JP2004354973A - Manufacturing method of optical low-pass filter - Google Patents

Manufacturing method of optical low-pass filter Download PDF

Info

Publication number
JP2004354973A
JP2004354973A JP2004087619A JP2004087619A JP2004354973A JP 2004354973 A JP2004354973 A JP 2004354973A JP 2004087619 A JP2004087619 A JP 2004087619A JP 2004087619 A JP2004087619 A JP 2004087619A JP 2004354973 A JP2004354973 A JP 2004354973A
Authority
JP
Japan
Prior art keywords
birefringent plate
plate
polymer film
pass filter
optical low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004087619A
Other languages
Japanese (ja)
Other versions
JP4277721B2 (en
Inventor
Kazuhiro Hara
和弘 原
Daisuke Ariga
大助 有賀
Kenichi Mizoguchi
健一 溝口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2004087619A priority Critical patent/JP4277721B2/en
Priority to TW093110542A priority patent/TWI242082B/en
Priority to KR1020040030013A priority patent/KR100594672B1/en
Priority to CNB2004100372388A priority patent/CN100420981C/en
Publication of JP2004354973A publication Critical patent/JP2004354973A/en
Application granted granted Critical
Publication of JP4277721B2 publication Critical patent/JP4277721B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/42Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
    • G02B27/46Systems using spatial filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters
    • G02B5/281Interference filters designed for the infrared light
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/03Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
    • G02F1/0305Constructional arrangements
    • G02F1/0311Structural association of optical elements, e.g. lenses, polarizers, phase plates, with the crystal

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Polarising Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an efficient manufacturing method of an optical low-pass filter that can adhere a high polymer film to a birefringent plate with a high production yield without leaving air bubbles in between. <P>SOLUTION: In this manufacturing method of an optical low-pass filter in which a high polymer film 2 is sandwiched between a first hard birefringent plate 1 and a second hard birefringent plate 3, two steps are included. The one is a first affixing step to affix a high polymer film 2 to the first birefringent plate 1, and the other one is a second affixing step to affix the second birefringent plate 3 to the high polymer film 2 by pressing in a vacuum environment after the first affixing step. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、光学ローパスフィルタの製造方法に関し、特に、高分子フィルムを複屈折板に挟んだ構造の光学ローパスフィルタの製造歩留まりを向上させる技術に関する。   The present invention relates to a method for manufacturing an optical low-pass filter, and more particularly to a technique for improving the manufacturing yield of an optical low-pass filter having a structure in which a polymer film is sandwiched between birefringent plates.

デジタルスチルカメラやデジタルビデオカメラ等の撮像装置にはCCDやCMOS等の撮像素子が用いられている。この撮像素子は所定ピッチでマトリクス状に配列された画素によって光学像を電気信号に変換し、映像を撮影する。このような撮像装置では、光学像の空間周波数が画素の配列ピッチにより決まるサンプリング周波数の1/2を超えるとモアレなどの擬似信号を発生して画質を低下させる。   2. Description of the Related Art An imaging device such as a CCD or a CMOS is used in an imaging device such as a digital still camera or a digital video camera. This image sensor converts an optical image into an electric signal by pixels arranged in a matrix at a predetermined pitch, and shoots an image. In such an imaging apparatus, when the spatial frequency of the optical image exceeds 1 / of the sampling frequency determined by the arrangement pitch of the pixels, a pseudo signal such as moiré is generated to lower the image quality.

そのため、通常の撮像装置では、撮像素子の前面に、光学像の空間周波数の高域成分を抑制する光学ローパスフィルタが配置されている。この光学ローパスフィルタの構造として、一般的には複屈折板3枚タイプと複屈折板2枚の間に位相板を挟むタイプがあり、2枚の複屈折板の間に1/4波長板を挟んだ構造の垂直付加タイプの高性能なものが知られている。   For this reason, in an ordinary imaging device, an optical low-pass filter that suppresses a high-frequency component of the spatial frequency of an optical image is arranged in front of the imaging device. As a structure of this optical low-pass filter, there is generally a three-birefringent plate type and a type in which a phase plate is sandwiched between two birefringent plates, and a quarter-wave plate is sandwiched between two birefringent plates. A high performance vertical addition type structure is known.

近年、1/4波長板として一軸延伸法によって形成した高分子フィルムを用いることが提案されている。高分子フィルムを用いることによって、薄型化と製造コストの低減を図ることができる。複屈折板としては水晶板が用いられる。   In recent years, it has been proposed to use a polymer film formed by a uniaxial stretching method as a quarter-wave plate. By using a polymer film, it is possible to reduce the thickness and the manufacturing cost. A quartz plate is used as the birefringent plate.

2枚の水晶板の間に高分子フィルムを挟んだ構造の光学ローパスフィルタの製造に際しては、高分子フィルムの両面に粘着剤又は接着剤を用いて2枚の水晶板を貼り合わせる工程が必要である。   In manufacturing an optical low-pass filter having a structure in which a polymer film is sandwiched between two quartz plates, a step of bonding the two quartz plates to both surfaces of the polymer film using an adhesive or an adhesive is necessary.

高分子フィルムを水晶板に貼り合わせる際に、高分子フィルムと水晶板との間に気泡が入る場合がある。気泡が存在すると光学素子として使用できないため、不良となり、製造歩留まりを低下させている原因となっている。   When bonding a polymer film to a quartz plate, air bubbles may enter between the polymer film and the quartz plate. If air bubbles are present, they cannot be used as an optical element, resulting in a failure and a reduction in manufacturing yield.

水晶板同士を接着させる際に真空雰囲気下で貼り合わせをすることにより気泡が入ることを防止する技術が次の特許文献1で示されている。   The following Patent Document 1 discloses a technique for preventing bubbles from entering by bonding the quartz plates in a vacuum atmosphere when they are bonded to each other.

特開2003−29035号公報JP-A-2003-29035

しかしながら、真空雰囲気で圧着すると気泡が残存せず、製造歩留まりは向上するが、大気圧から真空にするまでに時間がかかり、生産効率が悪いという問題がある。そのため、真空雰囲気下の工程を最小限に止めて生産効率を低下させない必要がある。   However, when pressure bonding is performed in a vacuum atmosphere, air bubbles do not remain and the production yield is improved, but there is a problem that it takes time to reduce the pressure from the atmospheric pressure to a vacuum and the production efficiency is poor. For this reason, it is necessary to minimize the number of steps in a vacuum atmosphere so as not to lower the production efficiency.

また、光学ローパスフィルタの製造に際しては、2枚の複屈折板と高分子フィルムの各々の光学軸を正確に配置する必要があり、真空雰囲気中で正確な位置に貼り合わせをすることが求められる。   Further, when manufacturing an optical low-pass filter, it is necessary to accurately arrange the optical axes of the two birefringent plates and the polymer film, and it is required to bond them at an accurate position in a vacuum atmosphere. .

本発明は、上記事情に鑑みてなされたもので、高分子フィルムと複屈折板との間に気泡が存在しないように製造歩留まり良く複屈折板に高分子フィルムを貼り合わせすることができる生産効率の良い光学ローパスフィルタの製造方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and has a production efficiency in which a polymer film can be bonded to a birefringent plate with a high production yield so that no bubbles exist between the polymer film and the birefringent plate. It is an object of the present invention to provide a method for manufacturing an optical low-pass filter with good performance.

また、本発明は、真空雰囲気中で正確な位置に貼り合わせをすることができる光学ローパスフィルタの製造方法を提供することを目的とする。   Another object of the present invention is to provide a method for manufacturing an optical low-pass filter that can be bonded at an accurate position in a vacuum atmosphere.

本発明者は、上記目的を達成するため、鋭意検討した結果、高分子フィルムの両面に硬質の第1複屈折板と第2複屈折板を貼り合わせる場合、まず、高分子フィルムを第1複屈折板に貼り合わせる第1貼り合わせ工程を行い、次に、高分子フィルムを第2複屈折板に貼り合わせる第2貼り合わせ工程の2回の貼り合わせ工程が必要であること、高分子フィルムを硬質板へ貼り合わせる第1貼り合わせ工程では、高分子フィルムを例えばローラなどで気泡を押し出しながら貼り合わせることにより、大気中でも気泡が入らないように貼り合わせることが可能であること、硬質板相互を貼り合わせる第2貼り合わせ工程では真空雰囲気下で行うことが必要であること、真空雰囲気は500Paから1Paの範囲が好ましいこと、第2貼り合わせ工程を真空雰囲気下で行うことにより、製造歩留まりを向上させながら、生産効率の低下を最小限とすることができることを見出した。   The present inventor has conducted intensive studies in order to achieve the above object, and as a result, when bonding a hard first birefringent plate and a second birefringent plate to both surfaces of a polymer film, first, the polymer film was first bonded to the first birefringent plate. Performing a first laminating step of laminating the polymer film on the refraction plate and then performing a second laminating step of a second laminating step of laminating the polymer film on the second birefringent plate; In the first laminating step of laminating to the hard plate, the polymer film is laminated while extruding bubbles with, for example, a roller or the like, so that it is possible to laminate so that bubbles do not enter even in the air. It is necessary to perform the second bonding step in a vacuum atmosphere in the second bonding step, the vacuum atmosphere is preferably in the range of 500 Pa to 1 Pa, The by performed under a vacuum atmosphere, while enhancing the production yield, a reduction in the production efficiency has been found that can be minimized.

真空雰囲気下で行う第2貼り合わせ工程では、第1複屈折板に貼った高分子フィルムと第2複屈折板とを離間させて対向配置させ、真空雰囲気下にした後、高分子フィルムと第2複屈折板とを接近させ、これらを圧着することにより、硬質板相互を真空雰囲気下で気泡を存在させずに貼り合わせることができる。   In the second bonding step performed in a vacuum atmosphere, the polymer film adhered to the first birefringent plate and the second birefringent plate are spaced apart and opposed to each other. By bringing the two birefringent plates close to each other and pressing them together, the hard plates can be bonded together in a vacuum atmosphere without the presence of bubbles.

また、第2貼り合わせ工程で、第1複屈折板に貼った高分子フィルムと第2複屈折板とを真空雰囲気中で正確な位置に貼り合わせをする方法として、上下に昇降し、常時は上方に付勢されている案内装置上に、前記高分子フィルムを貼り合わせた第1複屈折板又は前記第2複屈折板の一方を保持させ、その下方に存在している下側圧着板上に配置されている第1複屈折板又は第2複屈折板の他方から離間させて高分子フィルムと第2複屈折板とを対向配置させ、上側圧着板を降下させて案内装置に保持された第1複屈折板又は第2複屈折板の一方を案内装置の付勢力に抗して降下させて、上側圧着板で高分子フィルムと第2複屈折板とを接近させ、上側圧着板と下側圧着板との間に挟んで圧着する方法を採用することができる。   In the second bonding step, as a method of bonding the polymer film bonded to the first birefringent plate and the second birefringent plate at an accurate position in a vacuum atmosphere, the polymer film is vertically moved up and down, On the guide device urged upward, one of the first birefringent plate or the second birefringent plate to which the polymer film is adhered is held, and the lower crimping plate existing below it is held. The first birefringent plate or the second birefringent plate is separated from the other, and the polymer film and the second birefringent plate are arranged to face each other, and the upper pressing plate is lowered to be held by the guide device. One of the first birefringent plate and the second birefringent plate is lowered against the urging force of the guide device to bring the polymer film and the second birefringent plate closer to each other with the upper pressing plate, and the upper pressing plate and the lower It is possible to adopt a method in which the sheet is sandwiched between the side pressure-bonding plates and pressed.

また、粘着剤を用いて貼り合わせをする場合、圧着することに加えて加温することにより、より強固に貼り合わせをすることができる。
この場合、加温する温度は30℃から80℃の範囲が好ましい。
When bonding is performed using an adhesive, bonding can be performed more strongly by heating in addition to pressing.
In this case, the heating temperature is preferably in the range of 30 ° C to 80 ° C.

そのため、加熱した上下の圧着板の間に挟んで圧着することによって、より強固に貼り合わせをすることができる。
この場合、圧着する加圧力は1969600Paから4596000Paの範囲であることが好ましい。
For this reason, it is possible to bond more firmly by sandwiching and pressing between the heated upper and lower pressure bonding plates.
In this case, the pressing pressure is preferably in the range of 1969600 Pa to 4596000 Pa.

また、加熱しながら圧力を加えることによって、より強固に貼り合わせをすることができる。   Further, by applying pressure while heating, bonding can be performed more firmly.

また、圧着板と複屈折板との間に緩衝材を挟んで加熱しながら圧力を加えることによって、緩衝材が複屈折板や高分子フィルムの小さな凹凸を吸収することができ、均一な加圧することができる。このことにより、複屈折板と高分子フィルムを強固に貼り合わせをすることができる。   In addition, by applying pressure while heating the cushioning material between the pressure bonding plate and the birefringent plate, the cushioning material can absorb small irregularities of the birefringent plate or the polymer film, and provide uniform pressure. be able to. Thus, the birefringent plate and the polymer film can be firmly bonded.

従って、第1の発明は、硬質の第1複屈折板と硬質の第2複屈折板との間に高分子フィルムを挟んだ光学ローパスフィルタの製造方法において、前記第1複屈折板に前記高分子フィルムを貼り合わせる第1貼り合わせ工程と、第1貼り合わせ工程後、前記高分子フィルムに前記第2複屈折板を真空雰囲気下で圧着する第2貼り合わせ工程とを有することを特徴とする光学ローパスフィルタの製造方法を提供する。   Therefore, a first invention provides a method of manufacturing an optical low-pass filter in which a polymer film is sandwiched between a hard first birefringent plate and a hard second birefringent plate. A first laminating step of laminating a molecular film, and a second laminating step of bonding the second birefringent plate to the polymer film in a vacuum atmosphere after the first laminating step. Provided is a method for manufacturing an optical low-pass filter.

第2の発明は、第1の発明の光学ローパスフィルタの製造方法において、前記第2貼り合わせ工程が、真空雰囲気下で、前記高分子フィルムを貼り合わせた前記第1複屈折板と前記第2複屈折板とを離間させて前記高分子フィルムと前記第2複屈折板とを対向配置させた後、前記高分子フィルムと前記第2複屈折板とを接近させ、これらを圧着することを特徴とする光学ローパスフィルタの製造方法を提供する。   According to a second invention, in the method for manufacturing an optical low-pass filter according to the first invention, the second bonding step is such that the first birefringent plate bonded to the polymer film and the second After separating the birefringent plate and disposing the polymer film and the second birefringent plate to face each other, the polymer film and the second birefringent plate are brought close to each other, and they are crimped. And a method for manufacturing an optical low-pass filter.

第3の発明は、第1の発明の光学ローパスフィルタの製造方法において、前記第2貼り合わせ工程が、真空雰囲気下で、上下に昇降し、常時は上方に付勢されている案内装置上に、前記高分子フィルムを貼り合わせた前記第1複屈折板又は前記第2複屈折板の一方を保持させ、その下方に存在している下側圧着板上に配置されている前記第1複屈折板又は前記第2複屈折板の他方から離間させて前記高分子フィルムと前記第2複屈折板とを対向配置させた後、上側圧着板を降下させて前記案内装置に保持された前記第1複屈折板又は前記第2複屈折板の一方を前記案内装置の付勢力に抗して降下させて、前記上側圧着板で前記高分子フィルムと前記第2複屈折板とを接近させ、前記第1複屈折板、前記高分子フィルム及び前記第2複屈折板を前記上側圧着板と前記下側圧着板との間に挟んで圧着することを特徴とする光学ローパスフィルタの製造方法を提供する。   According to a third invention, in the method for manufacturing an optical low-pass filter according to the first invention, the second bonding step is performed on a guide device which moves up and down in a vacuum atmosphere and is normally urged upward. Holding the one of the first birefringent plate or the second birefringent plate to which the polymer film is attached, and placing the first birefringent plate disposed on a lower pressure plate existing below the first birefringent plate. After the polymer film and the second birefringent plate are arranged to face each other while being separated from the other of the plate or the second birefringent plate, the first crimping plate is lowered to hold the first birefringent plate held by the guide device. Lowering one of the birefringent plate or the second birefringent plate against the urging force of the guide device, bringing the polymer film and the second birefringent plate closer with the upper pressure plate, 1 birefringent plate, the polymer film and the second birefringent plate Serial to provide a manufacturing method of the optical low-pass filter characterized interposed therebetween to crimp between the upper cover and the lower cover.

第4の発明は、第1〜3の発明のいずれかに記載の光学ローパスフィルタの製造方法において、前記第2貼り合わせ工程が、加熱した上下の圧着板の間に挟んで圧着することを特徴とする光学ローパスフィルタの製造方法を提供する。   According to a fourth aspect of the present invention, in the method for manufacturing an optical low-pass filter according to any one of the first to third aspects, the second bonding step is performed by sandwiching between heated upper and lower pressure bonding plates. Provided is a method for manufacturing an optical low-pass filter.

第5の発明は、第1の発明の光学ローパスフィルタの製造方法において、前記第1貼り合わせ工程が、前記高分子フィルムに前記第1複屈折板を真空雰囲気下で圧着することを特徴とする光学ローパスフィルタの製造方法を提供する。   According to a fifth aspect of the present invention, in the method for manufacturing an optical low-pass filter according to the first aspect, the first bonding step includes bonding the first birefringent plate to the polymer film under a vacuum atmosphere. Provided is a method for manufacturing an optical low-pass filter.

第6の発明は、第1〜5の発明のいずれかに記載の光学ローパスフィルタの製造方法において、前記第2貼り合わせ工程で製造した光学ローパスフィルタに加熱しながら圧力を加える加圧処理工程を有することを特徴とする光学ローパスフィルタの製造方法を提供する。   According to a sixth aspect, in the method for manufacturing an optical low-pass filter according to any one of the first to fifth aspects, a pressure treatment step of applying pressure while heating the optical low-pass filter manufactured in the second bonding step is provided. A method for manufacturing an optical low-pass filter, comprising:

第7の発明は、第1〜6の発明のいずれかに記載の光学ローパスフィルタの製造方法において、前記真空雰囲気は500Paから1Paの範囲内であることを特徴とする光学ローパスフィルタの製造方法を提供する。   A seventh invention is directed to the method for manufacturing an optical low-pass filter according to any one of the first to sixth inventions, wherein the vacuum atmosphere is in a range of 500 Pa to 1 Pa. provide.

第8の発明は、第1〜6の発明のいずれかに記載の光学ローパスフィルタの製造方法において、圧着する加圧力を1969600Paから4596000Paの範囲内としたことを特徴とする光学ローパスフィルタの製造方法を提供する。   According to an eighth aspect of the present invention, in the method for manufacturing an optical low-pass filter according to any one of the first to sixth aspects, the pressure for applying pressure is set in a range of 196,600 Pa to 4,596,000 Pa. I will provide a.

第9の発明は、第4の発明の光学ローパスフィルタの製造方法において、第2貼り合わせ工程で加熱する温度を30℃から80℃の範囲内としたことを特徴とする光学ローパスフィルタの製造方法を提供する。   According to a ninth aspect, in the method for manufacturing an optical low-pass filter according to the fourth aspect, the temperature for heating in the second bonding step is in a range of 30 ° C. to 80 ° C. I will provide a.

第10の発明は、第1〜6の発明のいずれかに記載の光学ローパスフィルタの製造方法であって、前記第1貼り合わせ工程後、前記高分子フィルムに前記第2複屈折板を真空雰囲気下で圧着する第2貼り合わせ工程において、下側圧着板と複屈折板との間、または/及び、上側圧着板と複屈折板との間に緩衝材を挟んで圧着することを特徴とする光学ローパスフィルタの製造方法を提供する。   A tenth invention is the method for manufacturing an optical low-pass filter according to any one of the first to sixth inventions, wherein after the first bonding step, the second birefringent plate is placed on the polymer film in a vacuum atmosphere. In the second bonding step of pressing underneath, the bonding is performed by sandwiching a buffer between the lower pressing plate and the birefringent plate, and / or between the upper pressing plate and the birefringent plate. Provided is a method for manufacturing an optical low-pass filter.

以下、本発明の光学ローパスフィルタの製造方法の実施の形態について説明するが、本発明は以下の実施の形態に限定されるものではない。   Hereinafter, an embodiment of a method for manufacturing an optical low-pass filter of the present invention will be described, but the present invention is not limited to the following embodiment.

本発明の光学ローパスフィルタの製造方法の対象となる光学ローパスフィルタとしては、2枚の複屈折板の間に高分子フィルムからなる1/4波長板を挟んだ構造の垂直付加タイプの3層構造を挙げることができる。複屈折板は、通常は所定の結晶面を有する水晶板が用いられる。1/4波長板を構成する高分子フィルムとしては、一軸延伸したプラスチックフィルムが挙げられる。1/4波長板は入射光の偏光状態を直線偏光から円偏光に変換する機能を有する。一軸延伸した所定の厚さの高分子フィルムは入射光の波長が大きくなるほど複屈折率が大きくなる特性を有する。一軸延伸した高分子フィルムは、例えば、厚さが約80μmのプラスチックフィルムである。これらの複屈折板と高分子フィルムとは光学軸がそれぞれ所定の方向になるように相互に精密に配置される必要がある。   The optical low-pass filter which is the object of the method for manufacturing the optical low-pass filter of the present invention includes a vertical addition type three-layer structure in which a quarter-wave plate made of a polymer film is sandwiched between two birefringent plates. be able to. As the birefringent plate, a quartz plate having a predetermined crystal plane is usually used. Examples of the polymer film constituting the quarter-wave plate include a uniaxially stretched plastic film. The quarter-wave plate has a function of converting the polarization state of incident light from linearly polarized light to circularly polarized light. A uniaxially stretched polymer film having a predetermined thickness has a property that the birefringence increases as the wavelength of incident light increases. The uniaxially stretched polymer film is, for example, a plastic film having a thickness of about 80 μm. The birefringent plate and the polymer film must be precisely arranged with respect to each other so that the optical axes are in predetermined directions.

高分子フィルムの両面に複屈折板を貼り合わせるために、粘着剤又は接着剤が用いられる。接着剤としては、通常は生産効率がよい紫外線硬化型が選択される。粘着剤としては、光透過性が良好なタイプが選択され、高分子フィルムの両面に厚さが20μm程度の粘着剤層が形成され、両面粘着テープのような形態で供給される場合がある。また、高分子フィルムの一方の面にだけ粘着剤層が形成される場合もある。この高分子フィルムは、粘着剤層が設けられていない面は接着剤によって接着する。   An adhesive or an adhesive is used to attach the birefringent plate to both sides of the polymer film. As the adhesive, a UV-curable adhesive having high production efficiency is usually selected. As the pressure-sensitive adhesive, a type having good light transmittance is selected, and a pressure-sensitive adhesive layer having a thickness of about 20 μm is formed on both surfaces of the polymer film, and the pressure-sensitive adhesive may be supplied in the form of a double-sided pressure-sensitive adhesive tape. In some cases, the pressure-sensitive adhesive layer is formed only on one surface of the polymer film. The surface of the polymer film on which the pressure-sensitive adhesive layer is not provided is bonded with an adhesive.

図1は、光学ローパスフィルタの主要な製造工程の一例を示すフローチャートである。この光学ローパスフィルタの製造工程は、赤外カット膜と反射防止膜を形成した第1複屈折板と第2複屈折板を用いて貼り合わせる場合と貼り合わせた後で赤外カット膜と反射防止膜を形成する場合とがある。赤外カット膜と反射防止膜を形成した第1複屈折板と第2複屈折板を用いて貼り合わせる場合は、第1複屈折板と第2複屈折板のそれぞれの外面側となる片面それぞれに赤外カット膜成膜工程と反射防止膜成膜工程を行う。赤外カット膜を成膜すると、複屈折板にそりが生じる場合があるため、貼り合わせ後、赤外カット膜と反射防止膜を成膜することが好ましい。   FIG. 1 is a flowchart illustrating an example of main manufacturing steps of an optical low-pass filter. The manufacturing process of the optical low-pass filter includes a case in which the first birefringent plate and the second birefringent plate on which the infrared cut film and the antireflection film are formed are bonded together, and a method in which the infrared cut film and the antireflection film are bonded after bonding. In some cases, a film is formed. When bonding using the first birefringent plate and the second birefringent plate on which the infrared cut film and the antireflection film are formed, each of the first birefringent plate and the second birefringent plate has one outer surface side. Next, an infrared cut film forming step and an antireflection film forming step are performed. When an infrared cut film is formed, the birefringent plate may be warped. Therefore, it is preferable to form an infrared cut film and an antireflection film after bonding.

通常の工程は、第1複屈折板に高分子フィルムを貼り合わせる第1貼り合わせ工程後、第1複屈折板に貼り合わせた高分子フィルムを第2複屈折板に貼り合わせる第2貼り合わせ工程を行い3層構造の光学ローパスフィルタを製造する。その後、必要により、光学ローパスフィルタに対して加温しながら加圧して貼り合わせを更に強固にする加圧処理工程を行う。次に、必要により、光学ローパスフィルタの一方の面に赤外カットフィルタを形成する赤外カット膜成膜工程と、光学ローパスフィルタの他方の面に反射防止膜を形成する反射防止膜成膜工程を行い、光学ローパスフィルタに赤外カットの機能を付加すると共に、反射を減らし光線透過率を向上させる機能を付加する。最後に、光学ローパスフィルタとして必要な大きさに切断する切断工程を行い、その後は検査工程、梱包工程を経て最終的に光学ローパスフィルタの製品として出荷される。   The normal process is a first laminating process of laminating a polymer film on a first birefringent plate, and then a second laminating process of laminating a polymer film on a first birefringent plate on a second birefringent plate. To manufacture an optical low-pass filter having a three-layer structure. Thereafter, if necessary, a pressure treatment step is performed to further strengthen the bonding by applying pressure while heating the optical low-pass filter. Next, if necessary, an infrared cut film forming step of forming an infrared cut filter on one surface of the optical low-pass filter, and an anti-reflective film forming step of forming an anti-reflective film on the other surface of the optical low-pass filter To add an infrared cut function to the optical low-pass filter and a function of reducing reflection and improving light transmittance. Finally, a cutting step of cutting the optical low-pass filter into a required size is performed. After that, an inspection step and a packing step are performed, and the optical low-pass filter is finally shipped as a product.

第1貼り合わせ工程の第1複屈折板に高分子フィルムを貼り合わせる方法としては、複屈折板は硬質の水晶板であり、高分子フィルムは軟質であることから、水晶板に対して高分子フィルムをローラで気泡を押し出すように貼り合わせることにより、大気中で貼り合わせが可能である。また、生産効率は低下するが、第1貼り合わせ工程を真空雰囲気中で行うようにしても良い。   As a method of bonding the polymer film to the first birefringent plate in the first bonding step, the birefringent plate is a hard quartz plate, and the polymer film is soft. By laminating the film with a roller so as to extrude air bubbles, lamination can be performed in the atmosphere. Although the production efficiency is reduced, the first bonding step may be performed in a vacuum atmosphere.

第1複屈折板に貼り合わせた高分子フィルムを第2複屈折板に貼り合わせる第2貼り合わせ工程では、硬質板相互を貼り合わせるため、真空雰囲気下で貼り合わせすることが必要である。   In the second bonding step in which the polymer film bonded to the first birefringent plate is bonded to the second birefringent plate, it is necessary to bond the hard plates in a vacuum atmosphere in order to bond the hard plates together.

図2(a)は、第1貼り合わせ工程と第2貼り合わせ工程の両方に使用することができる真空貼り合わせ装置の概要の構成を示す側面透視図である。   FIG. 2A is a side perspective view showing a schematic configuration of a vacuum bonding apparatus that can be used in both the first bonding step and the second bonding step.

図2(b)は、案内装置の拡大図、図2(c)は貼り合わせる際に第1複屈折板と高分子フィルムとの重ね合わせの位置関係を示す平面図、図2(d)は、真空貼り合わせ装置で圧着動作を行っている状態を示す側面図である。   2 (b) is an enlarged view of the guide device, FIG. 2 (c) is a plan view showing the positional relationship of the superposition of the first birefringent plate and the polymer film when bonding, and FIG. 2 (d) is FIG. 7 is a side view showing a state in which a pressure bonding operation is performed by a vacuum bonding apparatus.

この真空貼り合わせ装置100は、図2(a)に示すように、真空チャンバ110を備え、図示しない真空装置に真空配管111で接続され、真空引きが可能になっている。真空チャンバ110内の底面に上面が平滑に仕上げられた平らな定盤である下側圧着板121が配置されている。下側圧着板121は第1複屈折板1よりも大きく、第1複屈折板1を載置したときに、第1複屈折板1全体を保持して周囲に余裕がある程度の大きさである。下側圧着板121の両端部側には下側圧着板121を貫通して案内装置130が上下に昇降可能に配設されている。   As shown in FIG. 2A, the vacuum bonding apparatus 100 includes a vacuum chamber 110, and is connected to a vacuum device (not shown) via a vacuum pipe 111 so that vacuuming can be performed. On the bottom surface in the vacuum chamber 110, a lower pressure plate 121 which is a flat surface plate whose upper surface is finished smoothly is arranged. The lower crimping plate 121 is larger than the first birefringent plate 1, and has a certain margin around the entire first birefringent plate 1 when the first birefringent plate 1 is placed. . A guide device 130 is provided at both ends of the lower pressure bonding plate 121 so as to be able to move up and down vertically through the lower pressure bonding plate 121.

この案内装置130は、図2(b)の拡大図に示すように、下側圧着板121に垂直方向に昇降可能に保持されている昇降ピン131の上端に針金が外方に向かってL字状に屈曲された形状の案内保持部132が設けられている。この案内保持部132は、矩形状の第1複屈折板1の短辺11の両端縁を保持できると共に、短辺11の両側面の位置を両側から規制する。昇降ピン131は弾性部材133によって上方に付勢され、常時は案内保持部132が下側圧着板121の上面から上方に離間している。この案内保持部132に第1複屈折板1を保持させることにより、第1複屈折板1を空中に保持させることができる。昇降ピン131は垂直下向きに押されることにより、弾性部材133の付勢力に抗して降下し、案内保持部132で保持された第1複屈折板1を下側圧着板121の上面に接触させる位置まで降下するようになっている。弾性部材133としては、図示のコイルバネ以外に板バネ、流体バネ等のバネやゴムなどの弾性体を例示することができる。   As shown in the enlarged view of FIG. 2B, the guide device 130 has a wire L-shaped outwardly at the upper end of a lifting pin 131 which is vertically movably held by a lower pressure plate 121. A guide holding portion 132 having a bent shape is provided. The guide holding portion 132 can hold both end edges of the short side 11 of the first birefringent plate 1 having a rectangular shape, and regulate the positions of both side surfaces of the short side 11 from both sides. The elevating pin 131 is urged upward by the elastic member 133, and the guide holding portion 132 is always separated upward from the upper surface of the lower pressure plate 121. By holding the first birefringent plate 1 on the guide holding unit 132, the first birefringent plate 1 can be held in the air. The elevating pin 131 is pushed vertically downward, thereby descending against the urging force of the elastic member 133, and bringing the first birefringent plate 1 held by the guide holding portion 132 into contact with the upper surface of the lower crimping plate 121. It descends to the position. As the elastic member 133, besides the illustrated coil spring, a spring such as a plate spring or a fluid spring or an elastic body such as rubber can be exemplified.

高分子フィルム2の幅は、図2(c)に示すように、第1複屈折板1の長さよりもわずかに狭く、両側の昇降ピン131の間の離間距離よりもわずかに狭く形成されている。そのため、図2(b)に示すように、高分子フィルム2を昇降ピン131間の下側圧着板121の上に載置できる。   As shown in FIG. 2C, the width of the polymer film 2 is formed to be slightly smaller than the length of the first birefringent plate 1 and slightly smaller than the separation distance between the lifting pins 131 on both sides. I have. Therefore, as shown in FIG. 2B, the polymer film 2 can be placed on the lower pressure plate 121 between the lifting pins 131.

真空チャンバ110の上壁を貫いて図示しない駆動装置によって垂直方向に昇降するように駆動される昇降軸141が配設され、昇降軸141の下端には上側圧着板142が固定されている。この上側圧着板142の下面は、下側圧着板121の上面と平行になっていて、平滑に仕上げられている。上側圧着板142は、下側圧着板121とほぼ同じ形状で、第1複屈折板1の全体を覆うことができる形状、大きさになっている。昇降軸142の駆動は、上側圧着板142を下降させたときに、下側圧着板121の上面に接して加圧できる位置まで下降できるようになっている。   An elevating shaft 141 that is driven vertically through a driving device (not shown) through the upper wall of the vacuum chamber 110 is provided, and an upper crimp plate 142 is fixed to a lower end of the elevating shaft 141. The lower surface of the upper pressure plate 142 is parallel to the upper surface of the lower pressure plate 121 and is finished smoothly. The upper crimping plate 142 has substantially the same shape as the lower crimping plate 121, and has a shape and a size that can cover the entire first birefringent plate 1. The drive of the elevating shaft 142 can be lowered to a position where the upper press plate 142 can be pressed by contacting the upper surface of the lower press plate 121 when the upper press plate 142 is lowered.

このような真空貼り合わせ装置100を用いて、図2を参照しながら第1貼り合わせ工程を真空雰囲気下で行う方法について説明する。この場合の高分子フィルム2は、両面に粘着剤層が設けられたタイプのものを使用することとして説明する。   A method of performing the first bonding step in a vacuum atmosphere using such a vacuum bonding apparatus 100 will be described with reference to FIG. The polymer film 2 in this case will be described as a type having a pressure-sensitive adhesive layer provided on both surfaces.

第1複屈折板1と第2複屈折板3は予め洗浄工程で洗浄され、表面の付着物が除去されたものを使用する。まず、真空チャンバ110の図示しない扉を開いて一方の粘着剤層を露出させた高分子フィルム2を露出させた粘着剤層を上にして下側圧着板121の上の所定の位置に載置する。次に、案内装置130の案内保持部132の上に第1複屈折板1を載置する。これにより、第1複屈折板1と高分子フィルム2の配置は、図2(c)に示すような重なりの配置となる。即ち、上から見ると、第1複屈折板1の短辺11側の両端縁が高分子フィルム2の両端縁から外方にはみ出している。第1複屈折板1の短辺11側の両端縁が案内装置130の案内保持部132で保持され、第1複屈折板1は高分子フィルム2の上方の空間に保持され、高分子フィルム2から離間して対向配置されている。   The first birefringent plate 1 and the second birefringent plate 3 are cleaned in advance in a cleaning step, and those whose surface is attached are removed. First, a door (not shown) of the vacuum chamber 110 is opened, and the polymer film 2 with one of the adhesive layers exposed is placed on a predetermined position on the lower pressure plate 121 with the adhesive layer with the exposed adhesive layer facing upward. I do. Next, the first birefringent plate 1 is placed on the guide holding part 132 of the guide device 130. Thereby, the arrangement of the first birefringent plate 1 and the polymer film 2 becomes an overlapping arrangement as shown in FIG. That is, when viewed from above, both ends on the short side 11 side of the first birefringent plate 1 protrude outward from both ends of the polymer film 2. Both edges of the first birefringent plate 1 on the short side 11 side are held by the guide holding portion 132 of the guide device 130, and the first birefringent plate 1 is held in a space above the polymer film 2, And are opposed to each other.

次に、真空チャンバ110の図示しない扉を閉じて図示しない真空装置を作動させ、真空チャンバ110内を真空配管111を介して真空引きする。真空チャンバ110内が所定の真空度に達した後、昇降軸141を図示しない駆動装置で駆動して下降させる。昇降軸141が下降し、上側圧着板142が下降していくと案内保持部132の上端に接し、上側圧着板142が昇降ピン131を上方に付勢している弾性部材133の付勢力に抗して案内保持部132を押し下げながら下降し、案内保持部132に保持されている第1複屈折板1を下側圧着板121に載置されている高分子フィルム2に当接させた後、上側圧着板142で第1複屈折板1を所定の圧力で押圧する。これにより、図2(d)に示すように、上側圧着板142と下側圧着板121との間に第1複屈折板1と高分子フィルム2とを挟んで所定の圧力で圧着する。このときの第1複屈折板1と高分子フィルム2の重なりは図2(c)に示した配置が保たれている。所定時間圧着した後、図示しない駆動装置を駆動させて昇降軸141を上昇させ、上側圧着板142を上昇させる。上側圧着板142の上昇に伴って案内保持部132が弾性部材133の付勢力で高分子フィルム2が貼り合わされた第1複屈折板1を保持したまま上昇し、元の位置に復帰する。   Next, a door (not shown) of the vacuum chamber 110 is closed to operate a vacuum device (not shown), and the inside of the vacuum chamber 110 is evacuated via a vacuum pipe 111. After the inside of the vacuum chamber 110 reaches a predetermined degree of vacuum, the elevating shaft 141 is driven by a driving device (not shown) to be lowered. As the elevating shaft 141 moves down and the upper pressing plate 142 moves down, it comes into contact with the upper end of the guide holding portion 132, and the upper pressing plate 142 resists the urging force of the elastic member 133 urging the elevating pin 131 upward. Then, the first birefringent plate 1 held by the guide holding unit 132 is lowered while pushing down the guide holding unit 132, and is brought into contact with the polymer film 2 placed on the lower pressure-bonding plate 121. The first birefringent plate 1 is pressed by the upper pressure plate 142 with a predetermined pressure. Thereby, as shown in FIG. 2D, the first birefringent plate 1 and the polymer film 2 are sandwiched between the upper pressure-bonding plate 142 and the lower pressure-bonding plate 121, and pressure-bonded with a predetermined pressure. At this time, the arrangement of the first birefringent plate 1 and the polymer film 2 is kept as shown in FIG. 2C. After crimping for a predetermined time, the drive unit (not shown) is driven to raise the elevating shaft 141 and raise the upper crimp plate 142. As the upper pressure plate 142 rises, the guide holding portion 132 rises by the urging force of the elastic member 133 while holding the first birefringent plate 1 on which the polymer film 2 is bonded, and returns to the original position.

次に、真空チャンバ110の真空配管111を遮断し、真空チャンバ110内に大気を導入し、大気圧に戻して第1貼り合わせ工程が終了する。   Next, the vacuum pipe 111 of the vacuum chamber 110 is shut off, the atmosphere is introduced into the vacuum chamber 110, and the pressure is returned to the atmospheric pressure, thereby completing the first bonding step.

次に、図3を参照しながら真空貼り合わせ装置100を使用して第2貼り合わせ工程を行う方法の説明を行う。図3(a)は第1複屈折板1、高分子フィルム2及び第2複屈折板3の重なりを説明する平面図であり、図3(b)は真空貼り合わせ装置にセットした状態を示す断面図であり、図3(c)は圧着している状態を示す断面図である。   Next, a method of performing the second bonding step using the vacuum bonding apparatus 100 will be described with reference to FIG. FIG. 3A is a plan view illustrating an overlap of the first birefringent plate 1, the polymer film 2, and the second birefringent plate 3, and FIG. 3B shows a state where the first birefringent plate is set on a vacuum bonding apparatus. FIG. 3C is a cross-sectional view showing a state in which pressure bonding is performed.

まず、真空チャンバ110の図示しない扉を開いて高分子フィルム2が貼り合わされた第1複屈折板1を取り出し、図3(b)に示すように、下側圧着板121の上面に第2複屈折板3を所定の位置に載置する。高分子フィルム2のもう一方の粘着剤層を露出させ、露出した粘着剤層を下にして案内装置130の案内保持部132に第1複屈折板1を再度保持させる。このときの第1複屈折板1、高分子フィルム2及び第2複屈折板3の垂直方向の重なりは、図3(a)に示すように、矩形状の第1複屈折板1と同じ矩形状の第2複屈折板3とは直交するように配置され、第2複屈折板3の紙面左右方向の幅は高分子フィルム2の同じ方向の幅よりも狭くなっている。下側圧着板121の上に載置されている第2複屈折板3と案内保持部132に保持されている第1複屈折板1に貼り合わされている高分子フィルム2とは離間して対向されて配置されている。   First, a door (not shown) of the vacuum chamber 110 is opened to take out the first birefringent plate 1 on which the polymer film 2 is bonded, and as shown in FIG. The refraction plate 3 is placed at a predetermined position. The other pressure-sensitive adhesive layer of the polymer film 2 is exposed, and the first birefringent plate 1 is held again by the guide holding portion 132 of the guide device 130 with the exposed pressure-sensitive adhesive layer facing down. At this time, the first birefringent plate 1, the polymer film 2, and the second birefringent plate 3 are vertically overlapped with each other, as shown in FIG. The second birefringent plate 3 is arranged so as to be orthogonal to the second birefringent plate 3, and the width of the second birefringent plate 3 in the left-right direction on the paper surface is smaller than the width of the polymer film 2 in the same direction. The second birefringent plate 3 placed on the lower pressure plate 121 and the polymer film 2 bonded to the first birefringent plate 1 held by the guide holding portion 132 are spaced apart and opposed to each other. Has been arranged.

図3(b)に示すような配置状態で、真空チャンバ110内を真空配管111を介して真空引きし、所定の真空度に達した後、昇降軸141を図示しない駆動装置を駆動させて下降させ、上側圧着板142が下降していくと案内保持部132の上端に接し、上側圧着板142が昇降ピン131を上方に付勢している弾性部材133の付勢力に抗して案内保持部132を押し下げながら下降し、案内保持部132に保持されている第1複屈折板1に貼り合わされている高分子フィルム2を下側圧着板121に載置されている第2複屈折板3と当接させた後、上側圧着板142で第1複屈折板1を所定の圧力で押圧する。   In the arrangement state shown in FIG. 3B, the inside of the vacuum chamber 110 is evacuated through the vacuum pipe 111, and after reaching a predetermined degree of vacuum, the lifting / lowering shaft 141 is driven by a driving device (not shown) to be lowered. When the upper pressing plate 142 descends, it comes into contact with the upper end of the guide holding portion 132, and the upper pressing plate 142 resists the urging force of the elastic member 133 that urges the elevating pin 131 upward. The polymer film 2 attached to the first birefringent plate 1 held by the guide holding portion 132 is moved downward while pressing down the second birefringent plate 3 placed on the lower pressure bonding plate 121. After the contact, the upper birefringent plate 142 presses the first birefringent plate 1 with a predetermined pressure.

これにより、図3(c)に示すように、上側圧着板142と下側圧着板121との間に第1複屈折板1、高分子フィルム2及び第2複屈折板3を挟んで図示しない駆動装置の駆動力を伝達する昇降軸141を介して所定の圧力で押圧する。   Thereby, as shown in FIG. 3C, the first birefringent plate 1, the polymer film 2 and the second birefringent plate 3 are not illustrated between the upper pressing plate 142 and the lower pressing plate 121. Pressing is performed with a predetermined pressure via an elevating shaft 141 that transmits the driving force of the driving device.

所定時間圧着した後、図示しない駆動装置を駆動させて昇降軸141を上昇させ、上側圧着板142を上昇させる。上側圧着板142の上昇に伴って案内保持部132が弾性部材133の付勢力で高分子フィルム2に第2複屈折板3が貼り合わされた第1複屈折板1を保持したまま上昇し、元の位置に復帰する。次に、真空チャンバ110の真空配管111を閉じ、真空チャンバ110内に大気を導入し、大気圧に戻し、真空チャンバ110の図示しない扉を開けて高分子フィルム2の両面に第1複屈折板1と第2複屈折板3とが貼り合わされた光学ローパスフィルタを取り出す。   After crimping for a predetermined time, the drive unit (not shown) is driven to raise the elevating shaft 141 and raise the upper crimp plate 142. As the upper pressure plate 142 rises, the guide holding portion 132 rises while holding the first birefringent plate 1 in which the second birefringent plate 3 is bonded to the polymer film 2 by the urging force of the elastic member 133, and Return to the position. Next, the vacuum pipe 111 of the vacuum chamber 110 is closed, the atmosphere is introduced into the vacuum chamber 110, the pressure is returned to the atmospheric pressure, the door (not shown) of the vacuum chamber 110 is opened, and the first birefringent plates are provided on both sides of the polymer film 2. The optical low-pass filter on which the first and second birefringent plates 3 are bonded is taken out.

このような真空貼り合わせ装置100を用いて高分子フィルム2の両面に第1複屈折板1と第2複屈折板3を貼り合わせる方法は、真空雰囲気中で貼り合わせるため、高分子フィルム2と複屈折板1,3との間に気泡が存在することを確実に防止することができる。   The method of bonding the first birefringent plate 1 and the second birefringent plate 3 on both sides of the polymer film 2 using such a vacuum bonding apparatus 100 is performed in a vacuum atmosphere. The presence of bubbles between the birefringent plates 1 and 3 can be reliably prevented.

また、案内装置130の案内保持部132に第1複屈折板1を載置することにより、第1複屈折板1を位置決めすることができ、案内保持部132に保持された状態で上側圧着板142によって案内保持部132が垂直に押し下げられ、第1複屈折板1が降下して下方の下側圧着板121の上の所定の位置に配置されている高分子フィルム2又は第2複屈折板3と所定の配置で正確に重ね合わされ、圧着される。そのため、第1複屈折板1、高分子フィルム2及び第2複屈折板3の光学軸を真空雰囲気中でそれぞれ正確に配置して精度良く貼り合わせることができる。   Further, by placing the first birefringent plate 1 on the guide holding portion 132 of the guide device 130, the first birefringent plate 1 can be positioned, and the upper crimping plate is held by the guide holding portion 132. The guide holding portion 132 is vertically pushed down by 142, and the first birefringent plate 1 is lowered to place the polymer film 2 or the second birefringent plate disposed at a predetermined position on the lower lower pressure plate 121. 3 and are accurately superimposed and crimped in a predetermined arrangement. Therefore, the optical axes of the first birefringent plate 1, the polymer film 2, and the second birefringent plate 3 can be accurately arranged in a vacuum atmosphere and bonded together with high accuracy.

上記第2貼り合わせ工程の説明では、第1複屈折板1を案内保持部132に保持させていたが、第2複屈折板3を案内保持部132に保持させ、高分子フィルム2を貼り合わせた第1複屈折板1を下側圧着板121に載置するようにしても良い。   In the description of the second bonding step, the first birefringent plate 1 is held by the guide holding unit 132. However, the second birefringent plate 3 is held by the guide holding unit 132, and the polymer film 2 is bonded. The first birefringent plate 1 may be placed on the lower pressure plate 121.

また、上記説明では、第1貼り合わせ工程と第2貼り合わせ工程の両方を真空貼り合わせ装置100を用いて行っているが、本発明においては、第1貼り合わせ工程は真空雰囲気下でなくても済むため、第2貼り合わせ工程だけを真空雰囲気中で行うことが生産効率の面で好ましい。   In the above description, both the first bonding step and the second bonding step are performed using the vacuum bonding apparatus 100. However, in the present invention, the first bonding step is not performed under a vacuum atmosphere. Therefore, it is preferable in terms of production efficiency that only the second bonding step be performed in a vacuum atmosphere.

また、両面に粘着剤層を設けた高分子フィルムを用いた例を示したが、接着剤を用いてもよい。この場合、紫外線硬化をさせるために、上側圧着板142と下側圧着板121とは、紫外線透過性のガラス等で構成することが好ましく、紫外線照射ランプを真空チャンバ110内に配置することが好ましい。また、接着剤を塗布する前工程を設けることも必要である。   Although the example using the polymer film having the pressure-sensitive adhesive layers on both surfaces is shown, an adhesive may be used. In this case, in order to perform ultraviolet curing, it is preferable that the upper pressure-bonding plate 142 and the lower pressure-bonding plate 121 be made of ultraviolet-transmissive glass or the like, and that an ultraviolet irradiation lamp be disposed in the vacuum chamber 110. . It is also necessary to provide a pre-process for applying the adhesive.

また、図4に示すように、粘着剤で貼り合わせる場合、上側圧着板142と下側圧着板121にそれぞれ電気ヒータ等の加熱手段150を内蔵させることが好ましい。圧着するときに粘着剤を加熱手段で加熱することにより、粘着剤を軟化させて表面の凹凸を無くし、粘着剤による貼り合わせを強固にすることができる。   Further, as shown in FIG. 4, when bonding with an adhesive, it is preferable to incorporate a heating means 150 such as an electric heater in each of the upper pressure plate 142 and the lower pressure plate 121. By heating the pressure-sensitive adhesive with a heating means at the time of pressure bonding, the pressure-sensitive adhesive can be softened to eliminate unevenness on the surface, and the bonding by the pressure-sensitive adhesive can be strengthened.

さらに、発明者は複屈折板と高分子フィルムを貼り合わせる条件である、真空雰囲気(真空度)、加熱温度(貼り合わせ温度)、圧着する加圧力について実験を行い、複屈折板と高分子フィルムの貼り合わせ面に気泡残りを減少させ、製造歩留まりを向上させる良好なる条件を見出した。以下にその説明を行う。   Furthermore, the inventor conducted experiments on the conditions for bonding the birefringent plate and the polymer film, such as a vacuum atmosphere (degree of vacuum), a heating temperature (bonding temperature), and a pressing pressure. Have found good conditions for reducing the residual air bubbles on the bonding surface of and improving the production yield. This will be described below.

表1は、複屈折板と高分子フィルムを貼り合わせたときの、真空度の変化に対する貼り合わせ面に残る気泡の面積を計測した結果である。気泡面積は複雑な形状をしており、便宜上、気泡における長手方向の寸法と、この長手方向の長さにほぼ垂直方向の寸法の積とした。
また、試料としては大きさ50mm×50mm、厚さ0.7mmの複屈折板と、両面にアクリル系の粘着剤層(厚さ約20μm)を形成したポリカーボネートを素材とする高分子フィルム(厚さ約80μm)を用いた。
他の貼り合わせ条件をしては、貼り合わせ温度40℃、圧着する加圧力を196000Pa、圧着時間を3分とした。なお、貼り合わせ温度とは、貼り合わせを行う複屈折板と高分子フィルムの温度である。
Table 1 shows the results of measuring the area of bubbles remaining on the bonding surface with respect to a change in the degree of vacuum when the birefringent plate and the polymer film were bonded. The bubble area has a complicated shape, and for convenience, a product of a longitudinal dimension of the bubble and a dimension substantially perpendicular to the length in the longitudinal direction.
Further, as a sample, a birefringent plate having a size of 50 mm × 50 mm and a thickness of 0.7 mm, and a polymer film (thickness) made of polycarbonate having an acrylic pressure-sensitive adhesive layer (thickness of about 20 μm) formed on both surfaces thereof About 80 μm).
As other bonding conditions, the bonding temperature was 40 ° C., the pressing pressure was 196,000 Pa, and the pressing time was 3 minutes. Note that the bonding temperature is the temperature of the birefringent plate and the polymer film to be bonded.

Figure 2004354973
Figure 2004354973

この結果によれば、真空度が500Paから1Paの範囲において、貼り合わせ面に気泡が存在しない、良好な貼り付け条件が得られている。   According to the result, when the degree of vacuum is in the range of 500 Pa to 1 Pa, good bonding conditions in which no air bubbles exist on the bonding surface are obtained.

次に、前述の実験と同様の手法を用い、また、同じ試料を用い、貼り合わせ温度を変化させたときの貼り合わせ面に残る気泡の面積を計測した結果を表2に示す。
他の貼り合わせ条件としては、真空度を100Pa、圧着する加圧力を196000Pa、圧着時間を3分とした。
Next, Table 2 shows the results of measuring the area of bubbles remaining on the bonding surface when the bonding temperature was changed using the same method as in the above-described experiment and using the same sample.
As other bonding conditions, the degree of vacuum was set to 100 Pa, the pressing pressure was set to 196,000 Pa, and the pressing time was set to 3 minutes.

Figure 2004354973
Figure 2004354973

この結果によれば、貼り合わせ温度が30℃から80℃の範囲において、貼り合わせ面に気泡が存在しない、良好な貼り合わせ条件が得られている。   According to this result, when the bonding temperature is in the range of 30 ° C. to 80 ° C., good bonding conditions in which no air bubbles exist on the bonding surface are obtained.

さらに、前述の実験と同じ試料を用い、圧着する加圧力を変化させたときの貼り合わせ面に残る気泡の面積を計測した結果を表3に示す。
他の貼り合わせ条件としては、真空度を100Pa、貼り合わせ温度を40℃、圧着時間を3分とした。
Further, Table 3 shows the results of measuring the area of the air bubbles remaining on the bonding surface when the pressing force was changed by using the same sample as in the above-described experiment.
As other bonding conditions, the degree of vacuum was 100 Pa, the bonding temperature was 40 ° C., and the pressure bonding time was 3 minutes.

Figure 2004354973
Figure 2004354973

この結果によれば、圧着の加圧力が1969600Paから4596000Paの範囲において、貼り合わせ面に気泡が存在しない、良好な貼り合わせ条件が得られている。   According to this result, when the pressing pressure is in the range of 1969600 Pa to 4496000 Pa, good bonding conditions in which no air bubbles exist on the bonding surface are obtained.

次に、真空貼り合わせ装置を用いて第2貼り合わせ工程を行う場合の、他の実施形態について図5を参照しながら説明する。図5(a)は第1複屈折板1、高分子フィルム2及び第2複屈折板3の重なりを説明する平面図であり、図5(b)は真空貼り合わせ装置にセットした状態を示す断面図であり、図5(c)は圧着している状態を示す断面図である。   Next, another embodiment in the case where the second bonding step is performed using a vacuum bonding apparatus will be described with reference to FIG. FIG. 5A is a plan view illustrating the overlap of the first birefringent plate 1, the polymer film 2, and the second birefringent plate 3, and FIG. 5B shows a state where the first birefringent plate is set on a vacuum bonding apparatus. FIG. 5C is a cross-sectional view showing a state in which pressure bonding is performed.

まず、図5(b)に示すように、下側圧着板121の上面には緩衝材5が配置され、緩衝材5の上に第2複屈折板3を所定の位置に載置する。なお、緩衝材5の材質としては、シリコンゴムなどのゴムシートや、ポリプロピレン、ポリエチレンテレフタート、ウレタンなどの発泡品や樹脂シート、または、上質紙、コピー用紙、ダンボール、防塵紙などの紙類、木綿、ナイロンなどの繊維類、牛皮などの皮類、などの金属よりやわらかい材質のものから選択できる。   First, as shown in FIG. 5B, a buffer 5 is disposed on the upper surface of the lower pressure plate 121, and the second birefringent plate 3 is placed on the buffer 5 at a predetermined position. Examples of the material of the cushioning material 5 include a rubber sheet such as silicone rubber, a foamed product such as polypropylene, polyethylene terephthalate, and urethane, a resin sheet, and paper such as high-quality paper, copy paper, cardboard, and dust-proof paper. The material can be selected from materials softer than metal, such as fibers such as cotton and nylon, and skins such as cowhide.

次に、高分子フィルム2が貼り合わされた第1複屈折板1の高分子フィルム2のもう一方の粘着剤層を露出させ、露出した粘着剤層を下にして案内装置130の案内保持部132に第1複屈折板1を再度保持させる。このときの第1複屈折板1、高分子フィルム2及び第2複屈折板3の垂直方向の重なりは、図5(a)に示すように、矩形状の第1複屈折板1と同じ矩形状の第2複屈折板3とは直交するように配置され、第2複屈折板3の紙面左右方向の幅は高分子フィルム2の同じ方向の幅よりも狭くなっている。下側圧着板121の上に載置されている第2複屈折板3と、案内保持部132に保持されている第1複屈折板1に貼り合わされている高分子フィルム2とは離間して対向されて配置されている。   Next, the other pressure-sensitive adhesive layer of the polymer film 2 of the first birefringent plate 1 to which the polymer film 2 is bonded is exposed, and the exposed pressure-sensitive adhesive layer is turned down, and the guide holding section 132 of the guide device 130 is exposed. Then, the first birefringent plate 1 is held again. At this time, the first birefringent plate 1, the polymer film 2, and the second birefringent plate 3 vertically overlap each other, as shown in FIG. The second birefringent plate 3 is arranged so as to be orthogonal to the second birefringent plate 3, and the width of the second birefringent plate 3 in the left-right direction on the paper surface is smaller than the width of the polymer film 2 in the same direction. The second birefringent plate 3 placed on the lower pressure plate 121 and the polymer film 2 bonded to the first birefringent plate 1 held by the guide holding portion 132 are separated from each other. They are arranged facing each other.

図5(b)に示すような配置状態で、真空チャンバ110内が真空配管111を介して真空引きされ、所定の真空度に達した後、昇降軸141を図示しない駆動装置を駆動させて下降させる。この際、上側圧着板142が下降していくと案内保持部132の上端に接し、上側圧着板142が昇降ピン131を上方に付勢している弾性部材133の付勢力に抗して案内保持部132を押し下げながら下降し、案内保持部132に保持されている第1複屈折板1に貼り合わされている高分子フィルム2を、下側圧着板121に載置されている第2複屈折板3と当接させた後、上側圧着板142で第1複屈折板1を所定の圧力で押圧する。   In the arrangement state shown in FIG. 5B, the inside of the vacuum chamber 110 is evacuated through the vacuum pipe 111 and reaches a predetermined degree of vacuum. Let it. At this time, when the upper pressing plate 142 descends, it comes into contact with the upper end of the guide holding portion 132, and the upper pressing plate 142 guides and holds against the urging force of the elastic member 133 which urges the elevating pin 131 upward. The polymer film 2 bonded to the first birefringent plate 1 held by the guide holding unit 132 is moved down while pressing down the portion 132, and the second birefringent plate mounted on the lower pressure bonding plate 121. After being brought into contact with 3, the upper birefringent plate 142 presses the first birefringent plate 1 with a predetermined pressure.

これにより、図5(c)に示すように、上側圧着板142と下側圧着板121との間に第1複屈折板1、高分子フィルム2及び第2複屈折板3を挟んで図示しない駆動装置の駆動力を伝達する昇降軸141を介して所定の圧力で押圧する。   Thereby, as shown in FIG. 5C, the first birefringent plate 1, the polymer film 2 and the second birefringent plate 3 are not illustrated between the upper pressing plate 142 and the lower pressing plate 121. Pressing is performed with a predetermined pressure via an elevating shaft 141 that transmits the driving force of the driving device.

所定時間圧着した後、図示しない駆動装置を駆動させて昇降軸141を上昇させ、上側圧着板142を上昇させる。上側圧着板142の上昇に伴って案内保持部132が弾性部材133の付勢力で高分子フィルム2に第2複屈折板3が貼り合わされた第1複屈折板1を保持したまま上昇し、元の位置に復帰する。次に、真空チャンバ110の真空配管111を閉じ、真空チャンバ110内に大気を導入し、大気圧に戻し、真空チャンバ110の図示しない扉を開けて高分子フィルム2の両面に第1複屈折板1と第2複屈折板3とが貼り合わされた光学ローパスフィルタを取り出す。   After crimping for a predetermined time, the drive unit (not shown) is driven to raise the elevating shaft 141 and raise the upper crimp plate 142. As the upper pressure plate 142 rises, the guide holding portion 132 rises while holding the first birefringent plate 1 in which the second birefringent plate 3 is bonded to the polymer film 2 by the urging force of the elastic member 133, and Return to the position. Next, the vacuum pipe 111 of the vacuum chamber 110 is closed, the atmosphere is introduced into the vacuum chamber 110, the pressure is returned to the atmospheric pressure, the door (not shown) of the vacuum chamber 110 is opened, and the first birefringent plates are provided on both sides of the polymer film 2. The optical low-pass filter on which the first and second birefringent plates 3 are bonded is taken out.

ここで、緩衝材5を第2複屈折板3と下側圧着板121の間に挟んで貼り合わせを行うことの効果について説明をする。
発明者は実験により緩衝材5を第2複屈折板3と下側圧着板121の間に配置した場合と配置しない場合での貼り合わせ面に残る気泡を比較した。
表4は、上記の構成における複屈折板と高分子フィルムを貼り合わせ、圧着時間を変化させたときの貼り合わせ面に残る気泡の面積を計測した結果である。気泡面積は複雑な形状をしており、便宜上、気泡における長手方向の長さと、この長手方向にほぼ垂直方向の長さの積とした。
また、試料としては大きさ50mm×50mm、厚さ0.7mmの複屈折板と、両面にアクリル系の粘着剤層(厚さ約20μm)を形成したポリカーボネートを素材とする高分子フィルム(厚さ約80μm)を用いた。緩衝材としては、防塵紙を用いた。
他の貼り合わせ条件をしては、貼り合わせ温度40℃、真空度を100Pa、圧着する加圧力を196000Paとした。
Here, the effect of bonding the cushioning material 5 between the second birefringent plate 3 and the lower pressure bonding plate 121 will be described.
The inventor compared the air bubbles remaining on the bonding surface when the cushioning member 5 was arranged between the second birefringent plate 3 and the lower pressure bonding plate 121 and when the cushioning member 5 was not arranged.
Table 4 shows the results of measuring the area of bubbles remaining on the bonding surface when the birefringent plate and the polymer film in the above configuration were bonded together and the pressure bonding time was changed. The bubble area has a complicated shape, and for convenience, a product of the length in the longitudinal direction of the bubble and the length in a direction substantially perpendicular to the longitudinal direction.
Further, as a sample, a birefringent plate having a size of 50 mm × 50 mm and a thickness of 0.7 mm, and a polymer film (thickness) made of polycarbonate having an acrylic pressure-sensitive adhesive layer (thickness of about 20 μm) formed on both surfaces thereof About 80 μm). Dust-proof paper was used as the cushioning material.
As other bonding conditions, the bonding temperature was 40 ° C., the degree of vacuum was 100 Pa, and the pressing pressure was 196,000 Pa.

Figure 2004354973
Figure 2004354973

この結果によれば、緩衝材を配置した場合には圧着時間が0.5分以上で気泡の存在が確認されず、緩衝材を配置しない場合には圧着時間が3分以上で気泡の存在が確認されなくなる。このことは、緩衝材を配置したことにより、貼り合わせ面に均一な加圧力を加えることが可能となり、例えば同じ圧着時間で比較すれば、均一な加圧力で圧着できるため、気泡の存在を減少させることができ、さらに粘着剤による貼り合わせをより強固にすることができる。   According to this result, when the cushioning material was arranged, the compression time was 0.5 minutes or more, and the presence of air bubbles was not confirmed. When the cushioning material was not arranged, the compression time was 3 minutes or more, and the presence of bubbles was not observed. No longer confirmed. This means that the provision of the cushioning material makes it possible to apply a uniform pressing force to the bonding surfaces. For example, when compared with the same pressing time, the pressing can be performed with a uniform pressing force, thereby reducing the presence of bubbles. And the bonding by the adhesive can be further strengthened.

このような真空貼り合わせ装置100を用いて高分子フィルム2の両面に第1複屈折板1と第2複屈折板3を貼り合わせる方法は、真空雰囲気中で貼り合わせ、しかも緩衝材5を第2複屈折板3と下側圧着板121の間に配置することにより、高分子フィルム2と複屈折板1,3との間に気泡が存在することを確実に防止することができる。
なお、本実施形態においては、下側圧着板と複屈折板との間に緩衝材を配置した例を記載したが、この限りではなく、上側圧着板と複屈折板との間、或いは上下双方の圧着板と複屈折板との間に緩衝材を配置してもよい。
The method of bonding the first birefringent plate 1 and the second birefringent plate 3 on both surfaces of the polymer film 2 using such a vacuum bonding device 100 is performed by bonding in a vacuum atmosphere, By arranging between the birefringent plate 3 and the lower pressure bonding plate 121, it is possible to reliably prevent the presence of bubbles between the polymer film 2 and the birefringent plates 1 and 3.
Note that, in the present embodiment, an example in which the cushioning material is arranged between the lower crimping plate and the birefringent plate has been described. However, the present invention is not limited thereto. A cushioning material may be arranged between the pressure-bonding plate and the birefringent plate.

第2貼り合わせ工程後の加圧工程は、粘着剤で貼り合わせる場合に貼り合わせを強固にするために行われる。加圧工程は、第2貼り合わせ工程で十分な貼り合わせ強度が得られる場合には不要である。加圧方法は、例えばオートクレーブ中に高分子フィルム2の両面に複屈折板1,3を貼り合わせた光学ローパスフィルタを収納し、圧縮空気等の高圧ガスをオートクレーブ中に導入し、蓋を閉じ、オートクレーブに内蔵されているヒータで加熱することにより、高圧ガスの高圧と加温の雰囲気下で光学ローパスフィルタに加熱しながら圧力を加えることにより行われる。高圧ガスの圧力は例えば0.3MPa〜オートクレーブの耐圧の上限である30MPa程度の範囲であり、温度は70〜120℃程度である。また、通常の加熱された圧着板を用いて加熱しながら圧力を加えるようにしても良い。   The pressing step after the second bonding step is performed to strengthen the bonding when bonding with an adhesive. The pressing step is unnecessary when sufficient bonding strength is obtained in the second bonding step. The pressurization method includes, for example, storing an optical low-pass filter in which birefringent plates 1 and 3 are attached to both sides of a polymer film 2 in an autoclave, introducing high-pressure gas such as compressed air into the autoclave, closing a lid, The heating is performed by a heater built in the autoclave, and the pressure is applied while heating the optical low-pass filter under a high-pressure high-pressure gas and a heated atmosphere. The pressure of the high-pressure gas ranges, for example, from about 0.3 MPa to about 30 MPa, which is the upper limit of the pressure resistance of the autoclave, and the temperature is about 70 to 120 ° C. Alternatively, pressure may be applied while heating using a normal heated pressure bonding plate.

赤外カット膜成膜工程で赤外カットフィルタを成膜するのは、次の理由による。即ち、CCDは比較的広い波長の光に感度があり、可視光領域のみならず近赤外領域(750〜2500nm)の光にも感度が良好である。しかし、通常のカメラの用途では、人間の眼に見えない赤外領域は不要であり、近赤外線が撮像素子に入射すると解像度の低下や画像のムラなどの不都合を引き起こす。そのため、ビデオカメラ等の光学系には色ガラスなどの赤外カットフィルタが挿入され、入射する光の中の近赤外線をカットするようになっている。本実施形態の光学ローパスフィルタでは、赤外カットフィルタを設けることにより、光学ローパスフィルタに赤外カットの機能を付加し、部品としての赤外カットフィルタを不要とし、部品点数の削減を図っている。   The reason why the infrared cut filter is formed in the infrared cut film forming step is as follows. That is, the CCD is sensitive to light of a relatively wide wavelength, and has good sensitivity not only to the visible light region but also to the light in the near infrared region (750 to 2500 nm). However, in a normal camera application, an infrared region invisible to human eyes is unnecessary, and when near-infrared light is incident on the image sensor, inconveniences such as a decrease in resolution and unevenness of an image are caused. For this reason, an infrared cut filter such as a colored glass is inserted into an optical system such as a video camera to cut a near infrared ray in incident light. In the optical low-pass filter of the present embodiment, by providing an infrared cut filter, an infrared cut function is added to the optical low-pass filter, and an infrared cut filter as a component is not required, and the number of components is reduced. .

赤外カットフィルタは、TiO2、Nb25、Ta25等の高屈折率の誘電体からなる高屈折率層とSiO2、MgF2等の低屈折率の誘電体層からなる低屈折率層が交互に数層から数十層積層されている構造を有する。 The infrared cut filter includes a high refractive index layer made of a high refractive index dielectric such as TiO 2 , Nb 2 O 5 , Ta 2 O 5 and a low refractive index layer made of a low refractive index dielectric layer such as SiO 2 and MgF 2. It has a structure in which several to several tens of refractive index layers are alternately stacked.

高屈折率層と低屈折率層とを交互に基板上に成膜するには、物理的成膜法が一般的であり、通常の真空蒸着法でも可能であるが、膜の屈折率の安定した制御が可能で、保管・仕様環境変化による分光特性の経時変化が少ない膜を作成できるイオンアシスト蒸着やイオンプレーティング法、スパッタリング法が望ましい。   In order to alternately form a high-refractive-index layer and a low-refractive-index layer on a substrate, a physical film-forming method is generally used, and a normal vacuum deposition method is also possible. It is desirable to use ion-assisted vapor deposition, ion plating, or sputtering, which can form a film that can perform controlled control and has little change over time in spectral characteristics due to storage and specification environment changes.

真空蒸着法は、高真空中で薄膜材料を加熱蒸発させ、この蒸発粒子を基板上に堆積させて薄膜を形成する方法である。イオンアシスト蒸着は、真空蒸着装置の中にイオンビーム発生装置とニュートライザーを備え、薄膜材料を気化させ、イオンビーム発生装置で不活性ガス又は酸素ガスをイオン化及び加速してイオンビームを基板に向けて出射すると共にニュートライザーでイオンビームを無帯電気体化しながら気化した薄膜材料を加速したり、基板上に付着した薄膜材料を撹拌(ミキシング)することにより活性化して蒸着させる方法である。イオンプレーティング法は、蒸着粒子をイオン化し、電界により加速して基板に付着させたり、ガスイオンで基板上を活性化させながら成膜する方法であり、APS(Advanced Plasma Source)、EBEP(Electron Beam Excited Plasma)法、RF(Radio Frequency)直接基板印加法(成膜室内に高周波ガスプラズマを発生させた状態で反応性の真空蒸着を行う方法)などの方式がある。スパッタリング法は、電界により加速したイオンを薄膜材料に衝突させて薄膜材料を叩き出すスパッタリングにより薄膜材料を蒸発させ、蒸発粒子を基板上に堆積させる薄膜形成方法である。   The vacuum evaporation method is a method in which a thin film material is heated and evaporated in a high vacuum, and the evaporated particles are deposited on a substrate to form a thin film. Ion-assisted vapor deposition is equipped with an ion beam generator and a nutrizer in a vacuum vapor deposition system.The thin film material is vaporized, and the ion beam generator ionizes and accelerates the inert gas or oxygen gas to direct the ion beam to the substrate. This is a method in which the vaporized thin film material is accelerated while the ion beam is uncharged and gasified by a nutrizer, or the thin film material attached to the substrate is activated (mixed) to be activated and deposited. The ion plating method is a method in which vapor deposition particles are ionized and accelerated by an electric field to adhere to a substrate, or a film is formed while activating the substrate with gas ions, and is formed by APS (Advanced Plasma Source), EBEP (Electron). Beam Excited Plasma), RF (Radio Frequency) direct substrate application (reactive vacuum deposition with high-frequency gas plasma generated in a deposition chamber), and the like. The sputtering method is a thin film forming method in which ions accelerated by an electric field collide with the thin film material and the thin film material is sputtered to evaporate the thin film material and deposit evaporated particles on a substrate.

高分子フィルムの両面に水晶板を貼り合わせたローパスフィルタは、高分子フィルムや粘着剤が熱に弱いため、100℃以下の温度の低温成膜を行うことが好ましい。   In a low-pass filter in which a quartz plate is bonded to both surfaces of a polymer film, it is preferable to perform low-temperature film formation at a temperature of 100 ° C. or less because the polymer film and the adhesive are weak to heat.

反射防止膜は、無機被膜、有機被膜の単層または多層で構成される。無機被膜と有機被膜との多層構造であってもよい。無機被膜の材質としては、SiO2、SiO、ZrO2、TiO2、TiO、Ti23、Ti25、Al23、Ta25、CeO2、MgO、Y23、SnO2、MgF2、WO3等の無機物が挙げられ、これらを単独でまたは2種以上を併用して用いることができる。また、多層膜構成とした場合は、最外層はSiO2とすることが好ましい。 The antireflection film is composed of a single layer or a multilayer of an inorganic film and an organic film. It may have a multilayer structure of an inorganic coating and an organic coating. The material of the inorganic film, SiO 2, SiO, ZrO 2 , TiO 2, TiO, Ti 2 O 3, Ti 2 O 5, Al 2 O 3, Ta 2 O 5, CeO 2, MgO, Y 2 O 3, Inorganic substances such as SnO 2 , MgF 2 and WO 3 can be mentioned, and these can be used alone or in combination of two or more. In the case of a multilayer structure, the outermost layer is preferably made of SiO 2 .

無機被膜の多層膜としては、基材側からZrO2層とSiO2層の合計光学膜厚がλ/4,ZrO2層の光学的膜厚がλ/4、最上層のSiO2層の光学的膜厚がλ/4の4層構造を例示することができる。ここで、λは設計波長であり、通常520nmが用いられる。 As the multilayer film of the inorganic coating, the total optical thickness of the ZrO 2 layer and the SiO 2 layer from the substrate side is λ / 4, the optical thickness of the ZrO 2 layer is λ / 4, and the optical thickness of the uppermost SiO 2 layer is An example is a four-layer structure having a target film thickness of λ / 4. Here, λ is a design wavelength, and usually 520 nm is used.

無機被膜の成膜方法は、例えば真空蒸着法、イオンプレーティング法、スパッタリング法、CVD法、飽和溶液中での化学反応により析出させる方法等を採用することができる。   As a method for forming the inorganic film, for example, a vacuum deposition method, an ion plating method, a sputtering method, a CVD method, a method of depositing by a chemical reaction in a saturated solution, or the like can be adopted.

有機被膜の材質は、例えばFFP(テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体)、PTFE(ポリテトラフルオロエチレン)、ETFE(エチレン−テトラフルオロエチレン共重合体)等を挙げることができ、基材の屈折率を考慮して選定される。成膜方法は、真空蒸着法の他、スピンコート法、ディップコート法などの量産性に優れた塗装方法で成膜することができる。   Examples of the material of the organic film include FFP (tetrafluoroethylene-hexafluoropropylene copolymer), PTFE (polytetrafluoroethylene), and ETFE (ethylene-tetrafluoroethylene copolymer). It is selected in consideration of the refractive index. As a film formation method, a film can be formed by a coating method excellent in mass productivity such as a spin coating method and a dip coating method, in addition to a vacuum evaporation method.

本発明の光学ローパスフィルタの製造方法では、これらの赤外カット膜成膜工程と反射防止膜成膜工程とは、省略することが可能である。   In the method of manufacturing an optical low-pass filter according to the present invention, the step of forming the infrared cut film and the step of forming the antireflection film can be omitted.

(発明の効果)
本発明の光学ローパスフィルタの製造方法によれば、高分子フィルムと複屈折板との間に気泡が存在することを確実に防止することができると共に、生産性が良好である。
(The invention's effect)
ADVANTAGE OF THE INVENTION According to the manufacturing method of the optical low-pass filter of the present invention, the presence of air bubbles between the polymer film and the birefringent plate can be reliably prevented, and the productivity is good.

また、本発明の光学ローパスフィルタの製造方法によれば、真空雰囲気中で正確な位置に貼り合わせをすることができる。   Further, according to the method of manufacturing an optical low-pass filter of the present invention, it is possible to perform bonding at an accurate position in a vacuum atmosphere.

本発明の光学ローパスフィルタの製造方法の製造工程の一例を示すフローチャートである。It is a flowchart which shows an example of the manufacturing process of the manufacturing method of the optical low-pass filter of this invention. 真空貼り合わせ装置を用いて第1貼り合わせ工程を行う場合を示すもので、(a)は真空貼り合わせ装置の概要を示す構成図、(b)は案内装置を示す拡大断面図、(c)は第1複屈折板と高分子フィルムとの重なりの配置関係を示す平面図、(d)は上側圧着板と下側圧着板との間で圧着している状態を示す断面図である。It shows a case where the first bonding step is performed using a vacuum bonding apparatus, in which (a) is a configuration diagram showing an outline of the vacuum bonding apparatus, (b) is an enlarged sectional view showing a guide device, and (c). FIG. 4 is a plan view showing an arrangement relationship of an overlap between a first birefringent plate and a polymer film, and FIG. 4D is a cross-sectional view showing a state where the first birefringent plate and the polymer film are crimped between an upper crimp plate and a lower crimp plate. 真空貼り合わせ装置を用いて第2貼り合わせ工程を行う場合を示すもので、(a)は第1複屈折板、高分子フィルム及び第2複屈折板の重なりの配置関係を示す平面図、(b)は第1複屈折板、高分子フィルム及び第2複屈折板の垂直方向の配置関係を示す断面図、(c)は上側圧着板と下側圧着板との間で圧着している状態を示す断面図である。(A) is a plan view showing an arrangement relationship of an overlap of a first birefringent plate, a polymer film, and a second birefringent plate, and shows a case where a second bonding step is performed using a vacuum bonding apparatus; FIG. 2B is a cross-sectional view showing the vertical arrangement of the first birefringent plate, the polymer film, and the second birefringent plate, and FIG. 2C is a state in which the upper and lower crimping plates are crimped. FIG. それぞれ加熱手段を内蔵させた上側圧着板と下側圧着板とを示す概略構成図である。It is a schematic block diagram which shows the upper side pressure bonding plate and the lower side pressure bonding plate which each contained the heating means. 真空貼り合わせ装置を用いて第2貼り合わせ工程を行う場合の他の実施形態を示すもので、(a)は第1複屈折板、高分子フィルム及び第2複屈折板の重なりの配置関係を示す平面図、(b)は第1複屈折板、高分子フィルム及び第2複屈折板の垂直方向の配置関係を示す断面図、(c)は上側圧着板と下側圧着板との間で圧着している状態を示す断面図である。FIGS. 4A and 4B show another embodiment in which the second laminating step is performed using a vacuum laminating apparatus, and FIG. 4A shows the overlapping arrangement of the first birefringent plate, the polymer film, and the second birefringent plate. (B) is a cross-sectional view showing a vertical arrangement relationship of a first birefringent plate, a polymer film, and a second birefringent plate, and (c) is a sectional view between an upper crimping plate and a lower crimping plate. It is sectional drawing which shows the state which is crimping.

符号の説明Explanation of reference numerals

1…第1複屈折板、2…高分子フィルム、3…第2複屈折板、5…緩衝材、100…真空貼り合わせ装置、110…真空チャンバ、121…下側圧着板、130…案内装置、131…昇降ピン、132…案内保持部、142…上側圧着板。   DESCRIPTION OF SYMBOLS 1 ... 1st birefringent plate, 2 ... Polymer film, 3 ... 2nd birefringent plate, 5 ... Buffer material, 100 ... Vacuum bonding apparatus, 110 ... Vacuum chamber, 121 ... Lower crimping plate, 130 ... Guide device Reference numerals 131, lifting pins, 132, guide holding parts, 142, upper crimping plate.

Claims (10)

硬質の第1複屈折板と硬質の第2複屈折板との間に高分子フィルムを挟んだ光学ローパスフィルタの製造方法において、前記第1複屈折板に前記高分子フィルムを貼り合わせる第1貼り合わせ工程と、第1貼り合わせ工程後、前記高分子フィルムに前記第2複屈折板を真空雰囲気下で圧着する第2貼り合わせ工程と、を有することを特徴とする光学ローパスフィルタの製造方法。   In a method for manufacturing an optical low-pass filter in which a polymer film is sandwiched between a hard first birefringent plate and a hard second birefringent plate, a first bonding step of bonding the polymer film to the first birefringent plate A method for manufacturing an optical low-pass filter, comprising: a bonding step; and, after the first bonding step, a second bonding step of pressing the second birefringent plate onto the polymer film in a vacuum atmosphere. 請求項1記載の光学ローパスフィルタの製造方法において、前記第2貼り合わせ工程が、真空雰囲気下で、前記高分子フィルムを貼り合わせた前記第1複屈折板と前記第2複屈折板とを離間させて前記高分子フィルムと前記第2複屈折板とを対向配置させた後、前記高分子フィルムと前記第2複屈折板とを接近させ、これらを圧着することを特徴とする光学ローパスフィルタの製造方法。   2. The method of manufacturing an optical low-pass filter according to claim 1, wherein the second bonding step separates the first birefringent plate and the second birefringent plate bonded with the polymer film under a vacuum atmosphere. 3. After the polymer film and the second birefringent plate are disposed so as to face each other, the polymer film and the second birefringent plate are brought close to each other, and they are pressed together. Production method. 請求項1記載の光学ローパスフィルタの製造方法において、前記第2貼り合わせ工程が、真空雰囲気下で、上下に昇降し、常時は上方に付勢されている案内装置上に、前記高分子フィルムを貼り合わせた前記第1複屈折板又は前記第2複屈折板の一方を保持させ、その下方に存在している下側圧着板上に配置されている前記第1複屈折板又は前記第2複屈折板の他方から離間させて前記高分子フィルムと前記第2複屈折板とを対向配置させた後、上側圧着板を降下させて前記案内装置に保持された前記第1複屈折板又は前記第2複屈折板の一方を前記案内装置の付勢力に抗して降下させて、前記上側圧着板で前記高分子フィルムと前記第2複屈折板とを接近させ、前記第1複屈折板、前記高分子フィルム及び前記第2複屈折板を前記上側圧着板と前記下側圧着板との間に挟んで圧着することを特徴とする光学ローパスフィルタの製造方法。   2. The method for manufacturing an optical low-pass filter according to claim 1, wherein the second bonding step includes: moving the polymer film on a guide device which is vertically moved up and down in a vacuum atmosphere and is normally urged upward. The first birefringent plate or the second birefringent plate is held by holding one of the first birefringent plate or the second birefringent plate, and the first birefringent plate or the second birefringent plate is disposed on a lower pressure plate existing below the first birefringent plate or the second birefringent plate. After the polymer film and the second birefringent plate are arranged opposite to each other while being separated from the other of the refracting plates, the first birefringent plate or the second birefringent plate held by the guide device by lowering the upper pressing plate is lowered. One of the birefringent plates is lowered against the urging force of the guide device, and the polymer film and the second birefringent plate are brought closer to each other by the upper pressing plate, and the first birefringent plate, Compression of the polymer film and the second birefringent plate to the upper side The method for manufacturing an optical low-pass filter, which comprises sandwiching by crimping between the lower cover and. 請求項1〜3いずれか一項に記載の光学ローパスフィルタの製造方法において、前記第2貼り合わせ工程が、加熱した上下の圧着板の間に挟んで圧着することを特徴とする光学ローパスフィルタの製造方法。   The method for manufacturing an optical low-pass filter according to any one of claims 1 to 3, wherein the second bonding step is performed by sandwiching and pressing between heated upper and lower pressing plates. . 請求項1記載の光学ローパスフィルタの製造方法において、前記第1貼り合わせ工程が、前記高分子フィルムに前記第1複屈折板を真空雰囲気下で圧着することを特徴とする光学ローパスフィルタの製造方法。   2. The method for manufacturing an optical low-pass filter according to claim 1, wherein the first bonding step includes bonding the first birefringent plate to the polymer film in a vacuum atmosphere. . 請求項1〜5いずれか一項に記載の光学ローパスフィルタの製造方法において、前記第2貼り合わせ工程で製造した光学ローパスフィルタに加熱しながら圧力を加える加圧処理工程を有することを特徴とする光学ローパスフィルタの製造方法。   The method for manufacturing an optical low-pass filter according to any one of claims 1 to 5, further comprising a pressure treatment step of applying pressure while heating the optical low-pass filter manufactured in the second bonding step. Manufacturing method of optical low-pass filter. 請求項1〜5いずれか一項に記載の光学ローパスフィルタの製造方法において、前記真空雰囲気は500Paから1Paの範囲内であることを特徴とする光学ローパスフィルタの製造方法。   The method for manufacturing an optical low-pass filter according to any one of claims 1 to 5, wherein the vacuum atmosphere is in a range of 500 Pa to 1 Pa. 請求項1〜5いずれか一項に記載の光学ローパスフィルタの製造方法において、圧着する加圧力を1969600Paから4596000Paの範囲内としたことを特徴とする光学ローパスフィルタの製造方法。   The method for manufacturing an optical low-pass filter according to any one of claims 1 to 5, wherein a pressing force for applying pressure is set in a range of 1969600 Pa to 4596000 Pa. 請求項4に記載の光学ローパスフィルタの製造方法において、前記第2貼り合わせ工程で加熱する温度を30℃から80℃の範囲内としたことを特徴とする光学ローパスフィルタの製造方法。   5. The method for manufacturing an optical low-pass filter according to claim 4, wherein the heating temperature in the second bonding step is in a range of 30 ° C. to 80 ° C. 請求項1〜5いずれか一項に記載の光学ローパスフィルタの製造方法であって、前記第1貼り合わせ工程後、前記高分子フィルムに前記第2複屈折板を真空雰囲気下で圧着する第2貼り合わせ工程において、下側圧着板と複屈折板との間、または/及び、上側圧着板と複屈折板との間に緩衝材を挟んで圧着することを特徴とする光学ローパスフィルタの製造方法。
The method for manufacturing an optical low-pass filter according to any one of claims 1 to 5, wherein after the first bonding step, the second birefringent plate is pressure-bonded to the polymer film in a vacuum atmosphere. In the bonding step, a method for manufacturing an optical low-pass filter, comprising: pressing a buffer material between a lower pressure-bonding plate and a birefringent plate, and / or between an upper pressure-bonding plate and a birefringent plate; .
JP2004087619A 2003-05-02 2004-03-24 Manufacturing method of optical low-pass filter Expired - Fee Related JP4277721B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2004087619A JP4277721B2 (en) 2003-05-02 2004-03-24 Manufacturing method of optical low-pass filter
TW093110542A TWI242082B (en) 2003-05-02 2004-04-15 Manufacturing method of optical low-pass filtering lens
KR1020040030013A KR100594672B1 (en) 2003-05-02 2004-04-29 Method for manufacturing an optical lowpass filter
CNB2004100372388A CN100420981C (en) 2003-05-02 2004-04-29 Manufacturing method of optical low pass filter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003127322 2003-05-02
JP2004087619A JP4277721B2 (en) 2003-05-02 2004-03-24 Manufacturing method of optical low-pass filter

Publications (2)

Publication Number Publication Date
JP2004354973A true JP2004354973A (en) 2004-12-16
JP4277721B2 JP4277721B2 (en) 2009-06-10

Family

ID=34066958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004087619A Expired - Fee Related JP4277721B2 (en) 2003-05-02 2004-03-24 Manufacturing method of optical low-pass filter

Country Status (4)

Country Link
JP (1) JP4277721B2 (en)
KR (1) KR100594672B1 (en)
CN (1) CN100420981C (en)
TW (1) TWI242082B (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006178261A (en) * 2004-12-24 2006-07-06 Seiko Epson Corp Dielectric multilayer film filter and optical member
JP2007102183A (en) * 2005-09-08 2007-04-19 Seiko Epson Corp Optical low pass filter
JP2008257215A (en) * 2007-03-13 2008-10-23 Epson Toyocom Corp Optical device, optical low-pass filter, and solid-state imaging apparatus
US7927687B2 (en) 2007-03-13 2011-04-19 Epson Toyocom Corporation Optical element, optical lowpass filter, and solid-state imaging device
JP2013092764A (en) * 2011-10-07 2013-05-16 Sumitomo Chemical Co Ltd Method for manufacturing polarizing plate
JP6203978B1 (en) * 2017-04-17 2017-09-27 株式会社アスカネット Method for manufacturing stereoscopic image forming apparatus

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7405883B2 (en) * 2004-12-03 2008-07-29 Ohara Inc. Optical component and method of manufacture of optical component
CN100403068C (en) * 2005-03-28 2008-07-16 精工爱普生株式会社 Optical low-pass filter
CN100439973C (en) * 2005-09-08 2008-12-03 精工爱普生株式会社 Optical low pass filter
JP4462197B2 (en) * 2006-01-23 2010-05-12 ソニー株式会社 Optical low-pass filter
JP5121443B2 (en) * 2007-12-28 2013-01-16 キヤノン株式会社 Imaging device and optical filter
CN106990543A (en) * 2017-03-23 2017-07-28 张家港康得新光电材料有限公司 The preparation method of 3D display devices
CN107144897A (en) * 2017-06-27 2017-09-08 昆山三景科技股份有限公司 Prepare the equipment of half reflection and half transmission mirror and the preparation method of half reflection and half transmission mirror

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US550663A (en) * 1895-12-03 Dynamo-electric machine for plating
JPH08240802A (en) * 1995-03-03 1996-09-17 Omron Corp Optical element and its production
KR100234290B1 (en) * 1997-08-30 1999-12-15 윤종용 Optical low pass filter
JP4419221B2 (en) * 1999-09-02 2010-02-24 Dic株式会社 Polymer optical low-pass filter, its production method, and polymer optical low-pass filter composite
JP2001235709A (en) * 2000-02-21 2001-08-31 Asahi Optical Co Ltd Optical low pass filter and method of manufacturing the same
CN2457629Y (en) * 2000-12-29 2001-10-31 浙江大学 Optical low pass filter
JP3982213B2 (en) * 2001-07-16 2007-09-26 株式会社大真空 Optical element laminating apparatus and laminating method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006178261A (en) * 2004-12-24 2006-07-06 Seiko Epson Corp Dielectric multilayer film filter and optical member
JP2007102183A (en) * 2005-09-08 2007-04-19 Seiko Epson Corp Optical low pass filter
US7740934B2 (en) 2005-09-08 2010-06-22 Seiko Epson Corporation Optical low pass filter
JP2008257215A (en) * 2007-03-13 2008-10-23 Epson Toyocom Corp Optical device, optical low-pass filter, and solid-state imaging apparatus
US7927687B2 (en) 2007-03-13 2011-04-19 Epson Toyocom Corporation Optical element, optical lowpass filter, and solid-state imaging device
JP2013092764A (en) * 2011-10-07 2013-05-16 Sumitomo Chemical Co Ltd Method for manufacturing polarizing plate
JP6203978B1 (en) * 2017-04-17 2017-09-27 株式会社アスカネット Method for manufacturing stereoscopic image forming apparatus
WO2018193846A1 (en) * 2017-04-17 2018-10-25 株式会社アスカネット Method for manufacturing stereoscopic image forming device
JP2018180369A (en) * 2017-04-17 2018-11-15 株式会社アスカネット Production method of stereoscopic image formation device

Also Published As

Publication number Publication date
TW200424574A (en) 2004-11-16
KR100594672B1 (en) 2006-06-30
TWI242082B (en) 2005-10-21
KR20040094346A (en) 2004-11-09
JP4277721B2 (en) 2009-06-10
CN1542501A (en) 2004-11-03
CN100420981C (en) 2008-09-24

Similar Documents

Publication Publication Date Title
JP4277721B2 (en) Manufacturing method of optical low-pass filter
US7574794B2 (en) Method of manufacturing a touch screen
CN101143498B (en) Transparent electrically conductive laminated body and touching panel with the same
TWI595387B (en) Transparent body for use in a touch screen panel manufacturing method and system for manufacturing a transparent body for use in a touch screen panel
CN107848254B (en) Gas barrier film, the transfer method of gas barrier film, Wavelength conversion film, the phase difference film with gas barrier layer and organic EL layer stack
EP2687875A1 (en) Optical member and method for producing same
EP2680048A1 (en) Fine structure form and liquid-crystal display device comprising fine structure form
JP4894713B2 (en) Polarizing plate, image display device
US8300312B2 (en) Optical element
TW201226593A (en) Method and system for manufacturing a transparent body for use in a touch panel
US20090072735A1 (en) Light-emitting device or display device, and method for producing them
TW202040219A (en) Protective film for OLED display with fingerprint recognition system
WO2018142689A1 (en) Composite film and organic electroluminescence device
KR20110045136A (en) Coating method for separating display panel from window
JP2011086802A (en) Multilayer capacitor, manufacturing method thereof, circuit board, and electronic device
JP5162805B2 (en) Electroluminescence display
WO2019092819A1 (en) Display device and method for manufacturing display device
WO2020153450A1 (en) Light adjustment device and method for manufacturing same
JP7409125B2 (en) Light control device and its manufacturing method
JP2008112032A (en) Optical filter
KR102187743B1 (en) Display apparatus
JP4946780B2 (en) Polarizing plate with bonding film, image display device
CN112771996A (en) Method for manufacturing electronic device laminate, and electronic device laminate
KR101741685B1 (en) Optical multilayer film and optical structure having the smae
KR102659817B1 (en) Manufacturing method of flexible cover window and flexible cover window thereby

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051018

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070403

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090217

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090302

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140319

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees