JP2004352574A - Continuous baking method for baked body using electromagnetic wave, and tunnel type continuous baking furnace - Google Patents

Continuous baking method for baked body using electromagnetic wave, and tunnel type continuous baking furnace Download PDF

Info

Publication number
JP2004352574A
JP2004352574A JP2003153375A JP2003153375A JP2004352574A JP 2004352574 A JP2004352574 A JP 2004352574A JP 2003153375 A JP2003153375 A JP 2003153375A JP 2003153375 A JP2003153375 A JP 2003153375A JP 2004352574 A JP2004352574 A JP 2004352574A
Authority
JP
Japan
Prior art keywords
firing
fired
furnace
fired body
susceptor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003153375A
Other languages
Japanese (ja)
Other versions
JP4383093B2 (en
Inventor
Toru Ochiai
透 落合
Takao Usami
隆夫 宇佐美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mino Ceramic Co Ltd
Original Assignee
Mino Ceramic Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mino Ceramic Co Ltd filed Critical Mino Ceramic Co Ltd
Priority to JP2003153375A priority Critical patent/JP4383093B2/en
Publication of JP2004352574A publication Critical patent/JP2004352574A/en
Application granted granted Critical
Publication of JP4383093B2 publication Critical patent/JP4383093B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/60Production of ceramic materials or ceramic elements, e.g. substitution of clay or shale by alternative raw materials, e.g. ashes

Abstract

<P>PROBLEM TO BE SOLVED: To provide a continuous baking method for baked bodies suitable for production of various forms in a small quantity where, to various kinds of bodies to be baked having individually different autoexothermic properties by microwaves, baking in accordance with the exothermic properties can simultaneously be performed in one microwave continuous baking furnace, and baked bodies of excellent quality can be obtained by satisfactory microwave heating. <P>SOLUTION: In the continuous baking method for baked bodies by which many kinds of baked bodies having different baking temperatures are continuously obtained by using the tunnel type continuous baking furnace at least provided with a heating/sintering region for performing microwave irradiation baking, the bodies to be baked having different baking temperatures are inserted into the heating/sintering region set to the baking temperature to the prescribed body to be baked in a state where the circumference of each body to be baked is surrounded by a susceptor formed with a material having the microwave exothermic properties in accordance with those of the body to be baked. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、焼成体の連続焼成方法に関し、更に詳しくは、電磁波(以下、マイクロ波と称す)照射熱によって焼成温度の異なる多種類の焼成体を連続して得ることが可能な焼成体の連続焼成方法及び連続焼成炉に関する。
【0002】
【従来の技術】
近年、窯業材料やファインセラミックス材料等からなる被焼成体の焼成に、マイクロ波による加熱方法を利用することで、従来の方法と比較して、焼成時間の短縮、均一な焼成の実現が可能となることがわかり、その実用化に向け、製品の品質の向上、生産の更なる合理化を達成し得る手段の開発が種々なされている。これに対し、焼成体が連続して得られ、焼成体の大量生産を可能とするマイクロ波連続焼成炉が提案されている(例えば、特許文献1参照)。かかる焼成炉では、マイクロ波を透過する断熱壁によって区分された焼成室の焼成温度を、被焼成体の搬送方向において被焼成体の焼成過程に対応するように変化させている。そして、断熱壁に、断熱性を有し且つマイクロ波の透過を許容する材料を用い、その厚みを漸次増大させ、更に、断熱壁の内側にマイクロ波によって自己発熱する内殻を設けることが提案されている。
【0003】
上記した構成のマイクロ波連続焼成炉は、特に、内殻の形成材料と類似するマイクロ波による自己発熱特性を有する被焼成体を大量に焼成できる、という特長を有する。このため、異なる発熱特性を有する多種類の被焼成体を大量に焼成する場合には、マイクロ波により自己発熱する内殻の材質を被焼成体に応じて変更することが必要となる。しかしながら、一体化した連続焼成炉の構造から、内殻の材料を被焼成体に応じて変更することは、相当の時間と労力とを要し、発熱特性の異なる多種類の被焼成体を大量に焼成するためには、個々の被焼成体に応じた発熱特性と同じ材料からなる内殻を有する複数の連続焼成炉を用意し、個々の被焼成体が有する自己発熱特性に応じて設計されている炉を選択して用いて焼成を行う必要がある。このため、上記した従来の方法は、少量多品種生産には適したものではなかった。以上のように、従来技術においては、少量多品種生産への対応や、経済性の観点からの解決すべき課題を残していた。
【0004】
【特許文献1】
特開2002−130955公報
【0005】
【発明が解決しようとする課題】
従って、本発明の目的は、一のマイクロ波連続焼成炉で、個々に異なるマイクロ波による自己発熱特性を有する多種類の被焼成体に対して、該発熱特性に応じた焼成を同時に行なうことができ、良好なマイクロ波加熱によって品質に優れた焼成体が得られる、少量多品種生産に適し、経済性に優れる焼成体の連続焼成方法を提供することにある。
【0006】
【課題を解決するための手段】
上記の目的は、下記の本発明によって達成される。即ち、本発明は、[1]マイクロ波照射による焼成を行なう加熱・焼結領域が少なくとも設けられているトンネル式連続焼成炉を用いて、焼成温度の異なる多種類の焼成体を連続して得る焼成体の焼成方法において、所定の被焼成体に対する焼成温度条件に設定されている上記加熱・焼結領域に、上記と異なる焼成温度を有する被焼成体を、該被焼成体の周囲を該被焼成体の有するマイクロ波発熱特性に応じたマイクロ波発熱特性を有する材料で形成したサセプターで囲った状態で挿入することを特徴とする電磁波を使用した焼成体の連続焼成方法である。
【0007】
本発明にかかる焼成体の連続焼成方法の好ましい形態としては、下記の[2]〜[4]ものが挙げられる。上記[1]の構成において、[2]更に、上記サセプターの周囲を耐火断熱材で囲う焼成体の連続焼成方法。上記[1]又は[2]いずれかの構成において、[3]前記連続焼成炉を構成している炉材の耐熱温度が、前記サセプターの耐熱温度よりも低い焼成体の連続焼成方法。上記[2]の構成において、[4]前記連続焼成炉を構成している炉材の耐熱温度が、前記断熱材の耐熱温度よりも低い焼成体の連続焼成方法。
【0008】
本発明の別の実施形態は、上記[1]〜[4]のいずれかの構成の、焼成体の連続焼成方法を実施するためのマイクロ波を使用した連続焼成炉であることを特徴とするトンネル式連続焼成炉である。
【0009】
【発明の実施の形態】
以下、好ましい実施の形態を挙げて、本発明を更に詳細に説明する。本発明者らは、上記した従来技術の課題を解決すべく鋭意検討の結果、連続焼成炉の加熱・焼結領域内に、個々の被焼成体の大きさに見合った領域であって、且つ個々の被焼成体の有するマイクロ波による発熱特性(以下、自己発熱特性という)に合致した熱特性を有する加熱・焼結領域を適宜に形成できれば、個々に異なる自己発熱特性を有する多種類の被焼成体を、所定の温度条件に設定されている同一の連続焼成炉内で同時に焼成することができ、少量多品種生産への対応が可能となり、格段に経済性を向上させることができることを見いだして、本発明を達成した。
【0010】
本発明にかかる焼成体の連続焼成方法では、マイクロ波照射による焼成を行なう加熱・焼結領域が少なくとも設けられているトンネル式連続焼成炉を用い、該加熱・焼結領域の温度条件を、所定の被焼成体を焼成する焼成温度に設定した状態とし、該領域に、上記と異なる焼成温度を有する別の種類の被焼成体を挿入する。そして、挿入する際に、被焼成体の周囲を、該被焼成体の自己発熱特性に応じたマイクロ波による自己発熱特性を有する材料で形成されたサセプターで囲うことを特徴とする。かかる方法によれば、トンネル式連続焼成炉における炉材等の構成や、運転する際の設定温度条件を通常の状態から変更することなく、同一の焼成炉で、焼成温度の異なる複数種類の焼成体を連続して得ることができる。
【0011】
被焼成体をサセプターで囲う方法としては、図1(a)に示したような形状のサセプターを使用して被焼成体の全体を囲う方法や、図1(b)に示したような形状の、連続炉の進行方向の前後を開放とした形状のサセプターを用い、サセプター内が擬似的に連続炉と同様のトンネル式の態様となるように囲う方法等が挙げられる。これらのサセプターによって囲われる被焼成体の数は、1個であることが好ましいが、場合によっては複数個の被焼成体を囲ってもよい。又、本発明のより好ましい態様としては、サセプターの周囲を、更に耐火断熱材で囲うことが挙げられる。
【0012】
本発明で使用するサセプターは、被焼成体の自己発熱特性に応じたマイクロ波による自己発熱特性を有する材質からなる材料を用いて形成される。例えば、被焼成体がアルミナからなるものである場合は、アルミナ質サセプターを用い、被焼成体がジルコンからなるものである場合は、ジルコン質サセプターを用い、又、被焼成体がSK32耐火煉瓦からなるものである場合は、コーディエライト質サセプター又はシャモット質サセプターを用いる。そして、これらのサセプターを断熱材で囲うことが好ましい。サセプターの材料は、被焼成体の成分とほぼ一致するものが好ましいが、類似成分、他の材質でも自己発熱特性の温度差が、およそ50℃以内であれば使用することができる。
【0013】
又、これらのサセプターの周囲を囲う耐火断熱材としては、耐熱温度が焼成温度よりも50℃以上高いものを用いることが好ましい。より好ましくは、耐熱温度が焼成温度よりも100℃以上高いものを使用するとよい。例えば、アルミナ質の被焼成体を1,600℃で焼成する場合に使用する耐火断熱材には、例えば、1,700℃耐用のアルミナ質断熱ファイバーボードを使用することが好ましい。
【0014】
上記したような構成を有する本発明の焼成体の焼成方法では、サセプターや、必要に応じてその周囲に配置させる断熱材に、被焼成体の焼成処理のために必要となる焼成温度に耐え得る耐熱特性を有する材料のものを使用すれば足りる。一方、トンネル式のマイクロ波連続焼成炉に付帯する炉材には、上記に挙げたサセプターや断熱材の耐熱温度よりも耐熱温度が低い、耐熱特性に劣る炉材を用いることができる。このため、本発明の方法によれば、焼成炉に付帯する炉材を損耗することなく使用できるという利点もある。
【0015】
以上のような構成を有する本発明にかかる焼成体の焼成方法によれば、特定の被焼成体を定常的に連続焼成するため、トンネル式のマイクロ波連続焼成炉の基本設計や、運転条件を変更することなく、該炉内に適宜なサセプターを配置するという簡単な手段のみによって、所定のマイクロ波出力により加熱・焼結領域が所定の温度勾配に保たれている連続炉内の炉内温度を大きく変更することなく、定常的な連続焼成を問題なく行ないつつ、同時に、連続焼成炉の設定温度よりも高温で焼成された異なる種類の焼成体を得ることができる。上記においては、定常の被焼成体よりも焼成温度の高い異なる種類の被焼成体を、該被焼成体と同等、好ましくは同等以上のマイクロ波による自己発熱特性を有するサセプターで囲って、トンネル式のマイクロ波連続焼成炉の加熱・焼結領域に搬送する。
【0016】
更に、サセプターの材質を適宜に選択すれば、当該サセプターで囲うという簡単な手段のみで、連続焼成炉の設定温度よりも低温で焼成された異なる種類の焼成体を得ることが可能となる。但し、本発明者らの検討によれば、連続焼成炉の設定温度よりも低温で焼成される焼成体を得ようとする場合には、サセプターの温度が、連続焼成炉の炉内温度によって上昇してしまう恐れがあるため、先に挙げたような材質からなる断熱材でサセプターを囲うことが望ましい。
【0017】
又、サセプターの周囲を断熱材で囲って断熱層を設けた形態の本発明にかかる焼成体の焼成方法によれば、より高度に、所定の温度勾配に保たれている炉内温度への影響が抑制され、且つ、サセプターで囲われた領域内への炉内温度からの影響がより高度に抑制できるため、サセプターで囲われた領域内は、所望する温度条件が安定に保持された状態の加熱・焼結領域となる。又、サセプターの周囲を断熱材で囲うことで、被焼成体をサセプターで囲っただけの場合よりも、更に、炉内温度と差のある焼成温度で焼成された焼成体を得ることが可能となる。この結果、トンネル式のマイクロ波連続焼成炉における定常運転によって、定常的な焼成体を得ると同時に、個々に焼成温度の異なる多種類の焼成体を必要に応じて適宜に得ることが可能となる。
【0018】
サセプターの周囲を断熱材で囲うか否かは、適宜に決定すればよい。例えば、所定の温度勾配に保たれている連続炉の温度よりも焼成温度が高い被焼成体を焼成する場合には、サセプターからの放熱を防ぐために、サセプターを更に断熱材で囲うことが望ましい。一方、所定の温度勾配に保たれている連続炉の温度よりも焼成温度が低い被焼成体を焼成する場合には、炉内からの熱輻射によりサセプター及び被焼成体の温度が上がってしまうのを防ぐため、この場合も断熱材で囲うことが好ましい。
【0019】
上記したように、本発明にかかる焼成体の焼成方法によれば、所定のマイクロ波出力により炉内温度が所定の温度勾配に保たれたトンネル式のマイクロ波連続焼成炉を用いて、焼成温度が種々に異なる所望の焼成体を同時に得ることができるため、多品種少量生産でき、経済的である。又、本発明にかかる焼成体の焼成方法によれば、使用するマイクロ波連続焼成炉を構成する炉材等の耐熱性を、従来のものよりも低く構成することが可能であり、この点でも経済性に優れる。
【0020】
【実施例】
次に、実施例及び比較例を挙げて本発明を更に詳細に説明する。
(実施例1)
本実施例では、加熱・焼結領域が1,350℃に保たれたトンネル式のマイクロ波連続焼成炉を用いた。そして、純度99.6%のアルミナ粉末を主原料とする150×150×30mmの大きさのアルミナ被焼成体を、該被焼成体の全体を、図1(a)に示したような形状のサセプターで囲った状態で、加熱・焼結領域へと搬送した。この際、サセプターには、上記の被焼成体と同様の材質の、純度約99%のアルミナを主原料とするアルミナ質のものを使用した。サセプターには、被焼成体の全体を囲うものであって、且つ、被焼成体を配置した場合に、被焼成体とサセプターとの間隔が約30〜60mm程度となる形状のものを使用した。本実施例では、更に、このサセプターの周囲を、厚みが50mmのアルミナ質製の断熱材で覆った状態とした。この結果、アルミナ焼成体の焼成温度である1,500℃で焼成した焼成体とほぼ同等の密度の焼成体が得られた。
【0021】
更に、サセプターの形状に、図1(b)に示したようなサセプター内が擬似的に連続炉の態様となる、連続炉の進行方向の前後が開放された形状のものを用いた以外は上記と同様にして、被焼成体を加熱・焼結領域へと搬送した。即ち、被焼成体とサセプターとの間隔を約30〜60mm程度とし、厚みが50mmのアルミナ質製の断熱材を用いた。この結果、上記したと同様に、加熱・焼結領域が1,350℃に保たれたトンネル式のマイクロ波連続焼成炉において、1,500℃で焼成した焼成体とほぼ同等の密度の焼成体を得ることができた。
【0022】
更に、上記で用いたと同様の純度99.6%のアルミナ粉末成形体を被焼成体とし、断熱材を用いることなく、図1(b)に示した形状の、アルミナ99%のアルミナ質サセプターのみで囲い、連続炉に搬送した。この結果、焼成体の適正焼成温度である1,400℃で焼結した焼成体とほぼ同程度の品質の焼成体が得られた。
【0023】
(実施例2)
実施例1で使用したアルミナ被焼成体を、約98%ジルコンを含有するジルコンサンドとジルコンフラワーを主原料とするジルコン被焼成体とし、且つ、ジルコンとムライトを主原料とするジルコン質サセプターとし、断熱材を使用しなかった以外は実施例1と同様にして、ジルコン被焼成体を、図1(a)に示した形状のサセプターで囲った状態で加熱・焼結領域へと搬送した。この結果、ジルコン焼成体の焼成温度である1,460℃で焼成した焼成体とほぼ同等の密度の焼成体が得られた。
【0024】
更に、サセプターに、図1(b)に示したようなサセプター内が擬似的に連続炉の態様となる、連続炉の進行方向の前後が開放された形状のものを用いた以外は上記と同様にして、被焼成体を加熱・焼結領域へと搬送した。この結果、上記したと同様に、加熱・焼結領域が1,350℃に保たれたトンネル式のマイクロ波連続炉において、1,460℃で焼成した焼成体とほぼ同等の密度の焼成体を得ることができた。
【0025】
(実施例3)
実施例1で使用したアルミナ被焼成体を、シャモット及び耐火粘土を主原料とするSK32耐火煉瓦の被焼成体とし、コーディエライト質サセプターを用い、その周囲を、最高使用温度1,600℃のアルミナ・シリカ系断熱ボード製の断熱層を設けたこと以外は実施例1と同様にして、加熱・焼結領域へと搬送した。この結果、SK32耐火煉瓦の焼成体の焼成温度である1,270℃で焼成した焼成体とほぼ同等の密度の焼成体が得られた。
【0026】
更に、サセプターに、図1(b)に示したようなサセプター内が擬似的に連続炉の態様となる、連続炉の進行方向の前後が開放された形状のものを用いた以外は上記と同様にして、被焼成体を加熱・焼結領域へと搬送した。この結果、上記したと同様に、加熱・焼結領域が1,350℃に保たれたトンネル式のマイクロ波連続炉において、1,270℃で焼成した焼成体とほぼ同等の密度の焼成体を得ることができた。
【0027】
【発明の効果】
以上述べたように、本発明によれば、加熱・焼結領域の温度条件を、所定の被焼成体の焼成温度に対するものに設定したマイクロ波連続焼成炉を用いているにもかかわらず、個々に異なる焼成温度を有する多種類の被焼成体に対して、個々の焼成温度に応じた最適な焼成を同時に行なうことができ、マイクロ波加熱によって品質に優れた種々の焼成体が得られる、少量多品種生産に適し、経済性に優れる焼成体の連続焼成方法、及びトンネル式連続焼成炉が提供される。
【図面の簡単な説明】
【図1】本発明で使用するサセプター及び断熱層の形状の一例を示す模式図である。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a continuous firing method for a fired body, and more particularly, to a continuous fired body capable of continuously obtaining various kinds of fired bodies having different firing temperatures by irradiation heat of electromagnetic waves (hereinafter referred to as microwaves). The present invention relates to a firing method and a continuous firing furnace.
[0002]
[Prior art]
In recent years, the use of microwave heating methods for firing objects to be fired, such as ceramic materials and fine ceramic materials, has made it possible to reduce firing time and achieve uniform firing compared to conventional methods. For practical use, various means have been developed to improve the quality of products and further rationalize production. On the other hand, there has been proposed a microwave continuous firing furnace that continuously obtains a fired body and enables mass production of the fired body (for example, see Patent Document 1). In such a sintering furnace, the sintering temperature of a sintering chamber divided by a heat insulating wall that transmits microwaves is changed so as to correspond to the sintering process of the sintering object in the conveying direction of the sintering object. Then, it is proposed to use a material having heat insulating properties and permitting microwave transmission for the heat insulating wall, gradually increase the thickness thereof, and further provide an inner shell which generates heat by microwaves inside the heat insulating wall. Have been.
[0003]
The microwave continuous firing furnace having the above-described configuration has a feature that, in particular, a material to be fired having a self-heating characteristic by microwave similar to the material for forming the inner shell can be fired in a large amount. For this reason, when many types of objects to be fired having different heat generation characteristics are fired in large quantities, it is necessary to change the material of the inner shell that generates heat by microwaves according to the object to be fired. However, changing the material of the inner shell according to the object to be fired from the structure of the integrated continuous firing furnace requires a considerable amount of time and labor, and a large number of objects to be fired having different heat generation characteristics are required. In order to perform firing, a plurality of continuous firing furnaces having an inner shell made of the same material as the heat generating characteristics corresponding to each of the fired bodies are prepared, and designed in accordance with the self-heating characteristics of each fired body. It is necessary to perform firing by selecting a furnace that is used. Therefore, the above-mentioned conventional method is not suitable for small-quantity multi-product production. As described above, the prior art leaves a problem to be solved from the viewpoint of coping with small-quantity multi-product production and economic efficiency.
[0004]
[Patent Document 1]
JP-A-2002-130955
[Problems to be solved by the invention]
Accordingly, it is an object of the present invention to simultaneously perform firing in accordance with the heat generation characteristics on multiple types of objects to be fired having self-heating characteristics by individually different microwaves in one microwave continuous firing furnace. An object of the present invention is to provide a continuous firing method of a fired body which is excellent in economical efficiency, is suitable for small-quantity multi-product production, and can provide a fired body excellent in quality by good microwave heating.
[0006]
[Means for Solving the Problems]
The above object is achieved by the present invention described below. That is, the present invention provides [1] continuously obtaining various types of fired bodies having different firing temperatures by using a tunnel-type continuous firing furnace provided with at least a heating / sintering region for firing by microwave irradiation. In the method of firing a fired body, a fired body having a firing temperature different from the above is placed in the heating / sintering region set at a firing temperature condition for a predetermined fired body. This is a method for continuously firing a fired body using electromagnetic waves, characterized by being inserted in a state surrounded by a susceptor formed of a material having a microwave heat generation characteristic corresponding to the microwave heat generation characteristic of the fired body.
[0007]
Preferred modes of the continuous firing method of the fired body according to the present invention include the following [2] to [4]. [2] The method of [1], wherein the susceptor is further surrounded by a refractory heat insulating material. [3] The method for continuously firing a fired body according to any one of the above [1] and [2], wherein the heat-resistant temperature of the furnace material constituting the continuous firing furnace is lower than the heat-resistant temperature of the susceptor. [4] The method of [2] above, wherein the furnace material constituting the continuous firing furnace has a heat-resistant temperature lower than the heat-resistant temperature of the heat insulating material.
[0008]
Another embodiment of the present invention is a continuous firing furnace using a microwave for performing a continuous firing method of a fired body having any of the above-described [1] to [4]. It is a tunnel type continuous firing furnace.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in more detail with reference to preferred embodiments. The present inventors have conducted intensive studies in order to solve the above-described problems of the prior art, and as a result, in the heating and sintering region of the continuous firing furnace, a region corresponding to the size of each object to be fired, and If the heating and sintering regions having the heat characteristics matching the microwave heat generation characteristics (hereinafter referred to as “self-heating characteristics”) of the individual objects to be fired can be appropriately formed, then various types of substrates having different self-heating characteristics can be obtained. It has been found that the fired body can be fired simultaneously in the same continuous firing furnace set at a predetermined temperature condition, which makes it possible to cope with small-quantity, high-mix production, and significantly improves the economic efficiency. Thus, the present invention has been achieved.
[0010]
In the method for continuously firing a fired body according to the present invention, a tunnel-type continuous firing furnace provided with at least a heating / sintering region for firing by microwave irradiation is used, and the temperature condition of the heating / sintering region is set to a predetermined value. Is set to the firing temperature at which the object to be fired is fired, and another type of object to be fired having a different firing temperature from the above is inserted into the region. Then, at the time of insertion, the periphery of the object to be fired is surrounded by a susceptor formed of a material having self-heating characteristics by microwaves according to the self-heating characteristic of the object to be fired. According to such a method, a plurality of types of sintering with different sintering temperatures can be performed in the same sintering furnace without changing the configuration of the furnace material and the like in the tunnel type continuous sintering furnace and the set temperature conditions during operation from a normal state. The body can be obtained continuously.
[0011]
As a method of surrounding the body to be fired with a susceptor, a method of surrounding the whole body to be fired using a susceptor having a shape as shown in FIG. 1A or a method of surrounding the body as shown in FIG. And a method in which a susceptor having a shape in which the front and rear in the traveling direction of the continuous furnace are opened is used, and the inside of the susceptor is pseudo-enclosed in a tunnel-type mode similar to the continuous furnace. The number of objects to be fired surrounded by these susceptors is preferably one, but in some cases a plurality of objects to be fired may be surrounded. In a more preferred embodiment of the present invention, the periphery of the susceptor is further surrounded by a fire-resistant heat insulating material.
[0012]
The susceptor used in the present invention is formed using a material made of a material having self-heating characteristics by microwaves according to the self-heating characteristics of the object to be fired. For example, when the object to be fired is made of alumina, an alumina susceptor is used. When the object to be fired is made of zircon, a zirconous susceptor is used, and the object to be fired is made of SK32 refractory brick. If so, use a cordierite susceptor or chamotte susceptor. And it is preferable to surround these susceptors with a heat insulating material. The material of the susceptor is preferably substantially the same as the component of the object to be fired, but similar components and other materials can be used as long as the temperature difference of the self-heating characteristic is within about 50 ° C.
[0013]
Further, as the refractory heat insulating material surrounding the periphery of these susceptors, it is preferable to use a material having a heat resistance temperature higher than the firing temperature by 50 ° C. or more. More preferably, a material having a heat resistance temperature higher than the firing temperature by 100 ° C. or more is preferably used. For example, it is preferable to use, for example, an alumina-based heat-insulating fiber board that can withstand 1,700 ° C. as the fire-resistant heat-insulating material used when firing an alumina-based material to be fired at 1,600 ° C.
[0014]
In the firing method of the fired body of the present invention having the above-described configuration, the susceptor and, if necessary, the heat insulating material disposed around the susceptor can withstand the firing temperature required for the firing processing of the fired body. It is sufficient to use a material having heat resistance. On the other hand, as a furnace material attached to the tunnel-type microwave continuous firing furnace, a furnace material having a lower heat-resistant temperature than the above-mentioned susceptor or heat-insulating material and having inferior heat-resistant characteristics can be used. Therefore, according to the method of the present invention, there is also an advantage that the furnace material attached to the firing furnace can be used without being worn.
[0015]
According to the firing method of the fired body according to the present invention having the above-described configuration, in order to continuously and continuously fire a specific body to be fired, the basic design of a tunnel-type microwave continuous firing furnace and operating conditions are reduced. The temperature of the furnace in a continuous furnace in which the heating and sintering area is maintained at a predetermined temperature gradient with a predetermined microwave output only by a simple means of disposing an appropriate susceptor in the furnace without change. Can be obtained without any significant change in the continuous firing without any problem, and at the same time, different types of fired bodies fired at a temperature higher than the set temperature of the continuous firing furnace. In the above, a different type of fired body having a higher firing temperature than the steady fired body is surrounded by a susceptor having a self-heating characteristic by microwaves equal to or preferably equal to or higher than the fired body, and a tunnel type. To the heating and sintering area of the continuous microwave oven.
[0016]
Furthermore, if the material of the susceptor is appropriately selected, it is possible to obtain different types of fired bodies fired at a temperature lower than the set temperature of the continuous firing furnace only by a simple means of surrounding the susceptor. However, according to the study of the present inventors, when obtaining a fired body that is fired at a temperature lower than the set temperature of the continuous firing furnace, the temperature of the susceptor increases due to the temperature inside the continuous firing furnace. Therefore, it is desirable to surround the susceptor with a heat insulating material made of the above-mentioned materials.
[0017]
Further, according to the firing method of the fired body according to the present invention in which the susceptor is surrounded by a heat insulating material and a heat insulating layer is provided, the influence on the temperature in the furnace maintained at a predetermined temperature gradient is more advanced. Is suppressed, and since the influence from the furnace temperature on the region surrounded by the susceptor can be more highly suppressed, the inside of the region surrounded by the susceptor is in a state where the desired temperature condition is stably maintained. It becomes a heating and sintering area. Further, by surrounding the susceptor with a heat insulating material, it is possible to obtain a fired body fired at a firing temperature different from the furnace temperature, compared to a case where the fired body is simply surrounded by the susceptor. Become. As a result, by steady operation in the tunnel type microwave continuous firing furnace, it is possible to obtain a steady fired body and, at the same time, appropriately obtain various kinds of fired bodies having individually different firing temperatures as needed. .
[0018]
Whether to surround the susceptor with a heat insulating material may be appropriately determined. For example, when firing an object to be fired whose firing temperature is higher than the temperature of the continuous furnace maintained at a predetermined temperature gradient, it is desirable to further surround the susceptor with a heat insulating material in order to prevent heat radiation from the susceptor. On the other hand, when firing an object to be fired whose firing temperature is lower than the temperature of the continuous furnace maintained at a predetermined temperature gradient, the temperature of the susceptor and the temperature of the object to be fired increase due to heat radiation from the furnace. In this case as well, it is preferable to surround it with a heat insulating material in order to prevent this.
[0019]
As described above, according to the firing method of the fired body according to the present invention, the firing temperature is controlled using a tunnel type microwave continuous firing furnace in which the furnace temperature is maintained at a predetermined temperature gradient by a predetermined microwave output. Can simultaneously produce various desired fired bodies, so that it is economical to produce many kinds and small quantities. Further, according to the firing method of the fired body according to the present invention, the heat resistance of the furnace material constituting the microwave continuous firing furnace to be used can be configured to be lower than the conventional one, Excellent economy.
[0020]
【Example】
Next, the present invention will be described in more detail with reference to Examples and Comparative Examples.
(Example 1)
In this example, a tunnel-type microwave continuous firing furnace in which the heating and sintering region was maintained at 1,350 ° C. was used. Then, an alumina body to be fired having a size of 150 × 150 × 30 mm made of alumina powder having a purity of 99.6% as a main raw material, and the whole body to be fired was formed into a shape as shown in FIG. In the state surrounded by the susceptor, it was transported to the heating / sintering area. At this time, an alumina susceptor made of the same material as the above-mentioned object to be fired and having a purity of about 99% as a main raw material was used. As the susceptor, a susceptor that surrounds the entirety of the object to be fired and has a shape in which the distance between the object to be fired and the susceptor is about 30 to 60 mm when the object to be fired is arranged. In this embodiment, the periphery of the susceptor was further covered with a 50-mm-thick alumina heat insulating material. As a result, a fired body having substantially the same density as the fired body fired at 1,500 ° C., which is the firing temperature of the alumina fired body, was obtained.
[0021]
Further, the above-mentioned susceptor was used except that the inside of the susceptor had a shape of a continuous furnace as shown in FIG. In the same manner as in, the object to be fired was transported to the heating / sintering area. That is, the interval between the object to be fired and the susceptor was about 30 to 60 mm, and a 50-mm-thick alumina heat insulating material was used. As a result, similarly to the above, in a tunnel type microwave continuous firing furnace in which the heating and sintering region was maintained at 1,350 ° C., a fired body having a density substantially equal to that of a fired body fired at 1,500 ° C. Could be obtained.
[0022]
Further, the same alumina powder molded body having a purity of 99.6% as used above was used as the object to be fired, and only the alumina-based susceptor having the shape shown in FIG. And transported to a continuous furnace. As a result, a fired body having almost the same quality as a fired body sintered at 1,400 ° C., which is an appropriate firing temperature of the fired body, was obtained.
[0023]
(Example 2)
The alumina fired body used in Example 1 was a zircon fired body mainly composed of zircon sand and zircon flour containing about 98% zircon, and a zircon susceptor mainly composed of zircon and mullite. The fired zircon body was transported to the heating and sintering region in a state surrounded by a susceptor having the shape shown in FIG. 1A, in the same manner as in Example 1 except that the heat insulating material was not used. As a result, a fired body having a density substantially equal to that of the fired body fired at 1,460 ° C., which is the firing temperature of the zircon fired body, was obtained.
[0024]
Further, the susceptor is the same as above except that the inside of the susceptor has a shape similar to that of a continuous furnace as shown in FIG. The object to be fired was transported to the heating / sintering area. As a result, in the same manner as described above, in a tunnel type microwave continuous furnace in which the heating and sintering region was maintained at 1,350 ° C., a fired body having a density substantially equal to that of the fired body fired at 1,460 ° C. I got it.
[0025]
(Example 3)
The alumina fired body used in Example 1 was used as a fired body of SK32 refractory brick mainly made of chamotte and refractory clay, and a cordierite susceptor was used. It was transported to the heating and sintering area in the same manner as in Example 1 except that a heat insulating layer made of an alumina / silica heat insulating board was provided. As a result, a fired body having almost the same density as the fired body fired at 1,270 ° C., which is the firing temperature of the fired SK32 refractory brick, was obtained.
[0026]
Further, the susceptor is the same as above except that the inside of the susceptor has a shape similar to that of a continuous furnace as shown in FIG. The object to be fired was transported to the heating / sintering area. As a result, in the same manner as described above, in a tunnel type microwave continuous furnace in which the heating and sintering region was maintained at 1,350 ° C., a fired body having a density substantially equal to that of the fired body fired at 1,270 ° C. I got it.
[0027]
【The invention's effect】
As described above, according to the present invention, although the temperature condition of the heating and sintering region is set to a value corresponding to the firing temperature of the predetermined object to be fired, the microwave continuous firing furnace is used. For various types of objects to be fired having different firing temperatures, optimal firing can be performed simultaneously according to the individual firing temperature, and various types of fired materials with excellent quality can be obtained by microwave heating. A continuous firing method for a fired body suitable for multi-kind production and excellent in economic efficiency, and a tunnel-type continuous firing furnace are provided.
[Brief description of the drawings]
FIG. 1 is a schematic view showing an example of the shape of a susceptor and a heat insulating layer used in the present invention.

Claims (5)

電磁波照射による焼成を行なう加熱・焼結領域が少なくとも設けられているトンネル式連続焼成炉を用いて、焼成温度の異なる多種類の焼成体を連続して得る焼成体の焼成方法において、所定の被焼成体に対する焼成温度条件に設定されている上記加熱・焼結領域に、上記と異なる焼成温度を有する被焼成体を、該被焼成体の周囲を該被焼成体の有する電磁波発熱特性に応じた電磁波発熱特性を有する材料で形成したサセプターで囲った状態で挿入することを特徴とする電磁波を使用した焼成体の連続焼成方法。In a firing method of a fired body for continuously obtaining various types of fired bodies having different firing temperatures using a tunnel-type continuous firing furnace provided with at least a heating / sintering region for firing by electromagnetic wave irradiation, In the heating and sintering region set to the firing temperature condition for the fired body, a fired body having a firing temperature different from the above is set according to the electromagnetic wave heating characteristic of the fired body around the fired body. A method of continuously firing a fired body using electromagnetic waves, wherein the method is inserted while being surrounded by a susceptor formed of a material having electromagnetic wave heating characteristics. 更に、前記サセプターの周囲を耐火断熱材で囲う請求項1に記載の焼成体の連続焼成方法。The method for continuously firing a fired body according to claim 1, further comprising surrounding the susceptor with a refractory heat insulating material. 前記連続焼成炉を構成している炉材の耐熱温度が、前記サセプターの耐熱温度よりも低い請求項1又は2に記載の焼成体の連続焼成方法。The method for continuously firing a fired body according to claim 1, wherein a heat-resistant temperature of a furnace material constituting the continuous firing furnace is lower than a heat-resistant temperature of the susceptor. 前記連続焼成炉を構成している炉材の耐熱温度が、前記断熱材の耐熱温度よりも低い請求項2に記載の焼成体の連続焼成方法。The method for continuously firing a fired body according to claim 2, wherein the heat-resistant temperature of the furnace material constituting the continuous firing furnace is lower than the heat-resistant temperature of the heat insulating material. 請求項1〜4のいずれか1項に記載の焼成体の連続焼成方法を実施するための電磁波を使用した連続焼成炉であることを特徴とするトンネル式連続焼成炉。A continuous firing furnace using an electromagnetic wave for performing the continuous firing method for a fired body according to any one of claims 1 to 4.
JP2003153375A 2003-05-29 2003-05-29 Continuous firing method of fired body using electromagnetic wave and tunnel type continuous firing furnace Expired - Lifetime JP4383093B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003153375A JP4383093B2 (en) 2003-05-29 2003-05-29 Continuous firing method of fired body using electromagnetic wave and tunnel type continuous firing furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003153375A JP4383093B2 (en) 2003-05-29 2003-05-29 Continuous firing method of fired body using electromagnetic wave and tunnel type continuous firing furnace

Publications (2)

Publication Number Publication Date
JP2004352574A true JP2004352574A (en) 2004-12-16
JP4383093B2 JP4383093B2 (en) 2009-12-16

Family

ID=34048348

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003153375A Expired - Lifetime JP4383093B2 (en) 2003-05-29 2003-05-29 Continuous firing method of fired body using electromagnetic wave and tunnel type continuous firing furnace

Country Status (1)

Country Link
JP (1) JP4383093B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008045789A (en) * 2006-08-11 2008-02-28 Mino Ceramic Co Ltd Continuous burning apparatus
JP2008045783A (en) * 2006-08-11 2008-02-28 National Institutes Of Natural Sciences Continuous burning furnace and continuous burning method
CN102425942A (en) * 2011-11-08 2012-04-25 湖南顶立科技有限公司 Microwave high temperature atmosphere pusher kiln

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008045789A (en) * 2006-08-11 2008-02-28 Mino Ceramic Co Ltd Continuous burning apparatus
JP2008045783A (en) * 2006-08-11 2008-02-28 National Institutes Of Natural Sciences Continuous burning furnace and continuous burning method
CN102425942A (en) * 2011-11-08 2012-04-25 湖南顶立科技有限公司 Microwave high temperature atmosphere pusher kiln
CN102425942B (en) * 2011-11-08 2014-10-08 湖南顶立科技有限公司 Microwave high temperature atmosphere pusher kiln

Also Published As

Publication number Publication date
JP4383093B2 (en) 2009-12-16

Similar Documents

Publication Publication Date Title
US6512216B2 (en) Microwave processing using highly microwave absorbing powdered material layers
CN100432008C (en) Microwave baking furnace
US20030071037A1 (en) Microwave sintering furnace and microwave sintering method
CN1307121C (en) Method for processing ceramics using electromagnetic energy
WO2002032831A1 (en) Burning furnace, burnt body producing method, and burnt body
JP4214040B2 (en) Operation method of microwave heating furnace and microwave heating furnace
EP1249156A1 (en) Hybrid method for firing of ceramics
JPH01249665A (en) Method for calcining ceramic and tunnel kiln used therefor
JP2005506260A5 (en)
JP2000272973A (en) Microwave heating furnace and baking of refractory containing organic binder
JP4383093B2 (en) Continuous firing method of fired body using electromagnetic wave and tunnel type continuous firing furnace
JP2019500120A (en) Microwave furnace and sintering method
EP3095297B1 (en) A wire tray for a microwave oven or a cooking appliance with microwave heating function
JP3845777B2 (en) Firing furnace and method for producing fired body
JP2002130955A (en) Continuous baking furance, burned product and method for manufacturing the same
JP2006147553A (en) Furnace and method for baking carbon material
JPH02135689A (en) Ceramic heating container for microwave oven and manufacture thereof
JP3774410B2 (en) Refractory insulation for microwave firing furnaces
Wroe Microwave-assisted firing of ceramics
WO1999050178A1 (en) Method and device for continuously burning powder carbon
JP2003277157A (en) Kiln
JP2723903B2 (en) Induction electric furnace
JP2008132098A (en) Method of manufacturing exothermic eating utensil for microwave oven
JPH04292782A (en) Baking furnace
JP3663558B2 (en) Vacuum replacement atmosphere firing furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060509

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090406

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090519

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090612

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090915

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090918

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4383093

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131002

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term