JP2004353550A - Method for estimating cooling performance of impingement and pin fin compound cooling structure - Google Patents

Method for estimating cooling performance of impingement and pin fin compound cooling structure Download PDF

Info

Publication number
JP2004353550A
JP2004353550A JP2003151913A JP2003151913A JP2004353550A JP 2004353550 A JP2004353550 A JP 2004353550A JP 2003151913 A JP2003151913 A JP 2003151913A JP 2003151913 A JP2003151913 A JP 2003151913A JP 2004353550 A JP2004353550 A JP 2004353550A
Authority
JP
Japan
Prior art keywords
cooling
impingement
target plate
pin
cooling performance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003151913A
Other languages
Japanese (ja)
Other versions
JP4325278B2 (en
Inventor
Chiyuki Nakamata
千由紀 仲俣
Hidemichi Yamawaki
栄道 山脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2003151913A priority Critical patent/JP4325278B2/en
Publication of JP2004353550A publication Critical patent/JP2004353550A/en
Application granted granted Critical
Publication of JP4325278B2 publication Critical patent/JP4325278B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for estimating the cooling performance of an impingement and pin fin compound cooling structure in which the cooling performance of the impingement and pin fin compound cooling structure of various modes can be estimated without actually manufacturing the structure or a model thereof to carry out a test. <P>SOLUTION: In the method for estimating the cooling performance of an impingement and pin fin compound cooling structure which comprises a target plate 1, an impingement plate 2 and pin members 3 and jointly uses the impingement cooling from an impingement hole 2a and the film cooling from a film cooling hole 1a, the cooling side heat transfer area A<SB>c, eff</SB><SP>new</SP>of the target plate is expressed by the formula (4), the CFD analysis is performed for both a standard shape of known correction factors Ft, Fp and Fϕ and a new shape of unknown correction factors, and the correction factors Ft, Fp and Fϕ are calculated by relatively comparing both shapes. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、インピンジ・ピンフィン複合冷却構造の冷却性能予測方法に関する。
【0002】
【従来の技術】
タービン翼により高い冷却性能を持つ冷却構造を適用することにより、大幅な冷却空気量の削減を行うことが可能となり、燃料消費率改善に寄与することができる。しかし、従来の冷却構造の延長上の技術では、冷却性能の大幅な向上は期待できない。また、多孔質材を用いたトランスピレーション冷却は飛躍的に高い冷却性能が実現できることが知られているが、孔の大きさのばらつきや、多孔質材であることから強度が不十分であることから実用化されていない。
【0003】
そこで、強度、耐久性で実績のある金属材料を多層化することによって、疑似的に多孔質に近い構造を実現し、冷却性能要求、構造強度要求を満足し、製造性に優れた図1に示すトランスピレーション冷却構造が提案されている。
【0004】
このトランスピレーション冷却構造は、冷却対象のターゲット板1、ターゲット板の裏側に間隔を隔てたインピンジ板2、及びターゲット板とインピンジ板の間に挟持されてその間隔を保持する円筒形のピン3からなる。ターゲット板1はフィルム冷却用のフィルム冷却孔1aを有し、インピンジ板2はインピンジ冷却用のインピンジ孔2aを有する。この構成により、インピンジ孔2aを通過した冷却空気がターゲット板1の裏面に衝突してインピンジ冷却を行い、更に冷却空気がフィルム冷却孔1からターゲット板1の表面に沿って流れ、ターゲット板の表面をフィルム冷却することができる。
【0005】
インピンジ冷却のみの冷却性能は、例えば、非特許文献1に開示されている。また、円筒形のピン(ピンフィンと呼ぶ)のフィン効率φに関して、ピン表面の熱伝達率が一定という仮定の下で、数3の(1)(2)の理論式が確立されている(非特許文献2、参照)。
そこで、上述したトランスピレーション冷却構造におけるターゲット板の冷却側伝熱面積Acは、ピンフィンの影響を加味すると、数3の(3)式のように表すことができる。なお、この式は非特許文献3に開示されている。
【0006】
【数3】

Figure 2004353550
【0007】
ここで、h cor:経験式から求められるインピンジ冷却の熱伝達率、km:熱伝導率、Ac,0:ピンのない場合の冷却側面積、Np:単位区画当たりのピン本数、Ap:ピンの断面積、φth:理論式から求められるフィン効率、Sp:ピン周長、Z:ピン高さである。
【0008】
【非特許文献1】
Florschuetz,L.W.,Truman,C.R.and Metzger,D.E.,1981,“Streamwise Flow and Heat Transfer Distribution for Jet Array Impingement woth Crossflow”,ASME Journal of Heat Transfer,103,pp.337−342.
【非特許文献2】
伝熱工学資料、日本機械学会、p204
【非特許文献3】
平成13年度 環境適合型次世代超音速推進システの研究開発 成果報告書 pp.546−553
【0009】
【発明が解決しようとする課題】
上述した数3の(3)式で、トランスピレーション冷却構造におけるターゲット板の冷却側伝熱面積Acが求まれば、主流側の伝熱面積Agは既知であるから、主流側と冷却側の面積比Ag/Acが求まり、これからトランスピレーション冷却構造の冷却効率ηを理論的に求めることができる。
【0010】
しかし、トランスピレーション冷却構造として、図2に示す基本タイプ(Basic Type)と微細タイプ(Fine Type)の2種類を製作して試験した結果、ピン密度が低い基本タイプでは、予測通りの冷却性能が得られたが、ピン密度の高い微細タイプでは、目標の冷却性能が得られなかった。
なお、基本タイプは、インピンジ冷却孔とフィルム冷却孔のそれぞれ1ピッチ分で構成される基準区画の中に、直径4mmのピンが1本設置されているものであり、微細タイプは、同一の区画に直径3mmのピンが4本設置されているである。冷却孔は両者とも全く同じ配置である。
【0011】
そのため、上述した(3)式を用いたインピンジ・ピンフィン複合冷却構造の冷却性能予測方法は、ピン密度の高い微細タイプにはそのまま適用できず、汎用性がない問題点があった。
従って、ピン密度の高いインピンジ・ピンフィン複合冷却構造の冷却性能を確認するには、様々の形態の実物またはモデルを製作して実際に試験を行う必要があり、費用と時間がかかり過ぎる問題点があった。
【0012】
本発明は上述した問題点を解決するために創案されたものである。すなわち、本発明の目的は、実物またはモデルを製作して実際に試験を行うことなく、様々の形態のインピンジ・ピンフィン複合冷却構造の冷却性能を予測することができるインピンジ・ピンフィン複合冷却構造の冷却性能予測方法を提供することにある。
【0013】
【課題を解決するための手段】
本発明によれば、冷却対象のターゲット板、ターゲット板の裏側に間隔を隔てたインピンジ板、及びターゲット板とインピンジ板の間に挟持されてその間隔を保持するピン部材からなり、インピンジ板に設けられたインピンジ孔を通過した冷却ガスを衝突させてターゲット板の裏面をインピンジ冷却し、更に冷却ガスをフィルム冷却孔からターゲット板に沿って流して、ターゲット板の表面をフィルム冷却するインピンジ・ピンフィン複合冷却構造の冷却性能予測方法において、
ターゲット板の冷却側伝熱面積Acを、数1の(4)式で表し、
修正係数Ft、Fp、Fφが既知の基準形状と未知の新規形状の両方に対してCFD解析を実施し、両者を相対比較することで修正係数Ft、Fp、Fφを算出する、ことを特徴とするインピンジ・ピンフィン複合冷却構造の冷却性能予測方法が提供される。
【0014】
本発明の好ましい実施形態によれば、前記CFD解析の結果から、数2の(5)〜(8)式より、修正係数Ft、Fp、Fφを求める。
【0015】
上述した本発明の方法によれば、ターゲット面とピン表面の熱伝達率を異なるものとして取り扱い、改良形態での熱伝達率・フィン効率の基本形態からの相対変化をCFD解析により見積もることにより、高密度なピン配置の冷却構造に対しても高精度に冷却性能を予測できることが後述する実施例で確認された。
【0016】
【発明の実施の形態】
以下、本発明の好ましい実施例を図面を参照して説明する。なお、各図において共通する部分には同一の符号を付し、重複した説明を省略する。
【0017】
【実施例】
1.冷却性能試験結果の再検討
非特許文献3において、図2に示す単位区画あたりピン1本の「基本タイプ」と、単位区画あたりピン4本の「微細タイプ」の試験片を用いて冷却性能試験を実施し、予測した冷却性能が得られるかどうかを確認した。その結果、基本タイプは旧予測方法(フィン効率を用いた簡易解析手法:上述した(3)式)で予測された冷却性能が得られたが、微細タイプでは予測を下回った。そのため改良設計を行うには、微細タイプで冷却性能が上がらなかった原因を明らかにし、高ピン密度冷却構造についても冷却性能を予測できるように予測方法を改良する必要がある。
【0018】
非特許文献3で評価した冷却性能は、試験片表面に溶接した熱電対1点の計測値から求めたものである。しかし、冷却性能は試験片表面の面積平均温度で評価するべきであるので、そこで、この実施例ではサーモカメラで計測した2次元温度分布データから表面平均温度を算出し冷却効率を再評価した。
【0019】
再評価した冷却性能試験結果と旧予測方法による冷却効率予測値を図3に示す。図3には熱電対の計測温度で評価した試験結果および予測値も示してある。熱電対温度での評価では基本タイプと微細タイプの計測結果にほとんど差が見られなかったが、サーモカメラの面積平均温度で評価した場合、基本タイプと微細タイプの計測結果には若干だが明らかな差が現れ、ピン密度増加の効果は確かに現れていることが確認された。しかし、面積平均温度で評価した場合も、やはり微細タイプの冷却効率は予測ほど上がらないという結果は変わらなかった。
【0020】
2.CFD援用による予測方法
旧予測方法では、次の2つの仮定がなされている。
(1)冷却空気が吹き付けられるターゲット面の平均熱伝達率がFlorschuetzらの経験式(非特許文献1)で予測できる。
(2)ターゲット面の平均熱伝達率とピン表面の平均熱伝達率が等しい。
基本タイプについては過去の研究で上述の2つの仮定が成り立つことを試験により確認しており、非特許文献2の冷却性能試験結果が予測と一致したことと整合している。
【0021】
しかし、微細タイプで試験結果が予測を下回ったことから、これらの仮定がピン密度の高い構造では成立していない可能性が考えられる。そこでこれらの仮定を排除し、ターゲット面とピン表面を個別に取り扱い、各々経験式や理論式で求められる熱伝達率とフィン効率を修正するファクター(修正係数)を導入した、より一般的な予測方法を創案した。この予測方法では有効伝熱面積は数4の(4)式で求める。
【0022】
【数4】
Figure 2004353550
【0023】
ここに、Ft:Florschuetzらの経験式から求められる値を修正するファクター、Ac,0:ピンのない場合の冷却側面積(m)、Np:単位区画当たりのピン本数、Ap:ピンの断面積、Fp:Florschuetzらの経験式から求められる値を修正するファクター、Fφ:円柱フィン効率の理論式から求められる値を修正するファクター、φnew:理論式から求められるフィン効率、Sp:ピン周長(m)、Z:ピン高さ(m)である。
【0024】
この方法では、冷却特性のわからない新規形状に対して修正係数Ft、Fp、Fφをいかにして求めるかが問題となる。そこで試験により冷却特性が確認されており修正係数Ft、Fp、Fφが既知の基準形状(例えば、Ft,N、Fp,N、Fφ,Nがそれぞれ1であることが確認されている)と新規形状に対してコンピュータを用いてターゲット板の冷却側のCFD解析を実施し、その解析結果を基に両者を相対比較することで修正係数Ft、Fp、Fφを算出する方法を創案した。
【0025】
この方法では、CFD解析結果から数5の(5)〜(7)式からhc,t num、hc,p num、φnumを求め、次に、修正係数Ft、Fp、Fφを数5の(8)式で算出する。
【0026】
【数5】
Figure 2004353550
【0027】
ここに、Qt;ターゲット面での総熱流量(W)、At:ターゲット面の面積(m)、Tt:ターゲット面の平均温度(K)、Tc,in:冷却空気入口温度(K)であり、
Qp:ピン表面での総熱流量(W)、Np:計算区画当たりのピン本数、Aps:ピンの表面積(m)、Tp:ピン表面の平均温度(K)であり、
cor;Florschuetzらの経験式により算出されるインピンジ冷却の熱伝達率(W/(mK))であり、添え字N,Bはそれぞれ新規形状、基準形状を表す。
【0028】
(8)式の分母は、基準形状のCFD解析値と経験式・理論式で算出される値の比で、CFD解析誤差を補正するものである。
本方法は、ピン配置やピン密度が異なる新規形状の伝熱特性の基準形状からの変化率をCFD解析で予測することを特徴とする、汎用的なトランスピレーション構造の冷却性能予測方法である。
【0029】
3.CFD援用冷却性能予測方法の評価
創案したCFD援用冷却性能予測方法を、基本タイプを基準形状として微細タイプの試験結果で検証した。CFD解析から得られた熱流束分布を図4に、ターゲット面のみの熱流束分布を図5に示す。図4から、微細タイプでは基本タイプに比べてピン表面の熱流束の高い領域がターゲット面側に寄った形で狭くなっていることがわかる。図5から、インピンジ孔位置のターゲット面に高い熱流束が現れているが、微細タイプではピンが邪魔になり、基本タイプに比べて高熱流束域が狭くなっている様子が見て取れる。
【0030】
微細タイプについて算出された修正係数Ft、Fp、Fφを図6に示す。微細タイプではFtおよびFp×Fφは1よりも小さく、旧予測方法よりも冷却効率が低く予測されることを示している。なお図3では、Wc/Wg(主流流量に対する冷却空気流量比)0.15まで冷却性能試験結果が示されているが、図から読み取れるように、冷却空気流量の増加に対して冷却効率の上昇が顕著なのはWc/Wg<0.06の範囲であり、通常この範囲で冷却設計を行う。よって、CFD解析はWc/Wg≦0.06で実施した。CFD援用冷却性能予測方法で予測した微細タイプの冷却効率と試験結果を図7に示す。Wc/Wg>0.06の領域の予測には、Wc/Wg=0.06での修正係数Ft、Fp、Fφを用いた。
【0031】
冷却設計上興味のあるWc/Wg≦0.06の領域では予測結果は試験結果と良く一致していた。Wc/Wg>0.06の領域では解析精度が悪くなっているが、これは修正係数Ft、Fp、FφをWc/Wg=0.06の値と仮定したことに起因する誤差と考えられ、冷却空気流量が多い条件でCFD解析を実施して正しい修正係数Ft、Fp、Fφを求めれば、解析精度は上がると考えられる。
以上より、CFD援用冷却性能予測方法により高密度なピン配置の冷却構造に対して高精度に冷却性能を予測できることが確認できた。
【0032】
図7に示したように、従来方法に比較し、本発明により予測精度が大幅に上がった。また、本発明の方法では、基本形態の試験結果から形状変更した改良形態の冷却性能を予測できるので、設計変更の際、冷却性能確認試験の回数を大幅に削減可能、時間と費用を大幅に削減できる。
【0033】
なお、本発明は上述した実施例及び実施形態に限定されず、本発明の要旨を逸脱しない範囲で種々変更できることは勿論である。
【0034】
【発明の効果】
上述したように、ピン密度が高い構造(高ピン密度冷却構造)の冷却性能を予測するために、本発明では冷却構造内部の熱伝達予測にCFD解析を用いたCFD援用冷却性能予測方法を創案し、かつ高ピン密度冷却構造の試験結果で検証し有効性を確認した。
【0035】
すなわち、本発明のインピンジ・ピンフィン複合冷却構造の冷却性能予測方法は、実物またはモデルを製作して実際に試験を行うことなく、様々の形態のインピンジ・ピンフィン複合冷却構造の冷却性能を予測することができる、等の優れた効果を有する。
【図面の簡単な説明】
【図1】インピンジ・ピンフィン複合冷却構造の模式図である。
【図2】試験片の形態図である。
【図3】冷却効率と冷却空気量の関係図である。
【図4】冷却構造内部の熱流束と速度分布を示すCFD解析結果である。
【図5】ターゲット面の熱流束分布と速度分布を示すCFD解析結果である。
【図6】基本タイプに対する微細タイプの熱伝達率およびフィン効率の比率を示す図である。
【図7】本発明の方法による微細タイプ冷却効率の予測結果である。
【符号の説明】
1 ターゲット板、1a フィルム冷却孔、
2 インピンジ板、2a インピンジ孔、3 ピン[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for predicting cooling performance of an impingement / pin fin combined cooling structure.
[0002]
[Prior art]
By applying a cooling structure having higher cooling performance to the turbine blades, it is possible to significantly reduce the amount of cooling air, thereby contributing to an improvement in fuel consumption rate. However, a significant improvement in cooling performance cannot be expected with a technology that is an extension of the conventional cooling structure. Further, it is known that the transpiration cooling using a porous material can achieve a remarkably high cooling performance, but the strength is insufficient due to variations in pore sizes and the porous material. Therefore, it has not been put to practical use.
[0003]
Therefore, by multiplying metal materials that have a proven track record in strength and durability, a pseudo-porous structure has been realized, satisfying the cooling performance requirements and structural strength requirements, and having excellent manufacturability. The illustrated translation cooling structure has been proposed.
[0004]
This transpiration cooling structure comprises a target plate 1 to be cooled, an impingement plate 2 spaced behind the target plate, and a cylindrical pin 3 sandwiched between the target plate and the impingement plate to maintain the interval. . The target plate 1 has a film cooling hole 1a for cooling the film, and the impingement plate 2 has an impingement hole 2a for cooling the impingement. With this configuration, the cooling air that has passed through the impingement hole 2a collides with the back surface of the target plate 1 to perform impingement cooling, and the cooling air further flows from the film cooling hole 1 along the surface of the target plate 1 and the surface of the target plate 1 The film can be cooled.
[0005]
The cooling performance of only impingement cooling is disclosed in Non-Patent Document 1, for example. Regarding the fin efficiency φ of a cylindrical pin (referred to as a pin fin), the theoretical formulas (1) and (2) of Equation 3 have been established under the assumption that the heat transfer coefficient on the pin surface is constant (non-final). See Patent Document 2).
Therefore, the cooling-side heat transfer area Ac of the target plate in the above-described transpiration cooling structure can be expressed by Expression (3), taking into account the effect of the pin fin. This equation is disclosed in Non-Patent Document 3.
[0006]
[Equation 3]
Figure 2004353550
[0007]
Here, h c cor : heat transfer coefficient of impingement cooling obtained from an empirical formula, km: thermal conductivity, Ac, 0 : cooling side area without pins, Np: number of pins per unit section, Ap: Pin cross-sectional area, φ th : Fin efficiency determined from theoretical formula, Sp: Pin circumference, Z: Pin height.
[0008]
[Non-patent document 1]
Florschuetz, L .; W. , Truman, C.I. R. and Metzger, D.C. E. FIG. , 1981, “Streamwise Flow and Heat Transfer Distribution for Jet Array Impingement with Crossflow”, ASME Journal of Heat Transfer, 103, pp., 337-342.
[Non-patent document 2]
Heat transfer engineering materials, Japan Society of Mechanical Engineers, p204
[Non-Patent Document 3]
2001 Research and Development of Environmentally Friendly Next Generation Supersonic Propulsion System Achievement Report pp. 546-553
[0009]
[Problems to be solved by the invention]
If the cooling-side heat transfer area Ac of the target plate in the transpiration cooling structure is obtained by the above equation (3), the main-stream-side heat transfer area Ag is known. The area ratio Ag / Ac is determined, from which the cooling efficiency η of the transpiration cooling structure can be theoretically determined.
[0010]
However, as a result of manufacturing and testing two types of the transpilation cooling structure, the basic type (Basic Type) and the fine type (Fine Type), as shown in FIG. However, with the fine type having a high pin density, the target cooling performance could not be obtained.
Note that the basic type is one in which one pin having a diameter of 4 mm is installed in a reference section composed of one pitch for each of the impingement cooling holes and the film cooling holes, and the fine type is the same section. Are provided with four pins having a diameter of 3 mm. The cooling holes are exactly the same in both cases.
[0011]
Therefore, the method for predicting the cooling performance of the impingement / pin fin combined cooling structure using the above equation (3) cannot be directly applied to a fine type having a high pin density, and has a problem of lack of versatility.
Therefore, in order to confirm the cooling performance of the impingement / pin fin combined cooling structure having a high pin density, it is necessary to manufacture various types of actual products or models and actually test them, which is too costly and time-consuming. there were.
[0012]
The present invention has been made to solve the above problems. That is, an object of the present invention is to provide a cooling method for an impinge / pin fin combined cooling structure capable of predicting the cooling performance of various forms of an impinge / pin fin combined cooling structure without actually producing a model or actually performing a test. It is to provide a performance prediction method.
[0013]
[Means for Solving the Problems]
According to the present invention, a target plate to be cooled, an impingement plate spaced apart on the back side of the target plate, and a pin member sandwiched between the target plate and the impingement plate to maintain the interval are provided on the impingement plate. A combined impingement / pin fin cooling structure that impinges the cooling gas passing through the impingement holes to impinge cool the back surface of the target plate, and then allows the cooling gas to flow along the target plate from the film cooling holes and film-cool the surface of the target plate. Cooling performance prediction method,
The cooling-side heat transfer area Ac of the target plate is represented by Expression (4) of Equation 1,
The correction coefficients Ft, Fp, and Fφ are subjected to CFD analysis for both a known reference shape and an unknown new shape, and the correction coefficients Ft, Fp, and Fφ are calculated by relative comparison between the two. The present invention provides a method for predicting the cooling performance of a combined impinge / pin fin cooling structure.
[0014]
According to a preferred embodiment of the present invention, the correction coefficients Ft, Fp, and Fφ are obtained from the results of the CFD analysis by using the expressions (5) to (8) of Expression 2.
[0015]
According to the method of the present invention described above, by treating the heat transfer coefficient of the target surface and the pin surface as different, and by estimating the relative change from the basic form of the heat transfer coefficient and the fin efficiency in the improved form by CFD analysis, It was confirmed in examples described later that the cooling performance can be predicted with high accuracy even for a cooling structure having a high-density pin arrangement.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. In addition, the same reference numerals are given to the common parts in the respective drawings, and the duplicate description will be omitted.
[0017]
【Example】
1. Reexamination of Cooling Performance Test Results In Non-Patent Document 3, a cooling performance test was performed using a “basic type” having one pin per unit section and a “fine type” having four pins per unit section shown in FIG. Was carried out to confirm whether or not the expected cooling performance was obtained. As a result, the cooling performance predicted by the old prediction method (simple analysis method using fin efficiency: equation (3) described above) was obtained for the basic type, but was lower than the prediction for the fine type. Therefore, in order to perform an improved design, it is necessary to clarify the cause of the cooling performance not being improved in the fine type and to improve the prediction method so that the cooling performance can be predicted even for the high pin density cooling structure.
[0018]
The cooling performance evaluated in Non-Patent Document 3 is obtained from a measurement value of one thermocouple welded to the surface of the test piece. However, the cooling performance should be evaluated based on the area average temperature of the test piece surface. Therefore, in this example, the surface average temperature was calculated from the two-dimensional temperature distribution data measured by the thermo camera, and the cooling efficiency was reevaluated.
[0019]
FIG. 3 shows the re-evaluated cooling performance test results and the cooling efficiency predicted values obtained by the old prediction method. FIG. 3 also shows test results and predicted values evaluated at the measured temperature of the thermocouple. There was almost no difference between the measurement results of the basic type and the fine type in the evaluation using the thermocouple temperature, but when the evaluation was performed using the area average temperature of the thermo camera, the measurement results of the basic type and the fine type were slightly but clear. A difference appeared, confirming that the effect of increasing the pin density did appear. However, even when evaluated by the area average temperature, the result that the cooling efficiency of the fine type was not as high as expected remained unchanged.
[0020]
2. Prediction method using CFD In the old prediction method, the following two assumptions are made.
(1) The average heat transfer coefficient of the target surface to which the cooling air is blown can be predicted by the empirical formula of Florschütz et al.
(2) The average heat transfer coefficient of the target surface is equal to the average heat transfer coefficient of the pin surface.
For the basic type, tests confirm that the above two assumptions hold in past research, and this is consistent with the fact that the cooling performance test result in Non-Patent Document 2 matches the prediction.
[0021]
However, since the test results were lower than expected for the fine type, it is possible that these assumptions may not hold for structures with a high pin density. Therefore, a more general prediction that eliminates these assumptions, treats the target surface and the pin surface separately, and introduces a factor (correction coefficient) that corrects the heat transfer coefficient and fin efficiency obtained by empirical and theoretical expressions, respectively. Invented the method. In this prediction method, the effective heat transfer area is obtained by Expression (4) of Expression 4.
[0022]
(Equation 4)
Figure 2004353550
[0023]
Here, Ft: a factor that modifies the value obtained from the empirical formula of Florschutz et al., Ac , 0 : cooling-side area (m 2 ) without pins, Np: number of pins per unit section, Ap: number of pins Cross-sectional area, Fp: a factor that modifies the value obtained from the empirical formula of Florschuetz et al., Fφ: a factor that modifies the value obtained from the theoretical formula of cylindrical fin efficiency, φ new : fin efficiency obtained from the theoretical formula, Sp: pin Perimeter (m), Z: pin height (m).
[0024]
In this method, the problem is how to find the correction coefficients Ft, Fp, and Fφ for a new shape whose cooling characteristics are unknown. Therefore correction factor Ft cooling properties have been confirmed by tests, Fp, F.phi. A known reference shape (e.g., it has been confirmed that F t, N, F p, N, Fφ, N are each 1) A computer was used to perform a CFD analysis on the cooling side of the target plate for the new shape and a new shape, and based on the analysis results, a method of calculating the correction coefficients Ft, Fp, and Fφ by deriving a relative comparison between the two.
[0025]
In this method, h c, t num , h c, p num , and φ num are obtained from the CFD analysis results from Expressions (5) to (7) of Expression 5, and then the correction coefficients Ft, Fp, and F φ are calculated by Expression 5 (8).
[0026]
(Equation 5)
Figure 2004353550
[0027]
Here, Qt: total heat flow (W) on the target surface, At: area (m 2 ) of the target surface, Tt: average temperature (K) of the target surface, T c, in : cooling air inlet temperature (K) And
Qp: total heat flow at the pin surface (W), Np: number of pins per calculation section, A ps: the surface area of the pin (m 2), Tp: the average temperature of the pin surface (K),
h c cor ; heat transfer coefficient (W / (m 2 K)) of impingement cooling calculated by the empirical formula of Florschütz et al., and the subscripts N and B represent a new shape and a reference shape, respectively.
[0028]
The denominator of the equation (8) corrects the CFD analysis error by the ratio between the CFD analysis value of the reference shape and the value calculated by the empirical formula / theoretical formula.
This method is a general-purpose cooling structure prediction method for a transit structure, wherein a change rate of a heat transfer characteristic of a new shape having a different pin arrangement or pin density from a reference shape is predicted by CFD analysis. .
[0029]
3. Evaluation of CFD-Assisted Cooling Performance Prediction Method The created CFD-assisted cooling performance prediction method was verified with test results of a fine type using a basic type as a reference shape. FIG. 4 shows the heat flux distribution obtained from the CFD analysis, and FIG. 5 shows the heat flux distribution only on the target surface. From FIG. 4, it can be seen that in the fine type, the region where the heat flux is higher on the pin surface is narrower toward the target surface side than in the basic type. From FIG. 5, it can be seen that a high heat flux appears on the target surface at the position of the impingement hole, but the pin is an obstacle in the fine type, and the high heat flux area is narrower than in the basic type.
[0030]
FIG. 6 shows the correction coefficients Ft, Fp, and Fφ calculated for the fine type. In the fine type, Ft and Fp × Fφ are smaller than 1, indicating that the cooling efficiency is predicted to be lower than in the old prediction method. In FIG. 3, the cooling performance test results are shown up to 0.15 Wc / Wg (cooling air flow rate ratio to the mainstream flow rate). As can be seen from the figure, the cooling efficiency increases with increasing cooling air flow rate. Is remarkable in the range of Wc / Wg <0.06, and the cooling design is usually performed in this range. Therefore, the CFD analysis was performed with Wc / Wg ≦ 0.06. FIG. 7 shows the cooling efficiency and test results of the fine type predicted by the CFD-assisted cooling performance prediction method. For the prediction of the region where Wc / Wg> 0.06, the correction coefficients Ft, Fp and Fφ at Wc / Wg = 0.06 were used.
[0031]
In the region of Wc / Wg ≦ 0.06, which is of interest for cooling design, the predicted results agreed well with the test results. The analysis accuracy is poor in the region of Wc / Wg> 0.06, which is considered to be an error caused by assuming the correction coefficients Ft, Fp, and Fφ to be Wc / Wg = 0.06. If the CFD analysis is performed under the condition that the cooling air flow rate is large and the correct correction coefficients Ft, Fp, and Fφ are obtained, the analysis accuracy is considered to be improved.
From the above, it was confirmed that the cooling performance can be predicted with high accuracy for the cooling structure having a high pin density by the CFD assisted cooling performance prediction method.
[0032]
As shown in FIG. 7, the prediction accuracy was greatly improved by the present invention as compared with the conventional method. Further, according to the method of the present invention, the cooling performance of the improved form in which the shape has been changed can be predicted from the test results of the basic form, so that when the design is changed, the number of cooling performance confirmation tests can be greatly reduced, and the time and cost are greatly reduced Can be reduced.
[0033]
It should be noted that the present invention is not limited to the above-described examples and embodiments, and it is needless to say that various changes can be made without departing from the spirit of the present invention.
[0034]
【The invention's effect】
As described above, in order to predict the cooling performance of a structure having a high pin density (high pin density cooling structure), the present invention has devised a CFD-assisted cooling performance prediction method using CFD analysis for heat transfer prediction inside the cooling structure. And the effectiveness was confirmed by verifying with the test result of the high pin density cooling structure.
[0035]
That is, the method for predicting the cooling performance of the impingement / pin fin combined cooling structure of the present invention predicts the cooling performance of various forms of the impingement / pin fin combined cooling structure without producing a real product or a model and actually performing tests. Has excellent effects such as
[Brief description of the drawings]
FIG. 1 is a schematic view of a combined impingement / pin fin cooling structure.
FIG. 2 is a morphological diagram of a test piece.
FIG. 3 is a relationship diagram between cooling efficiency and cooling air amount.
FIG. 4 is a CFD analysis result showing a heat flux and a velocity distribution inside the cooling structure.
FIG. 5 is a CFD analysis result showing a heat flux distribution and a velocity distribution on a target surface.
FIG. 6 is a diagram showing a ratio of a heat transfer coefficient and a fin efficiency of a fine type to a basic type.
FIG. 7 is a prediction result of a fine type cooling efficiency by the method of the present invention.
[Explanation of symbols]
1 target plate, 1a film cooling hole,
2 impingement plate, 2a impingement hole, 3 pins

Claims (2)

冷却対象のターゲット板、ターゲット板の裏側に間隔を隔てたインピンジ板、及びターゲット板とインピンジ板の間に挟持されてその間隔を保持するピン部材からなり、インピンジ板に設けられたインピンジ孔を通過した冷却ガスを衝突させてターゲット板の裏面をインピンジ冷却し、更に冷却ガスをフィルム冷却孔からターゲット板に沿って流して、ターゲット板の表面をフィルム冷却するインピンジ・ピンフィン複合冷却構造の冷却性能予測方法において、
ターゲット板の冷却側伝熱面積Ac,eff newを、数1の(4)式で表し、
Figure 2004353550
修正係数Ft、Fp、Fφが既知の基準形状と未知の新規形状の両方に対してCFD解析を実施し、両者を相対比較することで修正係数Ft、Fp、Fφを算出する、ことを特徴とするインピンジ・ピンフィン複合冷却構造の冷却性能予測方法。
The target plate to be cooled, an impingement plate spaced apart from the back side of the target plate, and a pin member sandwiched between the target plate and the impingement plate to maintain the interval, cooling passing through an impingement hole provided in the impingement plate. In the cooling performance prediction method of the impingement / pin fin combined cooling structure in which a gas impinges to cool the backside of the target plate impinge, and further, a cooling gas flows along the target plate from the film cooling holes to cool the surface of the target plate by film. ,
The cooling-side heat transfer area A c, eff new of the target plate is expressed by the following equation (4),
Figure 2004353550
The correction coefficients Ft, Fp, and Fφ are subjected to CFD analysis for both a known reference shape and an unknown new shape, and the correction coefficients Ft, Fp, and Fφ are calculated by relative comparison between the two. Method for predicting the cooling performance of a combined impinge and pin fin cooling structure.
前記CFD解析の結果から、数2の(5)〜(8)式より、修正係数Ft、Fp、Fφを求める、
Figure 2004353550
、ことを特徴とする請求項1に記載の冷却性能予測方法。
From the results of the CFD analysis, the correction coefficients Ft, Fp, and Fφ are obtained from Expressions (5) to (8) of Expression 2.
Figure 2004353550
The cooling performance prediction method according to claim 1, wherein:
JP2003151913A 2003-05-29 2003-05-29 Cooling performance prediction method for impingement and pin fin combined cooling structure Expired - Lifetime JP4325278B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003151913A JP4325278B2 (en) 2003-05-29 2003-05-29 Cooling performance prediction method for impingement and pin fin combined cooling structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003151913A JP4325278B2 (en) 2003-05-29 2003-05-29 Cooling performance prediction method for impingement and pin fin combined cooling structure

Publications (2)

Publication Number Publication Date
JP2004353550A true JP2004353550A (en) 2004-12-16
JP4325278B2 JP4325278B2 (en) 2009-09-02

Family

ID=34047264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003151913A Expired - Lifetime JP4325278B2 (en) 2003-05-29 2003-05-29 Cooling performance prediction method for impingement and pin fin combined cooling structure

Country Status (1)

Country Link
JP (1) JP4325278B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108875235A (en) * 2018-06-28 2018-11-23 奇瑞汽车股份有限公司 The three-dimensional steady state heat transfer property analysis method and device of the water jacket of automobile engine
JP2019501329A (en) * 2015-12-03 2019-01-17 シーメンス アクティエンゲゼルシャフト Components and methods for speed engine
CN113225997A (en) * 2021-05-13 2021-08-06 西北工业大学 Take enhancement of multistage cylindrical boss to strike heat transfer structure
CN113484362A (en) * 2021-08-30 2021-10-08 清华大学 Method for correcting heat transfer area of heat conductivity coefficient tester
CN114151148A (en) * 2021-12-08 2022-03-08 上海电气集团股份有限公司 Measurement correction method, device, equipment and medium for cascade air film cooling test
CN114282323A (en) * 2021-12-27 2022-04-05 北京航空航天大学 Flow distribution prediction method for turbine blade laminate cooling structure

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019501329A (en) * 2015-12-03 2019-01-17 シーメンス アクティエンゲゼルシャフト Components and methods for speed engine
US11047242B2 (en) 2015-12-03 2021-06-29 Siemens Energy Global GmbH & Co. KG Component for a fluid flow engine and method
CN108875235A (en) * 2018-06-28 2018-11-23 奇瑞汽车股份有限公司 The three-dimensional steady state heat transfer property analysis method and device of the water jacket of automobile engine
CN113225997A (en) * 2021-05-13 2021-08-06 西北工业大学 Take enhancement of multistage cylindrical boss to strike heat transfer structure
CN113484362A (en) * 2021-08-30 2021-10-08 清华大学 Method for correcting heat transfer area of heat conductivity coefficient tester
CN113484362B (en) * 2021-08-30 2021-11-09 清华大学 Method for correcting heat transfer area of heat conductivity coefficient tester
CN114151148A (en) * 2021-12-08 2022-03-08 上海电气集团股份有限公司 Measurement correction method, device, equipment and medium for cascade air film cooling test
CN114151148B (en) * 2021-12-08 2024-02-23 上海电气集团股份有限公司 Measurement correction method, device, equipment and medium for cascade air film cooling test
CN114282323A (en) * 2021-12-27 2022-04-05 北京航空航天大学 Flow distribution prediction method for turbine blade laminate cooling structure
CN114282323B (en) * 2021-12-27 2024-05-14 北京航空航天大学 Flow distribution prediction method for turbine blade laminate cooling structure

Also Published As

Publication number Publication date
JP4325278B2 (en) 2009-09-02

Similar Documents

Publication Publication Date Title
Saltzman et al. Design and evaluation of an additively manufactured aircraft heat exchanger
Saltzman et al. Experimental comparison of a traditionally built versus additively manufactured aircraft heat exchanger
Velayati et al. Numerical study of convective heat transfer from an array of parallel bluff plates
JP2004353550A (en) Method for estimating cooling performance of impingement and pin fin compound cooling structure
Wen et al. Study of heat transfer characteristics of perforated circular pin-fin heat sinks cooled by an inclined impinging jet
Habchi et al. Comparison of eddy viscosity turbulence models and stereoscopic PIV measurements for a flow past rectangular-winglet pair vortex generator
Yoon et al. Evaluation of adjoint optimized hole-part II: parameter effects on performance
Wildgoose et al. Variability in additively manufactured turbine cooling features
Ricklick et al. Determination of a local bulk temperature based heat transfer coefficient for the wetted surfaces in a single inline row impingement channel
Ricklick et al. Channel height and jet spacing effect on heat transfer and uniformity coefficient on an inline row impingement channel
Yang et al. Conjugate heat transfer modeling of a turbine vane endwall with thermal barrier coatings
Kingery et al. An Analysis of a Deposition Tolerant Cooling Approach for Nozzle Guide Vanes
Terrell et al. Convective Heat Transfer Through Film Cooling Holes of a Gas Turbine Blade Leading Edge
Bianchini et al. Heat Transfer Performance of Fan-Shaped Film Cooling Holes: Part II—Numerical Analysis
Luckey et al. Stagnation region gas film cooling: Spanwise angled injection from multiple rows of holes
Facchini et al. Pedestal and endwall contribution in heat transfer in thin wedge shaped trailing edge
Straub et al. Performance of Additively Manufactured Internally Cooled Airfoils for Small Industrial Gas Turbines
Won et al. Flow structure and local Nusselt number variations in a channel with angled crossed-rib turbulators
Ingram et al. a superposition technique for multiple-row film-cooling for calculation of 2-d effectiveness and heat transfer coefficients
Yang et al. Effect of topology on hybrid-linked jet impingement
Jarosinski Various experimental methods to study heat transfer from the heated rib-roughed wall to a steady or pulsating flow
Colban et al. Combustor Turbine Interface Studies: Part 1—Endwall Effectiveness Measurements
Chu A preliminary method for estimating the effective plume chimney height above a forced-draft air-cooled heat exchanger operating under natural convection
Benson et al. Detailed velocity and heat transfer measurements in an advanced gas turbine vane insert using MRV and IR thermometry
Hossain et al. Flow and heat transfer analysis in a single row narrow impingement channel: Comparison of piv, les, and rans to identify rans limitations

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060426

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090519

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090601

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120619

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4325278

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120619

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120619

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130619

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140619

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term