JP2004353927A - Horizontal rotary drying device and object drying method - Google Patents

Horizontal rotary drying device and object drying method Download PDF

Info

Publication number
JP2004353927A
JP2004353927A JP2003151029A JP2003151029A JP2004353927A JP 2004353927 A JP2004353927 A JP 2004353927A JP 2003151029 A JP2003151029 A JP 2003151029A JP 2003151029 A JP2003151029 A JP 2003151029A JP 2004353927 A JP2004353927 A JP 2004353927A
Authority
JP
Japan
Prior art keywords
cylindrical body
carrier gas
flow rate
drying
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003151029A
Other languages
Japanese (ja)
Inventor
Satoshi Suwa
聡 諏訪
Takayuki Noguchi
隆行 野口
Tsuneo Koike
恒夫 小池
Toshinaga Seki
利永 関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsukishima Kikai Co Ltd
Original Assignee
Tsukishima Kikai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsukishima Kikai Co Ltd filed Critical Tsukishima Kikai Co Ltd
Priority to JP2003151029A priority Critical patent/JP2004353927A/en
Publication of JP2004353927A publication Critical patent/JP2004353927A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Drying Of Solid Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a horizontal rotary drying device, preventing little flow of powder dust out of an object while controlling the flow rate of carrier gas depending on the drying property of the object. <P>SOLUTION: A flow-in part 42 for the carrier gas G is provided at one end 31b of a cylindrical body 31 and a flow-out part 43 for the carrier gas G is provided at the other end 31a of the cylindrical body 31. A flow control part 44A is provided at a predetermined portion of the cylindrical body 31 in the direction of its axial center, into or from which the carrier gas G flows. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、横型回転乾燥装置及び被処理物の乾燥方法に関する。より詳しくは、被処理物を間接加熱して乾燥するものに関する。
【0002】
【従来の技術】
下水汚泥等の汚泥や、樹脂、リジン、食塩、石炭などの被処理物を乾燥する従来の横型回転乾燥装置は、例えば、その一種であるスチームチューブドライヤ100(以下、スチームチューブドライヤは、単にSTDともいう。)について、図1に示すように、軸心回りに回転する筒体101と、この筒体101内の被処理物Pを間接加熱する内部を水蒸気などの熱媒が流通する加熱管102,102…と、を主に有する(例えば、特許文献1参照。)。筒体101の基端部には、被処理物Pの供給口103及びキャリアガスGの流入部たる流入口105が設けられており、筒体101の先端部には、被処理物Pの排出口104及びキャリアガスGの流出部たる流出口106が設けられている(STD100は、被処理物Pの移動方向とキャリアガスGの流通方向とが一致するいわゆる並流式である。なお、キャリアガスGを被処理物Pの排出口104側端部から流入し、被処理物Pの供給口103側端部から流出するいわゆる向流式もある。)。このSTD100においては、流入口105から筒体101内にキャリアガスGを流入すると、加熱管102,102…からの受熱により被処理物Pから蒸発した水分が、かかるキャリアガスGに伴って搬送され、流出口106から筒体101外に流出される。これにより、筒体101内の蒸気圧が低下し、したがって被処理物Pの乾燥速度が向上する。
【特許文献1】
特開昭63−14076号公報
【0003】
【発明が解決しようとする課題】
ところで、被処理物Pには、筒体101の基端部側(恒率乾燥区間)において乾燥効率を向上させると好ましいものや、筒体101の先端部側(減率乾燥区間)において乾燥効率を向上させると好ましいものなど、さまざまな乾燥特性を有するものがある(なお、被処理物Pは、主として筒体101の基端部側で恒率乾燥し、先端部側で減率乾燥することから恒率乾燥区間、減率乾燥区間と称した。もっとも、被処理物Pの乾燥特性によって、恒率乾燥区間が長くなるもの、減率乾燥区間が長くなるものなど様々であり、各区間が同じ長さになるものではないのは、もちろんである。また、当然、恒率乾燥と減率乾燥とは、明確に二分されるものでもない。)。他方、乾燥効率の向上は、キャリアガスGの流量を増やし蒸気圧を迅速に低下させることで達成することができる。
【0004】
そこで、従来のSTD100においては、流入口105からのキャリアガスGの流量を増やし、もって蒸気圧の迅速な低下を図ることが考えられた。しかしながら、キャリアガスGの流量を増やすと、被処理物Pが舞い上がってしまい、キャリアガスGに伴って、流出口106から被処理物Pの粉塵(ダスト)が流出してしまう。
【0005】
そこで、本発明の主たる課題は、被処理物の乾燥特性に応じてキャリアガスの流量を調節することができ、したがって乾燥効率を向上させることができながら、被処理物の粉塵がほとんど流出することのない横型回転乾燥装置及び被処理物の乾燥方法を提供することにある。
【0006】
【課題を解決するための手段】
上記課題を解決した本発明は、次のとおりである。
<請求項1記載の発明>
軸心回りに回転する筒体と、この筒体内の被処理物を間接加熱する加熱手段と、を有する横型回転乾燥装置であって、
前記筒体の一端部にキャリアガスの流入部が設けられ、前記筒体の他端部にキャリアガスの流出部が設けられ、更に少なくとも1つ前記筒体の軸心方向所定部にキャリアガスが流入又は流出する流量調節部が設けられている、ことを特徴とする横型回転乾燥装置。
【0007】
<請求項2記載の発明>
軸心回りに回転する筒体と、この筒体内の被処理物を間接加熱する加熱手段と、を有する横型回転乾燥装置であって、
前記筒体の一端部にキャリアガスの流入部が設けられ、前記筒体の他端部にキャリアガスの流出部が設けられ、更に前記流入部と前記流出部との間の前記筒体軸心方向距離の1/4〜3/4倍の距離、前記流入部から前記流出部に向かって離れた前記筒体中央部にキャリアガスが流入又は流出する流量調節部が設けられている、ことを特徴とする横型回転乾燥装置。
【0008】
<請求項3記載の発明>
軸心回りに回転する筒体内において被処理物を間接加熱して乾燥する方法であって、
前記筒体の一端部からキャリアガスを流入し、前記筒体の他端部からキャリアガスを流出するとともに、前記被処理物の乾燥特性に応じて、前記筒体の軸心方向所定部においてキャリアガスを流入し、又は流出する、ことを特徴とする被処理物の乾燥方法。
【0009】
<請求項4記載の発明>
筒体内への被処理物の供給及び前記筒体内からの前記被処理物の排出を回分式とする、請求項3記載の被処理物の乾燥方法。
【0010】
【発明の実施の形態】
以下、本発明の実施の形態を説明する。
図2に、本実施の形態の横型回転乾燥装置10が備わる被処理物Pの処理設備1の設備フロー図を示した。
本処理設備1においては、被処理物Pを、まず、横型回転乾燥装置10に供給して乾燥する。乾燥の対象となる被処理物Pは、特に限定されない。例えば、下水汚泥等の汚泥や、樹脂、リジン、食塩、石炭、薬品、コンスターチなどを対象とすることができる。
【0011】
横型回転乾燥装置10において乾燥させた被処理物Pは、搬送コンベア11によって、ホッパー12まで搬送し、いったん貯留する(被処理物Pの搬送は、空気輸送、スクリューコンベア等によることもできる。)。このホッパー12の底部には、この底部を開閉自在とするゲート機構12Aが備わっており、必要に応じてホッパー12内の被処理物Pを排出することができるようになっている。ホッパー12から排出した被処理物Pは、例えば、トラックなどによって図示しない燃焼設備まで搬送し、燃焼廃棄処理することができる。
【0012】
本処理設備1には、横型回転乾燥装置10内に空気、窒素などのキャリアガスGを流通させる流通機構13が備わる。このキャリアガス流通機構13には、横型回転乾燥装置10の先端部10bに接続された横型回転乾燥装置10にキャリアガスGを流入する管などの流路14が備わる。この流路14から横型回転乾燥装置10内に流入されたキャリアガスGは、被処理物Pから蒸発した水分や、被処理物Pの粉塵(ダスト)を伴って、横型回転乾燥装置10の基端部10aに接続された管などの流路15を介して除塵手段たるスクラバー16に送られる。流路15は、スクラバー16の下端部側壁に接続されており、キャリアガスGは、かかるスクラバー16内を上昇する。キャリアガスGは、この上昇過程において、ノズル等のスプレー手段17,17…から下方に向かって噴霧される水などによって除塵され、フィルター18を介して、天井部16aに送られる。この天井部16aには、先の横型回転乾燥装置10の先端部10bに接続された流路14が接続されている。この流路14を介して、キャリアガスGは、横型回転乾燥装置10内に流入され、再利用される。本実施の形態において、以上のキャリアガスGの循環は、循環ファン19によって行われる。なお、スクラバー16内には、水などを上方に向かって噴射するノズル等のスプレー手段20が備えられている。スプレー手段20から噴射される水などにより、フィルター18に付着した被処理物Pの粉塵が除去される。
【0013】
本実施の形態においては、ダストの除塵手段として、スプレー塔形態のスクラバー16を用いたが、これに限定する趣旨ではない。例えば、バグフィルターや、サイクロンなどの公知の除塵手段を用いることもできる。
【0014】
ところで、以下で詳しく説明するように、本発明においては、更に横型回転乾燥装置10内にキャリアガスGを流入し、又は横型回転乾燥装置10内からキャリアガスGを流出する流量調節部が備わる。そこで、本実施の形態のキャリアガスGの流通機構13には、横型回転乾燥装置10の先端部10bに接続された流路14と横型回転乾燥装置10の基端部10aに接続された流路15とに両端部がそれぞれ連通された流量調節流路22、及びこの流量調節流路22の途中から分岐し、横型回転乾燥装置10の流量調節部と連通された分岐路21が備わる。流量調節流路22には、分岐路21との分岐部よりも流路14側及び流路15側にそれぞれ仕切り弁23又は24が備わる。この仕切り弁23及び24を操作することにより、分岐路21をキャリアガスGの流入路又は流出路として機能させる。
【0015】
そこで、次に、流量調節部が設けられた横型回転乾燥装置10の具体的な形態について、詳しく説明する。
〔横型回転乾燥装置:第1の実施の形態〕
まず、第1の実施の形態の横型回転乾燥装置について、説明する。
第1の実施の形態の横型回転乾燥装置30は、図3及び図4に示すように、基端部31aから先端部31bにかけて若干下方に傾斜し、例えば、約1,2度下方に傾斜し軸心回りに回転する筒体31と、この筒体31内の被処理物Pを間接加熱する加熱手段32と、を主に有する。
【0016】
筒体31は、2つの基台33,33上にそれぞれ備わるローラ34,34上に、タイヤ35,35を介して支持されている。また、筒体31の周壁周りには、従動ギア36が取り付けられており、この従動ギア36は、駆動ギア37と噛み合っている。そして、この駆動ギア37は、モーターなどの駆動源38から回転力が伝達されて回転する。したがって、筒体31は、駆動源38から駆動ギア37及び従動ギア36を介して伝達される回転力によって、軸心回りに回転する。
【0017】
本横型回転乾燥装置30において、加熱手段32は、図4に示すように、内空部を水蒸気などの熱媒が流通する複数の加熱管32A,32A…からなっている(つまり、本横型回転乾燥装置30は、STDである。)。加熱管32A,32A…の数や通し方などは、公知のSTDと同様とすることができる。本実施の形態においては、加熱管32A,32A…を、筒体31の軸心方向に延在するように、かつ筒体31の内壁面31c回りに沿って適宜の間隔をあけて複数本、設置した。
【0018】
本実施の形態においては、加熱手段32を、筒体31内を延在する加熱管32A,32A…で構成したが、これに限定する趣旨ではない。例えば、筒体31の周壁周りに、筒体31と同軸的に外筒を設け、この外筒と筒体31との間に熱媒を通し、もって筒体31を加熱することにより、加熱手段32とすることもできる。
【0019】
被処理物Pは、筒体31の基端部31aに設けられた供給口39から筒体31内に供給され、筒体31の回転に伴って筒体31の基端部31aから先端部31bに搬送されつつ、前記加熱管32A,32A…から受熱して乾燥させられる。筒体31内において乾燥させられた被処理物Pは、筒体31の先端部31bに設けられた排出口41から筒体31外に排出される。
【0020】
他方、筒体31の先端部31bには、キャリアガスGの流入部たる流入口42が設けられ、筒体31の基端部31aには、キャリアガスGの流出部たる流出口43が設けられ(本実施の形態では、被処理物Pの供給口39と兼ねる。)、加えて筒体31の軸心方向所定部、本実施の形態では、筒体31の軸心方向中央部には、キャリアガスGが流入又は流出する流量調節部たる流通管44の先端部44Aが設けられている。流通管44は、その内空部をキャリアガスGが流通する管であり、筒体31内においてこの筒体31の先端部31bから基端部31aに向かって適宜の長さ延在し(この部分を第1延在部44aという。)、そこから周外方に折れ曲がり筒体31の周壁を貫通していったん筒体31の外空部に突出した後、そこから筒体31の基端部31aに向かって適宜の長さ延在し(この部分を第2延在部44bという。)、そこから周内方に折れ曲がり筒体31の周壁を貫通して筒体31の内空部に突出し、そこから筒体31の基端部31aに向かって折れ曲がった形状となっている。延在部44a及び延在部44bの各長さは、キャリアガスGの温度(キャリアガスGを流通管44から流出する場合)や、流通管44が障害物となることによる影響の程度などを考慮して適宜調節することができる。したがって、例えば、第2延在部44bの長さが0(ゼロ)となる形状、つまり流通管44が筒体31内のみを通る形状とすることもできる。
【0021】
本実施の形態においては、以上のように流入部及び流出部を、筒体31の開口(42,43)で形成し、流量調節部を、筒体31内を通した通流管44の先端部44Aの開口で形成した。しかしながら、本発明の流入部、流出部及び流量調節部は、これに限定されるものではない。例えば、流入部及び流出部は、筒体31内に管を挿入しこの挿入管の先端部開口で形成することができ、また、流量調節部は、例えば、筒体31に開口を設け、この開口で形成することができる。
【0022】
ところで、本発明においては、流量調節部(第1の実施の形態では、流通管先端部44Aの開口。)からのキャリアガスGの流入・流出により、被処理物Pの乾燥特性に応じて、筒体内の流量を調節する。
具体的には、例えば、筒体の先端部側(減率乾燥区間)において相対的に乾燥効率が良い被処理物Pを対象とする場合は、図5の(1)に示すように、キャリアガスGを、筒体の先端部(流入部)から流量10〔m/h〕で流入し、筒体の中央部(流量調節部)から流量5〔m/h〕で流出し、更に筒体の基端部(流出部)から流量5〔m/h〕で流出する。これにより、減率乾燥区間における流量は10〔m/h〕、恒率乾燥区間における流量は5〔m/h〕となる(図5(1)〜(8)中の数値は、流量〔m/h〕を示す。また、四角枠は、紙面左側を基端部とし、紙面右側を先端部とする筒体を、数値(流量)と結ばれた矢印は、キャリアガスGの流れを示す。なお、流量〔m/h〕は、あくまで例示である。)。したがって、キャリアガスGの流量が被処理物Pの乾燥特性に応じたものとなりながら、ダスト(被処理物Pの粉塵)の排出量が著しく抑えられる。
【0023】
また、例えば、筒体の基端部側(恒率乾燥区間)において相対的に乾燥効率が良い被処理物Pを対象とする場合は、図5の(2)に示すように、キャリアガスGを、筒体の先端部(流入部)から流量5〔m/h〕で流入し、更に筒体の中央部(流量調節部)から流量5〔m/h〕で流入し、筒体の基端部(流出部)から流量10〔m/h〕で流出する。これにより、減率乾燥区間における流量は5〔m/h〕、恒率乾燥区間における流量は10〔m/h〕となる。したがって、キャリアガスGの流量が被処理物Pの乾燥特性に応じたものとなりながら、ダスト(被処理物Pの粉塵)の排出量が著しく抑えられる。
【0024】
以上はキャリアガスGの流通を向流式とするものである(なお、第1の実施の形態も向流式である。)が、これに限定されるものではなく、並流式とすることもできる。
すなわち、並流式とする場合は、例えば、筒体の基端部側(恒率乾燥区間)において相対的に乾燥効率が良い被処理物Pを対象とする場合は、図5の(3)に示すように、キャリアガスGを、筒体の基端部(流入部)から流量10〔m/h〕で流入し、筒体の中央部(流量調節部)から流量5〔m/h〕で流出し、筒体の先端部(流出部)から流量5〔m/h〕で流出する。これにより、減率乾燥区間における流量は5〔m/h〕、恒率乾燥区間における流量は10〔m/h〕となる。したがって、キャリアガスGの流量が被処理物Pの乾燥特性に応じたものとなりながら、ダスト(被処理物Pの粉塵)の排出量が著しく抑えられる。
【0025】
また、筒体の先端部側(減率乾燥区間)において相対的に乾燥効率が良い被処理物Pを対象とする場合は、図5の(4)に示すように、キャリアガスGを、筒体の基端部(流入部)から流量5〔m/h〕で流入し、更に筒体の中央部(流量調節部)から流量5〔m/h〕で流入し、筒体の先端部(流出部)から流量10〔m/h〕で流出する。これにより、減率乾燥区間における流量は10〔m/h〕、恒率乾燥区間における流量は5〔m/h〕となる。したがって、キャリアガスGの流量が被処理物Pの乾燥特性に応じたものとなりながら、ダスト(被処理物Pの粉塵)の排出量が著しく抑えられる。
【0026】
以上のように流量調節部を1つとする場合は、図5の(9)に示すように、流入口と流出口との間の筒体軸心方向距離Lの1/4〜3/4倍の距離、流入口から流出口に向かって離れた筒体中央部Mに、流量調節部を設けるのが好ましく、筒体軸心方向距離Lの2/5〜3/5倍の距離、流入口から流出口に向かって離れた筒体中央部に、流量調節部を設けるのがより好ましい。
【0027】
以上、流量調節部を1つとする形態を示したが、本発明は、これに限定されるものではない。流量調節部を、2つ、3つ、4つ又はそれ以上の複数とし、各流量調節部を筒体の軸心方向にずれた各所定部に設けることもできる。
例えば、流量調節部を2つとし、向流式かつ筒体の先端部側(減率乾燥区間)において相対的に乾燥効率が良い被処理物Pを対象とする場合は、図5の(5)に示すように、キャリアガスGを、筒体の先端部(流入部)から流量10〔m/h〕で流入し、先端部側の流量調節部から流量3〔m/h〕で流出し、基端部側の流量調節部から流量3〔m/h〕で流出し、更に筒体の基端部(流出部)から流量4〔m/h〕で流出する。これにより、恒率乾燥区間における流量は4〔m/h〕、恒率乾燥区間と減率乾燥区間との境界付近における流量は7〔m/h〕、減率乾燥区間における流量は10〔m/h〕となる。したがって、前述した流量調節部を1つとする場合以上に、キャリアガスGの流量が被処理物Pの乾燥特性に応じたものとなり、しかもダスト(被処理物Pの粉塵)の排出量は著しく抑えられる。
【0028】
また、筒体の基端部側(恒率乾燥区間)において相対的に乾燥効率が良い被処理物Pを対象とする場合は、図5の(6)に示すように、キャリアガスGを、筒体の先端部(流入部)から流量4〔m/h〕で流入し、先端部側の流量調節部から流量3〔m/h〕で流入し、更に基端部側の流量調節部から流量3〔m/h〕で流入し、筒体の基端部(流出部)から流量10〔m/h〕で流出する。これにより、恒率乾燥区間における流量は10〔m/h〕、恒率乾燥区間と減率乾燥区間との境界付近における流量は7〔m/h〕、減率乾燥区間における流量は4〔m/h〕となる。したがって、前述した流量調節部を1つとする場合以上に、キャリアガスGの流量が被処理物Pの乾燥特性に応じたものとなり、しかもダスト(被処理物Pの粉塵)の排出量は著しく抑えられる。
【0029】
他方、並流式かつ筒体の基端部側(恒率乾燥区間)において相対的に乾燥効率が良い被処理物Pを対象とする場合は、図5の(7)に示すように、キャリアガスGを、筒体の基端部(流入部)から流量10〔m/h〕で流入し、基端部側の流量調節部から流量3〔m/h〕で流出し、先端部側の流量調節部から流量3〔m/h〕で流出し、更に筒体の先端部(流出部)から流量4〔m/h〕で流出する。これにより、恒率乾燥区間における流量は10〔m/h〕、恒率乾燥区間と減率乾燥区間との境界付近における流量は7〔m/h〕、減率乾燥区間における流量は4〔m/h〕となる。したがって、前述した流量調節部を1つとする場合以上に、キャリアガスGの流量が被処理物Pの乾燥特性に応じたものとなり、しかもダスト(被処理物Pの粉塵)の排出量は著しく抑えられる。
【0030】
また、筒体の先端部側(減率乾燥区間)において相対的に乾燥効率が良い被処理物Pを対象とする場合は、図5の(8)に示すように、キャリアガスGを、筒体の基端部(流入部)から流量4〔m/h〕で流入し、基端部側の流量調節部から流量3〔m/h〕で流入し、更に先端部側の流量調節部から流量3〔m/h〕で流入し、筒体の先端部(流出部)から流量10〔m/h〕で流出する。これにより、恒率乾燥区間における流量は4〔m/h〕、恒率乾燥区間と減率乾燥区間との境界付近における流量は7〔m/h〕、減率乾燥区間における流量は10〔m/h〕となる。したがって、前述した流量調節部を1つとする場合以上に、キャリアガスGの流量が被処理物Pの乾燥特性に応じたものとなり、しかもダスト(被処理物Pの粉塵)の排出量は著しく抑えられる。
【0031】
〔横型回転乾燥装置:第2の実施の形態〕
次に、第2の実施の形態の横型回転乾燥装置について、説明する。
第2の実施の形態の横型回転乾燥装置60は、図6及び図7に示すように、軸心回りに回転する筒体61と、この筒体61内の被処理物Pを間接加熱する加熱手段62と、筒体61の周壁面から周回りに一周にわたって突出する一対の凸部63,63上にグランドパッキン64,64を介して設けられた気座65及び66と、を主に有する。
【0032】
気座65及び66は、基台67上に、それぞれ支持材68によって取り付けられている。したがって、筒体61は、基台67に対して、支持材68、気座65及び66及びグランドパッキン64を介して、回転可能に取り付けられた状態となっている。なお、筒体61を回転する駆動手段は、図示していない。
【0033】
また、本横型回転乾燥装置60において、加熱手段62は、図7に示すように、内部を水蒸気などの熱媒が流通する加熱管62A,62A…からなっている(つまり、本横型回転乾燥装置60も、第1の実施の形態同様、STDである。)。加熱管62A,62A…の数や通し方などは、公知のSTDと同様とすることができる。本実施の形態においては、加熱管62A,62A…を、筒体61の軸心方向に延在するように、かつ筒体61の内壁面61c回りに沿って適宜の間隔をあけて複数本、設置した。
【0034】
被処理物Pは、筒体61の基端部61aに設けられた供給口69から筒体61内に供給され、筒体61の回転に伴って筒体61の基端部61aから先端部61bに搬送されつつ、前記加熱管62A,62A…から受熱して乾燥させられる。筒体61内において乾燥させられた被処理物Pは、筒体61の先端部61bに設けられた排出口71から筒体61外に排出される。
【0035】
他方、筒体61の先端部61bには、キャリアガスGの流入部たる図示しない流入口が設けられ、筒体61の基端部61aには、キャリアガスGの流出部たる流出口72が設けられ、加えて筒体61の軸心方向所定部、本実施の形態では、筒体61の軸心方向中央部には、キャリアガスGが流入又は流出する流量調節部たる2つの流通口73,73が設けられている。流通口73,73は、キャリアガスGが流入又は流出する開口であり、前述した気座65で覆われた状態となっている。また、気座65にも、キャリアガスGが流入又は流出する流通口65Aが形成されている。したがって、図7に示すように、キャリアガスGは、筒体61の流通口73,73、筒体61の周壁面61Aと気座65の内壁面65Bとで囲まれた部位、及び気座65の流通口65Aを介して流通する。
【0036】
本実施の形態においては、筒体61の流通口73を2つとしたが、これに限定する趣旨ではない。1つとすることも、3つ、4つ又はそれ以上の複数とする(複数とする場合は、例えば、流通口を周回りに適宜の間隔をおいて形成する。)こともできる。また、本実施の形態においては、流通口73,73から塊状の被処理物Pが流出するのを防止するために、図6中に拡大して示すように、流通口73,73を、キャリアガスGは流通自在なパンチングメタル、エキスパンドメタル、金網などの多孔部材73Aでそれぞれ覆った。ただし、多孔部材に限定する趣旨ではなく、例えば、ルーバ等を利用することもできる。
【0037】
以上のようにしてなる流量調節部の利用方法、数等は、第1の実施の形態と同様なので、説明を省略する。
【0038】
〔その他〕
(1)本発明の横型回転乾燥装置においては、被処理物Pの乾燥を、連続式(被処理物を供給し続け、かつ排出し続ける方式)で行うことも、回分式で行うこともできる。回分式で行う場合において、流量調節部からキャリアガスGを流入すると、流入されたキャリアガスGにより筒体内の被処理物Pが攪拌されて乾燥効率が向上する。
【0039】
(2)本実施の形態では、キャリアガスGの流量や流量調節部の設置位置を、被処理物Pの乾燥特性に応じて調節する場合を説明した。ただし、これに限定する趣旨ではなく、例えば、筒体内における被処理部Pの移動速度などをも考慮して、流量・設置位置を調節することもできる。
【0040】
【発明の効果】
以上のとおり、本発明によれば、被処理物の乾燥特性に応じてキャリアガスの流量を調節することができながら、被処理物の粉塵がほとんど流出することのない横型回転乾燥装置及び被処理物の乾燥方法になる。
【図面の簡単な説明】
【図1】従来の横型回転乾燥装置の側面模式図である。
【図2】被処理物の処理設備の設備フロー図である。
【図3】第1の実施の形態に係る横型回転乾燥装置の側面図である。
【図4】第1の実施の形態に係る横型回転乾燥装置の断面図である。
【図5】キャリアガスの流量調節方法を説明するための図である。
【図6】第2の実施の形態に係る横型回転乾燥装置の側面図である。
【図7】第2の実施の形態に係る横型回転乾燥装置の断面図である。
【符号の説明】
1…被処理物の処理設備、10,30,60…横型回転乾燥装置、13…キャリアガス流通機構、31…筒体、32…加熱手段、42…キャリアガス流入口、43,69…キャリアガス流出口、100…従来の横型回転乾燥装置、101…筒体、103…キャリアガス流入口、104…キャリアガス流出口、G…キャリアガス、P…被処理物。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a horizontal rotary drying apparatus and a method for drying an object to be processed. More specifically, the present invention relates to a method of indirectly heating and drying an object to be processed.
[0002]
[Prior art]
A conventional horizontal rotary drier for drying sludge such as sewage sludge, and objects to be treated such as resin, lysine, salt, and coal is, for example, a steam tube dryer 100 (hereinafter, steam tube dryer is simply STD). As shown in FIG. 1, a cylindrical body 101 that rotates around an axis, and a heating tube through which a heating medium such as steam flows through the inside of the cylindrical body 101 that indirectly heats the object P to be processed. , 102, 102... (For example, see Patent Document 1). A supply port 103 for the workpiece P and an inlet 105 serving as an inflow portion of the carrier gas G are provided at a base end of the cylinder 101, and a discharge port for discharging the workpiece P is provided at a distal end of the cylinder 101. An outlet 104 and an outlet 106 serving as an outflow portion of the carrier gas G are provided (STD 100 is a so-called co-current type in which the moving direction of the object P and the flowing direction of the carrier gas G match. There is also a so-called counter-current type in which the gas G flows in from the end of the workpiece P on the outlet 104 side and flows out from the end of the workpiece P on the supply port 103 side.) In the STD 100, when the carrier gas G flows into the cylindrical body 101 from the inflow port 105, the moisture evaporated from the processing object P by receiving heat from the heating pipes 102, 102... Is conveyed along with the carrier gas G. , From the outlet 106 to the outside of the cylindrical body 101. Thereby, the vapor pressure in the cylindrical body 101 is reduced, and therefore, the drying speed of the processing object P is improved.
[Patent Document 1]
JP-A-63-14076
[Problems to be solved by the invention]
By the way, for the object to be treated P, it is preferable to improve the drying efficiency on the base end side (constant-rate drying section) of the cylindrical body 101, or the drying efficiency on the distal end side (reduced-rate drying section) of the cylindrical body 101. (It is to be noted that the object to be processed P is preferably dried at a constant rate mainly at the base end side of the cylindrical body 101 and reduced-rate dried at the distal end side thereof.) The constant rate drying section and the reduced rate drying section are referred to as the constant rate drying section and the reduced rate drying section. Of course, they are not the same length, and of course, constant rate drying and reduced rate drying are not clearly divided into two.) On the other hand, improvement in drying efficiency can be achieved by increasing the flow rate of the carrier gas G and rapidly reducing the vapor pressure.
[0004]
Therefore, in the conventional STD 100, it has been considered to increase the flow rate of the carrier gas G from the inflow port 105 to thereby rapidly reduce the vapor pressure. However, when the flow rate of the carrier gas G is increased, the object P is soared, and the dust of the object P flows out of the outlet 106 with the carrier gas G.
[0005]
Therefore, a main problem of the present invention is that the flow rate of the carrier gas can be adjusted in accordance with the drying characteristics of the processing object, and thus the drying efficiency can be improved, while the dust of the processing object almost flows out. It is an object of the present invention to provide a horizontal rotary drying apparatus and a method for drying an object to be processed, which do not require any processing.
[0006]
[Means for Solving the Problems]
The present invention which has solved the above-mentioned problems is as follows.
<Invention according to claim 1>
A horizontal rotating drying apparatus having a cylindrical body that rotates about an axis and a heating unit that indirectly heats an object to be processed in the cylindrical body,
An inflow portion of the carrier gas is provided at one end of the cylinder, an outflow portion of the carrier gas is provided at the other end of the cylinder, and a carrier gas is provided at a predetermined portion in the axial direction of at least one of the cylinders. A horizontal rotary drying device, comprising a flow control unit for inflow or outflow.
[0007]
<Invention according to claim 2>
A horizontal rotating drying apparatus having a cylindrical body that rotates about an axis and a heating unit that indirectly heats an object to be processed in the cylindrical body,
An inflow portion of the carrier gas is provided at one end of the cylinder, an outflow portion of the carrier gas is provided at the other end of the cylinder, and the cylinder axis between the inflow portion and the outflow portion is further provided. A flow rate adjuster for inflow or outflow of carrier gas is provided at a center of the cylindrical body separated from the inflow portion toward the outflow portion by a distance of 1 / to / times the directional distance. Characteristic horizontal rotary dryer.
[0008]
<Invention of Claim 3>
A method of indirectly heating and drying an object to be processed in a cylinder rotating around an axis,
Carrier gas flows in from one end of the cylindrical body, and flows out of the carrier gas from the other end of the cylindrical body. In accordance with the drying characteristics of the object to be processed, the carrier is supplied at a predetermined position in the axial direction of the cylindrical body. A method for drying an object to be processed, wherein a gas flows in or out.
[0009]
<Invention of Claim 4>
The method for drying an object to be processed according to claim 3, wherein the supply of the object to be processed into the cylinder and the discharge of the object to be processed from the cylinder are performed in a batch manner.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described.
FIG. 2 shows an equipment flow diagram of the processing equipment 1 for the processing object P provided with the horizontal rotary drying device 10 of the present embodiment.
In the present processing equipment 1, the processing object P is first supplied to the horizontal rotary drying device 10 and dried. The object P to be dried is not particularly limited. For example, sludge such as sewage sludge, resin, lysine, salt, coal, chemicals, constarch and the like can be targeted.
[0011]
The object P dried in the horizontal rotary drying apparatus 10 is transported to the hopper 12 by the transport conveyor 11 and temporarily stored therein (the object P can be transported by air transport, a screw conveyor, or the like). . The bottom of the hopper 12 is provided with a gate mechanism 12A that allows the bottom to be opened and closed so that the object P in the hopper 12 can be discharged as needed. The object P discharged from the hopper 12 can be transported to a combustion facility (not shown) by a truck or the like, for example, and subjected to combustion disposal.
[0012]
The processing equipment 1 is provided with a circulation mechanism 13 that circulates a carrier gas G such as air or nitrogen in the horizontal rotary dryer 10. The carrier gas distribution mechanism 13 is provided with a flow path 14 such as a pipe through which the carrier gas G flows into the horizontal rotary drying device 10 connected to the distal end portion 10b of the horizontal rotary drying device 10. The carrier gas G flowing into the horizontal rotary dryer 10 from the flow path 14 is accompanied by moisture evaporated from the processing object P and dust of the processing object P, It is sent to a scrubber 16 as dust removing means via a flow path 15 such as a tube connected to the end 10a. The flow path 15 is connected to the lower end side wall of the scrubber 16, and the carrier gas G rises in the scrubber 16. The carrier gas G is removed by water or the like sprayed downward from spray means 17, 17... Such as nozzles in this rising process, and is sent to the ceiling 16a via the filter 18. The channel 16 connected to the tip 10b of the horizontal rotary dryer 10 is connected to the ceiling 16a. The carrier gas G flows into the horizontal rotary drying device 10 via the flow path 14 and is reused. In the present embodiment, the circulation of the carrier gas G is performed by the circulation fan 19. The scrubber 16 is provided with spray means 20 such as a nozzle for injecting water or the like upward. The dust of the processing object P adhered to the filter 18 is removed by water or the like jetted from the spray means 20.
[0013]
In the present embodiment, the scrubber 16 in the form of a spray tower is used as the dust removing means, but the present invention is not limited to this. For example, a known dust removing means such as a bag filter or a cyclone may be used.
[0014]
By the way, as will be described in detail below, the present invention further includes a flow rate adjusting unit for flowing the carrier gas G into the horizontal rotary drying device 10 or flowing out the carrier gas G from the horizontal rotary drying device 10. Therefore, the flow path 13 connected to the distal end portion 10b of the horizontal rotary drier 10 and the flow path connected to the base end 10a of the horizontal rotary drier 10 are provided in the flow mechanism 13 of the carrier gas G of the present embodiment. 15 and a flow control passage 22 whose both ends are communicated with each other, and a branch passage 21 branched from the middle of the flow control flow passage 22 and communicated with the flow control unit of the horizontal rotary drying apparatus 10. The flow control flow channel 22 is provided with a gate valve 23 or 24 on the flow channel 14 side and the flow channel 15 side of the branch portion with the branch channel 21, respectively. By operating the gate valves 23 and 24, the branch path 21 functions as an inflow path or an outflow path for the carrier gas G.
[0015]
Therefore, next, a specific embodiment of the horizontal rotary drying device 10 provided with the flow rate adjusting unit will be described in detail.
[Horizontal type rotary dryer: First embodiment]
First, the horizontal rotary drying device according to the first embodiment will be described.
As shown in FIGS. 3 and 4, the horizontal rotary drying device 30 of the first embodiment is slightly inclined downward from the base end portion 31a to the distal end portion 31b, for example, inclined downward by about 1 or 2 degrees. It mainly includes a cylindrical body 31 that rotates around an axis, and a heating unit 32 that indirectly heats the object P in the cylindrical body 31.
[0016]
The cylindrical body 31 is supported on rollers 34, 34 provided on the two bases 33, 33 via tires 35, 35, respectively. A driven gear 36 is mounted around the peripheral wall of the cylindrical body 31, and the driven gear 36 meshes with a driving gear 37. Then, the driving gear 37 rotates by transmitting a rotational force from a driving source 38 such as a motor. Therefore, the cylindrical body 31 rotates around the axis by the rotational force transmitted from the driving source 38 via the driving gear 37 and the driven gear 36.
[0017]
As shown in FIG. 4, in the present horizontal rotary drying device 30, the heating means 32 includes a plurality of heating pipes 32A, 32A,. The drying device 30 is an STD.) The number and the way of passing the heating tubes 32A, 32A... Can be the same as those of a known STD. In the present embodiment, a plurality of heating pipes 32A, 32A,... Are formed so as to extend in the axial direction of the cylindrical body 31 and at appropriate intervals around the inner wall surface 31c of the cylindrical body 31. installed.
[0018]
In the present embodiment, the heating means 32 is constituted by the heating pipes 32A, 32A,... Extending inside the cylindrical body 31, but is not limited to this. For example, by providing an outer cylinder coaxially with the cylindrical body 31 around the peripheral wall of the cylindrical body 31 and passing a heat medium between the outer cylinder and the cylindrical body 31 to heat the cylindrical body 31, heating means 32.
[0019]
The workpiece P is supplied into the cylindrical body 31 from a supply port 39 provided at the base end 31a of the cylindrical body 31. The rotation of the cylindrical body 31 causes the base material 31a to move from the base end 31a to the distal end 31b of the cylindrical body 31. , While receiving heat from the heating tubes 32A, 32A,. The processing object P dried in the cylindrical body 31 is discharged out of the cylindrical body 31 from a discharge port 41 provided at a distal end portion 31b of the cylindrical body 31.
[0020]
On the other hand, an inflow port 42 as an inflow portion of the carrier gas G is provided at the distal end portion 31 b of the cylindrical body 31, and an outflow port 43 as an outflow portion of the carrier gas G is provided at the base end portion 31 a of the cylindrical body 31. (In the present embodiment, it also serves as the supply port 39 for the workpiece P.) In addition, at a predetermined portion in the axial direction of the cylindrical body 31, in the present embodiment, at the central portion in the axial direction of the cylindrical body 31, A distal end portion 44A of a flow pipe 44, which is a flow rate adjusting section through which the carrier gas G flows in or out, is provided. The flow pipe 44 is a pipe through which the carrier gas G flows, and extends within the cylindrical body 31 from the distal end 31b of the cylindrical body 31 toward the base end 31a by an appropriate length. The portion is referred to as a first extending portion 44a.), From which it is bent outward and penetrates the peripheral wall of the cylindrical body 31 to once project into the outer space of the cylindrical body 31, and then from there to the base end 31a of the cylindrical body 31. It extends for an appropriate length toward the center (this portion is referred to as a second extending portion 44b), and is bent inward from the periphery to penetrate the peripheral wall of the cylindrical body 31 and protrude into the inner space of the cylindrical body 31. Is bent toward the base end portion 31a of the cylindrical body 31 from above. The length of each of the extending portion 44a and the extending portion 44b depends on the temperature of the carrier gas G (when the carrier gas G flows out of the flow pipe 44), the degree of influence of the flow pipe 44 becoming an obstacle, and the like. It can be adjusted appropriately in consideration of the above. Therefore, for example, a shape in which the length of the second extending portion 44b is 0 (zero), that is, a shape in which the circulation pipe 44 passes only through the inside of the cylindrical body 31 can be used.
[0021]
In the present embodiment, the inflow portion and the outflow portion are formed by the openings (42, 43) of the cylindrical body 31 as described above, and the flow rate adjusting part is formed by the tip of the flow pipe 44 passing through the inside of the cylindrical body 31. It was formed by the opening of the portion 44A. However, the inflow section, the outflow section, and the flow control section of the present invention are not limited to these. For example, the inflow section and the outflow section can be formed by inserting a pipe into the cylindrical body 31 and forming an opening at the distal end of the insertion pipe, and the flow rate adjusting section is provided with an opening in the cylindrical body 31, for example. It can be formed with an opening.
[0022]
By the way, in the present invention, the inflow / outflow of the carrier gas G from the flow rate adjusting section (in the first embodiment, the opening of the flow pipe tip 44A) causes Adjust the flow rate in the cylinder.
Specifically, for example, in the case where an object to be processed P having relatively high drying efficiency is to be treated on the tip end side (reduced-rate drying section) of the cylindrical body, as shown in (1) of FIG. The gas G flows in at a flow rate of 10 [m 3 / h] from the distal end portion (inflow portion) of the cylindrical body, and flows out at a flow rate of 5 [m 3 / h] from the central portion (flow rate adjusting portion) of the cylindrical body. It flows out at a flow rate of 5 [m 3 / h] from the base end (outflow portion) of the cylindrical body. As a result, the flow rate in the reduced-rate drying section is 10 [m 3 / h], and the flow rate in the constant-rate drying section is 5 [m 3 / h] (the numerical values in FIGS. [M 3 / h] In the square frame, an arrow connected to a numerical value (flow rate) represents a cylinder having a left end as a base end and a right end as a tip, and the flow of the carrier gas G is indicated by an arrow. The flow rate [m 3 / h] is merely an example.) Therefore, while the flow rate of the carrier gas G is in accordance with the drying characteristics of the processing target P, the amount of dust (dust of the processing target P) discharged is significantly suppressed.
[0023]
Further, for example, when the target object P having relatively high drying efficiency is targeted at the base end portion side (constant-rate drying section) of the cylindrical body, as shown in FIG. Flows at a flow rate of 5 [m 3 / h] from the distal end portion (inflow portion) of the cylindrical body, and further flows at a flow rate of 5 [m 3 / h] from the central portion (flow rate adjusting portion) of the cylindrical body. Flows out at a flow rate of 10 [m 3 / h] from the base end (outflow portion). Thereby, the flow rate in the reduced rate drying section is 5 [m 3 / h], and the flow rate in the constant rate drying section is 10 [m 3 / h]. Therefore, while the flow rate of the carrier gas G is in accordance with the drying characteristics of the processing target P, the amount of dust (dust of the processing target P) discharged is significantly suppressed.
[0024]
In the above description, the flow of the carrier gas G is of the counter-current type (the first embodiment is also of the counter-current type). However, the present invention is not limited to this, and may be of the co-current type. You can also.
That is, in the case of the parallel flow type, for example, when the target object P having relatively high drying efficiency is to be treated at the base end side (constant-rate drying section) of the cylindrical body, (3) in FIG. As shown in the figure, the carrier gas G flows in at a flow rate of 10 [m 3 / h] from the base end portion (inflow portion) of the cylindrical body, and flows at a flow rate of 5 [m 3 / h] from the central portion (flow rate adjusting portion) of the cylindrical body. h], and flows out at a flow rate of 5 [m 3 / h] from the tip (outflow portion) of the cylindrical body. Thereby, the flow rate in the reduced rate drying section is 5 [m 3 / h], and the flow rate in the constant rate drying section is 10 [m 3 / h]. Therefore, while the flow rate of the carrier gas G is in accordance with the drying characteristics of the processing target P, the amount of dust (dust of the processing target P) discharged is significantly suppressed.
[0025]
In addition, when an object to be processed P having relatively high drying efficiency is to be treated on the tip end side (reduction drying section) of the cylindrical body, as shown in FIG. It flows in at a flow rate of 5 [m 3 / h] from the base end (inflow portion) of the body, and further flows in at a flow rate of 5 [m 3 / h] from the central portion (flow rate adjusting portion) of the cylindrical body, and the tip of the cylindrical body From the outlet (outflow portion) at a flow rate of 10 [m 3 / h]. As a result, the flow rate in the reduced-rate drying section is 10 [m 3 / h], and the flow rate in the constant-rate drying section is 5 [m 3 / h]. Therefore, while the flow rate of the carrier gas G is in accordance with the drying characteristics of the processing target P, the amount of dust (dust of the processing target P) discharged is significantly suppressed.
[0026]
As described above, in the case where one flow control unit is provided, as shown in FIG. 5 (9), 1 / to / times the distance L between the inflow port and the outflow port in the axial direction of the cylindrical body. It is preferable to provide a flow control section at the center of the cylinder M away from the inflow port toward the outflow port, and a distance of 2/5 to 3/5 times the axial length L of the cylinder body. It is more preferable to provide a flow control section at the center of the cylindrical body away from the outlet toward the outlet.
[0027]
As mentioned above, although the form which made one flow control part was shown, the present invention is not limited to this. Two, three, four or more flow control units may be provided, and each flow control unit may be provided at each predetermined part that is displaced in the axial direction of the cylindrical body.
For example, in the case where the number of flow rate adjustment units is two and the target object P is a counter-current type and has a relatively high drying efficiency on the tip end side (reduction rate drying section) of the cylindrical body, (5) in FIG. ), The carrier gas G flows in at a flow rate of 10 [m 3 / h] from the distal end portion (inflow portion) of the cylindrical body, and flows at a flow rate of 3 [m 3 / h] from the flow rate adjusting portion on the distal end side. It flows out at a flow rate of 3 [m 3 / h] from the flow rate control section on the base end side, and further flows out at a flow rate of 4 [m 3 / h] from the base end (outflow section) of the cylindrical body. Thereby, the flow rate in the constant rate drying section is 4 [m 3 / h], the flow rate near the boundary between the constant rate drying section and the reduced rate drying section is 7 [m 3 / h], and the flow rate in the reduced rate drying section is 10 [m 3 / h]. [M 3 / h]. Therefore, the flow rate of the carrier gas G depends on the drying characteristics of the processing object P, and the amount of dust (dust of the processing object P) is significantly suppressed, as compared with the case where the above-described one flow rate adjustment unit is provided. Can be
[0028]
In addition, when the target object P having relatively high drying efficiency is targeted at the base end side (constant-rate drying section) of the cylindrical body, as shown in (6) of FIG. It flows in at a flow rate of 4 [m 3 / h] from the distal end (inflow section) of the cylindrical body, flows in at a flow rate of 3 [m 3 / h] from the flow rate control section on the distal end side, and further adjusts the flow rate on the base end side. The fluid flows in at a flow rate of 3 [m 3 / h] from the portion and flows out at a flow rate of 10 [m 3 / h] from the base end (outflow portion) of the cylindrical body. Thereby, the flow rate in the constant rate drying section is 10 [m 3 / h], the flow rate near the boundary between the constant rate drying section and the reduced rate drying section is 7 [m 3 / h], and the flow rate in the reduced rate drying section is 4 [m 3 / h]. [M 3 / h]. Therefore, the flow rate of the carrier gas G depends on the drying characteristics of the processing object P, and the amount of dust (dust of the processing object P) is significantly suppressed, as compared with the case where the above-described one flow rate adjustment unit is provided. Can be
[0029]
On the other hand, when the processing object P having a relatively high drying efficiency at the base end side (constant rate drying section) of the parallel flow type and the cylindrical body is targeted, as shown in (7) of FIG. The gas G flows in at a flow rate of 10 [m 3 / h] from the base end (inflow part) of the cylindrical body, flows out at a flow rate of 3 [m 3 / h] from the flow control part on the base end side, and flows out at the tip end. It flows out at a flow rate of 3 [m 3 / h] from the flow rate control section on the side, and further flows out at a flow rate of 4 [m 3 / h] from the tip (outflow portion) of the cylindrical body. Thereby, the flow rate in the constant rate drying section is 10 [m 3 / h], the flow rate near the boundary between the constant rate drying section and the reduced rate drying section is 7 [m 3 / h], and the flow rate in the reduced rate drying section is 4 [m 3 / h]. [M 3 / h]. Therefore, the flow rate of the carrier gas G depends on the drying characteristics of the processing object P, and the amount of dust (dust of the processing object P) is significantly suppressed, as compared with the case where the above-described one flow rate adjustment unit is provided. Can be
[0030]
In addition, when the processing object P having relatively high drying efficiency is targeted at the tip end side (reduction rate drying section) of the cylindrical body, as shown in (8) of FIG. It flows in at a flow rate of 4 [m 3 / h] from the base end (inflow section) of the body, flows in at a flow rate of 3 [m 3 / h] from the flow control section on the base end side, and further adjusts the flow rate on the distal end side. The fluid flows in from the portion at a flow rate of 3 [m 3 / h], and flows out from the tip (outflow portion) of the cylindrical body at a flow rate of 10 [m 3 / h]. Thereby, the flow rate in the constant rate drying section is 4 [m 3 / h], the flow rate near the boundary between the constant rate drying section and the reduced rate drying section is 7 [m 3 / h], and the flow rate in the reduced rate drying section is 10 [m 3 / h]. [M 3 / h]. Therefore, the flow rate of the carrier gas G depends on the drying characteristics of the processing object P, and the amount of dust (dust of the processing object P) is significantly suppressed, as compared with the case where the above-described one flow rate adjustment unit is provided. Can be
[0031]
[Horizontal type rotary dryer: Second embodiment]
Next, a horizontal rotary drying apparatus according to a second embodiment will be described.
As shown in FIGS. 6 and 7, the horizontal rotary drying device 60 according to the second embodiment includes a cylindrical body 61 that rotates around an axis and a heating unit that indirectly heats the object P in the cylindrical body 61. It mainly has means 62 and air seats 65 and 66 provided on a pair of projections 63, 63 projecting around the circumference from the peripheral wall surface of the cylindrical body 61 over the circumference via gland packings 64, 64.
[0032]
The air seats 65 and 66 are mounted on a base 67 by support members 68, respectively. Therefore, the cylinder 61 is rotatably attached to the base 67 via the support member 68, the air seats 65 and 66, and the gland packing 64. The driving means for rotating the cylinder 61 is not shown.
[0033]
As shown in FIG. 7, the heating means 62 of the present horizontal rotary drying apparatus 60 includes heating pipes 62A, 62A,... Through which a heat medium such as steam flows. 60 is an STD as in the first embodiment.) The number and the way of passing the heating tubes 62A, 62A... Can be the same as those of a known STD. In the present embodiment, a plurality of heating pipes 62A, 62A,... Are formed so as to extend in the axial direction of the cylindrical body 61 and at appropriate intervals around the inner wall surface 61c of the cylindrical body 61. installed.
[0034]
The workpiece P is supplied into the cylindrical body 61 from a supply port 69 provided at the base end 61a of the cylindrical body 61, and is rotated from the base end 61a to the distal end 61b of the cylindrical body 61 as the cylindrical body 61 rotates. , And is dried by receiving heat from the heating tubes 62A. The processing object P dried in the cylindrical body 61 is discharged out of the cylindrical body 61 from a discharge port 71 provided in a distal end portion 61b of the cylindrical body 61.
[0035]
On the other hand, an inflow port (not shown) serving as an inflow portion of the carrier gas G is provided at the distal end portion 61 b of the cylindrical body 61, and an outflow port 72 serving as an outflow portion of the carrier gas G is provided at the base end portion 61 a of the cylindrical body 61. In addition, at the predetermined portion in the axial direction of the cylindrical body 61, in the present embodiment, at the central portion in the axial direction of the cylindrical body 61, two flow ports 73, which are flow rate adjusting portions through which the carrier gas G flows in or out, are provided. 73 are provided. The flow ports 73, 73 are openings through which the carrier gas G flows in or out, and are covered with the air seat 65 described above. The air seat 65 also has a flow port 65A through which the carrier gas G flows in or out. Therefore, as shown in FIG. 7, the carrier gas G is supplied to the flow ports 73, 73 of the cylinder 61, a portion surrounded by the peripheral wall surface 61 </ b> A of the cylinder 61 and the inner wall surface 65 </ b> B of the air seat 65, and the air seat 65. Is distributed through the distribution port 65A.
[0036]
In the present embodiment, the number of the circulation ports 73 of the cylindrical body 61 is two, but the invention is not limited to this. One, or three, four, or more pluralities (when pluralities are formed, for example, they are formed at appropriate intervals around the circulation port). Further, in the present embodiment, as shown in an enlarged manner in FIG. 6, the flow ports 73, 73 are provided with a carrier in order to prevent the lump of the workpiece P from flowing out from the flow ports 73, 73. The gas G was covered with a porous member 73A such as a perforated punching metal, expanded metal, and wire mesh. However, the invention is not limited to the porous member, and for example, a louver or the like can be used.
[0037]
The usage method, number, and the like of the flow rate adjusting units configured as described above are the same as those in the first embodiment, and thus description thereof is omitted.
[0038]
[Others]
(1) In the horizontal rotary drying apparatus of the present invention, the drying of the processing object P can be performed in a continuous manner (a method of continuously supplying and discharging the processing object) or in a batch mode. . In the case of performing the batch process, when the carrier gas G flows from the flow rate control unit, the object P in the cylinder is stirred by the flowed carrier gas G, and the drying efficiency is improved.
[0039]
(2) In the present embodiment, the case where the flow rate of the carrier gas G and the installation position of the flow rate control unit are adjusted according to the drying characteristics of the processing object P has been described. However, the present invention is not limited to this. For example, the flow rate and the installation position can also be adjusted in consideration of the moving speed of the processing target P in the cylinder.
[0040]
【The invention's effect】
As described above, according to the present invention, it is possible to adjust the flow rate of the carrier gas in accordance with the drying characteristics of the object to be processed, and the horizontal rotary drying apparatus in which the dust of the object to be processed hardly flows out, and It becomes the method of drying things.
[Brief description of the drawings]
FIG. 1 is a schematic side view of a conventional horizontal rotary dryer.
FIG. 2 is an equipment flow chart of equipment for processing an object to be processed.
FIG. 3 is a side view of the horizontal rotary drying device according to the first embodiment.
FIG. 4 is a cross-sectional view of the horizontal rotary dryer according to the first embodiment.
FIG. 5 is a diagram for explaining a method of adjusting a flow rate of a carrier gas.
FIG. 6 is a side view of a horizontal rotary drying device according to a second embodiment.
FIG. 7 is a cross-sectional view of a horizontal rotary drying device according to a second embodiment.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Processing equipment of a to-be-processed object, 10, 30, 60 ... Horizontal rotary dryer, 13 ... Carrier gas distribution mechanism, 31 ... Cylindrical body, 32 ... Heating means, 42 ... Carrier gas inflow port, 43, 69 ... Carrier gas Outlet, 100: conventional horizontal rotary dryer, 101: cylindrical body, 103: carrier gas inlet, 104: carrier gas outlet, G: carrier gas, P: workpiece.

Claims (4)

軸心回りに回転する筒体と、この筒体内の被処理物を間接加熱する加熱手段と、を有する横型回転乾燥装置であって、
前記筒体の一端部にキャリアガスの流入部が設けられ、前記筒体の他端部にキャリアガスの流出部が設けられ、更に少なくとも1つ前記筒体の軸心方向所定部にキャリアガスが流入又は流出する流量調節部が設けられている、ことを特徴とする横型回転乾燥装置。
A horizontal rotating drying apparatus having a cylindrical body that rotates about an axis and a heating unit that indirectly heats an object to be processed in the cylindrical body,
An inflow portion of the carrier gas is provided at one end of the cylinder, an outflow portion of the carrier gas is provided at the other end of the cylinder, and a carrier gas is provided at a predetermined portion in the axial direction of at least one of the cylinders. A horizontal rotary drying device, comprising a flow control unit for inflow or outflow.
軸心回りに回転する筒体と、この筒体内の被処理物を間接加熱する加熱手段と、を有する横型回転乾燥装置であって、
前記筒体の一端部にキャリアガスの流入部が設けられ、前記筒体の他端部にキャリアガスの流出部が設けられ、更に前記流入部と前記流出部との間の前記筒体軸心方向距離の1/4〜3/4倍の距離、前記流入部から前記流出部に向かって離れた前記筒体中央部にキャリアガスが流入又は流出する流量調節部が設けられている、ことを特徴とする横型回転乾燥装置。
A horizontal rotating drying apparatus having a cylindrical body that rotates about an axis and a heating unit that indirectly heats an object to be processed in the cylindrical body,
An inflow portion of the carrier gas is provided at one end of the cylinder, an outflow portion of the carrier gas is provided at the other end of the cylinder, and the cylinder axis between the inflow portion and the outflow portion is further provided. A flow rate adjuster for inflow or outflow of carrier gas is provided at a center of the cylindrical body separated from the inflow portion toward the outflow portion by a distance of 1 / to / times the directional distance. Characteristic horizontal rotary dryer.
軸心回りに回転する筒体内において被処理物を間接加熱して乾燥する方法であって、
前記筒体の一端部からキャリアガスを流入し、前記筒体の他端部からキャリアガスを流出するとともに、前記被処理物の乾燥特性に応じて、前記筒体の軸心方向所定部においてキャリアガスを流入し、又は流出する、ことを特徴とする被処理物の乾燥方法。
A method of indirectly heating and drying an object to be processed in a cylinder rotating around an axis,
Carrier gas flows in from one end of the cylindrical body, and flows out of the carrier gas from the other end of the cylindrical body. In accordance with the drying characteristics of the object to be processed, the carrier is supplied at a predetermined position in the axial direction of the cylindrical body. A method for drying an object to be processed, wherein a gas flows in or out.
筒体内への被処理物の供給及び前記筒体内からの前記被処理物の排出を回分式とする、請求項3記載の被処理物の乾燥方法。The method for drying an object to be processed according to claim 3, wherein the supply of the object to be processed into the cylinder and the discharge of the object to be processed from the cylinder are performed in a batch manner.
JP2003151029A 2003-05-28 2003-05-28 Horizontal rotary drying device and object drying method Pending JP2004353927A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003151029A JP2004353927A (en) 2003-05-28 2003-05-28 Horizontal rotary drying device and object drying method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003151029A JP2004353927A (en) 2003-05-28 2003-05-28 Horizontal rotary drying device and object drying method

Publications (1)

Publication Number Publication Date
JP2004353927A true JP2004353927A (en) 2004-12-16

Family

ID=34046666

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003151029A Pending JP2004353927A (en) 2003-05-28 2003-05-28 Horizontal rotary drying device and object drying method

Country Status (1)

Country Link
JP (1) JP2004353927A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5736471B1 (en) * 2014-01-10 2015-06-17 月島機械株式会社 Solid-liquid separation / drying equipment and method for metal fine powder slurry

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5736471B1 (en) * 2014-01-10 2015-06-17 月島機械株式会社 Solid-liquid separation / drying equipment and method for metal fine powder slurry

Similar Documents

Publication Publication Date Title
US5271163A (en) System for treating flowable materials
US7984566B2 (en) System and method employing turbofan jet engine for drying bulk materials
US10584919B2 (en) Rotary drum finishing dryer
US3765102A (en) Rotary apparatus for treating particulate material
US20060053653A1 (en) Air dryer system and method employing a jet engine
PL89426B1 (en)
CN1105294A (en) Granular material coating apparatus
JP5193322B2 (en) Indirect heating dryer
US4064831A (en) Device for coating granular solids
KR20170068026A (en) Disk dryer for organic sludge
RU2444685C2 (en) Method and device for producing and/or conditioning powder material
EP3779344B1 (en) Multitubular rotary heat exchanger
CN105819646B (en) System and method for recovering heat from tail gas after sludge drying
JP3063163B2 (en) Ventilated tumble dryer
JP2004353927A (en) Horizontal rotary drying device and object drying method
WO2007045606A1 (en) Rotary dryer for leaf, strip or shredded tobacco
KR102372159B1 (en) Belt type sludge drying device with matching air flow path for sludge transfer section
JP5220644B2 (en) Processing apparatus and drying apparatus for workpiece
KR20120096785A (en) Cylinder type continuous fluidized bed dryer
JP2009222369A (en) Horizontal rotary drying machine
JPWO2005097212A1 (en) Sterilizer
JP3867267B2 (en) Powder production apparatus using liquid raw material and method for producing powder using this apparatus
JP4274553B2 (en) Continuous conduction heat transfer dryer with a foreign matter discharge mechanism
RU15218U1 (en) DRUM DRYER FOR BULK MATERIALS (OPTIONS)
WO2009153842A1 (en) Drying apparatus

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051216

A131 Notification of reasons for refusal

Effective date: 20060106

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060609