) and 100 parts of styrene (ST), and a monomer having a monomer concentration of 25% was obtained. Prepare body solution. The monomer solution was charged into a reactor equipped with a stirrer, and 0.5 parts of 2- (2-phenylpropyl) dithiobenzoate and 0.1 part of 2,2′-azobis (isobutyronitrile) were added. Dissolved. After oxygen was removed from the space and the solution by flowing nitrogen through the reactor, the contents were heated to 60 ° C. while stirring. After stirring was continued for 8 hours, the polymerization was stopped in an incomplete state. The polymerization conversion was 50%. The obtained mixed solution was added to a large amount of methanol to reprecipitate the polymer. After that, the polymer was isolated and dried for 15 hours under reduced pressure with a vacuum dryer set at 50 ° C. to obtain a polymer.
[0078]
100 parts of the polymer obtained in a reactor equipped with a stirrer, 0.1 part of 2,2′-azobis (isobutyronitrile) were charged, 50 parts of n-butyl acrylate (BA) were added, and toluene was further added. Was adjusted so that the monomer concentration was 25%, and completely dissolved. After oxygen was removed from the space and the solution by flowing nitrogen through the reactor, the contents were heated to 80 ° C. while stirring. Stirring was continued for 12 hours to substantially complete the polymerization. The polymerization conversion was 96%. The obtained mixed solution was added to a large amount of methanol to reprecipitate the polymer, followed by filtration. The obtained polymer was dried for 15 hours under reduced pressure with a vacuum dryer set at 50 ° C to obtain a powdery product. (Meth) acrylonitrile polymer (3) was obtained.
[0079]
As a result of GPC measurement of the obtained polymer, Mn = 56,000 and Mw / Mn = 1.56, 1 From 1 H NMR measurement, it was confirmed to be a poly (random acrylonitrile / styrene) -butyl acrylate block copolymer having a thiocarbonyl group at a terminal. The thiocarbonylthio structure content was 67.3%.
[0080]
(Example 6)
Except for using the (meth) acrylonitrile-based polymer (3) as a processability improver, a halogen atom-containing fiber (8) was obtained by substantially the same blending and method as in Example 5. The extrudability was evaluated in the same manner as in Example 5 using the obtained extruded strand. Using the obtained halogen atom-containing fiber (8), a spun yarn was obtained in the same manner as in Example 5, and a woven fabric (flame-retardant fiber composite) (8) was obtained through steps such as weaving and finishing.
[0081]
Table 2 shows the results.
[0082]
(Example 7)
Substantially Examples except that a commercially available polyacrylonitrile-styrene random copolymer AS-Q made by Toyo Styrene having an acrylonitrile content of 23%, Mn = 67000 and Mw / Mn = 1.77 as measured by GPC as a processability improver were used. A halogen atom-containing fiber (9) was obtained by the same composition and method as in Example 5. The extrudability was evaluated in the same manner as in Example 5 using the obtained extruded strand. Using the obtained halogen atom-containing fiber (9), a spun yarn was obtained in the same manner as in Example 5, and a woven fabric (flame-retardant fiber composite) (9) was obtained through steps such as weaving and finishing.
[0083]
Table 2 shows the results.
[0084]
(Production Example 4)
(Synthesis of (meth) acrylonitrile-based polymer (4)) Toluene is added to a monomer mixture consisting of 100 parts of acrylonitrile (AN) and 5 parts of styrene (ST), and a monomer having a monomer concentration of 25% is obtained. Prepare solution. The monomer solution was charged into a reactor equipped with a stirrer, and 0.5 parts of 2,2′-azobis (isobutyronitrile) was added to completely dissolve the monomer solution. After oxygen was removed from the space and the solution by flowing nitrogen through the reactor, the contents were heated to 60 ° C. while stirring. Stirring was continued for 10 hours to substantially complete the polymerization. The polymerization conversion was 98%. The obtained mixed solution was added to a large amount of methanol to reprecipitate the polymer, followed by filtration. The obtained polymer was dried for 15 hours under reduced pressure with a vacuum dryer set at 50 ° C to obtain a powdery product. (Meth) acrylonitrile polymer (4) was obtained.
[0085]
As a result of GPC measurement of the obtained polymer, Mn = 98,000 and Mw / Mn = 1.78, 1 From 1 H NMR measurement, it was confirmed to be a polyacrylonitrile-styrene random copolymer.
[0086]
(Comparative Example 8)
Except that the (meth) acrylonitrile-based polymer (4) composed of 95% acrylonitrile and 5% styrene is used as a processability improver, a melt-spinning is performed by the same blending method and method as in Example 5, and a stretching step is performed. However, a halogen atom-containing fiber having practical strength was not obtained. Before the stretching step, the stretchability was evaluated in the same manner as in Example 5 using the extruded strand obtained in the spinning step.
[0087]
Table 2 shows the results.
[0088]
(Production Example 5)
(Synthesis of (meth) acrylonitrile-based polymer (5)) Toluene is added to a monomer mixture composed of 100 parts of styrene (ST) and 5 parts of acrylonitrile (AN), and a monomer having a monomer concentration of 25% is obtained. Prepare solution. The monomer solution was charged into a reactor equipped with a stirrer, and 0.5 parts of 2,2′-azobis (isobutyronitrile) was added to completely dissolve the monomer solution. After oxygen was removed from the space and the solution by flowing nitrogen through the reactor, the contents were heated to 60 ° C. while stirring. Stirring was continued for 10 hours to substantially complete the polymerization. The polymerization conversion was 99%. The obtained mixed solution was added to a large amount of methanol to reprecipitate the polymer, followed by filtration. The obtained polymer was dried under reduced pressure for 15 hours using a vacuum drier set at 50 ° C. to obtain a powder. (Meth) acrylonitrile polymer (5) was obtained.
[0089]
As a result of GPC measurement of the obtained polymer, Mn = 136,000 and Mw / Mn = 1.84, 1 From 1 H NMR measurement, it was confirmed to be a polyacrylonitrile-styrene random copolymer.
[0090]
(Comparative Example 9)
Except that the (meth) acrylonitrile-based polymer (5) consisting of 5% acrylonitrile and 95% styrene is used as a processability improver, a melt-spinning is carried out by the same blending method and method as in Example 5, and a stretching step is carried out. However, a halogen atom-containing fiber having practical strength was not obtained. Before the stretching step, the stretchability was evaluated in the same manner as in Example 5 using the extruded strand obtained in the spinning step.
[0091]
Table 2 shows the results.
[0092]
(Production Example 6)
(Synthesis of (meth) acrylonitrile polymer (6)) Toluene was added to a monomer mixture consisting of 100 parts of methyl methacrylate (MMA), 12 parts of styrene (ST) and 6 parts of acrylonitrile (AN), and the monomer concentration was changed. Is adjusted to 25%. The monomer solution was charged into a reactor equipped with a stirrer, and 0.5 parts of 2,2′-azobis (isobutyronitrile) was added to completely dissolve the monomer solution. After oxygen was removed from the space and the solution by flowing nitrogen through the reactor, the contents were heated to 60 ° C. while stirring. Stirring was continued for 10 hours to substantially complete the polymerization. The polymerization conversion was 74%. The obtained mixed solution was added to a large amount of methanol to reprecipitate the polymer, followed by filtration. The obtained polymer was dried for 15 hours under reduced pressure with a vacuum dryer set at 50 ° C to obtain a powdery product. (Meth) acrylonitrile polymer (6) was obtained.
[0093]
As a result of GPC measurement of the obtained polymer, Mn was 48,000 and Mw / Mn was 1.64. 1 From 1 H NMR measurement, it was confirmed to be a polyacrylonitrile-styrene-methyl methacrylate random copolymer.
[0094]
(Comparative Example 10)
Except for using the (meth) acrylonitrile-based polymer (6) comprising 5% of acrylonitrile, 10% of styrene and 85% of methyl methacrylate as a processability improver, a halogen atom is contained in substantially the same formulation and method as in Example 5 Fiber (10) was obtained. The extrudability was evaluated in the same manner as in Example 5 using the obtained extruded strand. Using the obtained halogen atom-containing fiber (10), a spun yarn was obtained in the same manner as in Example 1, and a woven fabric (flame-retardant fiber composite) (10) was obtained through steps such as weaving and finishing.
[0095]
Table 2 shows the results.
[0096]
Table 2 shows the results.
[0097]
According to the results in Table 2, when the composition ratio of the (meth) acrylonitrile-based polymer was within the range of the present invention as shown in Examples 3 and 5 to 7, melt spinning was possible and obtained. The halogen atom-containing fibers (3) and (7) to (9) showed good stretchability. On the other hand, as shown in Comparative Examples 6 and 8 to 10, when the composition ratio of the (meth) acrylonitrile-based polymer was out of the range of the present invention, melt spinning was possible, but the melt fracture of the extruded strand was possible. It is understood that the stretchability is large and the stretchability is reduced.
[0098]
[Table 2]
Figure 2004360090
(Example 8)
A woven fabric (flame-retardant fiber composite) (15) was obtained through the steps of weaving and finishing using the spun yarn comprising the halogen atom-containing fiber (3) obtained in Example 3 and cotton. Table 3 shows the mixing ratio of the fibers in the obtained woven fabric.
[0099]
The afterglow time (sec) and LOI value of the obtained woven fabric were measured according to the following methods. Evaluation items other than the afterglow time when measuring the afterglow time (afterflame time, carbonization area, etc.), LOI value, combustion state (whether the flame is small and not spread), and the Those with excellent flame retardancy, including the condition (whether the coal is hard and does not spread), were evaluated in three grades: excellent, good, and poor.
[0100]
Table 3 shows the results.
[0101]
(Afterglow time) Evaluation was made based on the maximum afterglow time (sec) measured according to JIS L 1091A-1 method. The smaller the afterglow time, the higher the flame retardancy.
[0102]
(LOI value) In the case of a composite of a flame-retardant fiber and a flame-retardant fiber, it is measured by mixing cotton according to the composition of the composite.
[0103]
Take 2 g of cotton mixed at a predetermined ratio, divide it into 8 equal parts, make 8 twists of about 6 cm and make them stand upright in the holder of the oxygen index tester. Was measured, and this was defined as the LOI value. In general, the flame retardancy of fibers is measured and evaluated in the state of a woven fabric. However, in woven fabrics, the flammability varies depending on the number of twists, thickness, number of threads, etc. Since it was not possible to correctly evaluate the excellent flammability, the LOI value using Koyori was described as the value of the flame retardancy evaluation. The higher the LOI value, the less the flame burns and the higher the flame retardancy.
[0104]
(Example 9 and Comparative Examples 11 and 12)
Woven fabrics (16) to (18) were obtained from cotton spun yarn obtained from the halogen atom-containing fiber (3) in the same manner as in Example 8 above. Table 3 shows the mixing ratio of the fibers in the obtained woven fabric. The afterglow time (second) and LOI value of the obtained woven fabric were measured.
[0105]
Table 3 shows the results.
[0106]
According to the results in Table 3, when the mixing ratio of the halogen atom-containing fiber and the cotton is within the range of the present invention as shown in Examples 3, 8 and 9, as shown in Comparative Example 11, the halogen atom-containing fiber was used. It can be seen that the afterglow time and LOI value are excellent and the practical flame retardancy is excellent as compared with the case where the mixing ratio of the fiber and the cotton is out of the range of the present invention.
Comparative Example 12 is inferior in overall evaluation of flame retardancy, such as burning out in a combustion test.
[0107]
[Table 3]
Figure 2004360090
[0108]
【The invention's effect】
The halogen atom-containing polymer composition to which the (meth) acrylonitrile-based polymer of the present invention is added as a processability improver enables melt spinning which has not been achieved conventionally.

Claims (9)

ハロゲン原子を17〜86重量%含む重合体(a)100重量部と、加工性改良剤として(メタ)アクリロニトリル10〜90重量%およびこれと共重合可能なビニル系単量体から選ばれた少なくとも1種のビニル系単量体(b1)10〜90重量%よりなる(メタ)アクリロニトリル系重合体(b)1〜50重量部からなり、溶融紡糸によりえられる繊維(A)100重量部に対して、天然繊維および化学繊維よりなる群から選ばれた少なくとも1種の繊維(B)0〜600重量部を複合した難燃繊維複合体。100 parts by weight of a polymer (a) containing 17 to 86% by weight of a halogen atom, and at least 10 to 90% by weight of (meth) acrylonitrile and a vinyl monomer copolymerizable therewith as a processability improver 1 to 50 parts by weight of a (meth) acrylonitrile-based polymer (b) comprising 10 to 90% by weight of one kind of a vinyl monomer (b1), based on 100 parts by weight of a fiber (A) obtained by melt spinning A flame-retardant fiber composite in which 0 to 600 parts by weight of at least one fiber (B) selected from the group consisting of natural fibers and chemical fibers is compounded. 該ハロゲン原子を17〜86重量%含む重合体(a)が、アクリロニトリル30〜70重量%、ハロゲン含有ビニル系単量体70〜30重量%およびこれらと共重合可能なビニル系単量体(a1)0〜10重量%よりなる共重合体である請求項1記載の難燃繊維複合体。The polymer (a) containing 17 to 86% by weight of the halogen atom contains 30 to 70% by weight of acrylonitrile, 70 to 30% by weight of a halogen-containing vinyl monomer, and a vinyl monomer (a1) copolymerizable therewith. 2. The flame-retardant fiber composite according to claim 1, which is a copolymer comprising 0 to 10% by weight. 前記共重合可能なビニル系単量体(a1)の少なくとも1種がスルホン酸基含有ビニル系単量体である請求項2記載の難燃繊維複合体。The flame-retardant fiber composite according to claim 2, wherein at least one of the copolymerizable vinyl monomers (a1) is a sulfonic acid group-containing vinyl monomer. 該(メタ)アクリロニトリル系重合体(b)において、(メタ)アクリロニトリルと共重合可能なビニル系単量体(b1)が芳香族ビニル系単量体(b2)を含み、該(メタ)アクリロニトリル系重合体(b)が(メタ)アクリロニトリル10〜90重量%、芳香族ビニル系単量体(b2)90〜10重量%およびこれらと共重合可能なビニル系単量体(b3)0〜60重量%よりなる共重合体である請求項1〜3のいずれかに記載の、難燃繊維複合体。In the (meth) acrylonitrile polymer (b), the vinyl monomer (b1) copolymerizable with the (meth) acrylonitrile contains an aromatic vinyl monomer (b2), and the (meth) acrylonitrile polymer Polymer (b) is 10 to 90% by weight of (meth) acrylonitrile, 90 to 10% by weight of aromatic vinyl monomer (b2), and 0 to 60% by weight of vinyl monomer (b3) copolymerizable therewith. % Of the flame-retardant fiber composite according to any one of claims 1 to 3. 該(メタ)アクリロニトリル系重合体(b)が、ゲル透過クロマトグラフィー(GPC)測定でえられる重量平均分子量(Mw)と数平均分子量(Mn)との比で表される分子量分布(Mw/Mn)が1.6以下であることを特徴とする、請求項1〜4のいずれかに記載の、難燃繊維複合体。The (meth) acrylonitrile polymer (b) has a molecular weight distribution (Mw / Mn) represented by a ratio of a weight average molecular weight (Mw) to a number average molecular weight (Mn) obtained by gel permeation chromatography (GPC) measurement. ) Is 1.6 or less, the flame-retardant fiber composite according to any one of claims 1 to 4. 該(メタ)アクリロニトリル系重合体(b)が、可逆的付加脱離連鎖移動重合によりえられたものである事を特徴とする、請求項1〜5のいずれかに記載の、難燃繊維複合体。The flame-retardant fiber composite according to any one of claims 1 to 5, wherein the (meth) acrylonitrile-based polymer (b) is obtained by reversible addition-elimination chain transfer polymerization. body. 該(メタ)アクリロニトリル系重合体(b)において、一分子中に少なくとも一つのチオカルボニルチオ構造を有する分子鎖が50%以上存在することを特徴とする、請求項1〜6のいずれかに記載の、難燃繊維複合体。7. The (meth) acrylonitrile-based polymer (b), wherein at least 50% of molecular chains having at least one thiocarbonylthio structure are present in one molecule. Of flame-retardant fiber composites. 該(メタ)アクリロニトリル系重合体(b)が、一分子中に少なくとも一つのチオカルボニルチオ構造を有する分子鎖が70%以上存在することを特徴とする、請求項1〜7のいずれかに記載の、難燃繊維複合体。The (meth) acrylonitrile-based polymer (b) has a molecular chain having at least one thiocarbonylthio structure in one molecule in an amount of 70% or more, according to any one of claims 1 to 7, wherein Of flame-retardant fiber composites. 該繊維(A)を溶融紡糸により製造する際、可塑剤および安定剤を配合することを特徴とする、請求項1〜8のいずれかに記載の、難燃繊維複合体。The flame-retardant fiber composite according to any one of claims 1 to 8, wherein a plasticizer and a stabilizer are blended when the fiber (A) is produced by melt spinning.
JP2003156981A 2003-06-02 2003-06-02 Flame retardant fiber composite Expired - Fee Related JP4157428B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003156981A JP4157428B2 (en) 2003-06-02 2003-06-02 Flame retardant fiber composite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003156981A JP4157428B2 (en) 2003-06-02 2003-06-02 Flame retardant fiber composite

Publications (2)

Publication Number Publication Date
JP2004360090A true JP2004360090A (en) 2004-12-24
JP4157428B2 JP4157428B2 (en) 2008-10-01

Family

ID=34050888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003156981A Expired - Fee Related JP4157428B2 (en) 2003-06-02 2003-06-02 Flame retardant fiber composite

Country Status (1)

Country Link
JP (1) JP4157428B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4890256B2 (en) * 2004-10-01 2012-03-07 電気化学工業株式会社 Artificial hair fiber and method for producing the same
CN102505275A (en) * 2011-09-30 2012-06-20 江苏月龙服饰有限公司 Process for producing anti-scald down jacket fabric
JP2015094054A (en) * 2013-11-13 2015-05-18 旭化成ケミカルズ株式会社 Fiber and nonwoven fabric
WO2016158774A1 (en) * 2015-03-31 2016-10-06 株式会社カネカ Thermoplastic modacrylic resin composition, method for manufacturing same, molded article of same, and acrylic fibers and method for manufacturing same
WO2023190606A1 (en) * 2022-03-31 2023-10-05 株式会社カネカ Thermoplastic modacrylic resin and thermoplastic modacrylic resin composition including same
WO2023190607A1 (en) * 2022-03-31 2023-10-05 株式会社カネカ Thermoplastic modacrylic resin and thermoplastic modacrylic resin composition containing same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4890256B2 (en) * 2004-10-01 2012-03-07 電気化学工業株式会社 Artificial hair fiber and method for producing the same
CN102505275A (en) * 2011-09-30 2012-06-20 江苏月龙服饰有限公司 Process for producing anti-scald down jacket fabric
JP2015094054A (en) * 2013-11-13 2015-05-18 旭化成ケミカルズ株式会社 Fiber and nonwoven fabric
WO2016158774A1 (en) * 2015-03-31 2016-10-06 株式会社カネカ Thermoplastic modacrylic resin composition, method for manufacturing same, molded article of same, and acrylic fibers and method for manufacturing same
US10787558B2 (en) 2015-03-31 2020-09-29 Kaneka Corporation Thermoplastic modacrylic resin composition, method for manufacturing same, molded article of same, and acrylic fibers and method for manufacturing same
WO2023190606A1 (en) * 2022-03-31 2023-10-05 株式会社カネカ Thermoplastic modacrylic resin and thermoplastic modacrylic resin composition including same
WO2023190607A1 (en) * 2022-03-31 2023-10-05 株式会社カネカ Thermoplastic modacrylic resin and thermoplastic modacrylic resin composition containing same

Also Published As

Publication number Publication date
JP4157428B2 (en) 2008-10-01

Similar Documents

Publication Publication Date Title
JP2001348724A (en) Flame-retardant polypropylene fiber, method for producing the same and flame-retardant polypropylene film
JP4603486B2 (en) Acrylic shrinkable fiber and method for producing the same
JP4157428B2 (en) Flame retardant fiber composite
JP5085116B2 (en) Resin composition and fiber comprising the same
US3607817A (en) Production of dyeable polyacrylonitrile compositions and articles
EP2896634B1 (en) Method for preparing a flame retardant modified acrylonitrile-based copolymer and a flame retardant fibrous material
JP2004156149A (en) Polyvinyl chloride fiber
JPH06158422A (en) Flame-retardant acrylic fiber having high shrinkage
US3507823A (en) Art of preparing dyeable polyacrylonitrile products
JPH08269814A (en) Flame retardant acrylic synthetic fiber excellent in weather resistance
JP2001131824A (en) Fiber composed of polyvinyl chloride-based resin composition
US6268450B1 (en) Acrylic fiber polymer precursor and fiber
JP4496214B2 (en) Polyvinyl chloride fiber, method for producing the same, and artificial hair
US4604428A (en) Method of producing a flame-retardant acrylic polymer
KR100432709B1 (en) Good Dyeabile Polyvinyl chloride- acrylonitrile Fiber
US9109066B2 (en) Method for preparing a flame retardant modified acrylonitrile-based copolymer and a flame retardant fibrous material
CN1911974A (en) Synthesis method of acrylonitrile and chloroethylene copolymer
JP2001122977A (en) Flame-retardant polyacrylonitrile-based resin molded product
Ren et al. Enhancing flame retardancy and hydrolysis resistance of flame retardant copolyester fibers by reactive carbodiimide
JPH09302521A (en) Flame-retardant polyvinyl alcohol binder fiber, its production and nonwoven fabric
KR100432710B1 (en) High Flame Retardant Polyvinylchloride-acrylonitrile Fibe
JP2761097B2 (en) Method for producing flame-retardant acrylic fiber
JP3452691B2 (en) Flame-retardant acrylic synthetic fiber with excellent weather resistance
WO2024090375A1 (en) Vinyl chloride-based fiber and method for manufacturing same
JP2001115332A (en) Polyvinyl chloride-based fiber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060425

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080422

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080530

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080617

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080711

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4157428

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130718

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130718

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees