JP2004359718A - Method for producing high strength ferrocoke and apparatus therefor - Google Patents

Method for producing high strength ferrocoke and apparatus therefor Download PDF

Info

Publication number
JP2004359718A
JP2004359718A JP2003156601A JP2003156601A JP2004359718A JP 2004359718 A JP2004359718 A JP 2004359718A JP 2003156601 A JP2003156601 A JP 2003156601A JP 2003156601 A JP2003156601 A JP 2003156601A JP 2004359718 A JP2004359718 A JP 2004359718A
Authority
JP
Japan
Prior art keywords
coal
molded
molded coal
ferrocoke
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003156601A
Other languages
Japanese (ja)
Other versions
JP4218426B2 (en
Inventor
Toshihiko Okada
敏彦 岡田
Minoru Asanuma
稔 浅沼
Shozo Itagaki
省三 板垣
Tatsuro Ariyama
達郎 有山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2003156601A priority Critical patent/JP4218426B2/en
Publication of JP2004359718A publication Critical patent/JP2004359718A/en
Application granted granted Critical
Publication of JP4218426B2 publication Critical patent/JP4218426B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock
    • Y02P20/143Feedstock the feedstock being recycled material, e.g. plastics

Landscapes

  • Coke Industry (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing ferrocoke, which enables the good stabilization of the operation of a shaft furnace and the easy treatment of a produced gas. <P>SOLUTION: The method for producing the ferrocoke from at least coal and iron ore as raw materials comprises a process for molding the raw materials to produce the molded coal, a process for subjecting the molded coal to an infusibilizing treatment in the presence of oxygen, and a process for carbonizing the molded coal. The infusibilizing treatment is preferably carried out by thermally treating the molded coal with a gas containing oxygen at a molded coal temperature of 250 to 400°C for 10 to 60 minutes. When the molded coal is subjected to the infusibilizing treatment, carbon-carbon bonds and carbon-oxygen bonds produced from coal and a binder with oxygen are produced close to the surface of the molded coal. Thereby, the cohesiveness of the molded coal is reduced, and the strength of the molded coal is increased. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、石炭及び鉄鉱石からフェロコークスを製造し、得られた成型フェロークスを高炉等の原料とする方法に関する。
【0002】
【従来の技術】
従来から室炉コークス法に替わる冶金用成型コークスの製造方法として、縦型シャフト炉を用い、循環ガスを用いて加熱することにより、成型炭を乾留し、成型コークスを製造する方法が開発されている(特許文献1)。
【0003】
特許文献1に記載の方法では完全密閉が可能である。また連続式の生産方法であること、石炭が事前にバインダにより成型されるため、資源埋蔵量の多い非微粘結炭の大量使用が可能であること等の利点を有する。
【0004】
室炉コークス炉では原料中に鉄が存在すると、使用している珪石レンガがファイアライト(2FeO・SiO)を生成し、損傷するため、原料として鉄を共存させることができなかった。しかし、循環ガスを熱源とするシャモットレンガを使用したシャフト炉では鉄の存在は問題なく、原料として石炭と鉄鉱石を用いることにより、フェロコークスの製造も可能となる(特許文献2参照)。特許文献1に記載の方法では、原料として配合した鉄鉱石が乾留の過程でコークスに還元されるため、高炉での炭酸ガス発生を抑制できることが期待される。
【0005】
【特許文献1】特公昭60−38437号公報
【特許文献2】特開平6−65579号公報
【0006】
【発明が解決しようとする課題】
従来の石炭及び鉄鉱石からなるフェロコークスの製造方法では、石炭の粘結性が高い場合やバインダを添加した場合、成型炭を乾留する際に、成型炭がシャフト炉内で軟化融着して操業が困難になるという問題がある。一方、石炭の粘結性が低い場合やバインダが少ない場合は成型炭の冷間強度が低いため、シャフト炉内での粉化が起こり、歩留まりの低下とともに発生ガス中に粉コークスが混入等するので、処理に問題がある。
【0007】
本発明は、良好なシャフト炉の操業を安定化することができ、しかも発生ガス処理を容易にできるフェロコークスの製造方法及び装置を提供することを目的とする。
【0008】
【課題を解決するための手段】
上記課題を解決するために本発明は、成型炭の乾留に先立ち、該成型炭を酸素存在下、不融化処理を行うことを特徴とする。
【0009】
すなわち本発明は、少なくとも石炭及び鉄鉱石を原料としてフェロコークスを製造する方法において、前記原料を成形して成型炭を製造する工程と、該成型炭を酸素存在下、不融化処理する工程と、前記成型炭を乾留する工程と、を備える。
【0010】
本発明のように不融化処理すれば、成型炭の表面近傍に酸素により石炭やバインダの炭素炭素間結合や炭素酸素間結合が生成され、成型炭の粘結性が減少したり、成型炭の強度が増加したりする。
【0011】
本発明に用いられる石炭や鉄鉱石は特に限定されることはなく、例えば現在製鉄業で使用されているものを用いることができる。
【0012】
前記不融化処理は、酸素を含有するガスを用いて、成型炭を250〜400℃の温度、10〜60分の時間の条件で熱処理するのが望ましい。
【0013】
鉄鉱石の他に粘結性を示さない木材(例えば建設リサイクル法で対象となっている廃木材)などのバイオマスを配合することで、乾留過程で成型炭がシャフト炉内で融着するのを抑制できる。
【0014】
また廃プラスチックの熱可塑性を利用し、廃プラスチックを加熱した熱間の状態で成型することにより、バインダの使用量を減らしても成型炭を製造することができる。
【0015】
また本発明は、少なくとも石炭及び鉄鉱石を原料としてフェロコークスを製造する装置において、前記原料を成形して成型炭を製造する成形機と、該成型炭を酸素存在下、不融化処理する不融化炉と、前記成型炭を乾留するシャフト炉と、を備えるフェロコークスの製造装置としても構成することができる。
【0016】
【発明の実施の形態】
以下本発明の一実施形態におけるフェロコークス製造方法について説明する。図1はフェロコークス製造方法が実施されるシステムの全体構成図を示す。原料としては鉄鉱石、石炭、バイオマスを使用する。石炭には、冶金用ではなく、例えば一般炭である非微粘結炭を使用する。バイオマスの代わりに又はバイオマスと併用して廃プラスチックを使用してもよい。
【0017】
ここでバイオマスとは、すべての生物、すなわちエネルギ資源として再生可能な全有機体をいい、例えば木材、パルプ廃液、紙、油が挙げられる。また廃プラスチックとは、あらゆる産業分野、日常生活分野で利用されているプラスチックが使用後に廃棄物として排出されたものをいう。廃プラスチックは、主に家庭から排出される一般廃棄物、及び事業所から排出される産業廃棄物の双方に含まれて排出される。また廃プラスチック以外にも、汚泥、タイヤ等の有機系廃棄物を原料として使用してもよい。
【0018】
原料の鉄鉱石、石炭及びバイオマスは粉砕機1にて所定の粒度以下に粉砕された後、前処理装置3にて加熱され、含有水分が除去される。前処理装置3には例えば流動層炉やキルンが用いられる。
【0019】
次に、原料を混練機4により混合した後、成型機5により熱間成型する。得られた成型炭は、不融化炉6にて不融化処理される。具体的には成型炭を酸素存在下、250〜400℃の温度条件、及び処理時間10分〜60分の時間条件にて熱処理する。処理に用いる不融化炉や方法は特に限定されないが、キルンやトンネル炉等の移動層反応装置を用い、250℃〜400℃の温度に加熱した空気を吹き付ける方法等が採用できる。
【0020】
次に不融化された成型炭をシャフト炉に装入・乾留する。シャフト炉内に装入された成型炭はシャフト炉内を降下する。まず、シャフト炉低温乾留室7では、上部低温加熱ガス吹き込み羽口8よりガスを吹き込み、成型炭を昇温・熱分解する。次に、シャフト炉高温乾留室9において、下部高温加熱ガス吹き込み羽口10より加熱した回収ガスを吹き込み、成型炭の熱分解と鉄鉱石の還元反応を進行させる。次にシャフト炉下部冷却室11にて、回収ガスにより冷却し、成型フェロコークスを回収する。
【0021】
シャフト炉からは発生ガスが回収されるが、図示しない熱交換機器、タールミストセパレータ、デカンターなどにより降温され、高温ガス加熱炉12、低温ガス加熱炉13に供給される。
【0022】
〈実施例1〉
図1に示される本実施形態の装置にて以下の配合及び操業条件でフェロコークス製造試験を実施した。表1及び表2に示す組成及び配合比で石炭及び鉄鉱石を配合する。粉砕機1にて粉砕後、前処理装置3にて約350℃にて含有水分を蒸発し、混練機4により混合した後、熱間成型により成型炭とした。
【0023】
【表1】

Figure 2004359718
【0024】
【表2】
Figure 2004359718
【0025】
得られた成型炭を不融化炉6に装入し、約400℃に加熱された空気を用い、炉内温度380℃、滞留時間15分で不融化処理した。さらに不融化された成型炭をシャフト炉7に装入・乾留した。
【0026】
シャフト炉低温乾留室7では、上部低温加熱ガス吹き込み羽口8より650℃、1150Nm/t−原料のガスを吹き込み、成型炭を昇温・熱分解する。さらにシャフト炉高温乾留室9において、下部高温加熱ガス吹き込み羽口10より、1080℃、265Nm/t−原料に加熱した回収ガスを吹き込み、熱分解と鉄鉱石の還元反応を進行させる。さらにシャフト炉下部冷却室11にて、55℃、715Nm/t−原料の回収ガスにより冷却し、610kg/t−原料の成型フェロコークスを回収した。シャフト炉からは410℃、370Nm/t−原料の発生ガスが回収されるが、図示しない熱交換機器、タールミストセパレータ、デカンターなどにより降温され、高温ガス加熱炉12、低温ガス加熱炉13に供給される。表2に製造された成型フェロコークスの粒度分布を示す。25mm以下の低強度に由来する粉コークスと50mm以上の融着したコークスの発生量が極めて少なく、本実施例の優位性が分かる。
【0027】
〈実施例2〉
表2に示される配合比でバインダを添加し、冷間で成型して成型炭を製造する。実施例1と同条件で乾留し、602kg/t−原料の成型フェロコークスを回収した。表2に製造された成型フェロコークスの粒度分布を示したが、25mm以下の粉コークスと50mm以上のコークスの発生量が少ないのがわかる。
【0028】
〈実施例3〉
表2の配合比でバイオマスとして廃木材を添加後、実施例1と同条件で成型炭を製造・乾留し、622kg/t−原料の成型フェロコークスを回収した。表2に製造された成型フェロコークスの粒度分布を示したが、25mm以下の低強度に由来する粉コークスと50mm以上の融着したコークスの発生量が極めて少ない。
【0029】
〈比較例1〉
不融化処理を実施しないことを除き、実施例1と同じ配合、成型、乾留条件により、581kg/t−原料の成型フェロコークスを回収した。歩留まりが実施例1に比べ低い。表2に製造された成型フェロコークスの粒度分布を示すが、25mm以下の低強度に由来する粉コークスと50mm以上の融着したコークスの発生量が多い。
【0030】
〈比較例2〉
不融化処理をしないことを除き、実施例2と同じ配合、成型、乾留条件により、586kg/t−原料の成型フェロコークスを回収した。歩留まりが実施例1に比べ低い。表2に製造された成型フェロコークスの粒度分布を示すが、25mm以下の低強度に由来する粉コークスと50mm以上の融着したコークスの発生量が多い。
【0031】
【発明の効果】
本発明によれば、成型炭のシャフト炉内での軟化融着やシャフト炉内での粉化を抑制できる。このため、良質な成型フェロコークスが製造可能になり、これを高炉で使用することにより高炉での冶金用コークスの使用量の削減に寄与し、炭酸ガスの発生抑制に大きく貢献できる。
【図面の簡単な説明】
【図1】本発明の一実施形態におけるフェロコークス製造方法が実施される装置の全体構成図。
【符号の説明】
1・・・粉砕機
2・・・搬送手段
3・・・前処理装置
4・・・混練機
5・・・熱間成型機
6・・・不融化炉
7・・・シャフト炉低温乾留室
8・・・上部低温加熱ガス吹き込み羽口
9・・・シャフト炉高温乾留室
10・・・下部高温加熱ガス吹き込み羽口
11・・・シャフト炉下部冷却室
12・・・高温ガス加熱炉
13・・・低温ガス加熱炉[0001]
TECHNICAL FIELD OF THE INVENTION
TECHNICAL FIELD The present invention relates to a method for producing ferrocoke from coal and iron ore, and using the obtained molded ferrokes as a raw material for a blast furnace or the like.
[0002]
[Prior art]
As a method of manufacturing molded coke for metallurgy, which replaces the conventional furnace coke method, a method has been developed that uses a vertical shaft furnace and heats using circulating gas to dry carbonize molded coal and produce molded coke. (Patent Document 1).
[0003]
The method described in Patent Literature 1 allows complete sealing. In addition, there are advantages such as a continuous production method, and the fact that coal is preliminarily molded with a binder, so that a large amount of non-sintered coal with a large resource reserve can be used.
[0004]
In a room furnace coke oven, if iron is present in the raw material, the silica brick used generates firelite (2FeO.SiO 2 ) and is damaged, so that iron cannot coexist as a raw material. However, in a shaft furnace using a chamotte brick using a circulating gas as a heat source, the presence of iron is not a problem, and the use of coal and iron ore as raw materials enables production of ferrocoke (see Patent Document 2). In the method described in Patent Literature 1, iron ore blended as a raw material is reduced to coke in the process of dry distillation, and thus it is expected that carbon dioxide gas generation in a blast furnace can be suppressed.
[0005]
[Patent Document 1] Japanese Patent Publication No. Sho 60-38437 [Patent Document 2] Japanese Patent Application Laid-Open No. 6-65579
[Problems to be solved by the invention]
In the conventional method for producing ferro-coke made of coal and iron ore, when the coal has high caking properties or when a binder is added, when the coal is carbonized, the coal is softened and fused in a shaft furnace. There is a problem that operation becomes difficult. On the other hand, when the caking property of coal is low or the amount of binder is small, the cold strength of the molded coal is low, so powdering occurs in the shaft furnace, and coke breeze is mixed in the generated gas with a decrease in yield. So there is a problem with the processing.
[0007]
An object of the present invention is to provide a method and an apparatus for producing ferrocoke that can stabilize the operation of a good shaft furnace and can easily process generated gas.
[0008]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present invention is characterized in that prior to dry distillation of shaped coal, the shaped coal is subjected to infusibilization treatment in the presence of oxygen.
[0009]
That is, the present invention provides a method for producing ferro-coke using at least coal and iron ore as raw materials, a step of forming the raw material to produce molded coal, and a step of infusifying the molded coal in the presence of oxygen, And carbonizing the shaped coal.
[0010]
If the infusibilization treatment is performed as in the present invention, carbon-carbon bonds or carbon-oxygen bonds of coal or a binder are generated by oxygen near the surface of the molded coal, and the caking property of the molded coal is reduced, Or increase in strength.
[0011]
The coal or iron ore used in the present invention is not particularly limited, and for example, those currently used in the steel industry can be used.
[0012]
In the infusibilization treatment, it is desirable to heat-treat the molded coal at a temperature of 250 to 400 ° C. for 10 to 60 minutes using a gas containing oxygen.
[0013]
By blending biomass such as wood that does not show caking properties (eg, waste wood subject to the Construction Recycling Law) in addition to iron ore, it is possible to prevent coal from coalescing in the shaft furnace during the carbonization process. Can be suppressed.
[0014]
In addition, by utilizing the thermoplasticity of the waste plastic and molding the waste plastic in a heated state, the molded coal can be produced even when the amount of the binder used is reduced.
[0015]
The present invention also relates to an apparatus for producing ferrocoke using at least coal and iron ore as raw materials, a molding machine for producing the molded coal by molding the raw material, and an infusibilizing treatment for infusibilizing the molded coal in the presence of oxygen. It can also be configured as a ferro-coke producing apparatus including a furnace and a shaft furnace for carbonizing the molded coal.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, a method for producing ferrocoke according to an embodiment of the present invention will be described. FIG. 1 shows an overall configuration diagram of a system in which a ferro-coke manufacturing method is performed. Iron ore, coal and biomass are used as raw materials. The coal is not metallurgical but a non-coking coal, for example, a thermal coal. Waste plastic may be used instead of or in combination with biomass.
[0017]
Here, biomass refers to all organisms, that is, all organisms that can be regenerated as energy resources, and includes, for example, wood, pulp waste liquid, paper, and oil. Waste plastic refers to plastics used in all industrial fields and daily life fields that are discharged as waste after use. Waste plastic is mainly included in general waste discharged from households and industrial waste discharged from business establishments and is discharged. In addition to waste plastics, organic wastes such as sludge and tires may be used as raw materials.
[0018]
Iron ore, coal, and biomass as raw materials are pulverized to a predetermined particle size or less by the pulverizer 1 and then heated by the pretreatment device 3 to remove water content. For example, a fluidized bed furnace or a kiln is used for the pretreatment device 3.
[0019]
Next, the raw materials are mixed by the kneading machine 4 and then hot-formed by the molding machine 5. The obtained coal is infusibilized in the infusibilizing furnace 6. Specifically, the formed coal is heat-treated in the presence of oxygen at a temperature of 250 to 400 ° C and a processing time of 10 to 60 minutes. The infusibilizing furnace and method used for the treatment are not particularly limited, and a method of blowing air heated to a temperature of 250 ° C to 400 ° C using a moving bed reactor such as a kiln or a tunnel furnace can be adopted.
[0020]
Next, the infusible coal is charged into a shaft furnace and carbonized. The charcoal charged in the shaft furnace descends in the shaft furnace. First, in the shaft furnace low-temperature carbonization chamber 7, gas is blown from the upper low-temperature heating gas blowing tuyere 8, and the coal is heated and pyrolyzed. Next, in the shaft furnace high-temperature carbonization chamber 9, heated recovery gas is blown from the lower high-temperature heated gas blowing tuyere 10 to promote the thermal decomposition of the formed coal and the reduction reaction of iron ore. Next, in the shaft furnace lower cooling chamber 11, it is cooled by the recovered gas to recover the molded ferro-coke.
[0021]
The generated gas is recovered from the shaft furnace, but is cooled by a heat exchange device (not shown), a tar mist separator, a decanter, or the like, and supplied to the high-temperature gas heating furnace 12 and the low-temperature gas heating furnace 13.
[0022]
<Example 1>
A ferro-coke production test was performed using the apparatus of the present embodiment shown in FIG. 1 under the following composition and operating conditions. Coal and iron ore are blended in the compositions and blending ratios shown in Tables 1 and 2. After pulverization by the pulverizer 1, the water content was evaporated at about 350 ° C. in the pre-treatment device 3, mixed by the kneader 4, and then formed into hot coal by hot forming.
[0023]
[Table 1]
Figure 2004359718
[0024]
[Table 2]
Figure 2004359718
[0025]
The obtained molded coal was charged into the infusibilizing furnace 6 and infusibilized using air heated to about 400 ° C. at a furnace temperature of 380 ° C. and a residence time of 15 minutes. Further, the infusible coal was charged into the shaft furnace 7 and carbonized.
[0026]
In the shaft furnace low-temperature carbonization chamber 7, a gas of 650 ° C., 1150 Nm 3 / t-raw material is blown from the upper low-temperature heated gas blowing tuyere 8, and the coal is heated and pyrolyzed. Further, in the shaft furnace high-temperature carbonization chamber 9, a recovery gas heated to 1080 ° C., 265 Nm 3 / t-raw material is blown from the lower high-temperature heated gas blowing tuyere 10 to promote thermal decomposition and reduction reaction of iron ore. Further, in the lower cooling chamber 11 of the shaft furnace, the mixture was cooled at 55 ° C. and a recovery gas of 715 Nm 3 / t-raw material, and 610 kg / t-raw ferrocoke was recovered. The generated gas of 410 ° C., 370 Nm 3 / t-raw material is recovered from the shaft furnace, but the temperature is lowered by a heat exchange device (not shown), a tar mist separator, a decanter, etc., and the high temperature gas heating furnace 12 and the low temperature gas heating furnace 13 are cooled. Supplied. Table 2 shows the particle size distribution of the manufactured molded ferrocoke. The amount of coke breeze derived from low strength of 25 mm or less and fused coke of 50 mm or more was extremely small, indicating the superiority of this example.
[0027]
<Example 2>
Binders are added at the compounding ratios shown in Table 2 and molded cold to produce molded coal. Dry distillation was performed under the same conditions as in Example 1 to collect a molded ferrocoke of 602 kg / t-raw material. Table 2 shows the particle size distribution of the manufactured ferro-coke. It can be seen that the amount of generated coke powder of 25 mm or less and coke of 50 mm or more is small.
[0028]
<Example 3>
After adding waste wood as biomass at the mixing ratio shown in Table 2, molded coal was produced and carbonized under the same conditions as in Example 1 to collect 622 kg / t-raw molded ferrocoke. Table 2 shows the particle size distribution of the manufactured ferro-coke, and the amount of coke powder and coke fused to 50 mm or more derived from low strength of 25 mm or less is extremely small.
[0029]
<Comparative Example 1>
Except that the infusibilization treatment was not carried out, 581 kg / t-raw molded ferrocoke was recovered under the same blending, molding and dry distillation conditions as in Example 1. The yield is lower than in the first embodiment. Table 2 shows the particle size distribution of the molded ferro-coke produced. The amount of coke breeze derived from low strength of 25 mm or less and fused coke of 50 mm or more is large.
[0030]
<Comparative Example 2>
A molded ferrocoke of 586 kg / t-raw material was recovered under the same blending, molding and dry distillation conditions as in Example 2 except that the infusibilization treatment was not performed. The yield is lower than in the first embodiment. Table 2 shows the particle size distribution of the molded ferro-coke produced. The amount of coke breeze derived from low strength of 25 mm or less and fused coke of 50 mm or more is large.
[0031]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, softening and fusion of a molded coal in a shaft furnace and powdering in a shaft furnace can be suppressed. For this reason, it is possible to produce high-quality molded ferro-coke, and by using this in a blast furnace, it contributes to a reduction in the amount of metallurgical coke used in the blast furnace and can greatly contribute to the suppression of generation of carbon dioxide gas.
[Brief description of the drawings]
FIG. 1 is an overall configuration diagram of an apparatus in which a ferro-coke manufacturing method according to an embodiment of the present invention is performed.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Pulverizer 2 ... Conveying means 3 ... Pretreatment device 4 ... Kneader 5 ... Hot molding machine 6 ... Infusibilizing furnace 7 ... Shaft furnace low temperature dry distillation chamber 8 ····························································································································・ Low temperature gas heating furnace

Claims (5)

少なくとも石炭及び鉄鉱石を原料としてフェロコークスを製造する方法において、
前記原料を成形して成型炭を製造する工程と、
該成型炭を酸素存在下、不融化処理する工程と、
前記成型炭を乾留する工程と、を備えるフェロコークスの製造方法。
In a method for producing ferrocoke at least using coal and iron ore as raw materials,
Forming the raw material by molding the raw material,
A step of infusibilizing the shaped coal in the presence of oxygen;
A step of dry-distilling the molded coal.
前記不融化処理は、
250〜400℃の温度、及び処理時間10分〜60分の時間の条件にて、前記成型炭を熱処理することを特徴とする請求項1に記載のフェロコークスの製造方法。
The infusibilization treatment is
The method for producing ferrocoke according to claim 1, wherein the formed coal is heat-treated at a temperature of 250 to 400C and a treatment time of 10 to 60 minutes.
前記石炭及び前記鉄鉱石以外にバイオマスを原料として用いることを特徴とする請求項1又は2に記載のフェロコークスの製造方法。The method for producing ferrocoke according to claim 1 or 2, wherein biomass is used as a raw material other than the coal and the iron ore. 前記石炭及び前記鉄鉱石以外に廃プラスチックを原料として用いることを特徴とする請求項1ないし3いずれかに記載のフェロコークスの製造方法。The method for producing ferrocoke according to any one of claims 1 to 3, wherein waste plastic is used as a raw material other than the coal and the iron ore. 少なくとも石炭及び鉄鉱石を原料としてフェロコークスを製造する装置において、
前記原料を成形して成型炭を製造する成形機と、
該成型炭を酸素存在下、不融化処理する不融化炉と、
前記成型炭を乾留するシャフト炉と、を備えるフェロコークスの製造装置。
In an apparatus for producing ferro-coke using at least coal and iron ore as raw materials,
A molding machine for producing the coal by molding the raw material,
An infusibilizing furnace for infusibilizing the molded coal in the presence of oxygen,
An apparatus for producing ferrocoke, comprising: a shaft furnace for carbonizing the molded coal.
JP2003156601A 2003-06-02 2003-06-02 Manufacturing method of high strength ferro-coke Expired - Fee Related JP4218426B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003156601A JP4218426B2 (en) 2003-06-02 2003-06-02 Manufacturing method of high strength ferro-coke

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003156601A JP4218426B2 (en) 2003-06-02 2003-06-02 Manufacturing method of high strength ferro-coke

Publications (2)

Publication Number Publication Date
JP2004359718A true JP2004359718A (en) 2004-12-24
JP4218426B2 JP4218426B2 (en) 2009-02-04

Family

ID=34050640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003156601A Expired - Fee Related JP4218426B2 (en) 2003-06-02 2003-06-02 Manufacturing method of high strength ferro-coke

Country Status (1)

Country Link
JP (1) JP4218426B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010222475A (en) * 2009-03-24 2010-10-07 Jfe Steel Corp Method for utilizing biomass
JP2011026520A (en) * 2009-07-29 2011-02-10 Jfe Steel Corp Production facility of ferrocoke
US20120204678A1 (en) * 2009-08-10 2012-08-16 Jfe Steel Corporation Method and apparatus for producing carbon iron composite

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010222475A (en) * 2009-03-24 2010-10-07 Jfe Steel Corp Method for utilizing biomass
JP2011026520A (en) * 2009-07-29 2011-02-10 Jfe Steel Corp Production facility of ferrocoke
US20120204678A1 (en) * 2009-08-10 2012-08-16 Jfe Steel Corporation Method and apparatus for producing carbon iron composite
US8690987B2 (en) * 2009-08-10 2014-04-08 Jfe Steel Corporation Method and apparatus for producing carbon iron composite

Also Published As

Publication number Publication date
JP4218426B2 (en) 2009-02-04

Similar Documents

Publication Publication Date Title
AU2019254838B2 (en) Method of producing solid composites
JP4487564B2 (en) Ferro-coke manufacturing method
WO2006013455A1 (en) Method and apparatus for producing clean reducing gases from coke oven gas
CN110423900A (en) A method of extracting magnesium from ferronickel slag
CN104194816A (en) Method for preparing coke
CA2563375A1 (en) Method and apparatus for gasifying waste automotive tires to produce high quality solid carbon and non-condensable synthesis gas
JP2006057082A (en) Method for producing carbon-containing molded product and method for melting treatment of waste using the carbon-containing molded product
JP4218426B2 (en) Manufacturing method of high strength ferro-coke
CN111808446A (en) Pyrolysis carbon black carbonized by high-temperature pyrolysis gas and preparation method thereof
CN102899093B (en) High-efficiency cleaning coal gasifying process
JP4182787B2 (en) Method for producing metallurgical furnace raw materials
CN106564901A (en) Manufacturing technique for producing lime carbon pellets through pyrolytic semi-coke
JP4218443B2 (en) Ferro-coke manufacturing method
JP4218442B2 (en) Method for producing ferro-coke from biomass
JP4762855B2 (en) Blast furnace charging raw material manufacturing method
JP2007254863A (en) Sintered material with the use of organic waste, method for producing the sintered material, and refining method
KR101522781B1 (en) Manufacturing method of caking coal using coal dust and manufacturing method of coke
JP2009112959A (en) Method and apparatus for impregnating solid material containing iron oxide with tar, method for utilizing solid material containing iron oxide-impregnated-with-tar to blast furnace, and method for utilizing gas containing tar
JPH05202362A (en) Production of acicular coke
EP0020957B1 (en) Process for manufacturing calcium carbide
JP5559628B2 (en) Manufacturing method of coke for steel making
JPS62218524A (en) Recovery of iron fron iron ore, steel manufacturing byproduct, waste and other iron oxide-containing substance
JP4153627B2 (en) Method for producing molded coke
JPH06184542A (en) Production of coke
GB2085915A (en) Method for producing coke and a high calorific gas from coal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080812

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080924

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081021

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081103

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121121

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131121

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees