JP2004359874A - Production process of polyimide resin and polyimide resin obtained by the process - Google Patents

Production process of polyimide resin and polyimide resin obtained by the process Download PDF

Info

Publication number
JP2004359874A
JP2004359874A JP2003161534A JP2003161534A JP2004359874A JP 2004359874 A JP2004359874 A JP 2004359874A JP 2003161534 A JP2003161534 A JP 2003161534A JP 2003161534 A JP2003161534 A JP 2003161534A JP 2004359874 A JP2004359874 A JP 2004359874A
Authority
JP
Japan
Prior art keywords
polyimide resin
diamine
tetracarboxylic dianhydride
solvent
dianhydride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003161534A
Other languages
Japanese (ja)
Other versions
JP4272468B2 (en
Inventor
Hitoshi Kinoshita
仁 木下
Moriji Morita
守次 森田
Yoichi Kodama
洋一 児玉
Isao Naruse
功 成瀬
Hiroshi Maruyama
浩 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP2003161534A priority Critical patent/JP4272468B2/en
Publication of JP2004359874A publication Critical patent/JP2004359874A/en
Application granted granted Critical
Publication of JP4272468B2 publication Critical patent/JP4272468B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Adhesive Tapes (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a safe and stable production process of a polyimide resin having a silicone backbone structure with a high molecular weight, and also to provide a polyimide resin obtained by the same. <P>SOLUTION: The production process of a polyimide resin comprises dehydration-condensing a diamine component, which includes a silicone type of diamine having a specific structure and/or a silicone type of acid dianhydride having a specific structure, and a tetracarboxylic acid dianhydride component. The process include the steps of a heat dehydration-condensation process which is performed by mixing (a) mole of a tetracarboxylic acid dianhydride component and b mol of a diamine component in the molar ratio of 1.03 ≤a/b≤1.10 until the molecular weight of the product does not further increase, and successive molecular weight controlling process, adding c mol of an aromatic diamine to the above reaction solution in the range of 1.00≤a/(b+c)≤1.03 at ≤ 80°C. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、溶剤可溶性を有し、産業上の利用範囲の広いシリコーン構造を主鎖にもつポリイミド樹脂の製造方法、及びその製造方法で得られるポリイミド樹脂、該ポリイミド樹脂とエポキシ樹脂からなる接着性樹脂組成物、並びにそれをフィルム状に加工したフィルム状接着剤に関する。
なお、本発明における「ポリイミド」とは、一部ポリイミドの前駆体であるアミド酸構造が残るものも含む。
【0002】
【発明の技術的背景】
シリコーン構造を主鎖にもつポリイミド樹脂は、溶剤溶解性を示し(特開平05−331284号公報など)、低Tg(ガラス転移温度)化が進むので、より低温で接着できる性質(以下これを低温接着性と呼ぶ。)を要求される接着剤分野において利用価値が高い。
【0003】
このようなポリイミド樹脂は、ジアミン成分とテトラカルボン酸二無水物成分とを脱水縮合して得られる。ポリイミド樹脂の製造方法には、溶剤中で両成分を加熱し、系外へ縮合水を共沸排出する熱イミド化による方法、触媒や脱水剤を併用してより低温でイミド化する化学イミド化による方法、前駆体のアミド酸をフィルム状にキャストし加熱乾燥することでイミド化する方法などが知られている。なかでも熱イミド化による方法は、触媒などの不要成分を除く必要も無く、加工性の良いポリイミドワニスが得られるので広く利用されている。
【0004】
しかし、シリコーン構造を多く含むポリイミド樹脂は、有機溶剤中、縮合水の共沸温度でこの熱イミド化を実施すると、分子量が上がるに従い著しい発泡を起こし、液が系外に出てしまうなどの問題を生じ、反応終点を制御するのが困難であった。
【0005】
【発明が解決しようとする課題】
本発明は、上記問題点を解決し、シリコーン構造を主鎖にもつ高分子量のポリイミド樹脂を安全安定に製造する方法およびそれにより得られるポリイミド樹脂を提供することを課題とする。
【0006】
【課題を解決するための手段】
本発明のポリイミド樹脂の製造方法は、▲1▼下記式(1)のジアミンおよび/または下記式(2)のテトラカルボン酸二無水物を含む、ジアミン成分とテトラカルボン酸二無水物成分とを、溶剤中で脱水縮合してポリイミド樹脂を得る方法において、まず、テトラカルボン酸二無水物成分aモルとジアミン成分bモルとを1.03≦a/b≦1.10のモル比の範囲で混合して加熱脱水縮合し、分子量が上がらなくなるまで反応させる工程(以後この工程を1段目と言うことがある。)と、次いで80℃以下の温度で、該反応液に芳香族ジアミンcモルを1.00≦a/(b+c)≦1.03の範囲で添加して反応させ、分子量を制御する工程(以後この工程を2段目と言うことがある。)とを含むことを特徴とする。
【0007】
【化3】

Figure 2004359874
(上式中、R1、R6は二価の炭素数1〜4の脂肪族基または芳香族基を表し、R2〜R5は一価の脂肪族基または芳香族基を表し、nは1〜50の整数である。)
【0008】
【化4】
Figure 2004359874
(上式中、R7、R12は3価の炭素数1〜4の脂肪族基または芳香族基を表し、R8〜R11は一価の脂肪族基または芳香族基を表し、nは1〜50の整数である。)
【0009】
▲2▼テトラカルボン酸二無水物成分とジアミン成分とを加熱脱水縮合してポリイミド樹脂を得る前記工程において、溶剤を系外に蒸発排出するとともに溶剤を補給することにより、前記式(1)のジアミンや前記式(2)のテトラカルボン酸二無水物に不純物として含まれる環状シリコーンを溶剤とともに系外に蒸発排出することは、本発明の製造方法の好ましい態様である。
【0010】
▲3▼本発明により前記▲1▼または▲2▼に記載の方法で製造したポリイミド樹脂が提供される。
【0011】
▲4▼また、本発明により前記▲3▼に記載のポリイミド樹脂と、該ポリイミド樹脂100質量部に対して1〜200質量部のエポキシ樹脂とを主たる成分として含有する接着性樹脂組成物が提供される。
【0012】
▲5▼さらに、本発明により前記▲4▼に記載の接着性樹脂組成物を用いてなるフィルム状接着剤が提供される。
【0013】
【発明の実施の形態】
本発明のポリイミド樹脂の製造方法は、シリコーン構造を有する下記式(1)で表されるジアミン(以下シリコーン系ジアミンと言うことがある。)、
【化5】
Figure 2004359874
(上式中、R1、R6は二価の炭素数1〜4の脂肪族基または芳香族基を表し、R2〜R5は一価の脂肪族基または芳香族基を表し、nは1〜50の整数である。)
【0014】
および/または下記式(2)で表されるテトラカルボン酸二無水物(以下シリコーン系酸二無水物と言うことがある。)を含む、
【化6】
Figure 2004359874
(上式中、R7、R12は3価の炭素数1〜4の脂肪族基または芳香族基を表し、R8〜R11は一価の脂肪族基または芳香族基を表し、nは1〜50の整数である。)
ジアミン成分とテトラカルボン酸二無水物成分とを、溶剤中で脱水縮合することからなる。
【0015】
シリコーン構造をもつ上記モノマーのシリコーン鎖長や添加割合によりポリイミド樹脂物性は大きく変化する。シリコーン構造繰り返し単位の数nは、1〜50の整数の中で選択される。nが20を超えて多くなると応力緩和能を発現でき低Tg化はできるが、接着性が低下する傾向にある。nが10前後では適度な接着性が維持され応力緩和もできる。nが1程度になると強い接着性が発現するが、長鎖のものほどには低Tg化ができない。ポリイミド樹脂物性は、シリコーン構造をもつ上記モノマーの添加モル数とシリコーン構造繰り返し単位の数で影響を受けるため、使用目的に沿った接着強度やTgになるようシリコーン構造含有モノマーや、他に加えるモノマーを選択してポリイミド樹脂を設計することが望ましい。
【0016】
長鎖シリコーンには、アミン共存下で切断され環状シリコーンを生成する平衡反応が起るので、シリコーン系ジアミンには環状シリコーンが含まれている。また、熱イミド化の初期課程においてもシリコーン含有モノマーがアミンの共存下で加熱されるので、環状シリコーンが生成しうる。これらの環状シリコーンは、比較的蒸気圧が低く、加熱により揮散し、ポリイミド樹脂を接着剤として用いた場合には周辺部材表面に吸着し接着阻害などを引き起こすので、ポリイミド樹脂から環状シリコーンを除くことが好ましい。
【0017】
この方法として、蒸気圧の高い環状シリコーンをポリイミド樹脂の生成時の反応溶液から蒸発させて除去することが有効である。環状シリコーンとしては、下記式のような3から6個のシリコン原子を含む構造のものが知られている。
【0018】
【化7】
Figure 2004359874
【0019】
本発明のポリイミド樹脂の製造においては、ジアミン成分として、前記式(1)のジアミン以外に以下に挙げるような脂肪族、芳香族ジアミンをモノマーとして用いてもよい。
【0020】
例えば、1,2−ジアミノエタン、1,3−ジアミノプロパン、1,4−ジアミノブタン、1,5−ジアミノペンタン、1,6−ジアミノヘキサン、1,7−ジアミノヘプタン、1,8−ジアミノオクタン、1,9−ジアミノノナン、1,10−ジアミノデカン、1,11−ジアミノウンデカン、1,12−ジアミノドデカン等の脂肪族ジアミン;o−フェニレンジアミン、m−フェニレンジアミン、p−フェニレンジアミン、3,3’−ジアミノジフェニルエーテル、3,4’−ジアミノジフェニルエーテル、4,4’−ジアミノジフェニルエーテル、3,3’−ジアミノジフェニルメタン、3,4’−ジアミノジフェニルメタン、4,4’−ジアミノジフェニルメタン、3,3’−ジアミノジフェニルジフルオロメタン、3,4’−ジアミノジフェニルジフルオロメタン、4,4’−ジアミノジフェニルジフルオロメタン、3,3’−ジアミノジフェニルスルホン、3,4’−ジアミノジフェニルスルホン、4,4’−ジアミノジフェニルスルホン、3,3’−ジアミノジフェニルスルフイド、3,4’−ジアミノジフェニルスルフイド、4,4’−ジアミノジフェニルスルフイド、3,3’−ジアミノジフェニルケトン、3,4’−ジアミノジフェニルケトン、4,4’−ジアミノジフェニルケトン、2,2−ビス(3−アミノフェニル)プロパン、2,2’−(3,4’−ジアミノジフェニル)プロパン、2,2−ビス(4−アミノフェニル)プロパン、2,2−ビス(3−アミノフェニル)ヘキサフルオロプロパン、2,2−(3,4’−ジアミノジフェニル)ヘキサフルオロプロパン、2,2−ビス(4−アミノフェニル)ヘキサフルオロプロパン、1,3−ビス(3−アミノフェノキシ)ベンゼン、1,4−ビス(3−アミノフェノキシ)ベンゼン、1,4−ビス(4−アミノフェノキシ)ベンゼン、3,3’−(1,4−フェニレンビス(1−メチルエチリデン))ビスアニリン、3,4’−(1,4−フェニレンビス(1−メチルエチリデン))ビスアニリン、4,4’−(1,4−フェニレンビス(1−メチルエチリデン))ビスアニリン、2,2−ビス(4−(3−アミノフェノキシ)フェニル)プロパン、2,2−ビス(4−(4−アミノフェノキシ)フェニル)プロパン、2,2−ビス(4−(3−アミノフェノキシ)フェニル)ヘキサフルオロプロパン、2,2−ビス(4−(4−アミノフエノキシ)フエニル)ヘキサフルオロプロパン、ビス(4−(3−アミノフェノキシ)フェニル)スルフイド、ビス(4−(4−アミノフェノキシ)フェニル)スルフイド、ビス(4−(3−アミノフェノキシ)フェニル)スルホン、ビス(4−(4−アミノフェノキシ)フェニル)スルホン、3,3’−ジメトキシ−4,4’−ジアミノビフェニル、4,4’−メチレン−ビス(2,6−ジエチルアニリン)、o−トリジンスルホン、1,4−ビス(4−アミノフェノキシ)ベンゼン、4,4−メチレン−ビス(2,6−ジイソプロピルアニリン)、4,4’−ビス(4−アミノフェノキシ)ビフェニル、1,1−ビス(4−(4−アミノフェノキシ)フェニル)シクロヘキサン等の芳香族ジアミンを挙げることができる。これらは、1種類単独でも、2種類以上を混合しても使用できる。
【0021】
本発明のポリイミド樹脂の製造においては、テトラカルボン酸二無水物として、前記式(2)のテトラカルボン酸二無水物以外に以下に挙げるようなテトラカルボン酸二無水物をモノマーとして用いてもよい。
【0022】
例えば、ピロメリット酸二無水物、3,3’,4,4’−ジフェニルテトラカルボン酸二無水物、2,2’,3,3’−ジフェニルテトラカルボン酸二無水物、2,2−ビス(3,4−ジカルボキシフェニル)プロパン二無水物、2,2−ビス(2,3−ジカルボキシフェニル)プロパン二無水物、1,1−ビス(2,3−ジカルボキシフェニル)エタン二無水物、1,1−ビス(3,4−ジカルボキシフェニル)エタン二無水物、ビス(2,3−ジカルボキシフェニル)メタン二無水物、ビス(3,4−ジカルボキシフェニル)メタン二無水物、ビス(3,4−ジカルボキシフェニル)スルホン二無水物、3,4,9,10−ペリレンテトラカルボン酸二無水物、ビス(3,4−ジカルボキシフェニル)エーテル二無水物、ベンゼン−1,2,3,4−テトラカルボン酸二無水物、3,4,3’,4’−ベンゾフェノンテトラカルボン酸二無水物、2,3,2’,3−ベンゾフェノンテトラカルボン酸二無水物、2,3,3’,4’−ベンゾフェノンテトラカルボン酸二無水物、1,2,5,6−ナフタレンテトラカルボン酸二無水物、2,3,6,7−ナフタレンテトラカルボン酸二無水物、1,2,4,5−ナフタレン−テトラカルボン酸二無水物、1,4,5,8−ナフタレン−テトラカルボン酸二無水物、2,6−ジクロルナフタレン−1,4,5,8−テトラカルボン酸二無水物、2,7−ジクロルナフタレン−1,4,5,8−テトラカルボン酸二無水物、2,3,6,7−テトラクロルナフタレン−1,4,5,8−テトラカルボン酸二無水物、フエナンスレン−1,8,9,10−テトラカルボン酸二無水物、ピラジン−2,3,5,6−テトラカルボン酸二無水物、チオフエン−2,3,4,5−テトラカルボン酸二無水物、2,3,3’,4’−ビフェニルテトラカルボン酸二無水物、3,4,3’,4’−ビフェニルテトラカルボン酸二無水物、2,3,2’,3’−ビフェニルテトラカルボン酸二無水物、ビス(3,4−ジカルボキシフェニル)ジメチルシラン二無水物、ビス(3,4−ジカルボキシフェニル)メチルフェニルシラン二無水物、ビス(3,4−ジカルボキシフェニル)ジフェニルシラン二無水物、1,4−ビス(3,4−ジカルボキシフェニルジメチルシリル)ベンゼン二無水物、1,3−ビス(3,4−ジカルボキシフェニル)−1,1,3,3−テトラメチルジシクロヘキサン二無水物、p−フェニルビス(トリメリット酸モノエステル酸無水物)、エチレンテトラカルボン酸二無水物、1,2,3,4−ブタンテトラカルボン酸二無水物、デカヒドロナフタレン−1,4,5,8−テトラカルボン酸二無水物、4,8−ジメチル−1,2,3,5,6,7−ヘキサヒドロナフタレン−1,2,5,6−テトラカルボン酸二無水物、シクロペンタン−1,2,3,4−テトラカルボン酸二無水物、ピロリジン−2,3,4,5−テトラカルボン酸二無水物、1,2,3,4−シクロブタンテトラカルボン酸二無水物、ビス(エキソ−ビシクロ〔2,2,1〕ヘプタン−2,3−ジカルボン酸無水物)スルホン、ビシクロ−(2,2,2)−オクト(7)−エン2,3,5,6−テトラカルボン酸二無水物、2,2−ビス(3,4−ジカルボキシフェニル)ヘキサフルオロプロパン二無水物、2,2−ビス〔4−(3,4−ジカルボキシフェノキシ)フェニル〕ヘキサフルオロプロパン二無水物、4,4’−ビス(3,4−ジカルボキシフェノキシ)ジフェニルスルフイド二無水物、1,4−ビス(2−ヒドロキシヘキサフルオロイソプロピル)ベンゼンビス(トリメリット酸無水物)、1,3−ビス(2−ヒドロキシヘキサフルオロイソプロピル)ベンゼンビス(トリメリット酸無水物)、5−(2,5−ジオキソテトラヒドロフリル)−3−メチル−3−シクロヘキセン−1,2−ジカルボン酸無水物、テトラヒドロフラン−2,3,4,5−テトラカルボン酸二無水物、エチレングリコールビストリメリテート二無水物等が挙げられる。これらは、1種類単独でも、2種類以上を混合しても使用できる。
【0023】
本発明のポリイミド樹脂の製造方法では、まず、前記式(1)のジアミンおよび/または前記式(2)のテトラカルボン酸二無水物を含む、ジアミン成分bモルとテトラカルボン酸二無水物成分aモルとを1.03≦a/b≦1.10のモル比の範囲で混合して加熱脱水縮合し、分子量が上がらなくなるまで反応させる。
【0024】
この工程でのテトラカルボン酸二無水物とジアミンの脱水縮合反応は公知の方法であり、有機溶剤中で行うことができる。この場合、テトラカルボン酸二無水物成分とジアミン成分のモル比は、上記の範囲内でジアミン成分を少なめに加えることが好ましい。これにより終点でのポリイミド鎖長が短くなり、等モルで仕込んだ場合の分子量増加、増粘に伴なう著しい発泡を起こさずに1段目の終点に至ることができる。1段目の仕込みの酸、アミン比は、当該組成において、上記の範囲で等モルに近い値に設定すると、2段目終了時のアミド酸割合を低下させることができるので好ましい。各成分の添加順序は任意である。
【0025】
用い得る有機溶媒としては、ジメチルアセトアミド、ジメチルホルムアミド、N−メチル−2−ピロリドン、ジメチルスルホキシド、ヘキサメチルホスホリルアミド、m−クレゾール、o−クロルフェノール等があげられる。
【0026】
脱水反応で生じる水を系外に除去しながら行うことが好ましく、その際、ベンゼン、トルエン、キシレン、メシチレン等を用いて水を共沸除去するとよい。この際には、共沸溶媒を満たしたディーン・スターク管を使って共沸溶媒を還流させることが好ましい。
【0027】
1段目において、ポリイミド系樹脂の前駆体であるポリアミド酸を、反応温度80℃以下、好ましくは0〜50℃で生成してから、昇温して熱イミド化を行ってもよいし、酸、アミド成分を混合後すぐに昇温して熱イミド化を行っても良い。脱水閉環は120℃〜250℃で熱処理するのがよく、上限温度は溶剤の共沸温度、ポリイミドの熱分解温度などを考慮して決められる。一般に高温であるほどイミド化は早く進むが、系内に水が存在すると加水分解も進むので、この平衡をイミド化の方向に進めるには、迅速な系外への水の排出が有効である。また系内の粘度が許す範囲で、高めの固形分濃度で反応すると反応の進行が早い。前記したように、アミン末端はシリコーン鎖を切断することがあるので、1段目の反応は酸過剰の状態で反応物が酸末端となるように反応させることが好ましい。
【0028】
1段目の重合が十分進むと分子量がそれ以上上がらなくなる。ここを1段目の終点として、反応系を冷却する。分子量は、GPCでのピーク位置、標準高分子換算の分子量、希釈溶液をウベローデ粘度計で測定することで求められる固有粘度などで評価することができる。
【0029】
2段目は公知のアミック酸重合プロセスに従い、反応系内を温度80℃以下、好ましくは0〜60℃で芳香族ジアミンを添加、撹拌し、目的の分子量まで重合を進める。2段目では分子量が上がるので、必要に応じ脱水した溶剤を添加して希釈するとよい。2段目で添加するジアミンを芳香族ジアミンにすると、アミック酸の安定性が良く、分子量の経時的な低下を防ぐことができる。分子量は、1段目と同様な方法により評価することができる
【0030】
このようにして得られた一部アミド酸の残ったイミドワニスは、例えばコート乾燥し、接着剤として用いることができる。乾燥時に残ったアミド酸は、温度、時間、湿度などの条件を調節してイミド閉環させることが可能である。また、乾燥で150℃まで加熱できれば乾燥と同時にイミド閉環もできる。ポリイミド樹脂単独でも熱可塑性接着剤として有用であり、大幅にTgを落とすことができれば、粘着剤として用いることもできる。
【0031】
ポリイミド樹脂に、熱硬化性樹脂好ましくはエポキシ樹脂、およびエポキシ樹脂硬化剤を含有させて得られる樹脂組成物は、熱硬化に伴なう架橋密度の向上により耐熱性のある接着性樹脂組成物として有用である。ここで、エポキシ樹脂の含有量は、ポリイミド樹脂100質量部に対して、好ましくは1〜200質量部、より好ましくは5〜100質量部の範囲で用いることが、耐熱性に優れ、接着時の流動性も適当で好ましい。接着性樹脂組成物の流動特性は、ポリイミド樹脂の分子量、エポキシ樹脂の種類および添加量以外にも、後で述べるフィラーなどの添加剤によっても調整可能である。
【0032】
エポキシ樹脂は、さまざまな構造のものが市販されており産業上の利用範囲も広く、その硬化剤と組み合わせることで適度な硬化条件を実現でき、架橋密度なども配合によりコントロールできる面で好ましい。
【0033】
好適なエポキシ樹脂としては、分子内に少なくとも2個のエポキシ基を含むものであれば特に限定されない。例えばフェノールのグリシジルエーテル型のエポキシ樹脂として、ビスフェノールA、ビスフェノールAD、ビスフェノールS、ビスフェノールFもしくはハロゲン化ビスフェノールAとエピクロルヒドリンの縮合物、フェノールノボラック樹脂のグリシジルエーテル、クレゾールノボラック樹脂のグリシジルエーテル、ビスフェノールAノボラック樹脂のグリシジルエーテル、ジシクロペンタジエン変成フェノールノボラック樹脂のグリシジルエーテル、ビフェニル型エポキシ樹脂等が挙げられる。また、シリコーン構造を多く含むポリイミド樹脂との相溶性という面では、グリシジル変成シリコーンも好ましい。
【0034】
熱硬化性樹脂としてエポキシ樹脂を用いた場合、本発明の樹脂組成物には、さらにエポキシ樹脂硬化剤を用いることが好ましい。エポキシ樹脂硬化剤としては、エポキシ樹脂と反応性を有し、エポキシ樹脂を硬化させることができる化合物であれば特に限定されるものではない。代表的例として、フェノール系硬化剤、アミン系硬化剤、酸無水物系硬化剤、イミダゾール類などが挙げられる。
【0035】
エポキシ樹脂とシリコーン変成ポリイミド樹脂との組み合わせ自体は公知なものであるが、本発明の樹脂組成物は、従来には見られない優れた保存安定性を有する。一般のエポキシ樹脂と硬化剤を1液に組み合わせた接着剤では、硬化反応が徐々に進行し増粘する。流動特性に制限のある接着剤用途では、この増粘により制限範囲からはずれたものは期限切れとなり廃棄される。そのため種々の潜在性硬化剤が開発されてはいるが、マイクロカプセルを利用したものなどでも対溶剤性、機械強度に難点があり、冷凍保存以外ではなかなか有効な保存方法がみいだせていないのが実状である。
【0036】
ところが、本発明では、ある程度潜在性を有する硬化系である特定のポリイミド樹脂と組み合わせたことにより、硬化系の増粘と、アミド酸の分解とをうまくバランスさせることができ、接着剤全体の溶融特性を常温で数ヶ月以上の長期間維持させることができる。また、アミド酸が加水分解しても、末端はエポキシと反応可能な官能基であるため、硬化後の物性には変化は認められない。このような特徴を生かして、長期常温保管可能な熱硬化性樹脂組成物としても産業上の利用範囲は広い。
【0037】
本発明で用いる接着性樹脂組成物には、必要に応じ無機物質フィラーを配合してもよい。フィラーは、接着性樹脂組成物に低熱膨張性、低吸湿性、高弾性、高熱伝導性、溶融粘度向上などの特性を付与する。またフィルム状接着剤の強度向上にも寄与する。フィラーとしては例えば、シリカ、アルミナ、窒化ケイ素、窒化アルミ、窒化ホウ素、チタニア、ガラス、酸化鉄、セラミック等の無機絶縁体が挙げられる。これらは、単独又は2種以上混合して用いことができる。また、電気伝導性を付与するために、金属などの導電性粒子や、異方導電粒子を添加しても良い。
【0038】
無機物質フィラーの配合量は、フィラーによって比重が異なるので、体積%で表すと、樹脂組成物全体に対して好ましくは0〜70体積%、より好ましくは0〜30体積%である。この範囲内であれば、接着性が良好に保たれる。
【0039】
さらに、本発明の樹脂組成物には、必要に応じ、本発明の目的を損ねない範囲で、シランカップリング剤、チタン系カップリング剤等のカップリング剤を適宜加えてもよい。カップリング剤は被着体やフィラーとの接着界面における接着強度の向上に寄与する。
【0040】
本発明の接着性樹脂組成物は、上記ポリイミド系樹脂、熱硬化性樹脂好ましくはエポキシ樹脂、加えてエポキシ樹脂硬化剤などを溶剤に溶解撹拌し、ワニス状にして用いることができる。ここで用いられる有機溶媒としては、上記材料を均一に溶解又は混練できるものであれば特に制限はなく、そのようなものとしては、例えば、ジメチルホルムアミド、ジメチルアセトアミド、N−メチルピロリドン、ジメチルスルホキシド、ジエチレングリコールジメチルエーテル、トルエン、ベンゼン、キシレン、メチルエチルケトン、テトラヒドロフラン、エチルセロソルブ、エチルセロソルブアセテート、ブチルセロソルブ、ジオキサン等が挙げられる。
【0041】
次いで、必要に応じ、無機物質フィラー及び添加剤等を加え混合する。この場合、通常の攪拌機、らいかい機、三本ロール、ボールミル、ビーズミルなどの分散機を適宜組み合せて、混練を行ってもよい。
【0042】
このようにして得られたワニス、あるいはペースト状の樹脂組成物はディスペンスしたり、スクリーン印刷したりして使うこともできる。また、フィルム状に成形してフィルム状接着剤として利用することもできる。
【0043】
フィルム状接着剤の製造法としては、上記のワニスもしくはペースト状混合物を、例えばシリコーン系樹脂で表面処理し、剥離特性のよいPET(ポリエチレンテレフタレート)シート等のベースフィルム上に均一に塗布し、使用した溶媒が充分に揮散する条件、すなわち、おおむね60〜200℃の温度で、1〜30分間加熱し、単層フィルム状接着剤を得る方法が挙げられる。
【0044】
また、耐熱性のコアフィルムや金属箔などの支持フィルムの片面もしくは両面に、上記のワニスもしくはペースト状混合物をコートし、加熱乾燥し溶剤を蒸発させ、フィルム状接着剤を作ってもよい。フィルム状接着剤の製法は上記手法に限定されるものではない。
【0045】
本発明で得られたフィルム状接着剤は、低温接着可能で耐熱性があるという特性から、電子材料分野の例えば回路基板の銅箔と基材樹脂の接着や、半導体パッケージの半導体素子とその支持部材との接着などに好適に使うことができる。
【0046】
【実施例】
(反応例1)
温度計、攪拌機、メシチレンを満たしたディーンスターク管、窒素吹き込み管を備えた300mlの五つ口フラスコに、1,3−ビス(3−アミノフェノキシ)ベンゼン(APB)9.133g、シリコーン系ジアミン(α,ω−ビス(3−アミノプロピル)ポリジメチルシロキサン(APPS)、アミン価460)36.586g、4,4’−オキシジフタル酸二無水物(ODPA)16.852g、エチレングリコールビストリメリット酸二無水物(EGTA)7.430g、N−メチル−2−ピロリドン(NMP)91g、メシチレン39gをとり(テトラカルボン酸二無水物/ジアミン(モル比)=1.02)、窒素ガスを吹き込みながら反応系を油浴で170〜180℃に加熱し、水を共沸除去しながら14時間保持し、ポリイミド樹脂ワニス(P−1)を得た。170〜180℃に加熱してから7時間経過以降、徐々に発泡が顕著になり、8時間以降はフラスコ全体が泡で満たされた状態になった。
【0047】
(反応例2)
温度計、攪拌機、メシチレンを満たしたディーンスターク管、窒素吹き込み管を備えた300mlの五つ口フラスコに、APB8.303g、APPS36.586g、ODPA16.852g、EGTA7.430g、NMP91g、メシチレン39gをとり(テトラカルボン酸二無水物/ジアミン(モル比)=1.06)、窒素ガスを吹き込みながら反応系を油浴で170〜180℃に加熱し、水を共沸除去しながら14時間保持した。続いて、60℃まで冷却後、APBの0.830gを加え(添加芳香族ジアミンを加えたテトラカルボン酸二無水物/ジアミン(モル比)=1.02)、窒素フロー下3時間撹拌を続けてポリイミド系樹脂ワニス(P−2)を得た。
【0048】
(反応例3)
温度計、攪拌機、メシチレンを満たしたディーンスターク管、窒素吹き込み管を備えた300mlの五つ口フラスコに、APB8.303g、APPS36.586g、ODPA16.852g、EGTA7.430g、NMP91g、メシチレン39gをとり(テトラカルボン酸二無水物/ジアミン(モル比)=1.06)、窒素ガスを吹き込みながら系を油浴で170〜180℃に加熱し、水を共沸除去しながら14時間保持した。その間、3時間おきにディーンスターク管のメシチレンを新しいものと置換して、トータルで130g溶剤を置換し、環状シリコーンを低減させた。続いて、60℃まで冷却後、APBの0.830gを加え(添加芳香族ジアミンを加えたテトラカルボン酸二無水物/ジアミン(モル比)=1.02)、窒素フロー下3時間撹拌を続けてポリイミド系樹脂ワニス(P−3)を得た。
【0049】
反応例1,2,3の原料組成比(モル比)、および反応させたテトラカルボン酸二無水物成分とジアミン成分のモル比を酸/アミンとして表1に示す。仕込みの固形分は35質量%とした(シリコーン系ジアミンは固形分として計算)。
【0050】
【表1】
Figure 2004359874
【0051】
反応例1,2,3で得られたのポリイミド系樹脂ワニスを、固形分含有量を測定後、ウベローデ粘度計で、35℃、NMP溶液中濃度0.5質量%にて測定した固有粘度を表2にまとめた。反応例1では発泡の影響もあり分子量が十分に上がりきっていないことがわかる。
【表2】
Figure 2004359874
【0052】
反応例3で、環状シリコーン量をガスクロで追跡した結果を表3に示した。検量線は4量体(式3)で作成し、検出した蒸気圧の高い3量体(式4)、4量体をポリマー質量あたりの濃度(ppm)に換算して定量し比較した。溶剤の置換により大幅に環状シリコーン量を低減できることが確認できた。
【0053】
【化8】
Figure 2004359874
【0054】
【化9】
Figure 2004359874
【0055】
【表3】
Figure 2004359874
【0056】
反応例1および反応例3で得られたポリイミド系樹脂ワニスP−1、P−3のそれぞれ100質量部に、エポキシ樹脂(三井化学(株)製テクモア(登録商標)VG3101L)20質量部、エポキシ硬化剤(四国化成工業(株)製キュアゾール(登録商標)2MAOK−PW)0.5質量部を撹拌、分散して配合ワニスを調製し、表面シリコーン処理したPET(ポリエチレンテレフタレート)フィルム(帝人デュポンフィルム(株)製A31、厚さ50μm)にコートし、90℃20分間熱風乾燥機で乾燥して25μm厚のフィルム状接着剤を得た。
【0057】
これらのフィルム状接着剤の溶融粘度変化を調べるため、PETフィルムから剥離したフィルム状接着剤を0.5mm厚に重ねてプレスした成形体を作成し、40、55、70℃の加熱環境下に放置して、溶融粘度変化を調べた。溶融粘度はレオメトリクス社の固体粘弾性測定装置(ねじり)にて6℃/分の昇温速度で測定し、120℃での初期の溶融粘度と、40℃、55℃、70℃で放置後の溶融粘度との比で、硬化の進行度合を比較した。その結果を、ポリイミド系樹脂ワニスP−1を用いて得られたフィルム状接着剤(F−1)について図1に、P−3を用いて得られたフィルム状接着剤(F−3)について図2に示す。図1では単調増加したが、図2では粘度低下もみられ、F−1に比較してF−3の見かけの溶融粘度変化が長期に渡って小さいことが認められた。
【0058】
次に、半導体素子を基板に接着する際の接着剤用途を考慮して、フィルム状接着剤F−1、F−3の耐熱接着強度を評価した。5mm角のシリコン片とソルダーレジストを全面にコートしたBT基板の間にフィルム状接着剤をはさみ、150℃、250g荷重、1s接着後、180℃、10kg荷重、1分間押し、次いで無荷重で180℃3時間硬化させた試験片を作成し、260℃でのせん断接着強度の測定をダイシアテスター(西進商事(株)製SS−30W)により測定回数5回で行い、その平均値を表7に示した。
【0059】
【表4】
Figure 2004359874
【0060】
【発明の効果】
本発明の製造方法により、シリコーン構造を主鎖にもつ高分子量のポリイミド樹脂を安全安定に製造することができ、これにより得られたポリイミド樹脂とエポキシ樹脂を含有する接着性樹脂組成物を用いてなるフィルム状接着剤は、低温接着可能で耐熱性があるので、回路基板の銅箔と基材樹脂の接着や、半導体パッケージの半導体素子とその支持部材との接着などに好適に使うことができる。
【図面の簡単な説明】
【図1】反応例1のポリイミド系樹脂ワニスを用いて得られたフィルム状接着剤の溶融粘度変化の測定結果を示すグラフである。
【図2】反応例3のポリイミド系樹脂ワニスを用いて得られたフィルム状接着剤の溶融粘度変化の測定結果を示すグラフである。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention has a solvent solubility, a method for producing a polyimide resin having a silicone structure in the main chain having a wide range of industrial applications, and a polyimide resin obtained by the production method, and an adhesive property comprising the polyimide resin and the epoxy resin. The present invention relates to a resin composition and a film adhesive obtained by processing the resin composition into a film.
The term “polyimide” in the present invention includes those in which an amic acid structure, which is a precursor of polyimide, partially remains.
[0002]
TECHNICAL BACKGROUND OF THE INVENTION
Polyimide resins having a silicone structure in the main chain exhibit solvent solubility (Japanese Unexamined Patent Publication No. 05-331284, etc.) and have a lower Tg (glass transition temperature). It is highly useful in the field of adhesives that require adhesiveness.
[0003]
Such a polyimide resin is obtained by dehydrating and condensing a diamine component and a tetracarboxylic dianhydride component. The method of producing polyimide resin includes a method of heating both components in a solvent and azeotropically discharging condensed water to the outside of the system, and a chemical imidization of imidizing at a lower temperature by using a catalyst and a dehydrating agent together. And a method of casting a precursor amic acid into a film and drying by heating to imidize the amic acid. Among them, the method using thermal imidization is widely used because it is not necessary to remove unnecessary components such as a catalyst and a polyimide varnish having good workability can be obtained.
[0004]
However, polyimide resin containing a large amount of silicone structure, when this thermal imidization is carried out in an organic solvent at the azeotropic temperature of condensed water, causes remarkable foaming as the molecular weight increases, causing the liquid to go out of the system. And it was difficult to control the reaction end point.
[0005]
[Problems to be solved by the invention]
An object of the present invention is to solve the above problems and to provide a method for safely and stably producing a high-molecular-weight polyimide resin having a silicone structure in the main chain, and a polyimide resin obtained by the method.
[0006]
[Means for Solving the Problems]
The method for producing a polyimide resin of the present invention comprises: (1) a diamine component containing a diamine of the following formula (1) and / or a tetracarboxylic dianhydride of the following formula (2) and a tetracarboxylic dianhydride component: In a method of obtaining a polyimide resin by dehydration-condensation in a solvent, first, a mole of tetracarboxylic dianhydride component and b mole of diamine component are mixed in a molar ratio of 1.03 ≦ a / b ≦ 1.10. Mixing, dehydrating and condensing under heating, and reacting until the molecular weight does not increase (hereinafter, this step may be referred to as the first step); In the range of 1.00 ≦ a / (b + c) ≦ 1.03 to control the molecular weight (hereinafter, this step may be referred to as a second step). I do.
[0007]
Embedded image
Figure 2004359874
(In the above formula, R1 and R6 represent a divalent aliphatic group having 1 to 4 carbon atoms or an aromatic group, R2 to R5 represent a monovalent aliphatic group or an aromatic group, and n represents 1 to 50. Is an integer.)
[0008]
Embedded image
Figure 2004359874
(In the above formula, R7 and R12 represent a trivalent aliphatic group or an aromatic group having 1 to 4 carbon atoms, R8 to R11 represent a monovalent aliphatic group or an aromatic group, and n represents 1 to 50. Is an integer.)
[0009]
{Circle around (2)} In the step of heating and dehydrating and condensing the tetracarboxylic dianhydride component and the diamine component to obtain a polyimide resin, by evaporating and discharging the solvent out of the system and replenishing the solvent, the formula (1) It is a preferred embodiment of the production method of the present invention that the diamine or the cyclic silicone contained as an impurity in the tetracarboxylic dianhydride of the formula (2) is evaporated out of the system together with a solvent.
[0010]
(3) The present invention provides a polyimide resin produced by the method described in (1) or (2).
[0011]
(4) Further, according to the present invention, there is provided an adhesive resin composition containing, as main components, the polyimide resin described in (3) and 1 to 200 parts by mass of an epoxy resin based on 100 parts by mass of the polyimide resin. Is done.
[0012]
(5) Further, the present invention provides a film adhesive using the adhesive resin composition described in (4).
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
In the method for producing a polyimide resin of the present invention, a diamine having a silicone structure and represented by the following formula (1) (hereinafter sometimes referred to as a silicone-based diamine):
Embedded image
Figure 2004359874
(In the above formula, R1 and R6 represent a divalent aliphatic group having 1 to 4 carbon atoms or an aromatic group, R2 to R5 represent a monovalent aliphatic group or an aromatic group, and n represents 1 to 50. Is an integer.)
[0014]
And / or a tetracarboxylic dianhydride represented by the following formula (2) (hereinafter sometimes referred to as a silicone acid dianhydride).
Embedded image
Figure 2004359874
(In the above formula, R7 and R12 represent a trivalent aliphatic group or an aromatic group having 1 to 4 carbon atoms, R8 to R11 represent a monovalent aliphatic group or an aromatic group, and n represents 1 to 50. Is an integer.)
It consists of dehydrating and condensing a diamine component and a tetracarboxylic dianhydride component in a solvent.
[0015]
The properties of the polyimide resin greatly change depending on the silicone chain length and the addition ratio of the monomer having a silicone structure. The number n of the silicone structural repeating units is selected from integers of 1 to 50. If n exceeds 20, stress relaxation ability can be exhibited and Tg can be reduced, but the adhesiveness tends to decrease. When n is about 10, appropriate adhesiveness is maintained and stress can be relaxed. When n is about 1, strong adhesiveness is exhibited, but Tg cannot be reduced as much as long chains. Since the properties of the polyimide resin are affected by the number of moles of the monomer having a silicone structure and the number of repeating units having a silicone structure, the silicone structure-containing monomer and other monomers to be added so as to obtain an adhesive strength and Tg according to the purpose of use. Is desirably selected to design the polyimide resin.
[0016]
Since an equilibrium reaction occurs in the long-chain silicone which is cleaved in the presence of an amine to form a cyclic silicone, the silicone-based diamine contains a cyclic silicone. Further, even in the initial stage of thermal imidization, the silicone-containing monomer is heated in the presence of the amine, so that a cyclic silicone may be formed. Since these cyclic silicones have a relatively low vapor pressure, volatilize by heating, and when polyimide resin is used as an adhesive, they are adsorbed on the peripheral member surface and cause adhesion inhibition, etc., so remove the cyclic silicone from the polyimide resin. Is preferred.
[0017]
As this method, it is effective to remove the cyclic silicone having a high vapor pressure by evaporating from the reaction solution at the time of producing the polyimide resin. As the cyclic silicone, those having a structure containing 3 to 6 silicon atoms as shown in the following formula are known.
[0018]
Embedded image
Figure 2004359874
[0019]
In the production of the polyimide resin of the present invention, as the diamine component, other than the diamine of the above formula (1), an aliphatic or aromatic diamine described below may be used as a monomer.
[0020]
For example, 1,2-diaminoethane, 1,3-diaminopropane, 1,4-diaminobutane, 1,5-diaminopentane, 1,6-diaminohexane, 1,7-diaminoheptane, 1,8-diaminooctane Aliphatic diamines such as 1,9-diaminononane, 1,10-diaminodecane, 1,11-diaminoundecane and 1,12-diaminododecane; o-phenylenediamine, m-phenylenediamine, p-phenylenediamine, 3, 3'-diaminodiphenyl ether, 3,4'-diaminodiphenyl ether, 4,4'-diaminodiphenyl ether, 3,3'-diaminodiphenylmethane, 3,4'-diaminodiphenylmethane, 4,4'-diaminodiphenylmethane, 3,3 ' -Diaminodiphenyldifluoromethane, 3,4'-diaminodife Rudifluoromethane, 4,4'-diaminodiphenyldifluoromethane, 3,3'-diaminodiphenylsulfone, 3,4'-diaminodiphenylsulfone, 4,4'-diaminodiphenylsulfone, 3,3'-diaminodiphenylsulfone 3,4'-diaminodiphenyl sulfide, 4,4'-diaminodiphenyl sulfide, 3,3'-diaminodiphenyl ketone, 3,4'-diaminodiphenyl ketone, 4,4'-diaminodiphenyl ketone , 2,2-bis (3-aminophenyl) propane, 2,2 '-(3,4'-diaminodiphenyl) propane, 2,2-bis (4-aminophenyl) propane, 2,2-bis (3 -Aminophenyl) hexafluoropropane, 2,2- (3,4'-diaminodiphenyl) hexafluoropropane, 2,2-bis 4-aminophenyl) hexafluoropropane, 1,3-bis (3-aminophenoxy) benzene, 1,4-bis (3-aminophenoxy) benzene, 1,4-bis (4-aminophenoxy) benzene, 3, 3 '-(1,4-phenylenebis (1-methylethylidene)) bisaniline, 3,4'-(1,4-phenylenebis (1-methylethylidene)) bisaniline, 4,4 '-(1,4- Phenylenebis (1-methylethylidene)) bisaniline, 2,2-bis (4- (3-aminophenoxy) phenyl) propane, 2,2-bis (4- (4-aminophenoxy) phenyl) propane, 2,2 -Bis (4- (3-aminophenoxy) phenyl) hexafluoropropane, 2,2-bis (4- (4-aminophenoxy) phenyl) hexafluoro Propane, bis (4- (3-aminophenoxy) phenyl) sulfide, bis (4- (4-aminophenoxy) phenyl) sulfide, bis (4- (3-aminophenoxy) phenyl) sulfone, bis (4- (4 -Aminophenoxy) phenyl) sulfone, 3,3'-dimethoxy-4,4'-diaminobiphenyl, 4,4'-methylene-bis (2,6-diethylaniline), o-tolidine sulfone, 1,4-bis (4-aminophenoxy) benzene, 4,4-methylene-bis (2,6-diisopropylaniline), 4,4′-bis (4-aminophenoxy) biphenyl, 1,1-bis (4- (4-amino And aromatic diamines such as phenoxy) phenyl) cyclohexane. These can be used alone or in combination of two or more.
[0021]
In the production of the polyimide resin of the present invention, as the tetracarboxylic dianhydride, the following tetracarboxylic dianhydride other than the tetracarboxylic dianhydride of the formula (2) may be used as a monomer. .
[0022]
For example, pyromellitic dianhydride, 3,3 ′, 4,4′-diphenyltetracarboxylic dianhydride, 2,2 ′, 3,3′-diphenyltetracarboxylic dianhydride, 2,2-bis (3,4-dicarboxyphenyl) propane dianhydride, 2,2-bis (2,3-dicarboxyphenyl) propane dianhydride, 1,1-bis (2,3-dicarboxyphenyl) ethane dianhydride Product, 1,1-bis (3,4-dicarboxyphenyl) ethane dianhydride, bis (2,3-dicarboxyphenyl) methane dianhydride, bis (3,4-dicarboxyphenyl) methane dianhydride , Bis (3,4-dicarboxyphenyl) sulfone dianhydride, 3,4,9,10-perylenetetracarboxylic dianhydride, bis (3,4-dicarboxyphenyl) ether dianhydride, benzene-1 , 2,3 2,4-tetracarboxylic dianhydride, 3,4,3 ′, 4′-benzophenonetetracarboxylic dianhydride, 2,3,2 ′, 3-benzophenonetetracarboxylic dianhydride, 2,3,3 ', 4'-benzophenonetetracarboxylic dianhydride, 1,2,5,6-naphthalenetetracarboxylic dianhydride, 2,3,6,7-naphthalenetetracarboxylic dianhydride, 1,2,4 1,5-Naphthalene-tetracarboxylic dianhydride, 1,4,5,8-naphthalene-tetracarboxylic dianhydride, 2,6-dichloronaphthalene-1,4,5,8-tetracarboxylic dianhydride Compound, 2,7-dichloronaphthalene-1,4,5,8-tetracarboxylic dianhydride, 2,3,6,7-tetrachloronaphthalene-1,4,5,8-tetracarboxylic dianhydride Thing, fenanthrene-1,8,9, 0-tetracarboxylic dianhydride, pyrazine-2,3,5,6-tetracarboxylic dianhydride, thiophene-2,3,4,5-tetracarboxylic dianhydride, 2,3,3 ′, 4'-biphenyltetracarboxylic dianhydride, 3,4,3 ', 4'-biphenyltetracarboxylic dianhydride, 2,3,2', 3'-biphenyltetracarboxylic dianhydride, bis (3 , 4-Dicarboxyphenyl) dimethylsilane dianhydride, bis (3,4-dicarboxyphenyl) methylphenylsilane dianhydride, bis (3,4-dicarboxyphenyl) diphenylsilane dianhydride, 1,4- Bis (3,4-dicarboxyphenyldimethylsilyl) benzene dianhydride, 1,3-bis (3,4-dicarboxyphenyl) -1,1,3,3-tetramethyldicyclohexane dianhydride, p- H Enylbis (trimellitic acid monoester anhydride), ethylene tetracarboxylic dianhydride, 1,2,3,4-butanetetracarboxylic dianhydride, decahydronaphthalene-1,4,5,8-tetracarboxylic acid Acid dianhydride, 4,8-dimethyl-1,2,3,5,6,7-hexahydronaphthalene-1,2,5,6-tetracarboxylic dianhydride, cyclopentane-1,2,3 , 4-tetracarboxylic dianhydride, pyrrolidine-2,3,4,5-tetracarboxylic dianhydride, 1,2,3,4-cyclobutanetetracarboxylic dianhydride, bis (exo-bicyclo [2 , 2,1] Heptane-2,3-dicarboxylic anhydride) sulfone, bicyclo- (2,2,2) -oct (7) -ene 2,3,5,6-tetracarboxylic dianhydride, 2 , 2-bis (3,4-dica) Boxyphenyl) hexafluoropropane dianhydride, 2,2-bis [4- (3,4-dicarboxyphenoxy) phenyl] hexafluoropropane dianhydride, 4,4′-bis (3,4-dicarboxyphenoxy) Diphenyl sulfide dianhydride, 1,4-bis (2-hydroxyhexafluoroisopropyl) benzenebis (trimellitic anhydride), 1,3-bis (2-hydroxyhexafluoroisopropyl) benzenebis (trimellitic acid) Anhydride), 5- (2,5-dioxotetrahydrofuryl) -3-methyl-3-cyclohexene-1,2-dicarboxylic anhydride, tetrahydrofuran-2,3,4,5-tetracarboxylic dianhydride And ethylene glycol bistrimellitate dianhydride. These can be used alone or in combination of two or more.
[0023]
In the method for producing a polyimide resin of the present invention, first, b mol of a diamine component and a tetracarboxylic dianhydride component a containing a diamine of the formula (1) and / or a tetracarboxylic dianhydride of the formula (2) are included. And a molar ratio of 1.03 ≦ a / b ≦ 1.10. The mixture is heated and dehydrated and condensed, and reacted until the molecular weight does not increase.
[0024]
The dehydration condensation reaction between the tetracarboxylic dianhydride and the diamine in this step is a known method, and can be performed in an organic solvent. In this case, the molar ratio of the tetracarboxylic dianhydride component to the diamine component is preferably within the above range, and the diamine component is preferably added in a small amount. As a result, the polyimide chain length at the end point is shortened, and it is possible to reach the end point of the first step without causing a significant increase in molecular weight and remarkable foaming due to thickening when charged in equimolar amounts. In the composition, the ratio of acid and amine used in the first stage is preferably set to a value close to equimolar in the above range, since the amic acid ratio at the end of the second stage can be reduced. The order of addition of each component is arbitrary.
[0025]
Examples of usable organic solvents include dimethylacetamide, dimethylformamide, N-methyl-2-pyrrolidone, dimethylsulfoxide, hexamethylphosphorylamide, m-cresol, o-chlorophenol and the like.
[0026]
It is preferable to carry out the reaction while removing the water generated by the dehydration reaction out of the system. In this case, it is preferable to azeotropically remove the water using benzene, toluene, xylene, mesitylene or the like. In this case, it is preferable to reflux the azeotropic solvent using a Dean-Stark tube filled with the azeotropic solvent.
[0027]
In the first stage, a polyamic acid which is a precursor of the polyimide resin is generated at a reaction temperature of 80 ° C. or lower, preferably 0 to 50 ° C., and then the temperature may be raised to perform thermal imidization. Immediately after mixing the amide components, the temperature may be raised to perform thermal imidization. The dehydration ring closure is preferably heat-treated at 120 ° C. to 250 ° C., and the upper limit temperature is determined in consideration of the azeotropic temperature of the solvent, the thermal decomposition temperature of the polyimide, and the like. In general, the higher the temperature, the faster the imidization proceeds, but if water is present in the system, the hydrolysis will also proceed. Therefore, in order to advance this equilibrium in the direction of imidization, rapid discharge of water out of the system is effective. . If the reaction is carried out at a higher solid content within the range allowed by the viscosity in the system, the reaction proceeds rapidly. As described above, since the amine terminal may cleave the silicone chain, the first-stage reaction is preferably performed so that the reactant becomes an acid terminal in an excess acid state.
[0028]
When the first-stage polymerization proceeds sufficiently, the molecular weight does not increase any more. The reaction system is cooled using this as the end point of the first stage. The molecular weight can be evaluated by a peak position in GPC, a molecular weight in terms of a standard polymer, an intrinsic viscosity obtained by measuring a diluted solution with an Ubbelohde viscometer, and the like.
[0029]
In the second stage, according to a known amic acid polymerization process, an aromatic diamine is added to the reaction system at a temperature of 80 ° C. or lower, preferably 0 to 60 ° C., and the mixture is stirred to proceed the polymerization to a target molecular weight. Since the molecular weight increases in the second stage, it is advisable to dilute by adding a dehydrated solvent as needed. When the diamine added in the second stage is an aromatic diamine, the stability of the amic acid is good, and the decrease in the molecular weight over time can be prevented. The molecular weight can be evaluated by the same method as in the first stage.
[0030]
The imide varnish partially left with amic acid thus obtained can be used, for example, as an adhesive by coating and drying. The amide acid remaining during drying can be subjected to imide ring closure by adjusting conditions such as temperature, time, and humidity. In addition, if it can be heated to 150 ° C. by drying, imide ring closure can be performed simultaneously with drying. The polyimide resin alone is useful as a thermoplastic adhesive, and can be used as an adhesive if the Tg can be significantly reduced.
[0031]
Polyimide resin, a thermosetting resin, preferably an epoxy resin, and a resin composition obtained by incorporating an epoxy resin curing agent, as a heat-resistant adhesive resin composition due to the improvement in crosslink density accompanying thermosetting. Useful. Here, the content of the epoxy resin is preferably from 1 to 200 parts by mass, more preferably from 5 to 100 parts by mass, based on 100 parts by mass of the polyimide resin, and the heat resistance is excellent, and Fluidity is also suitable and preferred. The flow characteristics of the adhesive resin composition can be adjusted not only by the molecular weight of the polyimide resin, the type and amount of the epoxy resin, but also by additives such as fillers described later.
[0032]
Epoxy resins having various structures are commercially available and have a wide range of industrial applications, and are preferable in that appropriate curing conditions can be realized by combining them with a curing agent, and the crosslinking density can be controlled by blending.
[0033]
Suitable epoxy resins are not particularly limited as long as they contain at least two epoxy groups in the molecule. For example, phenol glycidyl ether type epoxy resins include bisphenol A, bisphenol AD, bisphenol S, bisphenol F or condensates of halogenated bisphenol A and epichlorohydrin, glycidyl ether of phenol novolak resin, glycidyl ether of cresol novolak resin, bisphenol A novolak Examples include glycidyl ether of resin, glycidyl ether of dicyclopentadiene-modified phenol novolak resin, and biphenyl type epoxy resin. Further, glycidyl-modified silicone is also preferable in terms of compatibility with a polyimide resin containing a large amount of a silicone structure.
[0034]
When an epoxy resin is used as the thermosetting resin, it is preferable to further use an epoxy resin curing agent in the resin composition of the present invention. The epoxy resin curing agent is not particularly limited as long as it is a compound having reactivity with the epoxy resin and capable of curing the epoxy resin. Representative examples include phenol-based curing agents, amine-based curing agents, acid anhydride-based curing agents, and imidazoles.
[0035]
Although the combination itself of the epoxy resin and the silicone-modified polyimide resin is publicly known, the resin composition of the present invention has excellent storage stability that has not been found in the past. In an adhesive in which a general epoxy resin and a curing agent are combined into one liquid, the curing reaction proceeds gradually and the viscosity increases. In adhesive applications where flow properties are restricted, those that fall outside the restricted range due to this thickening expire and are discarded. For this reason, various latent curing agents have been developed, but even those using microcapsules have problems with solvent resistance and mechanical strength, and there has been no effective storage method other than frozen storage. It is a fact.
[0036]
However, in the present invention, by combining with a specific polyimide resin which is a curing system having a certain latent potential, the thickening of the curing system and the decomposition of the amic acid can be well balanced, and the melting of the entire adhesive can be performed. Characteristics can be maintained at room temperature for a long period of several months or more. Further, even when the amide acid is hydrolyzed, the terminal is a functional group capable of reacting with the epoxy, so that no change is observed in the physical properties after curing. Taking advantage of such characteristics, the thermosetting resin composition which can be stored at room temperature for a long time has a wide industrial application range.
[0037]
The adhesive resin composition used in the present invention may optionally contain an inorganic filler. The filler gives the adhesive resin composition properties such as low thermal expansion, low moisture absorption, high elasticity, high thermal conductivity, and improved melt viscosity. It also contributes to improving the strength of the film adhesive. Examples of the filler include inorganic insulators such as silica, alumina, silicon nitride, aluminum nitride, boron nitride, titania, glass, iron oxide, and ceramic. These can be used alone or in combination of two or more. In addition, conductive particles such as metal or anisotropic conductive particles may be added to impart electric conductivity.
[0038]
Since the specific gravity differs depending on the filler, the amount of the inorganic substance filler is preferably 0 to 70% by volume, more preferably 0 to 30% by volume, based on the whole resin composition when expressed in volume%. Within this range, good adhesion is maintained.
[0039]
Furthermore, a coupling agent such as a silane coupling agent or a titanium-based coupling agent may be appropriately added to the resin composition of the present invention, if necessary, as long as the object of the present invention is not impaired. The coupling agent contributes to the improvement of the bonding strength at the bonding interface with the adherend and the filler.
[0040]
The adhesive resin composition of the present invention can be used in the form of a varnish by dissolving and stirring the above-mentioned polyimide resin, thermosetting resin, preferably epoxy resin, and epoxy resin curing agent in a solvent. The organic solvent used here is not particularly limited as long as it can uniformly dissolve or knead the above materials. Examples of such an organic solvent include dimethylformamide, dimethylacetamide, N-methylpyrrolidone, dimethylsulfoxide, Examples thereof include diethylene glycol dimethyl ether, toluene, benzene, xylene, methyl ethyl ketone, tetrahydrofuran, ethyl cellosolve, ethyl cellosolve acetate, butyl cellosolve, and dioxane.
[0041]
Next, if necessary, an inorganic substance filler, an additive and the like are added and mixed. In this case, kneading may be carried out by appropriately combining ordinary dispersing machines such as a stirrer, a grinder, a three-roll mill, a ball mill, and a bead mill.
[0042]
The varnish or paste-like resin composition thus obtained can be used by dispensing or screen printing. It can also be formed into a film and used as a film adhesive.
[0043]
As a method for producing a film-like adhesive, the above-mentioned varnish or paste-like mixture is surface-treated with, for example, a silicone resin, and is uniformly applied on a base film such as a PET (polyethylene terephthalate) sheet having a good peeling property. A method of obtaining a single-layer film adhesive by heating at a temperature of about 60 to 200 ° C. for about 1 to 30 minutes, under conditions in which the solvent thus obtained sufficiently evaporates.
[0044]
Alternatively, one or both surfaces of a support film such as a heat-resistant core film or a metal foil may be coated with the above varnish or paste-like mixture, heated and dried to evaporate the solvent, thereby producing a film-like adhesive. The method for producing the film adhesive is not limited to the above method.
[0045]
The film adhesive obtained by the present invention is characterized in that it can be adhered at low temperature and has heat resistance. It can be suitably used for bonding with members.
[0046]
【Example】
(Reaction Example 1)
In a 300 ml five-necked flask equipped with a thermometer, a stirrer, a Dean-Stark tube filled with mesitylene, and a nitrogen blowing tube, 9.133 g of 1,3-bis (3-aminophenoxy) benzene (APB) and silicone-based diamine ( 36,586 g of α, ω-bis (3-aminopropyl) polydimethylsiloxane (APPS, amine value 460), 16.852 g of 4,4′-oxydiphthalic dianhydride (ODPA), ethylene glycol bistrimellitic dianhydride The product (EGTA) 7.430 g, N-methyl-2-pyrrolidone (NMP) 91 g and mesitylene 39 g were taken (tetracarboxylic dianhydride / diamine (molar ratio) = 1.02) and the reaction system was blown with nitrogen gas. Is heated to 170 to 180 ° C. in an oil bath, and is held for 14 hours while azeotropically removing water. To obtain fat varnish (P-1). After 7 hours from the heating to 170 to 180 ° C., foaming gradually became remarkable, and after 8 hours, the whole flask was in a state filled with foam.
[0047]
(Reaction Example 2)
In a 300 ml five-necked flask equipped with a thermometer, a stirrer, a Dean-Stark tube filled with mesitylene, and a nitrogen blowing tube, 8.303 g of APB, 36.586 g of APPS, 16.852 g of ODPA, 7.430 g of EGTA, 91 g of NMP, and 39 g of mesitylene were taken ( The reaction system was heated to 170 to 180 ° C. in an oil bath while blowing nitrogen gas with tetracarboxylic dianhydride / diamine (molar ratio) = 1.06), and held for 14 hours while azeotropically removing water. Subsequently, after cooling to 60 ° C., 0.830 g of APB was added (tetracarboxylic dianhydride / diamine (additional ratio of aromatic diamine added: molar ratio) = 1.02), and stirring was continued for 3 hours under a nitrogen flow. Thus, a polyimide resin varnish (P-2) was obtained.
[0048]
(Reaction Example 3)
In a 300 ml five-necked flask equipped with a thermometer, a stirrer, a Dean-Stark tube filled with mesitylene, and a nitrogen blowing tube, 8.303 g of APB, 36.586 g of APPS, 16.852 g of ODPA, 7.430 g of EGTA, 91 g of NMP, and 39 g of mesitylene were taken ( The system was heated to 170-180 ° C. in an oil bath while blowing nitrogen gas with tetracarboxylic dianhydride / diamine (molar ratio) = 1.06) and kept for 14 hours while azeotropically removing water. Meanwhile, every 3 hours, the mesitylene in the Dean-Stark tube was replaced with a new one, and a total of 130 g of solvent was replaced to reduce the cyclic silicone. Subsequently, after cooling to 60 ° C., 0.830 g of APB was added (tetracarboxylic dianhydride / diamine (additional ratio of aromatic diamine added: molar ratio) = 1.02), and stirring was continued for 3 hours under a nitrogen flow. Thus, a polyimide resin varnish (P-3) was obtained.
[0049]
Table 1 shows the raw material composition ratio (molar ratio) of Reaction Examples 1, 2, and 3, and the molar ratio of the reacted tetracarboxylic dianhydride component and diamine component as acid / amine. The solid content of the preparation was 35% by mass (the silicone-based diamine was calculated as the solid content).
[0050]
[Table 1]
Figure 2004359874
[0051]
After measuring the solid content of the polyimide resin varnish obtained in Reaction Examples 1, 2, and 3, the intrinsic viscosity measured at 35 ° C. and a concentration of 0.5% by mass in an NMP solution using an Ubbelohde viscometer was measured. The results are summarized in Table 2. It can be seen that in Reaction Example 1, the molecular weight was not sufficiently increased due to the influence of foaming.
[Table 2]
Figure 2004359874
[0052]
In Reaction Example 3, the results of tracking the amount of cyclic silicone by gas chromatography are shown in Table 3. A calibration curve was prepared using a tetramer (formula 3), and the detected trimer having a high vapor pressure (formula 4) and the tetramer were converted to a concentration (ppm) per polymer mass and quantified and compared. It was confirmed that the amount of cyclic silicone can be significantly reduced by replacing the solvent.
[0053]
Embedded image
Figure 2004359874
[0054]
Embedded image
Figure 2004359874
[0055]
[Table 3]
Figure 2004359874
[0056]
100 parts by mass of each of the polyimide resin varnishes P-1 and P-3 obtained in Reaction Example 1 and Reaction Example 3, 20 parts by mass of an epoxy resin (Techmore (registered trademark) VG3101L manufactured by Mitsui Chemicals, Inc.), and epoxy 0.5 parts by mass of a curing agent (Curesol (registered trademark) 2MAOK-PW, manufactured by Shikoku Chemical Industry Co., Ltd.) was stirred and dispersed to prepare a compounded varnish, and a surface silicone-treated PET (polyethylene terephthalate) film (Teijin Dupont film) (A31, manufactured by Co., Ltd., thickness: 50 μm) and dried by a hot-air dryer at 90 ° C. for 20 minutes to obtain a 25 μm-thick film adhesive.
[0057]
In order to examine the change in the melt viscosity of these film adhesives, a molded article was prepared by pressing the film adhesive peeled off from the PET film to a thickness of 0.5 mm and pressed under a heating environment of 40, 55, and 70 ° C. After standing, the change in melt viscosity was examined. The melt viscosity was measured at a heating rate of 6 ° C./min using a solid viscoelasticity measuring device (torsion) of Rheometrics, and the initial melt viscosity at 120 ° C. and after leaving at 40 ° C., 55 ° C., and 70 ° C. The degree of progress of curing was compared with the melt viscosity of the sample. The results are shown in FIG. 1 for the film adhesive (F-1) obtained using the polyimide resin varnish P-1 and for the film adhesive (F-3) obtained using the P-3. As shown in FIG. In FIG. 1, the viscosity was monotonically increased, but in FIG. 2, the viscosity was also reduced, and it was recognized that the apparent melt viscosity change of F-3 was small over a long period of time as compared with F-1.
[0058]
Next, the heat-resistant adhesive strength of the film adhesives F-1 and F-3 was evaluated in consideration of the adhesive application when the semiconductor element was bonded to the substrate. A film adhesive is sandwiched between a 5 mm square silicon piece and a BT substrate coated with a solder resist on the entire surface, and after bonding at 150 ° C. and a load of 250 g for 1 s, pressing at 180 ° C. and a load of 10 kg for 1 minute, and then 180 without load. A test piece cured at 3 ° C. for 3 hours was prepared, and the shear adhesive strength at 260 ° C. was measured by a dice tester (SS-30W manufactured by Seishin Shoji Co., Ltd.) five times, and the average value was shown in Table 7. It was shown to.
[0059]
[Table 4]
Figure 2004359874
[0060]
【The invention's effect】
According to the production method of the present invention, a high-molecular-weight polyimide resin having a silicone structure in the main chain can be produced safely and stably, using the obtained adhesive resin composition containing the polyimide resin and the epoxy resin. Since the film-like adhesive can be bonded at a low temperature and has heat resistance, it can be suitably used for bonding a copper foil of a circuit board to a base resin or bonding a semiconductor element of a semiconductor package to a supporting member thereof. .
[Brief description of the drawings]
FIG. 1 is a graph showing the measurement results of the change in melt viscosity of a film adhesive obtained using the polyimide resin varnish of Reaction Example 1.
FIG. 2 is a graph showing a measurement result of a change in melt viscosity of a film adhesive obtained using the polyimide resin varnish of Reaction Example 3.

Claims (5)

下記式(1)のジアミンおよび/または下記式(2)のテトラカルボン酸二無水物を含む、ジアミン成分とテトラカルボン酸二無水物成分とを、溶剤中で脱水縮合してポリイミド樹脂を得る方法において、まず、テトラカルボン酸二無水物成分aモルとジアミン成分bモルとを1.03≦a/b≦1.10のモル比の範囲で混合して加熱脱水縮合し、分子量が上がらなくなるまで反応させる工程と、次いで80℃以下の温度で、該反応液に芳香族ジアミンcモルを1.00≦a/(b+c)≦1.03の範囲で添加して反応させ、分子量を制御する工程とを含むことを特徴とするポリイミド樹脂の製造方法。
Figure 2004359874
(上式中、R1、R6は二価の炭素数1〜4の脂肪族基または芳香族基を表し、R2〜R5は一価の脂肪族基または芳香族基を表し、nは1〜50の整数である。)
Figure 2004359874
(上式中、R7、R12は3価の炭素数1〜4の脂肪族基または芳香族基を表し、R8〜R11は一価の脂肪族基または芳香族基を表し、nは1〜50の整数である。)
A method for obtaining a polyimide resin by dehydrating and condensing a diamine component and a tetracarboxylic dianhydride component containing a diamine of the following formula (1) and / or a tetracarboxylic dianhydride of the following formula (2) in a solvent. First, a mole of a tetracarboxylic dianhydride component and b mole of a diamine component are mixed in a molar ratio range of 1.03 ≦ a / b ≦ 1.10 and subjected to thermal dehydration condensation until the molecular weight does not increase. A step of reacting and then reacting by adding c moles of aromatic diamine to the reaction solution at a temperature of 80 ° C. or lower in a range of 1.00 ≦ a / (b + c) ≦ 1.03 to control the molecular weight. And a method for producing a polyimide resin.
Figure 2004359874
(In the above formula, R1 and R6 represent a divalent aliphatic group having 1 to 4 carbon atoms or an aromatic group, R2 to R5 represent a monovalent aliphatic group or an aromatic group, and n represents 1 to 50. Is an integer.)
Figure 2004359874
(In the above formula, R7 and R12 represent a trivalent aliphatic group or an aromatic group having 1 to 4 carbon atoms, R8 to R11 represent a monovalent aliphatic group or an aromatic group, and n represents 1 to 50. Is an integer.)
テトラカルボン酸二無水物成分とジアミン成分とを加熱脱水縮合してポリイミド樹脂を得る工程において、溶剤を系外に蒸発排出するとともに溶剤を補給することにより、前記式(1)のジアミンや前記式(2)のテトラカルボン酸二無水物に不純物として含まれる環状シリコーン化合物を溶剤とともに系外に蒸発排出することを特徴とする請求項1に記載のポリイミド樹脂の製造方法。In the step of heating and dehydrating and condensing the tetracarboxylic dianhydride component and the diamine component to obtain a polyimide resin, the solvent is evaporated out of the system and the solvent is replenished, whereby the diamine of the formula (1) or the formula The method for producing a polyimide resin according to claim 1, wherein the cyclic silicone compound contained as an impurity in the tetracarboxylic dianhydride (2) is evaporated and discharged out of the system together with a solvent. 請求項1または請求項2に記載の方法で製造したポリイミド樹脂。A polyimide resin produced by the method according to claim 1. 請求項3に記載のポリイミド樹脂と、該ポリイミド樹脂100質量部に対して1〜200質量部のエポキシ樹脂とを主たる成分として含有する接着性樹脂組成物。An adhesive resin composition comprising the polyimide resin according to claim 3 and 1 to 200 parts by mass of an epoxy resin based on 100 parts by mass of the polyimide resin as main components. 請求項4に記載の接着性樹脂組成物を用いてなるフィルム状接着剤。A film adhesive comprising the adhesive resin composition according to claim 4.
JP2003161534A 2003-06-06 2003-06-06 Manufacturing method of polyimide resin and polyimide resin obtained by the manufacturing method Expired - Fee Related JP4272468B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003161534A JP4272468B2 (en) 2003-06-06 2003-06-06 Manufacturing method of polyimide resin and polyimide resin obtained by the manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003161534A JP4272468B2 (en) 2003-06-06 2003-06-06 Manufacturing method of polyimide resin and polyimide resin obtained by the manufacturing method

Publications (2)

Publication Number Publication Date
JP2004359874A true JP2004359874A (en) 2004-12-24
JP4272468B2 JP4272468B2 (en) 2009-06-03

Family

ID=34053917

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003161534A Expired - Fee Related JP4272468B2 (en) 2003-06-06 2003-06-06 Manufacturing method of polyimide resin and polyimide resin obtained by the manufacturing method

Country Status (1)

Country Link
JP (1) JP4272468B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120106751A (en) 2009-12-22 2012-09-26 신닛테츠가가쿠 가부시키가이샤 Polyimide resin, manufacturing method therefor, adhesive resin composition, coverlay film, and circuit board

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05156231A (en) * 1991-11-29 1993-06-22 Ube Ind Ltd Heat-resistant adhesive composition
JPH07242821A (en) * 1994-03-08 1995-09-19 Sumitomo Bakelite Co Ltd Resin composition improved in physical property at high temperature
JPH11202488A (en) * 1998-01-16 1999-07-30 Pi Gijutsu Kenkyusho:Kk Positive photosensitive polyimide composition and insulating film
JP2002012666A (en) * 2000-06-29 2002-01-15 Shin Etsu Chem Co Ltd Polyimidesilicone resin, method for producing the same and composition thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05156231A (en) * 1991-11-29 1993-06-22 Ube Ind Ltd Heat-resistant adhesive composition
JPH07242821A (en) * 1994-03-08 1995-09-19 Sumitomo Bakelite Co Ltd Resin composition improved in physical property at high temperature
JPH11202488A (en) * 1998-01-16 1999-07-30 Pi Gijutsu Kenkyusho:Kk Positive photosensitive polyimide composition and insulating film
JP2002012666A (en) * 2000-06-29 2002-01-15 Shin Etsu Chem Co Ltd Polyimidesilicone resin, method for producing the same and composition thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120106751A (en) 2009-12-22 2012-09-26 신닛테츠가가쿠 가부시키가이샤 Polyimide resin, manufacturing method therefor, adhesive resin composition, coverlay film, and circuit board

Also Published As

Publication number Publication date
JP4272468B2 (en) 2009-06-03

Similar Documents

Publication Publication Date Title
US6949619B2 (en) Phenolic hydroxyl-bearing polyimide resin, making method and polyimide resin composition
CN105026510B (en) Adhesive composition, adhesive sheet and solidfied material and semiconductor devices using them
JP6555126B2 (en) Polyimide resin, resin composition and laminated film using the same
JP4156869B2 (en) Surface acoustic wave device film
JP5444986B2 (en) Adhesive composition for semiconductor and semiconductor device using the same
EP1508584B1 (en) Adhesive resin and film adhesives made by using the same
JPH08253677A (en) Polyimide siloxane composition
JPH10231424A (en) Resin solution composition for electronic material
JP2624724B2 (en) Polyimide siloxane composition
JP2001262116A (en) Adhesive polyimide resin for electronic component
JP2002012845A (en) Adhesive film and semiconductor device
JP2003327671A (en) Heat-resistant resin composition and adhesive film using the same
JP2003327697A (en) Siloxane modified polyimide resin
JP2019131704A (en) Resin composition for temporary protective film, and manufacturing method of semiconductor electronic component using the same
JP4272468B2 (en) Manufacturing method of polyimide resin and polyimide resin obtained by the manufacturing method
JP3707879B2 (en) Polyimide resin composition, film adhesive and method for producing the same
JP4272471B2 (en) Film adhesive
JP2005060417A (en) Adhesive varnish for screen printing and lead frame with adhesive, resin substrate, semiconductor wafer, and semiconductor device using the same
JP4272401B2 (en) Film adhesive and semiconductor device using the same
JP4144454B2 (en) Insulating film composition, insulating film, and method of forming insulating film
JP4273777B2 (en) Insulating film composition, insulating film, and method of forming insulating film
JP3526130B2 (en) Film adhesive with improved heat resistance and method for producing the same
JP2002060488A (en) Method for manufacturing polyamic acid and polyimide, and adhesive tape obtained by using them
JP2009114295A (en) Adhesive composition
JP2004067718A (en) Adhesive resin composition and film adhesive comprising the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050715

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071127

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080702

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080924

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081119

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090203

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090227

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees