JP2004352541A - Method for producing layered double hydroxide having organic acid between layers - Google Patents

Method for producing layered double hydroxide having organic acid between layers Download PDF

Info

Publication number
JP2004352541A
JP2004352541A JP2003150618A JP2003150618A JP2004352541A JP 2004352541 A JP2004352541 A JP 2004352541A JP 2003150618 A JP2003150618 A JP 2003150618A JP 2003150618 A JP2003150618 A JP 2003150618A JP 2004352541 A JP2004352541 A JP 2004352541A
Authority
JP
Japan
Prior art keywords
layered double
double hydroxide
organic acid
water
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003150618A
Other languages
Japanese (ja)
Other versions
JP2004352541A5 (en
Inventor
Kazuki Maeda
和樹 前田
Keiji Okuyama
啓嗣 奥山
Kenzo Fujii
謙三 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyoeisha Chemical Co Ltd
Original Assignee
Kyoeisha Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoeisha Chemical Co Ltd filed Critical Kyoeisha Chemical Co Ltd
Priority to JP2003150618A priority Critical patent/JP2004352541A/en
Publication of JP2004352541A publication Critical patent/JP2004352541A/en
Publication of JP2004352541A5 publication Critical patent/JP2004352541A5/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for easily and efficiently producing a layered double hydroxide having an organic acid between layers at a high purity in such a manner that the generation of a waste liquid is reduced and environmental pollution is not caused. <P>SOLUTION: In the method for producing the layered double hydroxide containing the organic acid between the layers, the water-soluble salt of a monovalent and/or trivalent metal, the water-soluble salt of a divalent metal or the oxide of the divalent metal and the organic acid and/or the metal salt thereof are mixed in alkaline water and thereafter the produced layered double hydroxide is collected. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、プラスチックの安定剤等の成分として用いられる層間に有機酸を含有する層状複水酸化物を、製造する方法に関する。
【0002】
【従来の技術】
プラスチックの安定剤・滑剤、化粧品・医薬製剤の成分等に脂肪酸類が用いられる。また、合成洗剤等に有機スルホン酸類が用いられる。
【0003】
これら脂肪酸や有機スルホン酸のような有機酸のアニオンがゲストとして、ホストである層状複水酸化物の層間にインターカレートされていると、単独のゲストやホストにはない優れた性質を発現する。このような層間に有機酸を有する層状複水酸化物は、安定剤等の成分のみならず、触媒等としても有用である。
【0004】
イオンサイズの大きな有機酸アニオンがインターカレートされた層状複水酸化物の製造方法として、特許文献1に、金属水酸化物と有機酸との他に、アニオン成分が共存しないという限定された条件下での水熱反応による方法が記載されている。また、非特許文献1に、層状複水酸化物のアニオン種と有機酸とのイオン交換による方法が記載されている。イオン交換は煩雑なうえ、イオン交換後の多量の廃液の処理が面倒である。
【0005】
【特許文献1】特開2000−290012号公報
【非特許文献1】M.Meyn, K.Beneke, G.Lagaly, Inorg. Chem., 29, 5201(1990)
【0006】
【発明が解決しようとする課題】
本発明は前記の課題を解決するためになされたもので、廃液の発生が少なく環境汚染を引き起こさず、簡便に効率良く、層間に有機酸を有する層状複水酸化物を製造できる方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
前記の目的を達成するためになされた本発明の層間に有機酸を含有する層状複水酸化物の製造方法は、1価および/または3価の金属の水溶性塩と、2価の金属の水溶性塩または2価の金属の酸化物と、有機酸および/またはその金属塩とを、アルカリ性の水中で混合した後、生成した層状複水酸化物を分取するというものである。
【0008】
前記1価、2価、および3価の金属の水溶性塩は、水酸化物塩以外の種々の水溶性無機塩であることが好ましく、中でも硫酸塩、炭酸塩、硝酸塩、塩酸塩であるとなお好ましい。層状複水酸化物は、水溶性塩の種類にかかわらず、その層間に有機酸アニオンがインターカレートされ、無機アニオンがインターカレートされないので、純度が高い。その詳細は明らかではないが、層状複水酸化物は、比較的大きな有機酸アニオンがちょうど収まるが、極小さな無機アニオンが素通りしてしまう程度の適度な層間距離の層を形成するためと推察される。
【0009】
前記1価の金属の水溶性塩がLi塩、前記2価の金属の水溶性塩がMg、Zn、Ca、Cu、Zr、Co、Ni、Fe、およびMnの少なくともいずれかの金属の塩、前記3価の金属の水溶性塩がAl、Fe、およびCoの少なくともいずれかの金属の塩であることが好ましい。これらの塩を水溶液にして混合してもよい。
【0010】
前記2価の金属の酸化物が、酸化マグネシウムであることが好ましく、か焼されているとなお好ましい。この酸化物を固体のまま混合してもよい。
【0011】
有機酸は、R−COOH(R−は炭素数1〜24のアルキル基、炭素数2〜24のアルケニル基、無置換またはアルキル基置換フェニル基のいずれか)で示されるモノカルボン酸であることが好ましく、より具体的にはステアリン酸、オレイン酸、パルミチン酸が挙げられる。有機酸は、R−SOH(R−はR−に同じ)で示されるモノスルホン酸であってもよく、より具体的にはドデシル硫酸、ドデシルベンゼン硫酸が挙げられる。また有機酸は、HOOC−R−COOH(−R−は炭素数0〜24のアルキル基、炭素数2〜24のアルケニル基、無置換またはアルキル基置換フェニレン基のいずれか)であってもよく、より具体的にはシュウ酸、マレイン酸、フマル酸が挙げられる。
【0012】
層状複水酸化物の製造方法は、1価および/または3価の金属の水溶性塩を0.1〜9モル当量、2価の金属の水溶性塩または2価の金属の酸化物を0.25〜50モル当量、有機酸および/またはその金属塩を0.1〜9モル当量、混合するものであることが好ましい。
【0013】
この混合は、室温乃至還流温度で行なわれることが好ましい。混合後、生成物を熟成させてもよい。
【0014】
分取は、濾過により行なわれることが好ましい。濾取した層状複水酸化物を水や有機溶媒で洗浄し乾燥してもよい。
【0015】
この製造方法によれば、簡便に収率良く、層間に有機酸を有する層状複水酸化物を製造できる。
【0016】
【実施例】
以下、本発明の層間に有機酸を有する層状複水酸化物の製造方法の実施例を詳細に説明する。
【0017】
実施例1および2は、本発明を適用する層間に有機酸を有する層状複水酸化物の製造方法である。比較例1は本発明を適用外の層状複水酸化物の製造方法である。比較例2および3は本発明を適用外の脂肪酸塩である。
【0018】
(実施例1)
滴下漏斗、攪拌機、冷却管、pHメーターを備えた四つ口フラスコに、工業用ステアリン酸(ステアリン酸65%、パルミチン酸35%の混合物)5.21g、およびイオン交換水29.5gを入れ、これを70℃に加熱しながら、48%水酸化カリウム水溶液2.2gを加えてpH値10.81に調整したステアリン酸カリウム水溶液を調製した。硫酸マグネシウム7水和物12.1gおよび硫酸アルミニウム14水和物5.7gの混合物を20.1gのイオン交換水に加え、これを70℃に加熱し溶解させた混合金属水溶液を調製した。ステアリン酸カリウム水溶液に、この混合金属水溶液を滴下しながら、その反応混合液のpH値が8〜11になるように随時48%水酸化カリウム水溶液にて調整し、75〜80℃で保持して撹拌し混和した。滴下終了後、75〜80℃で6時間熟成を行なった。熟成後、生成した沈殿物を濾過し、イオン交換水で洗浄し、常温で乾燥すると、層間にインターカレートされた有機酸を有する層状複水酸化物が、13.2g得られた。この層状複水酸化物に含有されるMg2+およびAl3+を原子吸光度分析法により定量した。また、この層状複水酸化物に含有される有機酸は、酸分解法により定量した。なお、酸分解法とは、試料を5g量り取り、容量200mLの標線付きメスフラスコに入れ、次いで沸騰石を二、三個入れ、水を50mL加え、更に白塩酸(濃塩酸)を50mL加えて加熱沸騰させ、油分の分離を確認した後、油分が標線部に入るように温度約80℃で濃度約5%の食塩水を加え、標線上下の数値差から油分量を測定するというものである。
【0019】
その結果、層間に有機酸を有する層状複水酸化物は、
Mg2.6Al1.0(OH)7.2(Stearate)1.0・3.5HOという組成式で示されるものであると同定された。
【0020】
(実施例2)
滴下漏斗、攪拌機、冷却管、pHメーターを備えた四つ口フラスコに、アルミン酸ナトリウム0.066molを入れて、イオン交換水300mlで溶解させた。この水溶液に、550℃でか焼した酸化マグネシウム0.11molを添加し、80℃で5分間撹拌した。次いで、0.066molの工業用ステアリン酸ナトリウム水溶液の300mlを加え、80℃で3時間加熱熟成を行った。この間、反応溶液のpH値は12〜13であった。生成した沈殿物を濾過し、イオン交換水で洗浄し、常温で乾燥すると、層間にインターカレートされた有機酸を有する層状複水酸化物が18.2g得られた。そして、得られた有機酸および脂肪酸をインターカレートした層状複水酸化物に含有するMg2+およびAl3+を原子吸光度分析法により定量した。また、この層状複水酸化物に含有される有機酸は、酸分解法により定量した。
【0021】
その結果、層間に有機酸を有する層状複水酸化物は、
Mg3.1Al1.0(OH)8.2(Stearate)1.0・4.2HOという組成式で示されるものであると同定された。
【0022】
(比較例1)
硫酸マグネシウム7水和物12.1gおよび硫酸アルミニウム14水和物5.7gを温度60〜70℃でイオン交換水20.1gに加熱溶解し、混合金属水溶液を調製した。滴下漏斗、攪拌機、冷却管、pHメーターを備えた四つ口フラスコに、イオン交換水29.5gを加え温度70℃に加熱した。これに、この混合金属水溶液を滴下しながら、その反応混合液のpH値が8〜11になるように随時48%水酸化カリウム水溶液にて調整し、75〜80℃保持して攪拌し混和した。滴下終了後、75〜80℃で6時間熟成を行った。熟成後、生成した沈殿物を濾過し、イオン交換水で洗浄し、常温で乾燥すると、層間にインターカレートされた硫酸イオンを有する層状複水酸化物が得られた。この層状複水酸化物に含有されるMg2+およびAl3+を原子吸光度分析法により定量した。また、硫酸イオンはイオンクロマトグラフィにより定量した。
【0023】
その結果、層間に硫酸イオンを有する層状複水酸化物は、
Mg2.6Al1.0(OH)7.2(SO0.5・2.9HOという組成式で示されるものであると同定された。
【0024】
(比較例2)
層状複水酸化物に該当しない脂肪酸マグネシウム塩として、市販のステアリン酸マグネシウムを用いた。
【0025】
(比較例3)
層状複水酸化物に該当しない脂肪酸アルミニウム塩として、市販のステアリン酸アルミニウムを用いた。
【0026】
次に、立体構造を明らかにするため実施例1〜2および比較例1の層状複水酸化物と、比較例2〜3の塩とについて、X線回折測定試験を行った。
【0027】
(X線回折測定試験)
X線回折測定には、X線回折装置を使用し、対陰極に銅(Cu Kα λ=1.54Åとする)を採用し、管電圧40kV,管電流100mA、スキャンスピード2.00°/minとした。測定角度範囲2θ=2〜65°の範囲内でX線を照射し、回折図を得た。あわせて、それのピークの先端から2θを求め、面間隔dをBraggの式(nλ=2dsinθ)に従い算出した。
【0028】
実施例1〜2の層状複水酸化物の回折図を図1に、比較例1の層状複水酸化物と比較例2〜3の塩との回折図を図2に、夫々示す。なお、回折図において、横軸は測定角度範囲を表し、縦軸は回折強度を表す。
【0029】
図1に示す実施例1の層状複水酸化物の回折図の回折パターンは、図2に示す比較例1の層状複水酸化物および比較例2〜3の塩の回折図のいずれの回折パターンとも一致しない。実施例1の層状複水酸化物は、そのX線回折の結果を格子定数c=29.9Å、a=3.04Åの六方晶系として指数付けすると(001)、(002)、(003)、(004)、(005)、(006)、(007)という回折ピークが多数観測されるから、c軸方向に積層した層状構造を持っていると確認された。また、それの格子定数aの値は、層状複水酸化物様化合物として一般的に報告されている値(3.0Å)と一致することからも、実施例1の層状複水酸化物はその立体構造が支持される。
【0030】
一方、格子定数cの値は、比較例1の層状複水酸化物、および層間に炭酸イオンをインターカレートした別な層状複水酸化物(c=7.6Å)よりも大きな値を示す。このような結果が得られたのは、格子定数cの値から文献(S.Miyata, Clays Clay Miner., 23, 369(1975))記載の層の厚み4.8Åを差引いた値25ű6.0Åが、文献記載(コーン・スタンプ, “生化学”, 第4版, 東京化学同人(1978), p.338, 349)のステアリン酸イオンの分子長の値(23Å)とほぼ一致している。このことから、ステアリン酸イオンを有機酸イオンとして示し層状複水酸化物の層間にちょうど収まってインターカレートしている層状複水酸化物の部分構造の模式図を示す図3のような、立体構造を有していると考えられる。
【0031】
次に、実施例2の層状複水酸化物についてX線回折測定試験を行い、実施例1の層状複水酸化物の回折図の回折パターンと比較した。その結果を示す図1のとおり、実施例1および2の層状複水酸化物の回折パターンは、互いに一致した。従って、実施例2の層状複水酸化物も、層間に有機酸イオンをインターカレートしていると確認できた。
【0032】
【発明の効果】
以上、詳細に説明したように本発明の層間に有機酸を有する層状複水酸化物の製造方法によれば、簡便に効率良く製造できるうえ、得られた層状複水酸化物は、純度が高い。また、廃液の発生が少なく環境汚染を引き起こさない。
【0033】
この層状複水酸化物は、プラスチックの安定剤・滑剤、化粧品・医薬品の成分、触媒、吸着剤、金属材料の塑性加工用処理剤の成分として有用である。
【図面の簡単な説明】
【図1】本発明を適用する製造方法により得られた層間に有機酸を有する層状複水酸化物をX線結晶回折測定した回折図である。
【図2】本発明を適用外の製造方法により得られた層状複水酸化物、および有機酸塩をX線結晶回折測定した回折図である。
【図3】本発明を適用する製造方法により得られた層間に有機酸を有する層状複水酸化物の部分構造を示す模式図である。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing a layered double hydroxide containing an organic acid between layers used as a component such as a stabilizer for plastics.
[0002]
[Prior art]
Fatty acids are used as stabilizers and lubricants for plastics, components of cosmetics and pharmaceutical preparations, and the like. Organic sulfonic acids are used in synthetic detergents and the like.
[0003]
When the anion of an organic acid such as a fatty acid or an organic sulfonic acid is intercalated as a guest between layers of the layered double hydroxide as a host, it exhibits excellent properties not found in a single guest or a host. . Such a layered double hydroxide having an organic acid between layers is useful not only as a component such as a stabilizer but also as a catalyst.
[0004]
As a method for producing a layered double hydroxide in which an organic acid anion having a large ionic size is intercalated, Patent Document 1 discloses a limited condition that, besides a metal hydroxide and an organic acid, an anionic component does not coexist. The method by hydrothermal reaction below is described. Non-Patent Document 1 describes a method by ion exchange between an anionic species of a layered double hydroxide and an organic acid. The ion exchange is complicated and the treatment of a large amount of waste liquid after the ion exchange is troublesome.
[0005]
[Patent Document 1] Japanese Patent Application Laid-Open No. 2000-290012 [Non-Patent Document 1] Meyn, K .; Beneke, G .; Lagally, Inorg. Chem. , 29, 5201 (1990).
[0006]
[Problems to be solved by the invention]
The present invention has been made in order to solve the above-mentioned problems, and provides a method capable of easily and efficiently producing a layered double hydroxide having an organic acid between layers without generating waste liquid and causing less environmental pollution. The purpose is to:
[0007]
[Means for Solving the Problems]
The method for producing a layered double hydroxide containing an organic acid between layers according to the present invention, which has been made to achieve the above object, comprises a water-soluble salt of a monovalent and / or trivalent metal, After mixing a water-soluble salt or a divalent metal oxide with an organic acid and / or its metal salt in alkaline water, the resulting layered double hydroxide is fractionated.
[0008]
The monovalent, divalent, and trivalent metal water-soluble salts are preferably various water-soluble inorganic salts other than hydroxide salts, and among them, sulfates, carbonates, nitrates, and hydrochlorides. Still preferred. Regardless of the type of water-soluble salt, the layered double hydroxide has a high purity because the organic acid anion is intercalated between the layers and the inorganic anion is not intercalated. Although the details are not clear, it is presumed that the layered double hydroxide forms a layer having an appropriate interlayer distance such that a relatively large organic acid anion can just fit in, but a very small inorganic anion can pass through. You.
[0009]
Wherein the monovalent metal water-soluble salt is a Li salt, and the divalent metal water-soluble salt is a salt of at least one of Mg, Zn, Ca, Cu, Zr, Co, Ni, Fe, and Mn; The water-soluble salt of a trivalent metal is preferably a salt of at least one of Al, Fe and Co. These salts may be made into an aqueous solution and mixed.
[0010]
The divalent metal oxide is preferably magnesium oxide, more preferably calcined. This oxide may be mixed in a solid state.
[0011]
The organic acid is a monocarboxylic acid represented by R 1 —COOH (R 1 — is an alkyl group having 1 to 24 carbon atoms, an alkenyl group having 2 to 24 carbon atoms, or an unsubstituted or alkyl-substituted phenyl group). It is preferable that stearic acid, oleic acid, and palmitic acid be used. Organic acids, R 2 -SO 3 H (R 2 - is R 1 - same as) may be a monosulfonic acid represented by dodecyl sulfate, dodecyl benzene sulfate and the like and more specifically. The organic acid, HOOC-R 3 -COOH (-R 3 - is either an alkyl group, an alkenyl group having 2 to 24 carbon atoms, an unsubstituted or alkyl-substituted phenylene group 0-24 carbon atoms) a And more specifically, oxalic acid, maleic acid, and fumaric acid.
[0012]
The method for producing the layered double hydroxide is as follows: 0.1 to 9 molar equivalents of a water-soluble salt of a monovalent and / or trivalent metal; It is preferable that the organic acid and / or its metal salt is mixed in an amount of 0.1 to 9 molar equivalents.
[0013]
This mixing is preferably performed at room temperature to reflux temperature. After mixing, the product may be aged.
[0014]
Preferably, the fractionation is performed by filtration. The filtered layered double hydroxide may be washed with water or an organic solvent and dried.
[0015]
According to this production method, a layered double hydroxide having an organic acid between layers can be produced simply and with good yield.
[0016]
【Example】
Hereinafter, Examples of the method for producing a layered double hydroxide having an organic acid between layers according to the present invention will be described in detail.
[0017]
Examples 1 and 2 are methods for producing a layered double hydroxide having an organic acid between layers to which the present invention is applied. Comparative Example 1 is a method for producing a layered double hydroxide to which the present invention is not applied. Comparative Examples 2 and 3 are fatty acid salts to which the present invention is not applied.
[0018]
(Example 1)
In a four-necked flask equipped with a dropping funnel, a stirrer, a condenser, and a pH meter, 5.21 g of industrial stearic acid (a mixture of 65% stearic acid and 35% palmitic acid) and 29.5 g of ion-exchanged water were added. While heating the mixture to 70 ° C., 2.2 g of a 48% aqueous potassium hydroxide solution was added to adjust the pH value to 10.81 to prepare an aqueous potassium stearate solution. A mixture of 12.1 g of magnesium sulfate heptahydrate and 5.7 g of aluminum sulfate decahydrate was added to 20.1 g of ion-exchanged water, and the mixture was heated to 70 ° C. and dissolved to prepare a mixed metal aqueous solution. While the mixed metal aqueous solution was dropped into the potassium stearate aqueous solution, the reaction mixture was adjusted with a 48% aqueous potassium hydroxide solution as needed so that the pH value of the reaction mixture became 8 to 11, and kept at 75 to 80 ° C. Stir and mix. After completion of the dropwise addition, aging was performed at 75 to 80 ° C. for 6 hours. After aging, the resulting precipitate was filtered, washed with ion-exchanged water, and dried at room temperature, to obtain 13.2 g of a layered double hydroxide having an organic acid intercalated between layers. Mg 2+ and Al 3+ contained in this layered double hydroxide were quantified by atomic absorption spectrometry. The organic acid contained in the layered double hydroxide was quantified by an acid decomposition method. In the acid decomposition method, 5 g of a sample was weighed and placed in a 200-mL volumetric flask with a marked line, and then two or three boiling stones were added, 50 mL of water was added, and 50 mL of white hydrochloric acid (concentrated hydrochloric acid) was further added. After heating and boiling to confirm the separation of the oil, add about 5% saline solution at a temperature of about 80 ° C so that the oil enters the marked line, and measure the oil content from the numerical difference between the upper and lower lines. Things.
[0019]
As a result, the layered double hydroxide having an organic acid between the layers,
Mg 2.6 was identified as being Al 1.0 (OH) 7.2 (Stearate ) 1.0 · 3.5H 2 O as those represented by the composition formula.
[0020]
(Example 2)
0.066 mol of sodium aluminate was placed in a four-necked flask equipped with a dropping funnel, a stirrer, a condenser, and a pH meter, and dissolved in 300 ml of ion-exchanged water. 0.11 mol of magnesium oxide calcined at 550 ° C. was added to this aqueous solution, followed by stirring at 80 ° C. for 5 minutes. Next, 300 ml of 0.066 mol of an aqueous solution of industrial sodium stearate was added, and the mixture was heated and aged at 80 ° C. for 3 hours. During this time, the pH value of the reaction solution was 12-13. The resulting precipitate was filtered, washed with ion-exchanged water, and dried at room temperature, to obtain 18.2 g of a layered double hydroxide having an organic acid intercalated between layers. Then, Mg 2+ and Al 3+ contained in the obtained layered double hydroxide obtained by intercalating the organic acid and the fatty acid were quantified by atomic absorption spectrometry. The organic acid contained in the layered double hydroxide was quantified by an acid decomposition method.
[0021]
As a result, the layered double hydroxide having an organic acid between the layers,
Mg 3.1 was identified as being Al 1.0 (OH) 8.2 (Stearate ) that 1.0 · 4.2H 2 O as represented by the composition formula.
[0022]
(Comparative Example 1)
12.1 g of magnesium sulfate heptahydrate and 5.7 g of aluminum sulfate decahydrate were heated and dissolved in 20.1 g of ion-exchanged water at a temperature of 60 to 70 ° C. to prepare a mixed metal aqueous solution. 29.5 g of ion-exchanged water was added to a four-necked flask equipped with a dropping funnel, a stirrer, a condenser, and a pH meter, and heated to 70 ° C. While the mixed metal aqueous solution was added dropwise thereto, the reaction mixture was adjusted with a 48% aqueous solution of potassium hydroxide as needed so that the pH value of the reaction mixture became 8 to 11, kept at 75 to 80 ° C, stirred and mixed. . After completion of the dropwise addition, aging was performed at 75 to 80 ° C for 6 hours. After aging, the formed precipitate was filtered, washed with ion-exchanged water, and dried at room temperature to obtain a layered double hydroxide having sulfate ions intercalated between layers. Mg 2+ and Al 3+ contained in this layered double hydroxide were quantified by atomic absorption spectrometry. The sulfate ion was quantified by ion chromatography.
[0023]
As a result, the layered double hydroxide having sulfate ions between the layers is:
Mg 2.6 Al 1.0 (OH) 7.2 (SO 4 ) 0.5 · 2.9 H 2 O was identified as the one represented by the composition formula.
[0024]
(Comparative Example 2)
Commercially available magnesium stearate was used as a fatty acid magnesium salt which does not correspond to the layered double hydroxide.
[0025]
(Comparative Example 3)
Commercially available aluminum stearate was used as a fatty acid aluminum salt which does not correspond to a layered double hydroxide.
[0026]
Next, an X-ray diffraction measurement test was performed on the layered double hydroxides of Examples 1 and 2 and Comparative Example 1 and the salts of Comparative Examples 2 and 3 to clarify the three-dimensional structure.
[0027]
(X-ray diffraction measurement test)
For the X-ray diffraction measurement, an X-ray diffractometer was used, copper (Cu Kα λ = 1.54 °) was adopted for the counter electrode, a tube voltage of 40 kV, a tube current of 100 mA, and a scan speed of 2.00 ° / min. And X-rays were irradiated within the measurement angle range 2θ = 2 to 65 ° to obtain a diffraction diagram. In addition, 2θ was determined from the tip of the peak, and the plane distance d was calculated according to Bragg's formula (nλ = 2d sin θ).
[0028]
FIG. 1 shows the diffraction diagrams of the layered double hydroxides of Examples 1 and 2, and FIG. 2 shows the diffraction diagrams of the layered double hydroxide of Comparative Example 1 and the salts of Comparative Examples 2 and 3. In the diffraction diagram, the horizontal axis represents the measurement angle range, and the vertical axis represents the diffraction intensity.
[0029]
The diffraction pattern of the diffraction diagram of the layered double hydroxide of Example 1 shown in FIG. 1 is any of the diffraction patterns of the layered double hydroxide of Comparative Example 1 and the salts of Comparative Examples 2 and 3 shown in FIG. Does not match. The layered double hydroxide of Example 1 is indexed as a hexagonal system having a lattice constant c 0 = 29.9 ° and a 0 = 3.04 ° with respect to the result of the X-ray diffraction, (001), (002), ( Since many diffraction peaks of (003), (004), (005), (006), and (007) were observed, it was confirmed that they had a layered structure laminated in the c-axis direction. Further, since the value of the lattice constant a 0 thereof coincides with the value (3.0 °) generally reported as a layered double hydroxide-like compound, the layered double hydroxide of Example 1 The three-dimensional structure is supported.
[0030]
On the other hand, the value of the lattice constant c 0 is larger than that of the layered double hydroxide of Comparative Example 1 and another layered double hydroxide in which carbonate ions are intercalated between layers (c 0 = 7.6 °). Show. Such a result was obtained because a value obtained by subtracting the layer thickness 4.8 ° described in the literature (S. Miyata, Clays Clay Miner., 23, 369 (1975)) from the value of the lattice constant c 0 was 25 ° ±. 6.0 ° almost coincides with the molecular length value (23 °) of the stearic acid ion described in the literature (Cone Stamp, “Biochemistry”, 4th edition, Tokyo Chemical Dojin (1978), p. 338, 349). ing. From this, a three-dimensional structure as shown in FIG. 3 showing a partial structure of a layered double hydroxide that shows stearic acid ion as an organic acid ion and is just fitted between and intercalated between the layers of the layered double hydroxide. It is considered to have a structure.
[0031]
Next, an X-ray diffraction measurement test was performed on the layered double hydroxide of Example 2 and compared with the diffraction pattern of the diffraction diagram of the layered double hydroxide of Example 1. As shown in FIG. 1 showing the results, the diffraction patterns of the layered double hydroxides of Examples 1 and 2 coincided with each other. Therefore, it was confirmed that the layered double hydroxide of Example 2 also intercalated organic acid ions between layers.
[0032]
【The invention's effect】
As described above in detail, according to the method for producing a layered double hydroxide having an organic acid between layers according to the present invention, the layered double hydroxide can be easily and efficiently produced, and the obtained layered double hydroxide has a high purity. . In addition, the generation of waste liquid is small and does not cause environmental pollution.
[0033]
The layered double hydroxide is useful as a stabilizer / lubricant for plastics, a component for cosmetics / medicinal products, a catalyst, an adsorbent, and a component for a processing agent for plastic working of metal materials.
[Brief description of the drawings]
FIG. 1 is a diffraction diagram of a layered double hydroxide having an organic acid between layers obtained by a production method to which the present invention is applied, which is measured by X-ray crystal diffraction.
FIG. 2 is a diffraction diagram of the layered double hydroxide and the organic acid salt obtained by a production method which does not apply the present invention, which are measured by X-ray crystal diffraction.
FIG. 3 is a schematic view showing a partial structure of a layered double hydroxide having an organic acid between layers obtained by a production method to which the present invention is applied.

Claims (6)

1価および/または3価の金属の水溶性塩と、2価の金属の水溶性塩または2価の金属の酸化物と、有機酸および/またはその金属塩とを、アルカリ性の水中で混合した後、生成した層状複水酸化物を分取することを特徴とする層間に有機酸を有する層状複水酸化物の製造方法。A water-soluble salt of a monovalent and / or trivalent metal, a water-soluble salt of a divalent metal or an oxide of a divalent metal, and an organic acid and / or a metal salt thereof are mixed in alkaline water. Thereafter, a method for producing a layered double hydroxide having an organic acid between layers, wherein the produced layered double hydroxide is fractionated. 前記1価、2価、および3価の金属の水溶性塩が、硫酸塩、炭酸塩、硝酸塩、塩酸塩であることを特徴とする請求項1に記載の層間に有機酸を有する層状複水酸化物の製造方法。The layered double water having an organic acid between layers according to claim 1, wherein the water-soluble salts of monovalent, divalent, and trivalent metals are sulfates, carbonates, nitrates, and hydrochlorides. A method for producing an oxide. 前記1価の金属の水溶性塩がLi塩、前記2価の金属の水溶性塩がMg、Zn、Ca、Cu、Zr、Co、Ni、Fe、およびMnの少なくともいずれかの金属の塩、前記3価の金属の水溶性塩がAl、Fe、およびCoの少なくともいずれかの金属の塩であることを特徴とする請求項1に記載の層間に有機酸を有する層状複水酸化物の製造方法。Wherein the water-soluble salt of the monovalent metal is a Li salt, and the water-soluble salt of the divalent metal is a salt of at least one of Mg, Zn, Ca, Cu, Zr, Co, Ni, Fe, and Mn; 2. The method of claim 1, wherein the water-soluble salt of a trivalent metal is a salt of at least one of Al, Fe, and Co. 3. Method. 前記2価の金属の酸化物が、酸化マグネシウムであることを特徴とする請求項1に記載の層間に有機酸を有する層状複水酸化物の製造方法。The method for producing a layered double hydroxide having an organic acid between layers according to claim 1, wherein the oxide of the divalent metal is magnesium oxide. 前記有機酸が、R−COOH(R−は炭素数1〜24のアルキル基、炭素数2〜24のアルケニル基、無置換またはアルキル基置換フェニル基のいずれか)、R−SOH(R−はR−に同じ)、および/またはHOOC−R−COOH(−R−は炭素数0〜24のアルキル基、炭素数2〜24のアルケニル基、無置換またはアルキル基置換フェニレン基のいずれか)であることを特徴とする請求項1に記載の層間に有機酸を有する層状複水酸化物の製造方法。The organic acid, R 1 -COOH (R 1 - or an alkyl group, an alkenyl group having 2 to 24 carbon atoms, an unsubstituted or alkyl group-substituted phenyl group having 1 to 24 carbon atoms), R 2 -SO 3 H (R 2 -is the same as R 1- ), and / or HOOC-R 3 -COOH (-R 3 -is an alkyl group having 0 to 24 carbon atoms, an alkenyl group having 2 to 24 carbon atoms, unsubstituted or alkyl 2. The method for producing a layered double hydroxide having an organic acid between layers according to claim 1, which is any one of a group-substituted phenylene group). 1価および/または3価の金属の水溶性塩を0.1〜9モル当量、2価の金属の水溶性塩または2価の金属の酸化物を0.25〜50モル当量、有機酸および/またはその金属塩を0.1〜9モル当量とすることを特徴とする請求項1に記載の層間に有機酸を有する層状複水酸化物の製造方法。0.1 to 9 molar equivalents of a water-soluble salt of a monovalent and / or trivalent metal; 0.25 to 50 molar equivalents of a water-soluble salt of a divalent metal or an oxide of a divalent metal; 2. The method for producing a layered double hydroxide having an organic acid between layers according to claim 1, wherein the metal salt is 0.1 to 9 molar equivalents.
JP2003150618A 2003-05-28 2003-05-28 Method for producing layered double hydroxide having organic acid between layers Pending JP2004352541A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003150618A JP2004352541A (en) 2003-05-28 2003-05-28 Method for producing layered double hydroxide having organic acid between layers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003150618A JP2004352541A (en) 2003-05-28 2003-05-28 Method for producing layered double hydroxide having organic acid between layers

Publications (2)

Publication Number Publication Date
JP2004352541A true JP2004352541A (en) 2004-12-16
JP2004352541A5 JP2004352541A5 (en) 2006-07-06

Family

ID=34046368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003150618A Pending JP2004352541A (en) 2003-05-28 2003-05-28 Method for producing layered double hydroxide having organic acid between layers

Country Status (1)

Country Link
JP (1) JP2004352541A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1293832C (en) * 2005-07-06 2007-01-10 北京化工大学 Magnetic sandwiching layer structure slow-releasing type sorbic acid, and its prepn. method
JP2007262221A (en) * 2006-03-28 2007-10-11 Kyoeisha Chem Co Ltd Resin reinforcer, and resin composite material containing the same
JP2009518266A (en) * 2005-12-06 2009-05-07 アクゾ ノーベル ナムローゼ フェンノートシャップ Clay containing organic ions to balance charge and nanocomposite material containing the clay
JP2009518265A (en) * 2005-12-06 2009-05-07 アクゾ ノーベル ナムローゼ フェンノートシャップ Process for preparing organically modified layered double hydroxides
WO2012102150A1 (en) * 2011-01-27 2012-08-02 独立行政法人物質・材料研究機構 Water-swelling layered double hydroxide, method for producing same, gel or sol substance, double hydroxide nanosheet, and method for producing same
JP2013174190A (en) * 2012-02-27 2013-09-05 National Institute For Materials Science Actuator using layered double hydroxide, and control method thereof
KR101590349B1 (en) * 2015-11-24 2016-02-18 (주)엔나노텍 Preparation method of layered double hydroxide using waste acid from process of organo-metal catalyst production
CN110898797A (en) * 2019-11-27 2020-03-24 清华大学深圳国际研究生院 Preparation method of layered double hydroxide, layered double hydroxide and application
CN110898796A (en) * 2019-11-27 2020-03-24 清华大学深圳国际研究生院 Preparation method of magnetic layered double hydroxide, magnetic layered double hydroxide and application thereof

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1293832C (en) * 2005-07-06 2007-01-10 北京化工大学 Magnetic sandwiching layer structure slow-releasing type sorbic acid, and its prepn. method
JP2009518266A (en) * 2005-12-06 2009-05-07 アクゾ ノーベル ナムローゼ フェンノートシャップ Clay containing organic ions to balance charge and nanocomposite material containing the clay
JP2009518265A (en) * 2005-12-06 2009-05-07 アクゾ ノーベル ナムローゼ フェンノートシャップ Process for preparing organically modified layered double hydroxides
JP2007262221A (en) * 2006-03-28 2007-10-11 Kyoeisha Chem Co Ltd Resin reinforcer, and resin composite material containing the same
WO2012102150A1 (en) * 2011-01-27 2012-08-02 独立行政法人物質・材料研究機構 Water-swelling layered double hydroxide, method for producing same, gel or sol substance, double hydroxide nanosheet, and method for producing same
JP5910887B2 (en) * 2011-01-27 2016-05-11 国立研究開発法人物質・材料研究機構 Water-swellable layered double hydroxide and production method thereof, gel-like or sol-like substance, double hydroxide nanosheet and production method thereof
US9545615B2 (en) 2011-01-27 2017-01-17 National Institute For Materials Science Water-swelling layered double hydroxide, method for producing same, gel or sol substance, double hydroxide nanosheet, and method for producing same
JP2013174190A (en) * 2012-02-27 2013-09-05 National Institute For Materials Science Actuator using layered double hydroxide, and control method thereof
KR101590349B1 (en) * 2015-11-24 2016-02-18 (주)엔나노텍 Preparation method of layered double hydroxide using waste acid from process of organo-metal catalyst production
CN110898797A (en) * 2019-11-27 2020-03-24 清华大学深圳国际研究生院 Preparation method of layered double hydroxide, layered double hydroxide and application
CN110898796A (en) * 2019-11-27 2020-03-24 清华大学深圳国际研究生院 Preparation method of magnetic layered double hydroxide, magnetic layered double hydroxide and application thereof

Similar Documents

Publication Publication Date Title
JP2010531801A (en) IZM-2 crystalline solid and process for its preparation
Fogg et al. Synthesis and anion exchange chemistry of rhombohedral Li/Al layered double hydroxides
Crepaldi et al. Anion exchange in layered double hydroxides by surfactant salt formation
US8809561B2 (en) Hybrid, organic-inorganic, crystalline, porous silicates and metal-silicates
Szabados et al. Ultrasonically-enhanced mechanochemical synthesis of CaAl-layered double hydroxides intercalated by a variety of inorganic anions
JP2004352541A (en) Method for producing layered double hydroxide having organic acid between layers
McIntyre et al. Synthesis and anion exchange chemistry of new intercalation hosts containing lanthanide cations, Ln2 (OH) 5 (NO3)· xH2O (Ln= Y, Gd–Lu)
JP7360456B2 (en) Zeolite synthesis and directing agent
KR20210013692A (en) Method for the synthesis of very high purity AFX-structured zeolites in the presence of organic nitrogen-containing structuring agents
JP2017114747A (en) Layering double hydroxide
Merkens et al. Bimetallic coordination networks based on Al (acacCN) 3: a building block between inertness and lability
Baruah et al. The effect of particle size of clay on the viscosity build up property of mixed metal hydroxides (MMH) in the low solid-drilling mud compositions
KR102150317B1 (en) Method for preparing a composition comprising coloured silicate mineral particles and a composition comprising coloured silicate mineral particles
JP7422091B2 (en) Method for synthesizing a composite material consisting of a mixture of AFX and BEA structured zeolites in the presence of an organic nitrogen-containing structuring agent
Piccione et al. A new structure-directing agent for the synthesis of pure-phase ZSM-11
Prévot et al. Intracrystalline alkylation of benzoate ions into layered double hydroxides
JP7131753B2 (en) Method for producing zeolite, chabazite-type zeolite, and ion exchanger comprising the same
Yuan et al. Preparation and characterization of L-aspartic acid-intercalated layered double hydroxide
JP2003221226A (en) Layered double hydroxide containing glycine as intercalating anion
Rajamathi et al. Hexacyanoferrate-intercalated nickel zinc hydroxy double salts
Song et al. Controlled synthesis of platy potassium titanates from potassium magnesium titanate
Kolinjavadi et al. Nickel-zinc hydroxy salts with varying amounts of octahedral Zn 2+: trends in stability and selectivity in anion exchange reaction
Török et al. Mixed oxides without added noble metals derived from layered double hydroxides of the hydrotalcite type in the hydrodechlorination reaction of trichloroethylene
Moghadamzadeh et al. Experimental study of adsorption properties of acid and thermal treated bentonite from Tehran (Iran)
KR101685801B1 (en) Preparation method of layered metal hydroxide

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060518

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060518

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090210

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090609