【0001】
【発明の属する技術分野】
本発明は、軽量で耐熱性、断熱性、機械的強度を有しプレス熱盤や金型などの断熱構造材や吸水・蒸発性などの機能があるため、湿度調整が必要な内壁材や吸水タイルなどの建材や家具材などの用途に利用できる耐熱軽量構造材およびその製法に関する。
【0002】
【従来の技術】
従来から、安価で耐熱性を有する断熱構造材や建材として工業材料第35巻、第11号、p26〜35、日刊工業新聞社(1987)に記載のようにアスベスト繊維をセメントで固めたアスベストセメント板が広く知られている。また特公昭54−7359号はアスベスト繊維をホウ酸と酸化亜鉛または酸化カルシウムで固めた製品は、耐熱性や耐アーク性が必要な消弧材料や熱伝導率の小さい断熱構造材として用いられている。特開平5−151852号に開示されているものはガラス繊維や無機フィラーを金属リン酸塩で固めたものでアスベストセメント板と同様に断熱構造材の用途に主に用いられている。
【0003】
アスベストセメント板や特公昭54−7359号の強化材料として用いられているアスベスト繊維は、耐熱性、機械的強度に優れ、安価であるなどの理由により過去から多用されてきたが近年石綿肺、肺がんなどを引き起こす原因になることが明らかとなり、粉塵規制の厳しい特定化学物質に指定されている。したがってアスベスト繊維は環境や安全衛生面の点から最近ではほとんど使用されなくなった。
【0004】
一方ポスト・アスベスト製品の開発も進められていて、特開平5−151852号はその一例である。この製品はアスベスト繊維の代わりにガラス繊維を強化材料として用いたものである。
【0005】
しかしながら結合剤として用いられる金属リン酸塩は耐熱性に優れる反面、製造工程時には強酸性の水溶液で使用する。そのため製造設備に付着した場合などは急激に腐食が進み設備故障の原因になり易い。また作業者の皮膚に付着するとかぶれるなど作業性を困難にしている。一般に強化材料がガラス繊維である場合は強酸におかされる場合があり、強度劣化を起こし易いなどの課題がある。
【0006】
【発明が解決しょうとする課題】
この発明は、従来品がもつ課題を解決するために発明した。すなわち環境衛生面に問題の少ない材料で構成させること。軽量であること。断熱性、機械的強度に優れること。新しく吸水・蒸発性を付与させたことなどである。この課題を解決する目的で活性炭含有耐熱軽量構造材の開発を目指した。これらの特性を活かした用途としては、断熱構造材をはじめ建材や家具材などがある。
【0007】
【課題を解決するための手段】
請求項1にかかわる発明は、材料構成および作製工程について説明したものである。この発明は強化材料に安価で入手し易いガラス繊維を用いた。つぎに砂糖と活性炭の混合物に水を添加混合した泥しょう物を作製する工程、強化材料に泥しょう物を塗布する工程。乾燥して成形基材を作製する工程。成形基材を加熱加圧成形して成形体を作製する工程。成形体を所望の形に機械加工する工程から作製される。
【0008】
請求項2にかかわる発明は、砂糖と活性炭の構成比率について記載したもので、砂糖1重量部に対して活性炭0.1〜1,0重量部である。活性炭が0.1重量部未満の場合、比重、熱伝導率が従来品より小さいが、吸水・蒸発性の効果が少ない。一方1.0重量部を越えると、比重は小さく軽量となり、吸水・蒸発性も優れるが、機械的強度が低下するため構造材として利用する断熱構造材や建材など用途には適さない。
【0009】
請求項3にかかわる発明は、砂糖と活性炭で構成された混合物の濃度が27〜64.5%になる範囲で水を添加して作製する泥しょう物の作製に関する。濃度が27%未満の場合、1回の塗布、乾燥工程において、強化材料に対して付着量が少ない。所定量付着させるためには、塗布工程、乾燥工程を繰り返えす必要があり作業が煩雑となる。一方、64.5%を越える場合には、泥しょう物の流動性が劣り、強化材への均一塗布が困難になってくる。そのため、得られる製品の厚さや特性にばらつきが発生しやすい。
【0010】
請求項4にかかわる発明は、強化材料について記載したものである。セラミック繊維として安価で取扱いならびに入手が容易なガラス繊維を用いた。ガラス繊維以外にアルミナ繊維、シリカ繊維、カーボン繊維さらにはロックウールなど多数あり、これらセラミック繊維も用途に応じ選択し、強化材料として使用可能であることは云うまでもない。
【0011】
請求項5にかかわる発明は、活性炭の粒径について記載したものである。この発明では粉末の活性炭を用い、その粒径は0.2mm以下で用いる。すなわち強化材料のガラス繊維間の隙間は最大で0.5mm程度あり、この隙間に活性炭が充填することが好ましい。したがって粒径が0.2mmを越えると、簡単にこの隙間に充填し難くなり易い。また短時間に砂糖水溶液と活性炭が分離を起こし易い泥しょう物となり、塗布工程の際の攪拌操作が頻繁に行なう必要がある。したがって0.2mm以上の粒径を有する活性炭を使用すると製品の機械的強度や厚さにばらつきを生じ易く、品質上好ましくない。粒径の小さいものほど表面積が増加し、調湿機能などが増大するため、用途やコスト面で許される限り、細かい粒径の活性炭を用いることが好ましい。一般には平均粒径100メシュ(0.149mm)以下で使用する場合が多い。なお活性炭としては、椰子殻活性炭以外に木炭、竹炭などがあり、いずれも前記粒径の粉末を用いることができる。
【0012】
請求項6にかかわる発明は、強化材料に塗布する泥しょう物の塗布比率について記載したものである。強化材料1重量部に5〜12重量部の範囲で塗布する。塗布比率は強化材料の形態や砂糖と活性炭の構成比率、さらには濃度、加熱加圧成形時の加圧力などにより異なるが5重量部未満の場合には、加圧力を高めても、しまりの良い成形体が得られ難く、したがって製品の機械的強度が劣る。さらに極端な場合は層間剥離を起こすなどの欠陥が発生する。12重量部を越えた場合には、泥しょう物が強化材料から溢れ、垂れを生じるなどの問題が発生する。したがって塗布、乾燥工程を複数回繰り返えしておこなうなど作業回数を多くなると同時に強化材料の構成比率が減少するために機械的強度が劣るなどの問題も発生し、いずれも好ましくない。
【0013】
請求項7にかかわる発明は、塗布後乾燥して成形基材を作製する工程において乾燥温度を記載したものである。乾燥温度の上限は、理論的には砂糖の融点(185℃)未満で行えば良いが、塗布後の強化材料には多くの水分が存在するため、高い温度での乾燥は、好ましくない。すなわち急激に水分が蒸発しまた発泡する恐れがあるため、均質な成形基材が得られ難い。したがって150℃以下でおこなうことが望ましい。
【0014】
請求項8にかかわる発明は、加熱加圧成形に関するものである。成形基材を裁断、積層したものを5kg/cm2以上で加圧後、加圧保持の状態で段階的に加熱して成形する。5kg/cm2未満の場合には均一でしまりのよい成形体を得る事が難しい。加熱加圧成形をおこなうことにより、大気との接触を少なくした、いわゆる酸素希薄状態で砂糖の加熱分解を進めることができる。加熱は、加圧下で段階的に昇温する。なお最終加熱温度を250℃以上でおこなうことで、水に不溶の耐水性に優れた成形体になる。耐水性が付与される理由については砂糖の炭化固化が進み、生成された炭化変成物が加水分解性をもたないものになったと考えられるが、現時点においての詳細は不明である。
【0015】
【発明の実施の形態】
本発明は耐熱性250℃以上で、軽量で断熱性および機械的強度に優れ、しかも活性炭がもつ機能である吸水・蒸発性を有する。軽量で断熱性(熱伝導率が小さい)や機械的強度などに優れることは断熱構造材の用途に適し、軽量で機械的強度ならびに吸水・蒸発性を有することは建材や家具材として利用できる。また軽量で断熱効果がある理由については、活性炭自体が多孔質で軽量であること。また砂糖は加熱加圧成形により熱分解を起こし、結合効果に優れるが多孔質な変成物になるなど、これら双方の材料の構造により、この発明品は軽量であり、しかも熱伝導率が小さいため断熱効果を有するものと考えられる。
【0016】
強化材料として、セラミック繊維のうちガラス繊維を選択して用いた。選択理由については前記に記載した。ガラス繊維の代表的な種類としてはガラスペーパやガラスクロスなどがある。
【0017】
加熱加圧条件下で、炭化固化して強化材料や活性炭を強固に結合させる砂糖は、C12H22O11の化学式で示され、融点185℃のショ糖である。加圧加熱下で砂糖は185℃付近の温度から溶融し200℃付近でもっとも活発に熱分解を呈し炭化し始める。230℃付近からさらに分解と炭化が進み黒茶化し固化しはじめる。この現象を利用して強化材料や活性炭を強固に結合させる。さらに250℃以上の加熱加圧下で炭化固化を進めることにより水に対して不溶となり。耐水性に優れたものとなる。
【0018】
成形基材を加熱加圧成形して成形体をつくる方法について説明する。まず成形基材を所定の寸法に裁断し、所望の厚さになる枚数を重ねる。つぎに積層した成形基材の上下に厚さ12ミクロン程度のアルミ箔を介する。目的は離型用である。さらにアルミ箔の上下に平滑な面を有した厚さ5ミリ以上の金属板を介し、プレス熱盤間に挿入する。挿入する際の熱盤温度は185℃未満が好ましい。185℃以上だと成形基材中の砂糖が直ちに溶融し、強化材や活性炭などから分離を呈し、不均一となり易い。185℃未満の熱盤間に挿入後直ちに加圧する。つぎに5kg/cm2以上の加圧下で熱盤温度を例えば185、200、250、300℃のように段階的に昇温する。各温度での保持時間は目的とする成形体の組成や厚さにもよるが各温度で生じる加熱分解がほぼ終了する時点まで行うことが好ましい。厚さ5ミリ程度の製品であれば各温度で15分間保持する。なお終了時点の判断は砂糖が変成した流失物の状況や発煙状態を観察しそれらの現象が終焉する時間をもって保持時間を判断する。最終温度で保持した後、熱盤を冷却し80℃以下になってから除圧し、プレスから本発明による成形体を取り出す。なお80℃以上でも成形体に異常を生じることはなく、取出し冶具などを用いれば可能であるが成形体も熱いため作業が危険である。したがって取扱い上火傷などの災害の発生しがたい温度を設定することが好ましい。最終加熱温度は成形体に耐水性を付与するために250℃以上で行う。
250℃未満の場合には耐水性が劣り、水に対して溶解し形状崩壊するなどの問題が発生する。もし250℃未満で加熱加圧成形した成形体であれば蒸し焼き状態(酸素希薄雰囲気)で、250℃以上に加熱して耐水性を付与することは可能である。
【0019】
成形体を所望の寸法形状に機械加工して、この発明の製品とする。
【0020】
つぎに本発明の活性炭含有耐熱軽量構造材の製法について実施例に基づき説明するが、本発明はかかる実施例のみに限定されるものではない。
【0021】
【実施例】
実施例1
強化材料としてガラスペーパ(オリベスト(株)、グラベストSB−075)を使用した。厚さ0.5mm、幅800mm、長さ800mmに裁断して使用した。強化材料1枚の重量は48gである。
【0022】
砂糖(台糖(株)、白糖)1重量部に椰子殻活性炭(三菱化学カルゴン(株),ダイアソーブ、F−100D)0.5重量部の構成比率のものを石川式ライカイ機で30分間混合した。つぎに水を1.5重量部添加してさらに10分間混合し、濃度50%の泥しょう物を調製した。
【0023】
強化材料1枚(48g)に対して、480gの泥しょう物を塗布した。塗布比率は、強化材料1重量部に対して泥しょう物10重量部である。
【0024】
塗布したものを120℃の熱風循環式乾燥機で水分を除去して成形基材を作製した。
【0025】
成形基材を31枚重ねた。さらに上下に厚さ12ミクロン程度のアルミ箔(三菱アルミ(株))を離型用として用いた。その上下に5mmの平滑な面を有する鉄板を配して150℃に昇温した熱盤間に挿入した。直ちに加圧力30kg/cm2を加えた後、熱盤を185,200,250,300℃と段階的に加熱した。ただし各温度での保持時間は15〜20分間である。その後、加圧保持の状態で熱盤を80℃以下に冷却してから除圧して成形体を取り出した。
【0026】
成形体の色調は黒色で、厚さ9.7mm、幅800mm,長さ800mmであった。
【0027】
成形体の縁部周辺を5mm切断して厚さ9.7mm,幅790mm,長さ790mmの本発明による耐熱軽量構造材を作製した。
【0028】
耐熱軽量構造材から試験片を採取し、比重、吸水率、曲げ強さ、圧縮強さ、熱伝導率を測定した。比重は原厚さで幅50mm,長さ50mmの寸法品を用い、重量を体積で除して算出した。吸水率も比重と同様な寸法形状品を試験片として用い、150℃で3時間乾燥後の重量を測定し、初期重量とした。つぎに1リットルの水に浸漬させ24時間後取り出し、布または紙で表面を拭き取り吸水後の重量を測定した。吸水後の重量と初期重量の差を初期重量で除してパーセント表示した。溶解率は吸水率測定後の試験片を150℃で3時間乾燥させた後重量を測定した。初期重量との差を初期重量で除して百分率表示した。外観は肉眼観察した。吸水・蒸発性は200CC入りプラスチック製コップ(底内径48mm、上内径68mm、高さ80mm)に100gの水を入れた。水の高さは40mmであった。この中に厚さ7mm、幅30mm、長さ100mmに加工した寸法品を試験片として1本立てて入れ、アルミ箔で蓋をして初期全重量を測定した。つぎに常態に1週間放置して再び全重量を測定した。初期全重量から放置後の全重量の差を100gで除して百分率で表示した。値の大きいものほど吸水・蒸発性が大きい。曲げ強さ,圧縮強さはJISK6911に準じて測定した。熱伝導率は、レーザフラッシュ法により測定した。結果を表1に示す。
【0029】
実施例2
強化材料として実施例1と同じガラスペーパで裁断寸法も同じである。
【0030】
砂糖1重量部に活性炭1重量部の構成比率のものを実施例1と同様にして混合した。さらに水を1.1重量部添加して混合し、濃度64.5%の泥しょう物を作製した。砂糖および活性炭とも実施例1と同じものである。
【0031】
強化材料1枚(48g)に対して576gの泥しょう物を塗布した。塗布比率は強化材料1重量部に対して泥しょう物12重量部である。
【0032】
乾燥温度を100℃でおこなった以外は実施例1と同様にして成形基材を作製した。
【0033】
成形基材21枚を重ねた。以下実施例1と同様にして成形体を作製した。ただし加圧力は50kg/cm2でおこない、最終加熱温度を250℃でおこなった以外は実施例1と同じある。
【0034】
成形体の色調は、黒色で厚さ9.8mm、幅800mm、長さ800mmであった。
【0035】
成形体の縁部周辺を5mm切断して、厚さ9.8mm、幅790mm長さ790mmの本発明による耐熱軽量構造材を作製した。
【0036】
実施例1と同様にして耐熱軽量構造材の比重、吸水率、溶解率、吸水・蒸発性、曲げ強さ、圧縮強さ、熱伝導率を測定した。結果を表1に示す。
【0037】
実施例3
強化材料として実施例1と同じガラスペーパで裁断寸法も同じである。
【0038】
砂糖1重量部に活性炭0.1重量部の構成比率のものを実施例1と同様にして混合した。さらに水を2.6重量部添加して混合し、濃度27%の泥しょう物を作製した。砂糖および活性炭とも実施例1と同じものである。
【0039】
強化材料1枚(48g)に対して384gの泥しょう物を塗布した。塗布比率は強化材料1重量部に対して泥しょう物8重量部である。
【0040】
乾燥温度を150℃でおこなった以外は実施例1と同様にして成形基材を作製した。
【0041】
成形基材72枚を重ねた。以下実施例1と同様にして成形体を作製した。ただし加圧力は5kg/cm2とした。
【0042】
成形体の色調は黒色で、厚さ9.7mm、幅800mm,長さ800mmであった。
【0043】
成形体の縁部周辺を5mm程度切断して厚さ9.7mm、幅790mm、長さ790mmの本発明による耐熱軽量構造材を作製した。
【0044】
実施例1と同様にして耐熱軽量構造材の比重、吸水率、溶解率、吸水・蒸発性、曲げ強さ、圧縮強さ、熱伝導率を測定した。結果を表1に示す。
【0045】
実施例4
強化材料としてガラスクロス(有沢製作所(株)、M7628)を使用した.厚さ0.5mm、幅600mm、長さ1040mmに裁断したもので、1枚の重量は135gである。
【0046】
砂糖1重量部に活性炭0.2重量部の構成比率のものである。実施例1と同様にて混合した。さらに水を1.5重量部添加して混合し、濃度44.4%の泥しょう物を作製した。砂糖および活性炭とも実施例1と同じものである。
【0047】
強化材料1枚(135g)に対して675gの泥しょう物を塗布した。塗布比率は強化材料1重量部に5重量部である。
【0048】
実施例1と同様にして成形基材を作製した。
【0049】
成形基材37枚を重ねた。以下実施例1と同様にして成形体を作製した。ただし加圧力は5kg/cm2でおこなった。
【0050】
成形体の色調は黒色で、厚さ9.4mm、幅600mm、長さ1040mmであった。
【0051】
つぎに成形体の縁部周辺を5mm切断して、厚さ9.4mm、幅590mm、長さ1030mmの本発明による耐熱軽量構造材を作製した。
【0052】
実施例1と同様にして耐熱軽量構造材の比重、吸水率、溶解率、吸水・蒸発性、曲げ強さ、圧縮強さ、熱伝導率を測定した。結果を表2に示す。
【0053】
実施例5
強化材料として実施例1と同じガラスペーパで、裁断寸法も同じである。
【0054】
活性炭の1種である竹炭(阪和興業(株))をボールミルで粉砕し65メシュ以下に粉砕したものを使用した。砂糖1重量部に竹炭0.3重量部の構成比率のものを実施例1と同様にして混合した。さらに水1.3重量部添加して混合し、濃度50%の泥しょう物を作製した。砂糖は実施例1と同じである。
【0055】
強化材料(48g/枚)に480gの泥しょう物を塗布した。塗布比率は、強化材料1重量部に対して泥しょう物10重量部である。
【0056】
実施例1と同様にしてプリプレグを作製した。
【0057】
プリプレグを28枚重ね、以下実施例1と同様にして成形体を作製した。
【0058】
色調は黒色で,厚さ9.3mm、幅800mm,長さ800mmあった。
【0059】
成形体の縁部周辺を5mmづつ切断して,厚さ9.3mm、幅790mm,長さ790mmの本発明による耐熱軽量構造材を作製した。
【0060】
実施例1と同様にして耐熱軽量構造材の比重、吸水率、溶解率、吸水・蒸発性、曲げ強さ、圧縮強さ、熱伝導率を測定した。結果を表2に示す。
【0061】
実施例6
強化材料としてガラスペーパ(実施例1と同じもの)を用いた。
【0062】
砂糖1重量部に備長炭((株)増田屋)を100メシュ以下に粉砕して用い、砂糖1重量部に対して0.6重量部を混合した。さらに水を2.0重量部添加して混合し、濃度44.4%の泥しょう物を作製した。(砂糖は実施例1と同じものである。)
【0063】
強化材料(48g/枚)に480gの泥しょう物を塗布した。塗布比率は強化材料1重量部に対して泥しょう物10重量部である。
【0064】
実施例1と同様にして成形基材を作製した。
【0065】
成形基材30枚を重ね、以下実施例1と同様にして成形体を作製した。ただし加圧力は、40kg/cm2でおこなった。
【0066】
成形体の色調は黒色で厚さ9.4mm、幅800mm,長さ800mmであった。
【0067】
成形体の縁部周辺を5mmづつ切断して、厚さ9.4mm、幅790mm,長さ790mmの本発明による耐熱軽量構造材を作製した。
【0068】
実施例1と同様にして、耐熱軽量構造材の比重、吸水率、溶解率、吸水・蒸発性、曲げ強さ、圧縮強さ、熱伝導率を測定した。結果を表2に示す。
【0069】
比較例1
強化材料としてガラスペーパ(実施例1と同じもの)を用いた。
【0070】
砂糖1重量部に水を2.3重量部添加して混合し、活性炭を含まない砂糖水溶液のみを作製した。砂糖水溶液の濃度は30%で、砂糖は実施例1と同じものである。
【0071】
強化材料(48g/枚)に砂糖水溶液576gを塗布した。塗布比率は、強化材料1重量部に対して砂糖水溶液12重量部である。
【0072】
実施例1と同様にして成形基材を作製した。
【0073】
成形基材を72枚重ね、以下実施例1と同様にして成形体を作製した。ただし加圧力は5kg/cm2でおこなった。
【0074】
成形体の色調は黒茶色で,厚さ9.3mm、幅800mm、長さ800mmであった。
【0075】
成形体の縁部周辺を5mmづつ切断して、厚さ9.3mm、幅790mm、長さ790mmの比較例を作製した。
【0076】
実施例1と同様にして耐熱軽量構造材の比重、吸水率、溶解率、吸水・蒸発性、曲げ強さ、圧縮強さ、熱伝導率を測定した。結果を表3に示す。
【0077】
比較例2
厚さ10mmのアスベストセメント板(ユタカ産業(株))を、実施例1と同様に比重、吸水率、溶解率、吸水・蒸発性、曲げ強さ、圧縮強さ、熱伝導率を測定した。結果を表3に示す。
【0078】
比較例3
特開平5−151852号に属する厚さ10mmの耐熱積層板(菱電化成(株))を実施例1と同様に比重、吸水率、溶解率、吸水・蒸発性、曲げ強さ、圧縮強さ熱伝導率を測定した。結果を表3に示す。
【0079】
【表1】
【0080】
【表2】
【0081】
【表3】
【0082】
本発明による耐熱軽量構造材は、表1〜表2に示す結果より明らかなように、活性炭の含有しない比較例1に比べ軽量であり、吸水・蒸発性も大きい。また比較例2および比較例3の従来品に比べ、▲1▼軽量(比重は軽い)。▲2▼機械強度に優れる。▲3▼断熱効果が大きい(熱伝導率が小さい)。▲4▼アスベストなどの特定化学物質を含まない安全な材料構成。▲5▼水を吸水・蒸発する性質が大きいなど物性をもつ。さらに機械加工が容易、安価であるなどの利点も活かして、プレス熱盤や金型などの断熱構造材や吸水・蒸発性を必要とする建材(内壁材、吸水タイル)さらには家具材(家具棚、ペット小屋)などの用途に有効である。
【0083】
【発明の効果】
強化材料にガラス繊維を用い、砂糖と活性炭ならびに水から構成された泥しょう物を作製する工程。強化材料に泥しょう物を塗布乾燥して成形基材を作製する工程。成形基材を加熱加圧成形して成形体を作製する工程。成形体を機械加工して作製して得られる耐熱軽量構造材は従来品に比べ軽量で機械的強度ならびに断熱性に優れた特長を有する。そのためプレス熱盤や金型などの断熱構造材として有効に活用できる。また吸水、蒸発性を持つことから建材や家具材などにも利用できる。この発明は、砂糖の加熱変成物を結合材にしてセラミック繊維や機能性フィラーを複合化としたことが新規である。さらに砂糖変成物は熱分解過程で多孔質化するのもかかわらず、優れた結合効果を有することなどを発見して、この発明品を完成させた。製造プロセスも比較的簡単なため製品は安価であり、また環境にも問題の少ない安全性に優れた材料で構成された製品であるなどの特長を有する。
【0084】
なお今回の発明では、軽量化を計るために砂糖に活性炭を混合して目的を達成したが、使用目的や物性を変えたい場合には、砂糖に混合する機能性フィラーの種類を選択して用いることができる。例えば、機械加工性の向上をさらに計るためには活性炭の代わりにマイカ粉末を用いればよく、殺菌や消臭などの機能を付与させる場合には、酸化チタン(アナタース型、ブリッカイト型)などを用いれば、その効果が期待できる。さらに機械的強度の向上のためには、セラミックウイスカーなどを混合して用いればよい。その他シラスバルーンによる軽量化、フェライトなどによる電波吸収性、アルミナやシリカなど金属酸化物を混合して、コスト低減や圧縮強さなどの特性改善などが計られる。このように砂糖に種々の特性をもつ金属酸化物、金属複合酸化物などの機能性フィラーを用い、加熱加圧成形をして成形体を作製することにより、所望の物性を持つ構造体が得られる可能性を有する。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention is lightweight, has heat resistance, heat insulation, and mechanical strength, and has a heat insulation structure such as a press hot platen and a mold, and functions such as water absorption and evaporation. The present invention relates to a heat-resistant and lightweight structural material that can be used for applications such as building materials such as tiles and furniture materials, and a method for producing the same.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, asbestos cement in which asbestos fiber is solidified with cement as described in Industrial Materials Vol. 35, No. 11, p. Plates are widely known. Japanese Patent Publication No. 54-7359 discloses that a product obtained by solidifying asbestos fiber with boric acid and zinc oxide or calcium oxide is used as an arc-extinguishing material requiring heat resistance and arc resistance, or as a heat insulating structural material having a small thermal conductivity. I have. Japanese Patent Application Laid-Open No. 5-151852 discloses a material obtained by solidifying glass fiber or inorganic filler with a metal phosphate, and is mainly used for heat insulating structural materials like an asbestos cement plate.
[0003]
Asbestos fiber used as an asbestos cement plate and as a reinforcing material of Japanese Patent Publication No. 54-7359 has been frequently used from the past because of its excellent heat resistance, excellent mechanical strength, and low cost. It has been clarified that this may cause such problems, and it is designated as a specified chemical substance with strict dust regulations. Therefore, asbestos fibers have been rarely used recently in terms of environment, health and safety.
[0004]
On the other hand, post asbestos products are also being developed, and Japanese Patent Application Laid-Open No. 5-151852 is an example. This product uses glass fiber as a reinforcing material instead of asbestos fiber.
[0005]
However, the metal phosphate used as a binder has excellent heat resistance, but is used in a strongly acidic aqueous solution during the production process. Therefore, when it adheres to the manufacturing equipment, the corrosion rapidly progresses, which is likely to cause equipment failure. In addition, the workability is difficult, such as rash when adhered to the worker's skin. In general, when the reinforcing material is glass fiber, it may be exposed to a strong acid, and there is a problem that the strength is easily deteriorated.
[0006]
[Problems to be solved by the invention]
This invention was invented in order to solve the problems of conventional products. In other words, it should be made of a material with few problems in environmental hygiene. Be lightweight. Excellent heat insulation and mechanical strength. This is because water absorption / evaporation is newly provided. To solve this problem, we aimed to develop a heat-resistant lightweight structural material containing activated carbon. Applications that take advantage of these properties include insulation materials, building materials and furniture materials.
[0007]
[Means for Solving the Problems]
The invention according to claim 1 describes a material configuration and a manufacturing process. The present invention uses inexpensive and readily available glass fibers for the reinforcing material. Next, a process of making a slurry by adding water to a mixture of sugar and activated carbon, and a process of applying the slurry to the reinforcing material. A step of drying to form a molded substrate. A step of producing a molded body by heating and pressing a molding base material. It is made from the step of machining the compact into the desired shape.
[0008]
The invention according to claim 2 describes the composition ratio of sugar to activated carbon, and is 0.1 to 1.0 parts by weight of activated carbon per 1 part by weight of sugar. When the amount of the activated carbon is less than 0.1 part by weight, the specific gravity and the thermal conductivity are smaller than those of conventional products, but the effect of water absorption and evaporation is small. On the other hand, if it exceeds 1.0 part by weight, the specific gravity is small and the weight is low, and the water absorption and evaporation properties are excellent, but the mechanical strength is low, so that it is not suitable for applications such as heat insulating structural materials and building materials used as structural materials.
[0009]
The invention according to claim 3 relates to the production of a sludge produced by adding water in a range in which the concentration of a mixture composed of sugar and activated carbon is 27 to 64.5%. When the concentration is less than 27%, the amount of adhesion to the reinforcing material is small in one application and drying step. In order to adhere a predetermined amount, it is necessary to repeat the application step and the drying step, and the operation becomes complicated. On the other hand, if it exceeds 64.5%, the fluidity of the sludge is inferior, and it becomes difficult to apply the slurry uniformly to the reinforcing material. Therefore, the thickness and characteristics of the obtained product tend to vary.
[0010]
The invention according to claim 4 describes a reinforcing material. Glass fiber which was inexpensive and easy to handle and obtain was used as the ceramic fiber. In addition to glass fiber, there are many other types such as alumina fiber, silica fiber, carbon fiber, and rock wool. Needless to say, these ceramic fibers can be selected according to the application and used as a reinforcing material.
[0011]
The invention according to claim 5 describes the particle size of activated carbon. In the present invention, powdered activated carbon is used, and the particle size is 0.2 mm or less. That is, the gap between the glass fibers of the reinforcing material is about 0.5 mm at the maximum, and it is preferable that the gap be filled with activated carbon. Therefore, if the particle size exceeds 0.2 mm, it is difficult to easily fill the gap. In addition, the aqueous sugar solution and the activated carbon become sludge easily separated from each other in a short time, and it is necessary to frequently perform the stirring operation in the application step. Therefore, if activated carbon having a particle size of 0.2 mm or more is used, the mechanical strength and thickness of the product tend to vary, which is not preferable in terms of quality. As the particle size becomes smaller, the surface area increases and the humidity control function and the like increase. Therefore, it is preferable to use activated carbon having a fine particle size as far as the use and cost allow. Generally, it is often used with an average particle size of 100 mesh (0.149 mm) or less. In addition, as the activated carbon, there are charcoal, bamboo charcoal, and the like in addition to the coconut shell activated carbon.
[0012]
The invention according to claim 6 describes an application ratio of the slurry applied to the reinforcing material. One part by weight of the reinforcing material is applied in a range of 5 to 12 parts by weight. The application ratio varies depending on the form of the reinforcing material, the composition ratio of sugar and activated carbon, the concentration, the pressing force at the time of heating and pressing, and the like. It is difficult to obtain a molded body, and therefore, the mechanical strength of the product is poor. In extreme cases, defects such as delamination occur. If the amount exceeds 12 parts by weight, problems such as sludge overflowing from the reinforcing material and causing dripping may occur. Therefore, the number of operations is increased, for example, by repeating the coating and drying steps a plurality of times, and at the same time, the composition ratio of the reinforcing material is reduced, which causes problems such as inferior mechanical strength.
[0013]
The invention according to claim 7 describes the drying temperature in the step of preparing a molded base material by coating and drying. The upper limit of the drying temperature may theoretically be lower than the melting point of sugar (185 ° C.), but drying at a high temperature is not preferable because a large amount of water is present in the reinforcing material after application. That is, it is difficult to obtain a uniform molded base material because water may evaporate rapidly and may foam. Therefore, it is desirable to carry out at 150 ° C. or lower.
[0014]
The invention according to claim 8 relates to hot press molding. After cutting and laminating the molding base material, the material is pressurized at 5 kg / cm 2 or more, and then heated stepwise in a state of holding under pressure to form. When it is less than 5 kg / cm 2 , it is difficult to obtain a uniform and well-formed compact. By performing the heat and pressure molding, the sugar can be thermally decomposed in a so-called oxygen-diluted state in which the contact with the atmosphere is reduced. The heating is stepwise increased under pressure. By performing the final heating at a temperature of 250 ° C. or higher, a molded article having excellent water resistance which is insoluble in water can be obtained. The reason why the water resistance is imparted is considered that the carbonization and solidification of the sugar progressed and the generated carbonized modified product had no hydrolyzability, but the details at this time are unknown.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
The present invention has a heat resistance of 250 ° C. or higher, is lightweight, has excellent heat insulating properties and mechanical strength, and has water absorbing / evaporating properties which are the functions of activated carbon. Lightweight and excellent in heat insulation (low thermal conductivity) and mechanical strength are suitable for use in heat insulating structural materials, and light in weight and have mechanical strength and water absorption / evaporation properties can be used as building materials and furniture materials. The reason why the activated carbon itself is porous and lightweight is that it is lightweight and has an insulating effect. In addition, due to the structure of both these materials, such as sugar, which is thermally decomposed by heat and pressure molding and has an excellent binding effect but becomes a porous modified product, the product of the present invention is lightweight and has low thermal conductivity. It is considered to have a heat insulating effect.
[0016]
As a reinforcing material, glass fiber was selected from ceramic fibers and used. The reasons for selection are described above. Typical types of glass fibers include glass paper and glass cloth.
[0017]
The sugar which is carbonized and solidified under heating and pressurizing conditions to strongly bind the reinforcing material and activated carbon is represented by the chemical formula of C 12 H 22 O 11 and is sucrose having a melting point of 185 ° C. Under the pressure and heating, the sugar melts from a temperature around 185 ° C., and at 200 ° C. most actively exhibits thermal decomposition and starts to carbonize. Decomposition and carbonization further proceed from around 230 ° C., and it begins to blacken and solidify. Utilizing this phenomenon, the reinforcing material and activated carbon are firmly bonded. Further, by carbonizing and solidifying under heating and pressurization of 250 ° C. or more, it becomes insoluble in water. It has excellent water resistance.
[0018]
A method for forming a molded body by heating and pressing a molding base material will be described. First, the molding base material is cut into a predetermined size, and a number of sheets having a desired thickness are stacked. Next, an aluminum foil having a thickness of about 12 microns is interposed above and below the laminated forming base material. The purpose is for mold release. Furthermore, it is inserted between press hot plates through a metal plate having a thickness of 5 mm or more and having smooth surfaces on the upper and lower sides of the aluminum foil. The hot platen temperature at the time of insertion is preferably lower than 185 ° C. If the temperature is 185 ° C. or higher, the sugar in the molding base material is immediately melted, separated from the reinforcing material, activated carbon, and the like, and is likely to be non-uniform. Immediately after pressing between hot plates below 185 ° C, pressurize. Next, the temperature of the hot platen is increased stepwise, for example, to 185, 200, 250, and 300 ° C. under a pressure of 5 kg / cm 2 or more. The holding time at each temperature depends on the composition and thickness of the target molded body, but it is preferable that the holding time is performed until the thermal decomposition occurring at each temperature is almost completed. If the product has a thickness of about 5 mm, it is kept at each temperature for 15 minutes. The end point is determined by observing the state of the lost or washed out substance in which the sugar has been modified and the state of smoking, and determining the holding time based on the time when those phenomena end. After maintaining at the final temperature, the hot plate is cooled to 80 ° C. or less, and the pressure is released, and the molded body according to the present invention is taken out from the press. Even at a temperature of 80 ° C. or higher, no abnormality occurs in the molded body, and it is possible to use a take-out jig or the like. However, the work is dangerous because the molded body is hot. Therefore, it is preferable to set a temperature at which disasters such as burns do not easily occur during handling. The final heating temperature is 250 ° C. or higher in order to impart water resistance to the molded body.
If the temperature is lower than 250 ° C., water resistance is poor, and problems such as dissolution in water and shape collapse occur. If the molded body is heated and pressed at a temperature lower than 250 ° C., it is possible to impart water resistance by heating to a temperature of 250 ° C. or more in a steamed state (oxygen-diluted atmosphere).
[0019]
The formed body is machined into a desired size and shape to obtain a product of the present invention.
[0020]
Next, the method for producing the heat-resistant lightweight structural material containing activated carbon of the present invention will be described based on examples, but the present invention is not limited to only these examples.
[0021]
【Example】
Example 1
Glass paper (Olivet Co., Ltd., Gravest SB-075) was used as a reinforcing material. It was cut into a thickness of 0.5 mm, a width of 800 mm, and a length of 800 mm before use. The weight of one reinforcing material is 48 g.
[0022]
One part by weight of sugar (Taisu Co., Ltd., white sugar) and 0.5 part by weight of coconut shell activated carbon (Mitsubishi Chemical Calgon Co., Ltd., Diasorb, F-100D) were mixed for 30 minutes using an Ishikawa-type Raikai machine. . Next, 1.5 parts by weight of water was added and mixed for further 10 minutes to prepare a slurry having a concentration of 50%.
[0023]
480 g of mud was applied to one reinforcing material (48 g). The application ratio is 10 parts by weight of sludge per 1 part by weight of reinforcing material.
[0024]
The applied material was removed with a hot air circulating drier at 120 ° C. to prepare a molded substrate.
[0025]
31 molding base materials were piled up. Further, an aluminum foil (Mitsubishi Aluminum Co., Ltd.) having a thickness of about 12 μm was used for mold release. An iron plate having a smooth surface of 5 mm was arranged above and below the plate, and inserted between hot plates heated to 150 ° C. Immediately after a pressing force of 30 kg / cm 2 was applied, the hot platen was heated stepwise at 185, 200, 250, and 300 ° C. However, the holding time at each temperature is 15 to 20 minutes. Thereafter, the hot plate was cooled to 80 ° C. or lower while maintaining the pressure, and then the pressure was released to take out the molded body.
[0026]
The molded product had a black color tone, a thickness of 9.7 mm, a width of 800 mm, and a length of 800 mm.
[0027]
The periphery of the edge of the molded body was cut by 5 mm to produce a heat-resistant lightweight structural material according to the present invention having a thickness of 9.7 mm, a width of 790 mm, and a length of 790 mm.
[0028]
Test specimens were taken from the heat-resistant lightweight structural material, and the specific gravity, water absorption, bending strength, compressive strength, and thermal conductivity were measured. The specific gravity was calculated by dividing the weight by the volume using a product having a width of 50 mm and a length of 50 mm in the original thickness. The product having the same shape and shape as the specific gravity was used as a test piece, and the weight after drying at 150 ° C. for 3 hours was measured, and the measured value was defined as the initial weight. Next, it was immersed in 1 liter of water and taken out after 24 hours. The surface was wiped off with a cloth or paper, and the weight after water absorption was measured. The difference between the weight after water absorption and the initial weight was divided by the initial weight and expressed as a percentage. The dissolution rate was determined by drying the test piece after the water absorption measurement at 150 ° C. for 3 hours and then measuring the weight. The difference from the initial weight was divided by the initial weight and expressed as a percentage. The appearance was visually observed. For water absorption / evaporation, 100 g of water was placed in a 200 cc plastic cup (bottom inner diameter 48 mm, upper inner diameter 68 mm, height 80 mm). The height of the water was 40 mm. A single piece of a product having a thickness of 7 mm, a width of 30 mm, and a length of 100 mm was placed as a test piece therein, covered with an aluminum foil, and the initial total weight was measured. Next, the sample was allowed to stand in a normal state for one week, and the total weight was measured again. The difference between the initial total weight and the total weight after standing was divided by 100 g and expressed as a percentage. The higher the value, the greater the water absorption / evaporation. Flexural strength and compressive strength were measured according to JIS K6911. The thermal conductivity was measured by a laser flash method. Table 1 shows the results.
[0029]
Example 2
The same glass paper as in Example 1 was used as the reinforcing material, and the cut dimensions were also the same.
[0030]
One part by weight of sugar and one part by weight of activated carbon were mixed in the same manner as in Example 1. Further, 1.1 parts by weight of water was added and mixed to prepare a slurry having a concentration of 64.5%. Both sugar and activated carbon are the same as in Example 1.
[0031]
576 g of mud was applied to one reinforcing material (48 g). The application ratio is 12 parts by weight of sludge per 1 part by weight of reinforcing material.
[0032]
A molded substrate was produced in the same manner as in Example 1 except that the drying temperature was 100 ° C.
[0033]
Twenty-one molding substrates were stacked. Thereafter, a molded body was produced in the same manner as in Example 1. However, it was the same as Example 1 except that the pressing force was 50 kg / cm 2 and the final heating temperature was 250 ° C.
[0034]
The molded article had a black color of 9.8 mm in thickness, 800 mm in width, and 800 mm in length.
[0035]
The periphery of the edge of the molded body was cut by 5 mm to produce a heat-resistant lightweight structural material according to the present invention having a thickness of 9.8 mm, a width of 790 mm and a length of 790 mm.
[0036]
In the same manner as in Example 1, the specific gravity, water absorption, dissolution rate, water absorption / evaporation, bending strength, compressive strength, and thermal conductivity of the heat-resistant lightweight structure material were measured. Table 1 shows the results.
[0037]
Example 3
The same glass paper as in Example 1 was used as the reinforcing material, and the cut dimensions were also the same.
[0038]
One part by weight of sugar and 0.1 part by weight of activated carbon were mixed in the same manner as in Example 1. Further, 2.6 parts by weight of water were added and mixed to prepare a slurry having a concentration of 27%. Both sugar and activated carbon are the same as in Example 1.
[0039]
384 g of mud was applied to one reinforcing material (48 g). The application ratio is 8 parts by weight of sludge per 1 part by weight of reinforcing material.
[0040]
A molded substrate was produced in the same manner as in Example 1 except that the drying temperature was 150 ° C.
[0041]
Seventy-two molding substrates were stacked. Thereafter, a molded body was produced in the same manner as in Example 1. However, the pressure was 5 kg / cm 2 .
[0042]
The molded product had a black color tone, a thickness of 9.7 mm, a width of 800 mm, and a length of 800 mm.
[0043]
The periphery of the edge of the molded body was cut by about 5 mm to prepare a heat-resistant lightweight structural material according to the present invention having a thickness of 9.7 mm, a width of 790 mm, and a length of 790 mm.
[0044]
In the same manner as in Example 1, the specific gravity, water absorption, dissolution rate, water absorption / evaporation, bending strength, compressive strength, and thermal conductivity of the heat-resistant lightweight structure material were measured. Table 1 shows the results.
[0045]
Example 4
Glass cloth (Arisawa Seisakusho Co., Ltd., M7628) was used as a reinforcing material. It was cut into a thickness of 0.5 mm, a width of 600 mm, and a length of 1,040 mm, and the weight of one piece was 135 g.
[0046]
The composition ratio is 1 part by weight of sugar and 0.2 part by weight of activated carbon. Mixing was performed in the same manner as in Example 1. Further, 1.5 parts by weight of water was added and mixed to prepare a sludge having a concentration of 44.4%. Both sugar and activated carbon are the same as in Example 1.
[0047]
675 g of mud was applied to one reinforcing material (135 g). The application ratio is 5 parts by weight per 1 part by weight of the reinforcing material.
[0048]
A molded substrate was produced in the same manner as in Example 1.
[0049]
37 molding substrates were stacked. Thereafter, a molded body was produced in the same manner as in Example 1. However, the pressing force was 5 kg / cm 2 .
[0050]
The color tone of the molded body was black, 9.4 mm in thickness, 600 mm in width, and 1040 mm in length.
[0051]
Next, the periphery of the edge of the molded body was cut by 5 mm to prepare a heat-resistant lightweight structure material according to the present invention having a thickness of 9.4 mm, a width of 590 mm, and a length of 1030 mm.
[0052]
In the same manner as in Example 1, the specific gravity, water absorption, dissolution rate, water absorption / evaporation, bending strength, compressive strength, and thermal conductivity of the heat-resistant lightweight structure material were measured. Table 2 shows the results.
[0053]
Example 5
The same glass paper as in Example 1 was used as the reinforcing material, and the cut dimensions were also the same.
[0054]
Bamboo charcoal (Hanwa Kogyo Co., Ltd.), a kind of activated carbon, was pulverized with a ball mill and pulverized to 65 mesh or less. One part by weight of sugar and 0.3 part by weight of bamboo charcoal were mixed in the same manner as in Example 1. Further, 1.3 parts by weight of water was added and mixed to prepare a slurry having a concentration of 50%. The sugar is the same as in Example 1.
[0055]
480 g of mud was applied to the reinforcing material (48 g / sheet). The application ratio is 10 parts by weight of sludge per 1 part by weight of reinforcing material.
[0056]
A prepreg was produced in the same manner as in Example 1.
[0057]
Twenty-eight prepregs were stacked, and a molded body was prepared in the same manner as in Example 1.
[0058]
The color tone was black, 9.3 mm in thickness, 800 mm in width, and 800 mm in length.
[0059]
The periphery of the edge of the molded body was cut by 5 mm to prepare a heat-resistant lightweight structural material according to the present invention having a thickness of 9.3 mm, a width of 790 mm, and a length of 790 mm.
[0060]
In the same manner as in Example 1, the specific gravity, water absorption, dissolution rate, water absorption / evaporation, bending strength, compressive strength, and thermal conductivity of the heat-resistant lightweight structure material were measured. Table 2 shows the results.
[0061]
Example 6
Glass paper (the same as in Example 1) was used as a reinforcing material.
[0062]
Bincho charcoal (Masudaya Co., Ltd.) was pulverized to 100 mesh or less for 1 part by weight of sugar, and 0.6 part by weight was mixed with 1 part by weight of sugar. Further, 2.0 parts by weight of water was added and mixed to prepare a sludge having a concentration of 44.4%. (Sugar is the same as in Example 1.)
[0063]
480 g of mud was applied to the reinforcing material (48 g / sheet). The application ratio is 10 parts by weight of sludge per 1 part by weight of reinforcing material.
[0064]
A molded substrate was produced in the same manner as in Example 1.
[0065]
Thirty molded substrates were stacked, and a molded body was produced in the same manner as in Example 1 below. However, the pressure was set at 40 kg / cm 2 .
[0066]
The molded article had a black color tone of 9.4 mm in thickness, 800 mm in width, and 800 mm in length.
[0067]
The periphery of the edge of the molded body was cut by 5 mm to prepare a heat-resistant lightweight structural material according to the present invention having a thickness of 9.4 mm, a width of 790 mm, and a length of 790 mm.
[0068]
In the same manner as in Example 1, the specific gravity, water absorption, dissolution rate, water absorption / evaporation, bending strength, compressive strength, and thermal conductivity of the heat-resistant lightweight structural material were measured. Table 2 shows the results.
[0069]
Comparative Example 1
Glass paper (the same as in Example 1) was used as a reinforcing material.
[0070]
2.3 parts by weight of water was added to 1 part by weight of sugar and mixed to prepare only a sugar aqueous solution containing no activated carbon. The concentration of the aqueous sugar solution was 30%, and the sugar was the same as in Example 1.
[0071]
576 g of an aqueous solution of sugar was applied to the reinforcing material (48 g / sheet). The application ratio is 12 parts by weight of the aqueous sugar solution with respect to 1 part by weight of the reinforcing material.
[0072]
A molded substrate was produced in the same manner as in Example 1.
[0073]
72 molding base materials were stacked, and a molded body was produced in the same manner as in Example 1 below. However, the pressing force was 5 kg / cm 2 .
[0074]
The color tone of the molded body was black-brown, 9.3 mm in thickness, 800 mm in width, and 800 mm in length.
[0075]
The periphery of the edge of the molded body was cut by 5 mm to prepare a comparative example having a thickness of 9.3 mm, a width of 790 mm, and a length of 790 mm.
[0076]
In the same manner as in Example 1, the specific gravity, water absorption, dissolution rate, water absorption / evaporation, bending strength, compressive strength, and thermal conductivity of the heat-resistant lightweight structure material were measured. Table 3 shows the results.
[0077]
Comparative Example 2
A 10 mm thick asbestos cement board (Yutaka Sangyo Co., Ltd.) was measured for specific gravity, water absorption, dissolution, water absorption / evaporation, bending strength, compressive strength, and thermal conductivity in the same manner as in Example 1. Table 3 shows the results.
[0078]
Comparative Example 3
A heat-resistant laminated plate having a thickness of 10 mm (Ryoden Kasei Co., Ltd.) belonging to JP-A-5-151852 was prepared in the same manner as in Example 1 in terms of specific gravity, water absorption, dissolution, water absorption / evaporation, bending strength, and compression strength. The thermal conductivity was measured. Table 3 shows the results.
[0079]
[Table 1]
[0080]
[Table 2]
[0081]
[Table 3]
[0082]
As is clear from the results shown in Tables 1 and 2, the heat-resistant and lightweight structural material according to the present invention is lighter in weight than Comparative Example 1 which does not contain activated carbon, and has high water absorption and evaporation properties. Also, (1) lighter (specific gravity is lower) than the conventional products of Comparative Examples 2 and 3. (2) Excellent mechanical strength. {Circle around (3)} High heat insulation effect (low thermal conductivity). (4) Safe material composition that does not contain specific chemical substances such as asbestos. (5) It has physical properties such as a large property of absorbing and evaporating water. Furthermore, taking advantage of the advantages such as easy machining and low cost, heat-insulating structural materials such as press hot plates and molds, construction materials that require water absorption and evaporation (inner wall materials, water-absorbing tiles), and furniture materials (furniture) It is effective for applications such as shelves and pet sheds.
[0083]
【The invention's effect】
A process of using glass fiber as a reinforcing material to produce a sludge composed of sugar, activated carbon, and water. A process of applying a slurry to a reinforcing material and drying to produce a molded base material. A step of producing a molded body by heating and pressing a molding base material. A heat-resistant and lightweight structural material obtained by machining a molded body has features that it is lighter than conventional products and has excellent mechanical strength and heat insulation. Therefore, it can be effectively used as a heat insulating structural material such as a press hot platen or a mold. In addition, since it has water absorption and evaporation properties, it can be used for building materials and furniture materials. The present invention is novel in that a ceramic fiber and a functional filler are compounded using a heat-modified sugar as a binder. Furthermore, they discovered that the modified sugar product had an excellent binding effect despite being made porous during the thermal decomposition process, and completed this invention. Since the manufacturing process is relatively simple, the product is inexpensive, and has features such as a product made of a safe material with little environmental problem.
[0084]
In the present invention, the purpose was achieved by mixing activated carbon with sugar in order to reduce the weight, but when it is desired to change the purpose of use or physical properties, the type of functional filler mixed with sugar is selected and used. be able to. For example, mica powder may be used instead of activated carbon to further improve the machinability, and titanium oxide (anatase type, brickite type) or the like is used to impart functions such as sterilization and deodorization. If that is the case, the effect can be expected. In order to further improve the mechanical strength, a ceramic whisker or the like may be mixed and used. In addition, weight reduction by shirasu balloon, radio wave absorption by ferrite, etc., and metal oxides such as alumina and silica are mixed to reduce costs and improve characteristics such as compressive strength. By using functional fillers such as metal oxides and metal composite oxides with various characteristics in sugar as described above, and by applying heat and pressure to produce a molded body, a structure having desired physical properties can be obtained. Have the potential to be