JP2004351501A - Method and equipment for cooling of hot rolled metal sheet, and high tension hot rolled steel sheet and its manufacturing method - Google Patents

Method and equipment for cooling of hot rolled metal sheet, and high tension hot rolled steel sheet and its manufacturing method Download PDF

Info

Publication number
JP2004351501A
JP2004351501A JP2003154653A JP2003154653A JP2004351501A JP 2004351501 A JP2004351501 A JP 2004351501A JP 2003154653 A JP2003154653 A JP 2003154653A JP 2003154653 A JP2003154653 A JP 2003154653A JP 2004351501 A JP2004351501 A JP 2004351501A
Authority
JP
Japan
Prior art keywords
hot
width
cooling
steel sheet
rolled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003154653A
Other languages
Japanese (ja)
Inventor
Naoki Nakada
直樹 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2003154653A priority Critical patent/JP2004351501A/en
Publication of JP2004351501A publication Critical patent/JP2004351501A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cooling method and cooling equipment for a hot rolled metal sheet with a uniform coiling temperature distribution in the width direction, and a high tension hot rolled steel sheet with a small variation of yield strength in the width direction. <P>SOLUTION: A steel material containing 0.01-0.2% of C, 0.01-1.5% of Si, 0.1-3% of Mn, ≤0.04% of P, ≤0.02% of S, ≤0.1% of Al and ≤0.005% of N is subjected to roughing and finishing rolling to produce a hot rolled steel sheet. While cooling in the cooling zone, the proximity of both width edges of the steel sheet is masked from cooling water supplied, and the cooling water of the masked portion is shifted from the proximity of both width edges to the center side of the width to cool the specific region intensively. Thus, the high tension hot rolled steel sheet with small variation in the yield strength is produced, which has the yield strength difference between the maximum and the minimum of not larger than 30 MPa in the region from 20mm in both width edges to the width center. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、熱延金属板の冷却方法および冷却装置に係り、とくに幅方向の降伏強さの変動を抑制した、板幅が500mm 以上の高張力熱延鋼板およびその製造方法に関する。なお、本発明における鋼板は、鋼帯をも含むものとする。
【0002】
【従来の技術】
熱間圧延とは、金属材料を数百〜千数百度に加熱した後、熱間圧延ライン上に抽出し、一対のロールで挟圧しつつそのロールを回転させ、薄く延ばすことをいう。熱間圧延ラインとしては、3/4連続と呼ばれるタイプのものが多い。このタイプの熱間圧延ラインの一例を図11に示す。熱間圧延ライン100 では、通常、被圧延材8の搬送方向上流から下流に向かう順に、加熱炉10、複数の粗圧延機12、クロップシャー14、デスケーリング装置16、仕上圧延機18、冷却ゾーン22、コイラー(巻取装置)24が配置される。このタイプの熱間圧延ライン100 では、粗圧延機12は多くの場合、4基を有し、そのうち一部(多くの場合1基)が往復圧延を行い、残る圧延機が一方向圧延を行う場合が多く、このため、4基中3基が一方向圧延することから、3/4連続タイプという。なお、この3/4連続タイプには、例えば粗圧延機12が3基でそのうち1基又は2基が一方向のタイプなどの場合も含まれる。
【0003】
図11に示す熱間圧延ライン100 の例では、粗圧延機が3基でそのうち2基が往復圧延する。なお、図示されていないが、各設備間には多数のテーブルローラが配設され、これにより被圧延材8が搬送される。冷却ゾーン22のテーブルローラ群のことを、とくにランアウトテーブルと称することがある。なお、粗圧延機12、仕上圧延機18は複数配設されるため、それぞれRougher (粗圧延機)、Finisher(仕上圧延機)の頭文字を取り、各スタンドのナンバーを付与して、R1、R2、R3、F1、F2 … F7などと略称される。また、同様に、コイラー24も複数あり、号機ナンバーを付与して、DC1、DC2などと略称される。
【0004】
また、近年、薄スラブを連続鋳造し、粗圧延を経ずに直接仕上圧延する熱間圧延ラインも設置されている。このような熱間圧延ライン200 の一例を図12に示す。
熱間仕上圧延後の金属板(以下、金属帯も含む)に所望の冶金的特性を付与するために、通常、熱間仕上圧延機からコイラーへ金属板を搬送するランアウトテーブル上には、冷却ゾーン22として冷却装置が備えられる。金属板は冷却ゾーン22を通過し所望の巻取り温度まで冷却され、コイラー24により巻取られる。冷却の媒体としては、通常、水が用いられている。例えば、熱延鋼板の場合、巻取り温度は、所望の材質を付与するために大変重要であり、高い精度で制御する必要がある。
【0005】
冷却ゾーン22において、金属板の上表面を冷却するための冷却装置は、冷却能力が大きく装置のメンテナンスが容易な、パイプラミナーとよばれる、棒状の冷却水を金属板の上表面に落下させるものが多く用いられている。一方、金属板の下表面の冷却では、スプレーやパイプラミナーなど各種の冷却装置が用いられ、一定しない。
【0006】
従来から熱延金属板の冷却においては、熱延金属板が幅方向に均一に冷却されるように、熱延金属板幅方向の冷却水流量の分布を一定にすることが望ましいとされてきた。そのため、各ノズルから噴射される冷却水の方向は一定で、また各ノズルから噴射される冷却水流量も一定とし、複数のノズルを等間隔に設置して成るヘッダを、熱延金属板搬送方向に複数並べて冷却ゾーンに設置するのが一般的であった。しかし、従来から、熱延金属板の両幅エッジ付近は他の部分と比べて局部的によく冷却されることが知られている。なお、熱延金属板の両幅エッジ付近とは、熱延金属板の両幅最エッジから幅中央寄りに例えば概ね50mmずつ、最大で80mmまでの領域を指すのが一般的である。
【0007】
熱延金属板の両幅エッジ付近は、局部的によく冷却されることに起因して、局部的に巻取り温度が低くなり、その領域では所望の材質が得られない場合が多く、耳切り代として次工程の精製ラインその他で切り捨てられるのが一般的である。
この耳切り代をなるべく少なくするために、例えば、特許文献1には、厚鋼板(熱延金属板1)の端部(エッジ)を遮蔽樋6により遮蔽して、上部のヘッダ4を介しノズル5から供給される冷却水Wのうちの一部を、図13に示すように、厚鋼板(熱延金属板1)の両幅端部(エッジ)よりも外側に落下させるようにする、厚鋼板の冷却方法および装置が提案されている。特許文献1に記載された装置は、いわゆるエッジマスキング装置と呼ばれ、この装置を利用して厚鋼板の両幅エッジ付近の過冷却を抑制して、厚鋼板(熱延金属板)の幅方向温度分布を均一化することができ、厚鋼板(熱延金属板)の機械的ばらつき、歪発生の防止を図ることができるとしている。
【0008】
また、特許文献2には、鋼板の上面を冷却する冷却ゾーンを複数に分割し、分割されたゾーンごとに冷却水を鋼板の進行方向に向かって帯状のラミナーフローとなるように注水するとともに、鋼板の幅方向エッジ部近傍の冷却ゾーンの注水位置を鋼板の幅方向中央部の注水位置より鋼板の進行方向下流側にずらして冷却する鋼板の冷却方法が提案されている。特許文献2に記載された技術によれば、鋼板の幅方向に沿って均一に冷却することができ、材質のばらつきや鋼板の変形が少なくなるとしている。また、特許文献3、特許文献4等にも、鋼板の幅方向に均一な冷却を行うために、種々の提案がなされている。
【0009】
【特許文献1】
特開昭58−32511号公報
【特許文献2】
特開平11−57836号公報
【特許文献3】
特開平11−267736 号公報
【特許文献4】
特開2002−263724 号公報
【0010】
【発明が解決しようとする課題】
ところが、近年、幅方向に均質な材質を有する金属板の要請はますます高まりつつある。そのため、金属板の長手方向の温度制御に加えて、幅方向の温度制御が重要になってきており、冷却ゾーン22の入出側には、従来から備えられている、熱延金属板の幅中央部を長さ方向に連続的に測温する仕上出側温度計や巻取り温度測定用温度計に加えて、熱延金属板の幅方向の温度を計測する、幅方向温度計を設置するなどして対処している。とくに、近年、自動車の軽量化などのために品質要求がますます高度化しつつある高張力鋼板の製造においては、幅方向に均一でかつ高品質の金属板とするために巻取り温度の幅方向制御が重要となっている。
【0011】
高張力鋼板の熱間圧延に際しては、とくに仕上圧延における圧延荷重が高くなり、そのため、各圧延機のワークロールを回転駆動させるための電動機のトルクも高くなり、多量の電力を必要とする。圧延機の電動機のパワーには制約があるため、高張力鋼板の熱間仕上圧延では、比較的強度の小さい低炭素鋼板や極低炭素鋼板の熱間仕上圧延時よりも圧延速度を低くするのが一般的となっている。
【0012】
ところが、圧延速度を低くした場合に幅方向温度計を用いて仕上圧延後の鋼板の幅方向温度分布を測定したところ、仕上圧延機出側では鋼板の幅方向にほぼ平滑な温度分布であったにもかかわらず、冷却ゾーンで冷却されたのち巻取り前では、図14に示すようなM字型の温度分布になる傾向になる。すなわち、圧延速度が低い場合には、鋼板幅方向の巻取り温度の均一さが崩れるという問題があることがわかった。なお、ここで、図14に示すようなM字型の温度分布とは、鋼板の幅中央の温度が極小で、幅エッジに近づくにつれて温度が高くなりピークを示したのち、さらに幅エッジに近づくと温度が急激に低下するような幅方向温度分布をいうものとする。
【0013】
本発明者の調査によれば、この、鋼板温度が局部的に高くなりピークを示す領域は、鋼板の両幅エッジから100 〜200mm の位置に相当する領域で、鋼板の幅中央との温度差は、圧延速度や巻取り温度のレベルにもよるが80℃以上になる場合もあった。このM字型の温度分布の形状は、鋼板の幅が変化しても、そのピーク位置(d:鋼板両幅エッジからの距離)がほぼ一定していることもわかった。
【0014】
特許文献1〜4に記載されるような従来技術では、熱延金属板の幅エッジ付近が他の部分に比べ局部的に冷却されやすいのを抑制することは可能であるが、上記したような、熱延金属板幅方向の巻取り温度のM字型温度分布を抑制することはできない。
本発明は、上記したような従来の熱延金属板のM字型幅方向温度分布を解消し、幅方向に均一な巻取り温度分布とする、熱延金属板の冷却方法およびその冷却装置を提案することを第一の目的とする。また、本発明は、幅方向に降伏強さの変動が少ない高張力熱延鋼板およびその製造方法を提案することを第二の目的とする。
【0015】
【課題を解決するための手段】
本発明者は、上記した課題を達成するために、まず、仕上圧延後、冷却ゾーンで冷却水で冷却された熱延金属板の幅方向温度分布に不均一が生ずる理由について鋭意検討した。
熱延金属板の下表面を冷却する冷却水は、熱延金属板に向け噴射されるなどして供給された後、重力により落下する。このため、同じノズルを熱延金属板の幅方向に等間隔で設置するようにすれば、熱延金属板の幅方向に温度むらを生じることは少ない。一方、熱延金属板1の上表面を冷却する冷却水Wは、ノズル5から熱延金属板1上に落下した後、熱延金属板1上を流れ、両幅エッジ部からランアウトテーブル上に落ちる。この間に、熱延金属板1上で複雑な干渉流を作り出す。
【0016】
ヘッダ4からノズル5を介しパイプラミナー型の棒状の冷却水Wを熱延金属板1の上表面に落下させた場合に、熱延金属板1上で形成される冷却水の流れを模式的に図15に示す。熱延金属板1に衝突した後の冷却水は、熱延金属板1の搬送に伴って運ばれるかたちで搬送方向下流(矢印Aの方向)に流れる。そして、搬送方向下流に流れた冷却水は、搬送方向下流側で落下する冷却水Wのつくる壁に遮られるため、熱延金属板1の幅方向(矢印Bの方向)に流れる。このAおよびB方向の2つの方向の流れがある程度以上強くなると、落下してくる冷却水Wが、これらの流れがつくる水膜を破って熱延金属板1の表面に到達する力が不足するようになる。すなわち、落下してくる冷却水Wが熱延金属板1と直接接触する領域、いわゆるブラックスポットが小さくなり、冷却能力が低下する。
【0017】
ここで、上流から搬送方向に沿って熱延金属板1上を運ばれてくる冷却水の流量は熱延金属板1の幅方向位置によらない。一方、落下後の冷却水は左右に分かれて流れるため、熱延金属板1の幅中央ほど幅方向の流れの流量は小さくなり、両幅エッジに近づくほど幅方向の流れの流量が大きくなり、両幅エッジで最も大きくなる。すなわち、熱延金属板1の両幅エッジに近づくほど、B方向の流れが強くなり、落下してくる冷却水が金属板1と直接接触しにくくなり、冷却能力が低下することになる。したがって、両幅エッジ付近の局部的に巻取り温度が低くなる領域を除いて、両幅エッジに近づくほど、局部的に巻取り温度が高くなると考えられる。なお、両幅エッジ付近で、局部的に巻取り温度が低くなる理由は、図16に示すように、他の領域が2面でしか抜熱されないのに対し、両幅エッジでは3面抜熱されるためであると推察される。
【0018】
このようにして、仕上圧延後冷却ゾーンで冷却された熱延金属板の幅方向の温度分布に不均一が生じるものと考えられる。なお、この温度分布の不均一は圧延速度に大きく影響され、圧延速度が概ね10m/s以下となる場合に顕著となることを知見した。また、この熱延金属板幅方向温度分布の不均一は、巻取り温度の目標値が低いほど、すなわち熱延金属板上表面を冷却する際の温度降下代が大きいほど大きくなる。さらに、巻取り温度が500℃を下回るような場合には、局部的に温度降下が大きくなる、熱延金属板の両幅エッジ付近と、熱延金属板の幅中央域が、遷移沸騰温度域に入るようになるため、熱延金属板の幅方向に生じる温度分布の不均一がさらに大きくなる。したがって、巻取り温度の目標値が低いために温度降下代が大きくなる種類の金属板、具体的には特に、巻取り温度が500℃を下回るような低温まで冷却し、フェライト組織を微細化させて高強度を得る高張力鋼板などの場合に、鋼板の幅方向に生じる温度分布の不均一がさらに大きくなり、鋼板の幅方向の材質のばらつきが大きくなるという問題があったのである。
【0019】
このようなことから、本発明者は、熱延金属板の幅方向温度分布の不均一を解消するには、エッジマスキングして、両幅エッジの温度降下を少なくするとともに、エッジマスキングにより遮蔽した冷却水を両幅エッジより幅中央側に供給し、両幅エッジより幅中央側の冷却を強化することで、M字型の温度分布のピークをならすことに思い至った。
【0020】
本発明は、上記した知見に基づき、さらに検討を加えて完成されたものである。すなわち、上記した課題を達成するための本発明は、つぎの通りである。
第一の本発明は、
(1)熱間仕上圧延終了後の熱延金属板の上表面を、冷却ゾーンで冷却水により冷却する熱延金属板の冷却方法において、該熱延金属板の両幅エッジ付近に供給される冷却水を遮蔽し、該遮蔽した冷却水を前記熱延金属板の両幅エッジ付近よりも幅中央側に供給することを特徴とする熱延金属板の冷却方法であり、また、第二の本発明は、
(2)熱間仕上圧延機の金属板搬送方向下流側の冷却ゾーンに設置され、仕上圧延後の搬送される熱延金属板の上表面を冷却する熱延金属板の冷却装置であって、前記熱延金属板の上方に配設され冷却水を供給する複数のヘッダと、該複数のヘッダの各々に該熱延金属板の幅方向に間隔を隔てて配設され該熱延金属板の上表面に冷却水を供給する複数のノズルと、該複数のノズルから供給される冷却水のうちの一部を該熱延金属板の両幅エッジ側から遮蔽し、該遮蔽した冷却水を前記熱延金属板の両幅エッジ付近よりも幅中央側に供給する遮蔽体と、該遮蔽体を前記熱延金属板の幅方向に移動可能とする移動機構と、を備えたことを特徴とする熱延金属板の冷却装置
である。
【0021】
また、第三の本発明は、
(3)mass%で、C:0.01〜0.2 %、Si:0.01〜1.5 %、Mn:0.1 〜3 %、P:0.04%以下、S:0.02%以下、Al:0.1 %以下、N:0.005 %以下を含有し、残部Fe及び不可避的不純物からなる組成を有し、両幅エッジ20mmから幅中央にかけての降伏強さの最大値と最小値の差が30MPa 以下であることを特徴とする高張力熱延鋼板。
(4)(3)において、前記組成に加えてさらに、mass%で、Cu:0.01〜1.0 %、Cr:0.01〜1.0 %、Ni:0.01〜1.0 %、Mo:0.01〜1.0 %、Ti:0.01〜0.2 %、Nb:0.01〜0.2 %、V:0.01〜0.1 %のうちから選ばれた1種または2種以上を含有することを特徴とする高張力熱延鋼板。
である。また、第四の本発明は、
(5)鋼素材に粗圧延および仕上圧延からなる熱間圧延を施し熱延鋼板とする熱延鋼板の製造方法において、前記鋼素材を、mass%で、C:0.01〜0.2 %、Si:0.01〜1.5 %、Mn:0.1 〜3 %、P:0.04%以下、S:0.02%以下、Al:0.1 %以下、N:0.005 %以下を含有する組成の鋼素材とし、前記仕上圧延終了後に前記熱延鋼板の上表面を冷却水で冷却するにあたり、該熱延鋼板の両幅エッジ付近に供給する冷却水を遮蔽し、該遮蔽した冷却水を前記熱延鋼板の両幅エッジ付近よりも幅中央側に供給することを特徴とする、両幅エッジ20mmから幅中央にかけての降伏強さの最大値と最小値の差が30MPa 以下である高張力熱延鋼板の製造方法。
である。
【0022】
【発明の実施の形態】
まず、第一の本発明である、熱延金属板の冷却方法について説明する。
本発明の冷却方法では、図5に示すように、熱間仕上圧延終了後、搬送ロール3で搬送される熱延金属板1の表面を、熱間仕上圧延機18の最終スタンド出側の冷却ゾーン22で冷却水により冷却する。その際、本発明では、熱延金属板1の上表面の両幅エッジ付近に供給する冷却水Wを遮蔽体6で遮蔽し、この遮蔽した冷却水を熱延金属板1の両幅エッジ付近よりも幅中央側に供給する。この状況を模式的に図1に示す。
【0023】
図1では、遮蔽体6を樋状に形成し、遮蔽した冷却水を溝状の穴6aから特定の場所Cに供給できるようにしている。これによって、従来のエッジマスキング装置と同様、熱延金属板1の両幅エッジ付近の局部的な過冷却を抑制できるとともに、熱延金属板1の両幅エッジ付近よりも幅中央側の局部的に温度の高い部分(特定の場所C: M字型の温度分布のピーク部を含む)を集中的に冷却することができ、幅方向の温度分布の不均一を抑制できる。なお、本発明では、熱延金属板の下表面の冷却方法は特に限定する必要はない。ヘッダ41を介し熱延金属板1の幅方向に等間隔に設置されたノズル51から冷却水を噴射する等の通常の冷却方法がいずれも適用できる。
【0024】
つぎに、第二の本発明である、第一の本発明に用いて好適な、熱延金属板の冷却装置について、説明する。
本発明の熱延金属板の冷却装置は、図5に示すように、熱間仕上圧延機18の出側、すなわち熱延金属板搬送方向下流側の冷却ゾーン22内に複数基(複数ゾーン)設置され、仕上圧延後の搬送される熱延金属板1の上表面を、ヘッダ4を介してノズル5から冷却水を供給して冷却する。なお、熱延金属板の下表面の冷却は、上表面の冷却装置(本発明)とは別形式の冷却装置を配設してもよいことはいうまでもない。図5では、熱延金属板の下表面の冷却は、熱延金属板の下面に、ヘッダ41に取り付けられたノズル51から冷却水を噴射する形式の冷却装置が例示されているが、これに限定されるものではない。
【0025】
本発明の熱延金属板の冷却装置の一例を、模式的に正面図で図1に、模式的に平面図で図2に示す。
本発明の熱延金属板の冷却装置は、複数のヘッダ4と、ヘッダ4に配設される複数のノズル5と、遮蔽体6と、遮蔽体の移動機構7と、を備える。ヘッダ4は、搬送ロール3で搬送される熱延金属板1の上表面の上方に配設され、冷却水を供給する。なお、図2に示すように、ヘッダ4は、搬送方向に複数本設けられる。各ヘッダ4には、複数のノズル5が熱延金属板の幅方向に間隔を隔てて配設され、熱延金属板の上表面に冷却水を供給する。ノズル5の形式はとくに限定されないが、パイプラミナーが形成される管状とすることが 装置設計のしやすさ、部品の汎用性、コスト等の観点から好ましい。
【0026】
本発明では、ノズル5から熱延金属板1の上表面に供給される冷却水のうち、熱延金属板1の両幅エッジ側に供給される冷却水を、搬送方向に所定の長さに亘り遮蔽する、遮蔽体6を熱延金属板1の両幅エッジ側に設ける。さらに、本発明における遮蔽体6は、遮断した冷却水を両幅エッジ付近より幅中央側に供給できるように、樋状に形成され、熱延金属板1のM字型の温度ピークに相当する箇所を含み、幅方向両側に好ましくは対称に拡がりをもつ幅50〜100mm の所望の特定領域(図1では領域C)に集中的に供給できるように溝状の穴6aを有することが好ましい。これにより、遮蔽した冷却水を、熱延金属板1の所望の特定領域に精度よく集中的に供給でき、幅方向の温度分布の不均一をならすことができる。例えば、熱延金属板幅方向のノズルの間隔を50mm、樋状に形成された遮蔽体6の幅を300mm とし、底部の溝状の穴6aを幅50mmとして、遮蔽した冷却水Wを熱延金属板1の上表面の特定領域に供給するようにすれば、単位面積当たりの冷却水Wの流量は倍加され、冷却能力が上がることになる。
【0027】
なお、溝状の穴6aの幅は、集中的に冷却したい所望の特定領域の幅に応じて変更することができる。また、遮蔽体6の平面形状を図2に示すような長方形から、図3に示す台形、あるいは三角形(図示せず)としてもよい。平面形状を台形、あるいは三角形とした遮蔽体6には長方形とした場合と同様に、樋状に形成した底部に一定幅の溝状の穴6aが形成される。これにより溝状の穴6aの幅を変更した場合と同様に、集中的に冷却したい所望の特定領域の幅を変更できる。
【0028】
さらに、本発明の冷却装置は、遮蔽体6を熱延金属板1の幅方向に移動可能とする移動機構7を備える。これにより、遮蔽体6を所望の幅方向位置に設定することができるようになる。遮蔽した冷却水を熱延金属板1の所望の特定領域に供給して、局部的に強く冷却し、温度降下を大きくすることに伴い、新たな予想し得なかった流れが生じ、思うように冷却むら(温度分布の不均一)が解消しなかった、というような事態も想定し得るが、そういう事態が生じた場合でも、移動機構7を備え、遮蔽体6の位置を変更することで、多くの場合、冷却むらを解消することができる。
【0029】
本発明における移動機構7は、遮蔽体6を熱延金属板1の幅方向に前進、または後退させることができれば、その方式はとくに限定されない。移動機構7としては、例えばスクリューとナットの螺合機構が例示できる。この螺合機構によれば、例えば、ナットを遮蔽体6に配設し、スクリューの側を正転、あるいは逆転させることで遮蔽体6を熱延金属板1の幅方向に前進、または後退させることが可能となる。移動機構7は、遮蔽体6,6が幅方向で対称的に同期して移動できるように配設されることが好ましい。
【0030】
なお、他の移動機構としては、サーボモーターや油圧シリンダなどが例示できる。また、移動機構7は、図4に示す機構としてもよい。図4に示す移動機構の例は、遮蔽体6の一端を、固定物(図示せず)に蝶番6bなどを介して回動可能に設置し、通常は遮蔽体6を垂直に垂らしておき、冷却水Wを遮蔽する場合にのみ遮蔽体6の他端を、ウインチなどの釣り上げ、釣り下げ可能な釣り上げ機構6cで釣り上げる機構としてもよい。なお、本発明における移動機構は上記した移動機構に限定されないことはいうまでもない。
【0031】
本発明では、移動機構7は、遮蔽体6により遮蔽した冷却水が所望の領域に集中的に供給できるように、遮蔽体6の熱延金属板幅方向への移動を制御する。熱延金属板1の幅についての情報は、図11中に示したビジネスコンピュータ90からプロセスコンピュータ70を経由して得られ、これに基いて制御装置50からの指令により、移動機構7を作動させて、遮蔽体6を熱延金属板1の幅方向の所定位置に設定するように制御することが好ましい。なお、熱延金属板1の先端がまだコイラー24に巻き付く前や、熱延金属板1の尾端が仕上圧延機18を抜けてからコイラー24に巻き取られる前などは、熱延金属板1が蛇行しやすいため、仕上圧延機18の出側やコイラー24の入側に設置した幅計(図示せず)により、熱延金属板1の蛇行量を検知し、その蛇行した方向に、その蛇行量の分だけ、遮蔽体6を移動機構7により熱延金属板1の幅方向にシフトするようにリアルタイムに制御するなどしてもよい。また、熱延金属板1の先端と尾端以外でも、蛇行量の分だけ、遮蔽体6を熱延金属板1の幅方向にシフトするようにしてもよい。
【0032】
つぎに、図1および図2に示す本発明の冷却装置を利用した冷却方法で、仕上圧延出側温度:880 ℃とする仕上圧延を施し得られた熱延鋼板(3mm 厚×1000mm幅)を冷却した場合を例に、本発明の効果について説明する。なお、冷却に際しては、熱延鋼板の両幅エッジ100mm を遮蔽体6でエッジマスキングし、熱延金属板1のM字型の温度分布のピークに相当する箇所を含み、幅方向に対称に拡がりをもつ幅50mmの所望の特定領域に冷却水を集中的に供給した。なお、比較として、遮蔽体で両幅エッジ100mm を遮蔽し、遮蔽した冷却水を熱延鋼板の両幅エッジよりも外側に落下させるようにした。また、遮蔽体を用いない場合についても同様に行った。遮蔽体を用いない(エッジマスキングを行わない)場合を基準として、1水冷ゾーンあたりの鋼板幅方向各位置の温度変化を求め、図6に示す。
【0033】
図6から、比較として行った従来のエッジ100mm のマスキングの場合(点線:従来例)は、エッジ100mm の過冷却が緩和され、エッジマスキングを行わない場合に比べて10℃の温度上昇があることがわかる。これに対し、本発明の冷却方法(エッジ100mm のマスキング+特定部分冷却:本発明の適用例)を適用することにより、エッジ100mm で過冷却が緩和され、従来のエッジマスキングのみと同様に10℃の温度上昇があるとともに、遮蔽された冷却水が幅方向中央側に集中的に落下、供給されることにより、幅エッジから100 〜150mm の領域で、エッジマスキングを行わない場合に比べて最大で25℃の温度降下があることがわかる。
【0034】
このように、本発明の冷却方法によれば、従来M字型となっていた幅方向温度分布を、幅エッジ部分の温度を上げるとともに、ピーク位置の温度を低下することができるため、全体として幅方向に均一な温度分布とすることが可能となる。
つぎに、上記した本発明の熱延金属板の冷却方法を適用して、引張強さ:400MPa 以上の高強度を有し、かつ幅方向の降伏強さの変動が少ない高張力熱延鋼板を製造する高張力熱延鋼板の製造方法について説明する。
【0035】
本発明の高張力熱延鋼板は、所定の組成を有する鋼素材に粗圧延および仕上圧延からなる熱間圧延を施し、熱延鋼板としたのち、仕上圧延終了後の熱延鋼板に上記した本発明の冷却方法を適用して、製造される。
本発明で使用する鋼素材は、転炉、電気炉等で溶製した溶鋼を、好ましくはさらにVOD等で脱ガスするなどの公知の精錬方法で精錬し、所定の組成としたのち、連続鋳造等の公知の鋳造方法で鋳造し、スラブ等としたものを使用することができる。なお、鋼素材の製造方法は上記した方法に限定されないことはいうまでもない。
【0036】
本発明で使用する鋼素材は、mass%で、C:0.01〜0.2 %、Si:0.01〜1.5 %、Mn:0.1 〜3 %、P:0.04%以下、S:0.02%以下、Al:0.1 %以下、N:0.005 %以下を含有し、あるいはさらにmass%で、Cu:0.01〜1.0 %、Cr:0.01〜1.0 %、Ni:0.01〜1.0 %、Mo:0.01〜1.0 %、Ti:0.01〜0.2 %、Nb:0.01〜0.2 %、V:0.01〜0.1 %のうちから選ばれた1種または2種以上を含有し、残部Fe及び不可避的不純物からなる組成を有することが好ましい。組成限定の理由はつぎのとおりである。なお、以下、組成におけるmass%は単に%で記す。
【0037】
C:0.01〜0.2 %
Cは、強度を高めるために0.01%以上含有させる。しかし、0.2 %を超えて含有すると、溶接性が悪化する。このため、Cは0.01〜0.2 %の範囲に限定した。なお、強度と溶接性のさらなる向上という観点から、0.03〜0.18%とすることが好ましい。
【0038】
Si:0.01〜1.5 %
Siは、プレスなどの冷間加工性を良くするために0.01%以上含有させる。しかし、1.5 %を超えて含有すると、熱間圧延のための加熱時に難剥離性のスケールが鋼板の素材スラブ表層に生じて、デスケーリングを施しても剥離せず、製品の表面品質が悪化する。このため、Siは、0.01〜1.5 %の範囲に限定した。なお、冷間加工性と脱スケール性の更なる向上という観点から、0.1 〜1.0 %とすることが好ましい。
【0039】
Mn:0.1 〜3 %
Mnは、強度を高めるために0.1 %以上含有させる。しかし、3%を超えて含有しても効果が飽和する一方で、焼入れ性向上効果が大きくなり、わずかの冷却条件の変動(例えばラミナー水直下(ブラックスポット)とそれ以外との違い)によっても、製品熱延鋼板の強度変動につながる。このため、Mnは0.1 〜3 %の範囲に限定した。なお、好ましくは1.5 %以下である。
【0040】
P:0.04%以下
Pは、強度を増加させる元素であり必要により不可避的含有量(0.008 %程度)以上に含有させてもよいが、多量に含有すると鋼板を脆化させるため、本発明では、0.04%以下に限定した。
S:0.02%以下
Sは、鋼中では硫化物を形成し、鋼の延性を低下させるため、可及的に低くすることが好ましく、本発明では0.02%以下に限定した。
【0041】
Al:0.1 %以下
Alは、脱酸剤として有効に作用する元素であり、0.001 %以上含有させることが好ましいが、0.1 %を超えて含有すると、介在物量が増加し清浄度が劣化するとともに、熱間圧延後の製品の表面に割れが生じたり、疵が入ったりし易くなる。このため、Alは0.1 %以下に限定した。
【0042】
N:0.005 %以下
Nは、延性、r値などの材質を確保するために、できるだけ低減することが望ましいが、0.005 %以下であれば、ほぼ満足し得る特性が得られる。このため、Nは0.005 %以下に限定した。
本発明では、上記した基本組成に加えて、さらにCu:0.01〜1.0 %、Cr:0.01〜1.0 %、Ni:0.01〜1.0 %、Mo:0.01〜1.0 %、Ti:0.01〜0.2 %、Nb:0.01〜0.2 %、V:0.01〜0.1 %のうちから選ばれた1種または2種以上を含有することができる。Cu、Cr、Ni、Mo、Ti、Nb、Vはいずれも、強度を増加させる元素であり必要に応じ選択して含有できる。
【0043】
Cu:0.01〜1.0 %
Cuは、強度を向上させるために、0.01%以上含有することが好ましいが、1.0 %を超えて含有すると、熱間圧延後の製品表面に割れが生じたり、疵が入ったりし易くなる。このため、Cuは1.0 %以下に限定することが好ましい。
Cr:0.01〜1.0 %
Crは、強度を向上させるために、0.01%以上含有することが好ましいが、1.0 %を超えて含有すると硬化してプレスなどの冷間加工性を悪化させる。このため、Crは0.01〜1.0 %に限定することが好ましい。
【0044】
Ni:0.01〜1.0 %
Niは、強度を向上させるとともに靭性を向上させる元素であり、このような効果は、0.01%以上の含有で認められるが、1.0 %を超えて含有しても効果が飽和し、含有量に見合う効果が期待できなくなり、経済的に不利となる。このため、Niは0.01〜1.0 %の範囲に限定することが好ましい。
【0045】
Mo:0.01〜1.0 %
Moは、強度を向上させるために、0.01%以上含有することが好ましいが、1.0 %を超えて含有すると、靭性が低下する。このため、Moは0.01〜1.0 %の範囲に限定することが好ましい。
Ti:0.01〜0.2 %
Tiは、炭化物あるいは窒化物、炭窒化物を形成し、強度を増加させるとともに靭性を向上させる元素であり、このような効果は0.01%以上の含有で認められる。一方、0.2 %を超えて含有すると、逆に強度、靭性がともに低下する。このため、Ti:0.01〜0.2 %の範囲に限定した。
【0046】
Nb:0.01〜0.2 %
Nbは、Tiと同様、炭化物あるいは窒化物を形成し、強度を増加させるとともに靱性を向上させる元素であり、このような効果は0.01%以上の含有で認められる。一方、0.2 %を超えて含有すると、逆に強度、靱性がともに低下する。このため、Nbは0.01〜0.2 %の範囲に限定した。
【0047】
V:0.01〜0.1 %
Vは、強度を向上させるために、0.01%以上含有することが好ましい。一方、1.0 %を超えて含有すると、靭性が低下する。このため、Vは0.01〜0.1 %の範囲に限定することが好ましい。
上記した成分以外の残部は、Feおよび不可避的不純物である。
【0048】
上記した基本組成あるいはさらに強度を増加させる元素を選択して含有する鋼素材を、加熱し、または熱間圧延が可能な温度以上の温度を有する場合には加熱することなく、あるいは短時間の加熱炉保持を行ったのち、粗圧延および仕上圧延からなる熱間圧延を施して、所定寸法の熱延鋼板とする。仕上圧延終了後、仕上圧延機出側に設置された冷却ゾーンで、仕上圧延後の熱延鋼板の表面に冷却水を供給して冷却する。冷却方法は、図1〜図5に例示される本発明の冷却装置を用いて、熱延鋼板の両幅エッジに供給される冷却水を遮蔽し、遮蔽された冷却水を両幅エッジ付近よりも幅中央側に供給する、本発明の熱延金属板の冷却方法を適用する。
【0049】
なお、仕上圧延機18の出側に設置される冷却ゾーン22では、熱延鋼板搬送方向に複数のヘッダ4、41を配設し、複数の水冷ゾーンに分割して、各水冷ゾーンごとに冷却条件を調整して、所望の巻取り温度分布が得られるようにすることが好ましい。例えば、仕上出側温度計7aの測定値と鋼板1の搬送速度パターンをもとに、冷却水を供給する水冷ゾーンの合計の長さを演算する。すなわち、冷却前の鋼板1の温度が同じ場合には、搬送速度の増減に応じて、所望の温度になるように、冷却水を供給する水冷ゾーンの搬送方向の合計の長さを調整したり、さらには、冷却前の鋼板1の温度が上昇又は下降した場合は、それに相当する分だけ、冷却水を供給する水冷ゾーンの搬送方向の合計の長さをさらに調整することが好ましい。また、目標の巻取り温度と巻取り温度計7cによる測定値との差をもとに冷却水を供給する水冷ゾーンの搬送方向合計長さを増減するフィードバック制御を行なってもよい。
【0050】
また、遮蔽体6によるエッジマスキングおよび特定領域への冷却水の集中的供給は、必ずしも全水冷ゾーンに適用する必要はなく、目標の巻取り温度が得られかつ巻取り温度の幅方向分布が均一となるように、各水冷ゾーンごとに調整することが好ましい。
これにより、熱延鋼板の両幅エッジ付近の局部的な過冷却を抑制するとともに、両幅エッジ付近よりも幅中央側の局部的に温度の高い部分(M字型の温度分布のピーク箇所を含む特定領域C)を集中的に冷却することができ、巻取り温度の幅方向分布が均一化され、引張強さ:400MPa 以上で、かつ両幅エッジ20mmから幅中央にかけての降伏強さの最大値と最小値の差が30MPa 以下の、幅方向の降伏強さの変動が少ない均一な特性を有する高張力熱延鋼板が得られる。
【0051】
以下、実施例に基づき、さらに本発明について詳細に説明する。
【0052】
【実施例】
表1に示す組成の鋼素材を転炉で溶製し、連続鋳造法で鋼素材(スラブ)とした。ついで、図11に示す熱間圧延ライン100 を用いて、これらスラブを加熱炉10に装入し、約1200℃に加熱したのち、粗圧延機12および仕上圧延機18により、熱延鋼板(3mm厚×1000mm幅)とした。なお、仕上圧延出側温度は835 〜883 ℃であった。また、図5に示す仕上出側温度計7aの出側に配設した幅方向温度計7bにより、測温した仕上圧延直後の熱延鋼板1の仕上圧延出側温度の幅方向分布は、幅最エッジを除きほぼ均一で、温度変動は高々10〜15℃程度であることを確認している。
【0053】
【表1】

Figure 2004351501
【0054】
仕上圧延機18で仕上圧延された熱延鋼板1は、ついで冷却ゾーン22で巻取り温度まで冷却した。なお、熱延鋼板の目標強度は、引張強さ:400 〜1000MPa (許容:−50MPa 、+40MPa )とした。
冷却ゾーン22での冷却は、図5に示すように、テーブルローラ3を配列したランアウトテーブルを通過する間に、上下に設置された複数のヘッダ4、41から冷却水を供給して行った。上部のヘッダ4は円管状のノズル5を熱延鋼板1の幅方向に並べたパイプラミナーヘッダであり、棒状の冷却水を鋼板1の幅方向に50mmピッチで多数供給する。上下ヘッダとも円管状のノズル5を鋼板1の幅方向に50mmピッチで40本設置し、搬送方向に6ヘッダを1組として共通元配管につなぎ配設したものを1つの水冷ゾーンとして扱い、これを20ゾーン設ける構成とした。また、上部ヘッダ4と熱延鋼板1の間には、図1および図2に示される構造、形状の遮蔽体6および移動機構7を配設して、両幅エッジに供給される冷却水を遮蔽する(両幅エッジをエッジマスキングする)とともに、特定領域に遮蔽した冷却水を供給した。遮蔽体6は、移動機構7により熱延鋼板の幅方向に移動可能に取り付けられており、各水冷ゾーンごとに遮蔽体6の位置を変更した。なお、従来例として、図13に示す従来の遮蔽体も使用した。なお、以下、遮蔽体および移動機構を含めエッジマスキング装置ともいう。
【0055】
冷却方法は表2に示す次の3種類とした。
【0056】
【表2】
Figure 2004351501
【0057】
(A)適用例
水冷ゾーンNo.2〜No.4、No.6〜No.8、No.10 〜No.12 、No.14 〜No.16 、No.18 には、図1および図2に示す構造の遮蔽体6および移動機構7を有するエッジマスキング装置を設置し、熱延鋼板1の両幅エッジ付近に供給される冷却水を遮蔽するとともに、遮蔽された冷却水を熱延鋼板1の両幅エッジ付近よりも幅中央側に落下させた。なお、各水冷ゾーンで、遮蔽体の位置を変更し、熱延鋼板の両幅エッジにせり出す遮蔽体の幅を40〜180mm の間で変化させた。一方、水冷ゾーンNo.1、No.5、No.9、No.13 、No.17 、No.19 、No.20 には、図13に示す構造の遮蔽体(従来例)を設置し、水冷ゾーンNo.1のみ、熱延鋼板1の両幅エッジで幅中央側にせり出す幅(遮蔽体のせり出し幅)が70mmとなるように遮蔽体6を設定してエッジマスキングを行った。他の冷却ゾーンでは遮蔽体は熱延鋼板の外側に留め、遮蔽体のせり出しは無しとした。なお、この水冷ゾーンのパターンは、図6のエッジマスキング効果に関する結果をもとに、巻取り温度の幅方向分布が均一になるように、さらに実験を加えて得られたものである。
(B)従来例1
各水冷ゾーンともエッジマスキング装置を使用しない例とした。
(C)従来例2
各水冷ゾーンに図13に示す構造のエッジマスキング装置を設置し、奇数番目の水冷ゾーン合計10ゾーンで、遮蔽体のせり出し幅が交互に100mm あるいは70mmとなるように遮蔽体6を設置してエッジマスキングを行なった。一方、偶数番目の水冷ゾーンでは遮蔽体のせり出し幅を零とし、エッジマスキング無しとした。
【0058】
上記した(A)〜(C)の冷却方法で冷却したのちに、得られた熱延鋼板の巻取り温度の幅方向分布の一例を図7に示す。幅方向の巻取り温度分布は、幅中央に対し線対称となっており、図7では幅中央から片側の幅エッジにかけての右側半分の温度分布を示した。
適用例の巻取り温度の幅方向温度分布曲線A(実線)は、遮蔽体6により冷却水が遮蔽された領域の直下部には冷却水が供給されないから、従来この部分で生じていた過冷却を抑制することができ、熱延鋼板の幅エッジから20mmの位置の温度が幅中央より23℃低いだけにとどまり、また、遮蔽体6で遮蔽された冷却水を集中的に両幅エッジから120mの位置に供給したため、その位置の温度も幅中央に比べて35℃高くなっただけであった。図7から、本発明の冷却方法(適用例)によれば、均一な幅方向温度分布となることがわかる。
【0059】
一方、従来例1の幅方向温度分布曲線B(一点鎖線)は、熱延鋼板の両幅エッジ付近が他の部分と比べて局部的に過冷却となり、熱延鋼板の幅エッジから20mmの位置での温度は、幅中央の温度よりも133 ℃も低くなっている。また、従来例2の幅方向温度分布曲線C(破線)は、遮蔽体6により冷却水が遮蔽された領域の直下部には冷却水が供給されないから、従来この部分で生じていた過冷却を抑制することができ、熱延鋼板の幅エッジから20mmの位置の温度は幅中央より33℃低いだけにとどまっているが、両幅エッジから100mm の位置の温度は幅中央に比べて98℃高くなっている。
【0060】
つぎに、上記した冷却方法で冷却した熱延鋼板から、短冊状の試験片(幅:20mm)を採取し、引張試験片に加工して引張試験を実施し、降伏強さYS、引張強さTS、伸びElを測定した。なお、使用した引張試験片はJIS Z2201 に規定されるJIS 5 号試験片に準じ平行部:18mm幅、平行部長さ:60mm(GL:50mm)とし、引張方向を熱延鋼板の圧延長さ方向とした。また、引張試験片は、試験片幅中央が、熱延鋼板幅エッジから、20mm間隔で所定の位置(幅エッジから20mm、40mm等)となるように採取した。得られた結果を図8〜図10に示す。
【0061】
本発明例の冷却方法(A)で冷却された表1中に示す鋼No.Dの組成を有する熱延鋼板では、遮蔽体6により冷却水が遮蔽され、図7で示したように幅エッジから20mmの位置の温度は幅中央より23℃低いだけにとどまったため、図8に示すようにTS:554MPa、YS:471MPa(図8の最右端のプロット)となっている。このため、耳切り代は、エッジドロップなど材質とは関係のない条件で決められ、両幅エッジとも20mm(合計40mm)となり、歩留まりは96%となった。また、遮蔽体6を熱延鋼板の幅中央に向けせり出す幅を40〜180mm の間で段階的に変えるようにしたから、図7に示すように、両幅エッジから120mm の位置の巻取り温度が幅中央に比べて35℃高くなっただけであり、図8に示すように、幅エッジから20mmの位置から幅中央側の全領域での、TSの変動(最大と最小の差)は35MPa 、YSの変動は28MPa となり、幅方向における強度変動が少ない熱延鋼板となっている。
【0062】
一方、従来例1の冷却方法(B)で冷却された熱延鋼板では、両幅エッジでマスキングを行わなかったため、図7で示したように幅エッジから20mmの位置の巻取り温度は幅中央よりも133 ℃も低くなっており、TS:618MPa、YS:519MPaとなっている。両幅エッジとも、硬すぎて製品に要求されるEl:24%を確保できない領域:60mmを耳切り代として切り捨てざるをえなかったため、製品の歩留まりは88%となった。また、図7に示すように、両幅エッジから120mm の位置の巻取り温度は、幅中央に比べて83℃高く、TS:490MPa、YS:411MPaとなっている。図9に示すように、両幅エッジの硬すぎる領域(合計120mm )を耳切り代として切り捨てた後も、TSの変動(最大と最小の差)は40MPa 、YSの変動は幅方向で45MPa もあり、幅方向における強度変動が大きな熱延鋼板となっている。
【0063】
また、従来例2の冷却方法(C)で冷却された熱延鋼板では、遮蔽体6により冷却水が遮蔽され、従来この部分で生じていた過冷却を抑制することができ、図7に示すように、幅エッジから20mmの位置の温度は幅中央より33℃低いだけにとどまったため、TS:560MPa、YS:470MPaとなっている。。これよりも幅中央側の材質が良好であったので、耳切り代はエッジドロップなど材質とは関係のない条件で決められ、両幅エッジとも20mm(合計40mm)となり、歩留まりは96%となった。
【0064】
なお、両幅エッジから120mm の位置の巻取り温度は、幅中央に比べて96℃高くなり、TS:482MPa、YS:404MPaであった。図10に示すように、幅エッジから20mmの位置から幅中央側の全領域での、TSの変動(最大と最小の差)は78MPa 、YSの変動は66MPa となり、幅方向の強度変動が大きな熱延鋼板となっている。
つぎに、仕上圧延終了後、上記した(A)〜(C)の冷却方法で冷却した熱延鋼板について、さらに仕上圧延後の熱延鋼板先端からの長さで200 mの位置で、鋼板の幅方向全域にわたり20mmピッチで、短冊状(幅:18mm)の試験片を採取し、引張試験片に加工して引張試験を実施し、降伏強さYS、引張強さTS、伸びElを測定した。なお、使用した引張試験片は平行部:18mm幅、平行部長さ:60mm(GL:50mm)とし、引張方向を熱延鋼板の圧延長さ方向とした。また、引張試験片は、試験片幅中央が、熱延鋼板幅エッジから、20mm間隔で所定の位置(幅エッジから20mm、40mm等)となるように採取した。得られた結果を表3に示す。表3では、各位置で得られた、降伏強さ、引張強さ、伸びのうちの、最大値、最小値、およびそれらの差を記した。
【0065】
【表3】
Figure 2004351501
【0066】
【表4】
Figure 2004351501
【0067】
本発明の冷却方法を適用した熱延鋼板(適用例)では、鋼板の幅方向での強度変動を確実に少なくすることができる。一方、本発明の範囲を外れる従来例では、幅方向での強度変動が大きく、プレス加工時のスプリングバックの発生量が鋼板部位により違うなどの問題が生じる可能性が大きいことがわかる。また、熱延鋼板の幅中央側に遮蔽した冷却水を集中的に供給できる水冷ゾーンを少なくとも1つ以上設けることにより、熱延鋼板の幅方向の強度変動は確実に小さくすることができることがわかる。
【0068】
なお、ここで示した本発明例では、鋼板の幅方向外側に冷却水を落下させる形式のエッジマスキング装置(例えば、図13)をいくつかの水冷ゾーンに設置したが、この形式のエッジマスキング装置は必ずしも併設する必要はない。遮蔽した冷却水を鋼板幅中央側に集中的に供給できるエッジマスキング装置を設置するだけで、遮蔽板が鋼板の幅中央に向けせり出した領域の直下ではエッジマスキングを行なったのと同様な効果が得られるためである。また、ここで示した本発明例の冷却方法では、両幅エッジにせり出し量を調整して設置された遮蔽板により遮蔽された冷却水が集中的に供給される特定領域を各水冷ゾーンごとに鋼板のエッジ側から中央側に順次変化させた例を示したが、本発明はこれに限定されるものではないことはいうまでもない。
【0069】
また、本発明の実施例では、図11に示した熱間圧延ライン100 を利用したが、本発明はこれに限定されるものではなく、図12に示すような、薄スラブを連続鋳造し、粗圧延を経ずに直接仕上圧延する、熱間圧延ライン200 のような他のタイプの熱間圧延ラインにも適用可能なことはいうまでもない。
【0070】
【発明の効果】
以上説明したように、本発明によれば、巻取り温度が熱延金属板の幅方向で均一となり、幅方向に降伏強さの変動が少なく、幅方向に均一な品質を有する高張力熱延鋼板を容易にしかも安価に製造でき、産業上格段の効果を奏する。また、本発明によれば、プレス加工など後工程における歩留まりが改善されるという効果もある。
【図面の簡単な説明】
【図1】本発明の冷却装置の一例を模式的に示す正面図である。
【図2】本発明の冷却装置の一例を模式的に示す平面図である。
【図3】本発明の冷却装置の一例を模式的に示す平面図である。
【図4】本発明の冷却装置の一例を模式的に示す正面図である。
【図5】本発明の冷却装置の一例を模式的に示す側面図である。
【図6】冷却ゾーンの1ゾーンあたりの幅方向各位置の温度変化におよぼすエッジマスキング、エッジマスキング+特定領域冷却の影響の一例を示すグラフである。
【図7】巻取り温度の幅方向分布の比較を示すグラフである。
【図8】冷却方法(A)で冷却した場合の引張特性の幅方向分布を示すグラフである。
【図9】冷却方法(B)で冷却した場合の引張特性の幅方向分布を示すグラフである。
【図10】冷却方法(C)で冷却した場合の引張特性の幅方向分布を示すグラフである。
【図11】熱間圧延ラインの一例を模式的に示す説明図である。
【図12】熱間圧延ラインの一例を模式的に示す説明図である。
【図13】従来のエッジマスキング装置を模式的に示す説明図である。
【図14】従来の熱延鋼板巻取り温度の幅方向分布の一例を示す説明図である。
【図15】従来の熱延金属板冷却における冷却水の流れを模式的に示す説明図である。
【図16】熱延金属板における抜熱状態を模式的に示す説明図である。
【符号の説明】
1 熱延金属板(熱延鋼板、鋼板)
3 テーブルローラ
4 ヘッダ(上部ヘッダ)
41 下部ヘッダ
5 ノズル
51 下部ノズル
6 遮蔽体
6a 溝状穴
6b 蝶番
6c ウインチ(釣り上げ機構)
7 温度計
7a 仕上出側温度計
7b、7c 幅方向温度計
7d 巻取り温度計
8 被圧延材
10 加熱炉
12 粗圧延機
13 ワークロール
14 クロップシャ
16 デスケーリング装置
18 仕上圧延機
19 ワークロール
20 スラブ連続鋳造設備
22 冷却ゾーン
24 コイラー
50 制御装置
70 プロセスコンピュータ
80 ビジネスコンピュータ
100 、200 熱間圧延ライン[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method and a device for cooling a hot-rolled metal sheet, and more particularly to a high-tensile hot-rolled steel sheet having a sheet width of 500 mm or more, which suppresses fluctuations in yield strength in the width direction, and a method for manufacturing the same. The steel sheet in the present invention includes a steel strip.
[0002]
[Prior art]
Hot rolling refers to heating a metal material to a few hundred to a few hundred degrees, extracting it on a hot rolling line, rotating the roll while pinching it with a pair of rolls, and stretching it thinly. Many hot rolling lines are of the type called 3/4 continuous. An example of this type of hot rolling line is shown in FIG. In the hot rolling line 100, usually, a heating furnace 10, a plurality of rough rolling mills 12, a crop shear 14, a descaling device 16, a finishing mill 18, a cooling zone 22, a coiler (winding device) 24 is arranged. In the hot rolling line 100 of this type, the rough rolling mill 12 often has four rolling mills, some of which (one in many cases) perform reciprocating rolling, and the remaining rolling mills perform unidirectional rolling. In many cases, for this reason, three out of four units are unidirectionally rolled, and are therefore referred to as a 3/4 continuous type. The 3/4 continuous type includes, for example, a type in which three rough rolling mills 12 are provided and one or two of them are unidirectional.
[0003]
In the example of the hot rolling line 100 shown in FIG. 11, there are three rough rolling mills, and two of them perform reciprocating rolling. Although not shown, a number of table rollers are provided between the respective equipments, and thereby the material 8 to be rolled is conveyed. The group of table rollers in the cooling zone 22 may be particularly called a run-out table. Since a plurality of the rough rolling mills 12 and the finishing rolling mills 18 are provided, the initials of Rougher (rough rolling mill) and Finisher (finishing rolling mill) are respectively taken, and the numbers of the respective stands are assigned. R2, R3, F1, F2 ... F7, etc. Similarly, there are also a plurality of coilers 24, which are abbreviated as DC1, DC2, etc., by giving a machine number.
[0004]
In recent years, a hot rolling line for continuously casting thin slabs and directly finishing and rolling without rough rolling has also been provided. An example of such a hot rolling line 200 is shown in FIG.
In order to impart a desired metallurgical property to the metal plate after hot finish rolling (hereinafter also including a metal strip), a cooling plate is usually provided on a run-out table for transporting the metal plate from the hot finish rolling mill to the coiler. A cooling device is provided as the zone 22. The metal sheet passes through a cooling zone 22, is cooled to a desired winding temperature, and is wound by a coiler 24. Water is usually used as a cooling medium. For example, in the case of a hot-rolled steel sheet, the winding temperature is very important for providing a desired material, and needs to be controlled with high accuracy.
[0005]
In the cooling zone 22, a cooling device for cooling the upper surface of the metal plate is a device which has a large cooling capacity and facilitates maintenance of the device, which is called a pipe laminator and which drops rod-shaped cooling water onto the upper surface of the metal plate. Is often used. On the other hand, in cooling the lower surface of the metal plate, various cooling devices such as a spray and a pipe laminator are used, and the cooling is not constant.
[0006]
Conventionally, in cooling a hot-rolled metal plate, it has been considered desirable to make the distribution of the cooling water flow rate in the width direction of the hot-rolled metal plate constant so that the hot-rolled metal plate is uniformly cooled in the width direction. . Therefore, the direction of the cooling water injected from each nozzle is constant, and the flow rate of the cooling water injected from each nozzle is also constant. It is common to arrange a plurality of units in the cooling zone. However, conventionally, it is known that the vicinity of both width edges of the hot-rolled metal plate is locally cooled better than other portions. In addition, the vicinity of both width edges of the hot-rolled metal plate generally refers to a region of, for example, approximately 50 mm by approximately 50 mm from the uppermost edge of both widths of the hot-rolled metal plate to a maximum of 80 mm.
[0007]
In the vicinity of both width edges of the hot-rolled metal sheet, the winding temperature is locally lowered due to the local cooling, and the desired material cannot be obtained in that region in many cases. It is generally cut off in the next step of the purification line or the like.
In order to reduce the margin for trimming as much as possible, for example, in Patent Document 1, an end (edge) of a thick steel plate (hot-rolled metal plate 1) is shielded by a shielding gutter 6, and a nozzle is inserted through an upper header 4. As shown in FIG. 13, a part of the cooling water W supplied from 5 is dropped outside the both width ends (edges) of the thick steel plate (hot-rolled metal plate 1). A method and apparatus for cooling a steel sheet have been proposed. The device described in Patent Literature 1 is called a so-called edge masking device. By using this device, supercooling near both width edges of a thick steel plate is suppressed, and the width direction of a thick steel plate (hot rolled metal plate) is reduced. It is stated that the temperature distribution can be made uniform, and mechanical variations and distortion of thick steel plates (hot-rolled metal plates) can be prevented.
[0008]
Further, in Patent Document 2, a cooling zone for cooling the upper surface of the steel sheet is divided into a plurality of zones, and cooling water is injected into each of the divided zones so as to form a laminar flow in a strip shape in the traveling direction of the steel sheet. There has been proposed a cooling method of a steel sheet in which a water injection position of a cooling zone near an edge portion in a width direction of a steel sheet is shifted to a downstream side in a traveling direction of the steel sheet from a water injection position in a center part of the steel sheet in a width direction to cool the steel sheet. According to the technique described in Patent Literature 2, cooling can be uniformly performed along the width direction of the steel sheet, and variation in material and deformation of the steel sheet are reduced. Also, various proposals have been made in Patent Literature 3, Patent Literature 4, and the like in order to perform uniform cooling in the width direction of the steel sheet.
[0009]
[Patent Document 1]
JP-A-58-32511
[Patent Document 2]
JP-A-11-57836
[Patent Document 3]
JP-A-11-267736
[Patent Document 4]
JP 2002-263724 A
[0010]
[Problems to be solved by the invention]
However, in recent years, a demand for a metal plate having a uniform material in the width direction has been increasing more and more. Therefore, in addition to the temperature control in the longitudinal direction of the metal plate, the temperature control in the width direction has become important, and the inlet / outlet side of the cooling zone 22 has the width center of the hot rolled metal plate conventionally provided. In addition to a thermometer for measuring the temperature of the hot rolled metal sheet in the width direction, installing a width direction thermometer, etc. And deal with it. Particularly in recent years, in the production of high-strength steel sheets, which have been increasingly required for quality in order to reduce the weight of automobiles, etc., in order to produce uniform and high-quality metal sheets in the width direction, the winding temperature in the width direction has to be increased. Control is important.
[0011]
In the hot rolling of a high-tensile steel sheet, the rolling load particularly in the finish rolling increases, and therefore, the torque of the electric motor for rotating and driving the work roll of each rolling mill also increases, and a large amount of electric power is required. Because the power of the electric motor of the rolling mill is limited, the hot finish rolling of high strength steel sheets requires a lower rolling speed than the hot finish rolling of low carbon steel sheets and ultra low carbon steel sheets with relatively low strength. Has become commonplace.
[0012]
However, when the rolling speed was reduced and the width direction temperature distribution of the steel sheet after finish rolling was measured using a width direction thermometer, the temperature distribution was almost smooth in the width direction of the steel sheet on the exit side of the finishing mill. Nevertheless, before being wound after being cooled in the cooling zone, the temperature distribution tends to have an M-shaped shape as shown in FIG. That is, it was found that when the rolling speed was low, there was a problem that the uniformity of the winding temperature in the steel sheet width direction was lost. Here, the M-shaped temperature distribution as shown in FIG. 14 means that the temperature at the center of the width of the steel sheet is minimal, the temperature increases as approaching the width edge, shows a peak, and further approaches the width edge. And the temperature distribution in the width direction such that the temperature sharply decreases.
[0013]
According to the investigation by the present inventor, the region where the steel plate temperature locally increases and shows a peak is a region corresponding to a position of 100 to 200 mm from both width edges of the steel plate, and the temperature difference from the center of the width of the steel plate. In some cases, the temperature was 80 ° C. or more, depending on the rolling speed and the level of the winding temperature. It was also found that the peak position (d: distance from both edges of the steel sheet) of the M-shaped temperature distribution shape was substantially constant even when the width of the steel sheet changed.
[0014]
In the related arts described in Patent Documents 1 to 4, it is possible to suppress the vicinity of the width edge of the hot-rolled metal plate from being locally cooled more easily than other portions. However, the M-shaped temperature distribution of the winding temperature in the width direction of the hot-rolled metal sheet cannot be suppressed.
The present invention provides a method for cooling a hot-rolled metal sheet and a cooling apparatus therefor, which eliminate the above-described conventional M-shaped temperature distribution in the width direction of the hot-rolled metal sheet and provide a uniform winding temperature distribution in the width direction. The primary purpose is to make proposals. A second object of the present invention is to propose a high-strength hot-rolled steel sheet having a small variation in yield strength in the width direction and a method for producing the same.
[0015]
[Means for Solving the Problems]
In order to achieve the above-mentioned object, the present inventors have first studied diligently about the reason why the temperature distribution in the width direction of a hot-rolled metal sheet cooled by cooling water in a cooling zone after finish rolling is generated.
The cooling water that cools the lower surface of the hot-rolled metal plate is supplied by being sprayed toward the hot-rolled metal plate and then falls by gravity. For this reason, if the same nozzles are installed at equal intervals in the width direction of the hot-rolled metal plate, temperature unevenness rarely occurs in the width direction of the hot-rolled metal plate. On the other hand, the cooling water W that cools the upper surface of the hot-rolled metal plate 1 falls from the nozzle 5 onto the hot-rolled metal plate 1 and then flows over the hot-rolled metal plate 1 and from both edges to the run-out table. drop down. During this time, a complicated interference flow is created on the hot-rolled metal plate 1.
[0016]
When the pipe laminar type rod-shaped cooling water W is dropped onto the upper surface of the hot-rolled metal plate 1 from the header 4 via the nozzle 5, the flow of the cooling water formed on the hot-rolled metal plate 1 is schematically shown. As shown in FIG. The cooling water that has collided with the hot-rolled metal sheet 1 flows downstream in the transport direction (the direction of the arrow A) while being carried along with the transport of the hot-rolled metal sheet 1. The cooling water that has flowed downstream in the transport direction is blocked by walls formed by the cooling water W that falls on the downstream side in the transport direction, and thus flows in the width direction of the hot-rolled metal plate 1 (in the direction of arrow B). When the flows in the two directions A and B become stronger to some extent, the force of the falling cooling water W to break the water film formed by these flows and reach the surface of the hot-rolled metal plate 1 becomes insufficient. Become like That is, the area where the falling cooling water W comes into direct contact with the hot-rolled metal plate 1, that is, a so-called black spot, is reduced, and the cooling capacity is reduced.
[0017]
Here, the flow rate of the cooling water carried on the hot-rolled metal plate 1 from the upstream along the transport direction does not depend on the position in the width direction of the hot-rolled metal plate 1. On the other hand, since the cooling water after falling flows right and left, the flow rate of the flow in the width direction decreases toward the center of the width of the hot-rolled metal sheet 1, and the flow rate of the flow in the width direction increases as approaching both width edges, It is largest at both width edges. In other words, the flow in the B direction becomes stronger as it approaches both width edges of the hot-rolled metal plate 1, so that the falling cooling water is less likely to directly contact the metal plate 1, and the cooling capacity is reduced. Therefore, it is considered that the winding temperature is locally increased as the width edge is approached, except for a region where the winding temperature is locally reduced near the both width edges. The reason why the winding temperature locally decreases near the both width edges is that, as shown in FIG. 16, heat is removed from only two surfaces in the other region, whereas heat is removed from three surfaces in both width edges. It is inferred that this is due to
[0018]
In this way, it is considered that the temperature distribution in the width direction of the hot-rolled metal sheet cooled in the cooling zone after the finish rolling becomes uneven. It has been found that the non-uniformity of the temperature distribution is greatly affected by the rolling speed and becomes significant when the rolling speed is approximately 10 m / s or less. In addition, the unevenness of the temperature distribution in the width direction of the hot-rolled metal sheet becomes larger as the target value of the winding temperature is lower, that is, as the temperature drop when cooling the upper surface of the hot-rolled metal sheet is larger. Further, when the winding temperature is lower than 500 ° C., the temperature drop locally becomes large, the vicinity of both width edges of the hot-rolled metal sheet and the center area of the width of the hot-rolled metal sheet become the transition boiling temperature range. Therefore, the non-uniformity of the temperature distribution generated in the width direction of the hot-rolled metal plate is further increased. Therefore, a metal plate of a type in which the temperature drop is large because the target value of the winding temperature is low, specifically, particularly, is cooled to a low temperature such that the winding temperature is lower than 500 ° C. to refine the ferrite structure. In the case of a high-strength steel sheet or the like that obtains high strength by heating, there has been a problem that the unevenness of the temperature distribution generated in the width direction of the steel sheet is further increased, and the material variation in the width direction of the steel sheet is increased.
[0019]
From the above, the present inventor performed edge masking to reduce the temperature drop of both width edges, and shielded by edge masking, in order to eliminate the unevenness of the temperature distribution in the width direction of the hot-rolled metal sheet. By supplying the cooling water to the width center side from both the width edges and enhancing the cooling at the width center side from both the width edges, he came to think that the peak of the M-shaped temperature distribution was leveled.
[0020]
The present invention has been completed based on the above findings, with further investigations. That is, the present invention for achieving the above object is as follows.
The first invention is
(1) In a method for cooling a hot-rolled metal sheet, in which a cooling zone cools an upper surface of the hot-rolled metal sheet after completion of hot finish rolling, the hot-rolled metal sheet is supplied near both width edges of the hot-rolled metal sheet. A method for cooling a hot-rolled metal sheet, comprising shielding cooling water, and supplying the shielded cooling water to the width center side of the hot-rolled metal sheet near both width edges thereof. The present invention
(2) A hot-rolled metal sheet cooling device that is installed in a cooling zone on the downstream side of the hot-finish rolling mill in the metal sheet conveying direction and cools the upper surface of the hot-rolled metal sheet conveyed after finish rolling, A plurality of headers disposed above the hot-rolled metal plate to supply cooling water; and a plurality of headers each of which is disposed at an interval in the width direction of the hot-rolled metal plate on each of the plurality of headers. A plurality of nozzles for supplying cooling water to the upper surface, a part of the cooling water supplied from the plurality of nozzles is shielded from both width edge sides of the hot-rolled metal plate, and the shielded cooling water is It is characterized by comprising: a shield for supplying the width-centered side of the hot-rolled metal plate closer to the width than the vicinity of both width edges; and a moving mechanism for moving the shield in the width direction of the hot-rolled metal plate. Cooling equipment for hot rolled metal sheets
It is.
[0021]
In addition, the third present invention,
(3) In mass%, C: 0.01 to 0.2%, Si: 0.01 to 1.5%, Mn: 0.1 to 3%, P: 0.04% or less, S: 0. Contains not more than 02%, not more than 0.1% of Al, not more than 0.005% of N, and has a composition consisting of the balance of Fe and unavoidable impurities, and has a maximum yield strength from the width edges of 20 mm to the width center. A high-strength hot-rolled steel sheet, wherein the difference between the value and the minimum value is 30 MPa or less.
(4) In (3), in addition to the above composition, in mass%, Cu: 0.01 to 1.0%, Cr: 0.01 to 1.0%, Ni: 0.01 to 1.0%. %, Mo: 0.01 to 1.0%, Ti: 0.01 to 0.2%, Nb: 0.01 to 0.2%, V: 0.01 to 0.1%. A high-strength hot-rolled steel sheet comprising one or more kinds.
It is. In addition, the fourth present invention,
(5) In the method for producing a hot-rolled steel sheet by subjecting a steel material to hot rolling including rough rolling and finish rolling, wherein the steel material is mass%, C: 0.01 to 0.2%. , Si: 0.01 to 1.5%, Mn: 0.1 to 3%, P: 0.04% or less, S: 0.02% or less, Al: 0.1% or less, N: 0.005 % Of a steel material having a composition of not more than 0.1%, and cooling the upper surface of the hot-rolled steel sheet with cooling water after the finish rolling, shielding cooling water supplied near both width edges of the hot-rolled steel sheet, The method is characterized in that the shielded cooling water is supplied to the width center side of the hot-rolled steel sheet from the vicinity of both width edges, and the difference between the maximum value and the minimum value of the yield strength from both width edges 20 mm to the width center is 30 MPa. The following is a method for producing a high-tensile hot-rolled steel sheet.
It is.
[0022]
BEST MODE FOR CARRYING OUT THE INVENTION
First, a method for cooling a hot-rolled metal plate according to the first invention will be described.
In the cooling method of the present invention, as shown in FIG. 5, after the hot finish rolling, the surface of the hot rolled metal sheet 1 conveyed by the conveying rolls 3 is cooled on the exit side of the final stand of the hot finish rolling mill 18. Cooling is performed in zone 22 with cooling water. At this time, in the present invention, the cooling water W supplied near the both width edges of the upper surface of the hot-rolled metal plate 1 is shielded by the shielding body 6, and the shielded cooling water is supplied near the both width edges of the hot-rolled metal plate 1. To the width center side. This situation is schematically shown in FIG.
[0023]
In FIG. 1, the shielding body 6 is formed in a gutter shape so that the shielded cooling water can be supplied to a specific place C through the groove-shaped hole 6a. As a result, similarly to the conventional edge masking device, it is possible to suppress local supercooling near both width edges of the hot-rolled metal plate 1 and to reduce local supercooling near the both width edges of the hot-rolled metal plate 1. (A specific location C: including an M-shaped temperature distribution peak) can be intensively cooled, and unevenness of the temperature distribution in the width direction can be suppressed. In the present invention, the method of cooling the lower surface of the hot-rolled metal plate does not need to be particularly limited. Any ordinary cooling method, such as injecting cooling water from nozzles 51 installed at equal intervals in the width direction of the hot-rolled metal plate 1 via the header 41, can be applied.
[0024]
Next, a description will be given of a hot rolled metal plate cooling device suitable for use in the first invention, which is the second invention.
As shown in FIG. 5, the cooling device for hot-rolled metal sheets of the present invention includes a plurality of cooling devices (a plurality of zones) on the exit side of the hot finishing rolling mill 18, that is, in the cooling zone 22 on the downstream side in the hot-rolled metal sheet conveying direction. The upper surface of the hot rolled metal sheet 1 that is installed and conveyed after the finish rolling is cooled by supplying cooling water from the nozzle 5 via the header 4. Needless to say, a cooling device of a different type from the cooling device for the upper surface (the present invention) may be provided for cooling the lower surface of the hot-rolled metal plate. FIG. 5 illustrates a cooling device of a type in which cooling water is jetted from a nozzle 51 attached to a header 41 to the lower surface of the hot-rolled metal plate for cooling the lower surface of the hot-rolled metal plate. It is not limited.
[0025]
An example of the apparatus for cooling a hot-rolled metal plate of the present invention is schematically shown in FIG. 1 in a front view and schematically in a plan view in FIG.
The apparatus for cooling a hot-rolled metal plate according to the present invention includes a plurality of headers 4, a plurality of nozzles 5 arranged on the header 4, a shield 6, and a shield moving mechanism 7. The header 4 is provided above the upper surface of the hot-rolled metal sheet 1 conveyed by the conveying rolls 3 and supplies cooling water. As shown in FIG. 2, a plurality of headers 4 are provided in the transport direction. In each header 4, a plurality of nozzles 5 are arranged at intervals in the width direction of the hot-rolled metal plate, and supply cooling water to the upper surface of the hot-rolled metal plate. Although the type of the nozzle 5 is not particularly limited, it is preferable to use a tubular shape in which a pipe laminar is formed from the viewpoint of easiness of device design, versatility of parts, cost, and the like.
[0026]
In the present invention, of the cooling water supplied to the upper surface of the hot-rolled metal plate 1 from the nozzle 5, the cooling water supplied to both width edges of the hot-rolled metal plate 1 is reduced to a predetermined length in the transport direction. Shields 6 are provided on both width edge sides of the hot-rolled metal plate 1 for shielding over the entire width. Further, the shielding body 6 in the present invention is formed in a gutter shape so that the blocked cooling water can be supplied to the width center side from the vicinity of both width edges, and corresponds to an M-shaped temperature peak of the hot-rolled metal plate 1. It is preferable to have a groove-shaped hole 6a so as to be able to collectively supply a desired specific region (region C in FIG. 1) having a width of 50 to 100 mm including a portion and preferably extending symmetrically on both sides in the width direction. Thereby, the shielded cooling water can be intensively supplied to a desired specific area of the hot-rolled metal plate 1 with high accuracy, and the temperature distribution in the width direction can be made uneven. For example, the interval between nozzles in the width direction of the hot-rolled metal plate is 50 mm, the width of the gutter-shaped shield 6 is 300 mm, the width of the bottom groove-shaped hole 6a is 50 mm, and the shielded cooling water W is hot-rolled. If the cooling water W is supplied to a specific region on the upper surface of the metal plate 1, the flow rate of the cooling water W per unit area is doubled, and the cooling capacity is increased.
[0027]
Note that the width of the groove-shaped hole 6a can be changed according to the width of a desired specific region to be intensively cooled. Further, the planar shape of the shield 6 may be changed from a rectangle as shown in FIG. 2 to a trapezoid or a triangle (not shown) shown in FIG. The shield 6 having a trapezoidal or triangular planar shape is provided with a groove-shaped hole 6a having a constant width at the bottom formed in a gutter shape, similarly to the rectangular shape. Thus, similarly to the case where the width of the groove-shaped hole 6a is changed, it is possible to change the width of a desired specific region to be intensively cooled.
[0028]
Further, the cooling device of the present invention includes a moving mechanism 7 that enables the shield 6 to move in the width direction of the hot-rolled metal plate 1. Thus, the shield 6 can be set at a desired position in the width direction. By supplying the shielded cooling water to a desired specific area of the hot-rolled metal sheet 1 to locally cool strongly and increase the temperature drop, a new unexpected flow occurs, and It is possible to assume that the cooling unevenness (non-uniformity of the temperature distribution) has not been eliminated. However, even in such a case, by providing the moving mechanism 7 and changing the position of the shield 6, In many cases, uneven cooling can be eliminated.
[0029]
The type of the moving mechanism 7 in the present invention is not particularly limited as long as the shield 6 can be moved forward or backward in the width direction of the hot-rolled metal plate 1. As the moving mechanism 7, for example, a screwing mechanism of a screw and a nut can be exemplified. According to this screwing mechanism, for example, a nut is disposed on the shield 6, and the screw is rotated forward or backward to move the shield 6 forward or backward in the width direction of the hot-rolled metal plate 1. It becomes possible. It is preferable that the moving mechanism 7 is provided so that the shields 6 and 6 can move synchronously and symmetrically in the width direction.
[0030]
In addition, as another moving mechanism, a servomotor, a hydraulic cylinder, or the like can be exemplified. Further, the moving mechanism 7 may be the mechanism shown in FIG. In the example of the moving mechanism shown in FIG. 4, one end of the shield 6 is rotatably installed on a fixed object (not shown) via a hinge 6b or the like, and the shield 6 is usually suspended vertically. Only when the cooling water W is shielded, the other end of the shielding body 6 may be a mechanism for catching a winch or the like by a catching mechanism 6c capable of catching and catching. Needless to say, the moving mechanism in the present invention is not limited to the moving mechanism described above.
[0031]
In the present invention, the moving mechanism 7 controls the movement of the shield 6 in the width direction of the hot-rolled metal plate so that the cooling water shielded by the shield 6 can be intensively supplied to a desired area. Information on the width of the hot-rolled metal plate 1 is obtained from the business computer 90 shown in FIG. 11 via the process computer 70, and based on this information, the moving mechanism 7 is operated by a command from the control device 50. Thus, it is preferable to control the shield 6 so as to be set at a predetermined position in the width direction of the hot-rolled metal plate 1. In addition, before the end of the hot-rolled metal sheet 1 is still wound around the coiler 24, or before the tail end of the hot-rolled metal sheet 1 passes through the finishing mill 18 and is wound on the coiler 24, the hot-rolled metal sheet 1 1 is easy to meander, the width of the hot-rolled metal plate 1 is detected by a width gauge (not shown) installed on the exit side of the finishing mill 18 or on the entrance side of the coiler 24, and in the meandering direction, The shield 6 may be controlled in real time so as to be shifted in the width direction of the hot-rolled metal plate 1 by the moving mechanism 7 by the meandering amount. In addition, the shield 6 may be shifted in the width direction of the hot-rolled metal plate 1 by an amount corresponding to the meandering amount other than the front end and the tail end of the hot-rolled metal plate 1.
[0032]
Next, the hot-rolled steel sheet (3 mm thick × 1000 mm width) obtained by performing the finish rolling at the finish rolling exit side temperature of 880 ° C. by the cooling method using the cooling device of the present invention shown in FIGS. The effect of the present invention will be described by taking cooling as an example. At the time of cooling, both width edges 100 mm of the hot-rolled steel sheet were edge-masked by the shield 6, and the hot-rolled steel sheet 1 was spread symmetrically in the width direction including a portion corresponding to the peak of the M-shaped temperature distribution. The cooling water was intensively supplied to a desired specific region having a width of 50 mm and having a width of 50 mm. In addition, as a comparison, both width edges of 100 mm were shielded by a shield, and the shielded cooling water was allowed to fall outside the both width edges of the hot-rolled steel sheet. In addition, the same operation was performed when no shield was used. The temperature change at each position in the steel sheet width direction per water cooling zone is determined based on the case where the shield is not used (the edge masking is not performed), and is shown in FIG.
[0033]
From FIG. 6, in the case of the conventional masking of 100 mm 2 of the edge (dotted line: conventional example), the supercooling of the 100 mm 2 of the edge is alleviated, and there is a temperature rise of 10 ° C. as compared with the case where the edge masking is not performed. I understand. On the other hand, by applying the cooling method of the present invention (masking of the edge 100 mm 2 + specific partial cooling: application example of the present invention), the supercooling is alleviated at the edge 100 mm 2, and 10 ° C. as in the conventional edge masking only. In addition to the temperature rise, the shielded cooling water is dropped and supplied intensively to the center in the width direction, so that in the area of 100 to 150 mm from the width edge, the maximum compared to the case where edge masking is not performed It can be seen that there is a temperature drop of 25 ° C.
[0034]
As described above, according to the cooling method of the present invention, the temperature in the width direction, which has conventionally been M-shaped, can be increased in the width edge portion and the temperature in the peak position can be decreased. A uniform temperature distribution can be obtained in the width direction.
Next, by applying the above-described method for cooling a hot-rolled metal sheet of the present invention, a high-tensile hot-rolled steel sheet having a high tensile strength of 400 MPa or more and a small variation in yield strength in the width direction is obtained. A method for producing a high-tensile hot-rolled steel sheet to be produced will be described.
[0035]
The high-strength hot-rolled steel sheet of the present invention is obtained by subjecting a steel material having a predetermined composition to hot rolling including rough rolling and finish rolling to obtain a hot-rolled steel sheet, and then finishing the hot-rolled steel sheet after finish rolling as described above. It is manufactured by applying the cooling method of the invention.
The steel material used in the present invention is obtained by refining a molten steel produced by a converter, an electric furnace, or the like, preferably by a known refining method such as further degassing by VOD or the like to obtain a predetermined composition, and then continuously casting. A slab or the like cast by a known casting method such as that described above can be used. It goes without saying that the method of manufacturing the steel material is not limited to the above-described method.
[0036]
The steel material used in the present invention is mass%, C: 0.01 to 0.2%, Si: 0.01 to 1.5%, Mn: 0.1 to 3%, P: 0.04%. In the following, S: 0.02% or less, Al: 0.1% or less, N: 0.005% or less, or further mass%, Cu: 0.01 to 1.0%, Cr: 0. 01 to 1.0%, Ni: 0.01 to 1.0%, Mo: 0.01 to 1.0%, Ti: 0.01 to 0.2%, Nb: 0.01 to 0.2% , V: one or more selected from 0.01% to 0.1%, and preferably has a composition comprising the balance of Fe and unavoidable impurities. The reasons for the composition limitation are as follows. Hereinafter, mass% in the composition is simply described as%.
[0037]
C: 0.01-0.2%
C is contained in an amount of 0.01% or more to increase the strength. However, if the content exceeds 0.2%, the weldability deteriorates. For this reason, C is limited to the range of 0.01 to 0.2%. In addition, from the viewpoint of further improving strength and weldability, the content is preferably set to 0.03 to 0.18%.
[0038]
Si: 0.01 to 1.5%
Si is contained in an amount of 0.01% or more to improve cold workability such as pressing. However, if the content exceeds 1.5%, a scale that is difficult to peel occurs on the surface layer of the steel slab of the steel sheet during heating for hot rolling, and does not peel even after descaling, and the surface quality of the product is reduced. Getting worse. For this reason, Si was limited to the range of 0.01 to 1.5%. From the viewpoint of further improving the cold workability and the descaling property, the content is preferably set to 0.1 to 1.0%.
[0039]
Mn: 0.1 to 3%
Mn is contained in an amount of 0.1% or more to increase the strength. However, even if the content exceeds 3%, the effect is saturated, but the effect of improving the hardenability increases, and even a slight change in the cooling conditions (for example, the difference between immediately below the laminar water (black spot) and the other ones) causes This leads to fluctuations in the strength of the hot-rolled steel products. For this reason, Mn was limited to the range of 0.1 to 3%. Incidentally, the content is preferably 1.5% or less.
[0040]
P: 0.04% or less
P is an element that increases the strength and may be contained in an unavoidable content (about 0.008%) or more as necessary. However, if contained in a large amount, the steel sheet is embrittled. %.
S: 0.02% or less
S forms sulfides in the steel and lowers the ductility of the steel, so that it is preferable to make S as low as possible. In the present invention, S is limited to 0.02% or less.
[0041]
Al: 0.1% or less
Al is an element that effectively acts as a deoxidizing agent, and it is preferable to contain it in an amount of 0.001% or more. However, if it exceeds 0.1%, the amount of inclusions increases, the cleanliness is deteriorated, and heat is reduced. The surface of the product after the cold rolling is easily cracked or flawed. For this reason, Al was limited to 0.1% or less.
[0042]
N: 0.005% or less
It is desirable to reduce N as much as possible in order to secure materials such as ductility and r value, but if it is 0.005% or less, almost satisfactory characteristics can be obtained. For this reason, N is limited to 0.005% or less.
In the present invention, in addition to the basic composition described above, Cu: 0.01 to 1.0%, Cr: 0.01 to 1.0%, Ni: 0.01 to 1.0%, Mo: 0.1 to 1.0%. One or two selected from 01 to 1.0%, Ti: 0.01 to 0.2%, Nb: 0.01 to 0.2%, V: 0.01 to 0.1% The above can be contained. Cu, Cr, Ni, Mo, Ti, Nb, and V are all elements that increase the strength, and can be selectively contained as necessary.
[0043]
Cu: 0.01 to 1.0%
Cu is preferably contained in an amount of 0.01% or more in order to improve the strength. However, if it is contained in excess of 1.0%, cracks or flaws may occur on the product surface after hot rolling. It will be easier. Therefore, Cu is preferably limited to 1.0% or less.
Cr: 0.01 to 1.0%
Cr is preferably contained in an amount of 0.01% or more in order to improve the strength, but if it exceeds 1.0%, it hardens and deteriorates cold workability such as pressing. Therefore, the content of Cr is preferably limited to 0.01 to 1.0%.
[0044]
Ni: 0.01 to 1.0%
Ni is an element that improves the strength and the toughness, and such an effect is recognized at a content of 0.01% or more, but the effect is saturated even if the content exceeds 1.0%, The effect corresponding to the content cannot be expected, which is economically disadvantageous. For this reason, Ni is preferably limited to the range of 0.01 to 1.0%.
[0045]
Mo: 0.01 to 1.0%
Mo is preferably contained in an amount of 0.01% or more in order to improve the strength, but if it exceeds 1.0%, the toughness is reduced. For this reason, Mo is preferably limited to the range of 0.01 to 1.0%.
Ti: 0.01 to 0.2%
Ti is an element that forms carbides, nitrides, and carbonitrides, increases strength, and improves toughness. Such an effect is recognized when the content is 0.01% or more. On the other hand, if the content exceeds 0.2%, both strength and toughness decrease. For this reason, Ti was limited to the range of 0.01 to 0.2%.
[0046]
Nb: 0.01 to 0.2%
Like Nb, Nb is an element that forms carbides or nitrides, increases strength and improves toughness, and such an effect is recognized at a content of 0.01% or more. On the other hand, if the content exceeds 0.2%, both strength and toughness decrease. For this reason, Nb was limited to the range of 0.01 to 0.2%.
[0047]
V: 0.01 to 0.1%
V is preferably contained at 0.01% or more in order to improve the strength. On the other hand, if the content exceeds 1.0%, the toughness decreases. For this reason, V is preferably limited to the range of 0.01 to 0.1%.
The balance other than the components described above is Fe and inevitable impurities.
[0048]
Heating a steel material containing the above-mentioned basic composition or an element that further increases the strength, without heating, or when heating at a temperature higher than the temperature at which hot rolling can be performed, or without heating for a short time After furnace holding, hot rolling including rough rolling and finish rolling is performed to obtain a hot-rolled steel sheet having a predetermined size. After the finish rolling, cooling water is supplied to the surface of the hot-rolled steel sheet after the finish rolling in a cooling zone provided on the exit side of the finishing mill to cool the steel sheet. The cooling method uses the cooling device of the present invention exemplified in FIGS. 1 to 5 to shield cooling water supplied to both width edges of the hot-rolled steel sheet, and to block the shielded cooling water from the vicinity of both width edges. The method for cooling a hot-rolled metal sheet of the present invention, in which the hot-rolled metal sheet is also supplied to the width center side, is applied.
[0049]
In the cooling zone 22 installed on the outlet side of the finishing mill 18, a plurality of headers 4 and 41 are arranged in the direction of transport of the hot-rolled steel sheet, divided into a plurality of water cooling zones, and cooled in each water cooling zone. It is preferable to adjust the conditions so that a desired winding temperature distribution can be obtained. For example, the total length of the water-cooling zone for supplying the cooling water is calculated based on the measurement value of the finishing-side thermometer 7a and the transport speed pattern of the steel sheet 1. That is, when the temperature of the steel plate 1 before cooling is the same, the total length of the water cooling zone for supplying the cooling water in the transport direction is adjusted so as to reach a desired temperature according to the increase or decrease in the transport speed. Furthermore, when the temperature of the steel plate 1 before cooling rises or falls, it is preferable to further adjust the total length of the water cooling zone for supplying the cooling water in the transport direction by a corresponding amount. Further, feedback control for increasing or decreasing the total length in the transport direction of the water cooling zone for supplying the cooling water may be performed based on the difference between the target winding temperature and the value measured by the winding thermometer 7c.
[0050]
In addition, the edge masking by the shield 6 and the intensive supply of the cooling water to the specific area need not always be applied to the entire water cooling zone, so that the target winding temperature can be obtained and the width distribution of the winding temperature is uniform. It is preferable to adjust for each water cooling zone so that
This suppresses local supercooling near both width edges of the hot-rolled steel sheet, and locally increases the temperature near the width center near the both width edges (the peak position of the M-shaped temperature distribution is reduced). The specific area C) can be intensively cooled, the distribution of the winding temperature in the width direction is made uniform, the tensile strength: 400 MPa or more, and the maximum yield strength from the both width edges 20 mm to the center of the width. A high-strength hot-rolled steel sheet having a uniform characteristic with a small variation in yield strength in the width direction and a difference between the value and the minimum value of 30 MPa or less can be obtained.
[0051]
Hereinafter, the present invention will be described in more detail with reference to Examples.
[0052]
【Example】
A steel material having the composition shown in Table 1 was melted in a converter, and was made into a steel material (slab) by a continuous casting method. Next, these slabs were charged into a heating furnace 10 using a hot rolling line 100 shown in FIG. 11 and heated to about 1200 ° C., and then were subjected to a hot rolling steel sheet (3 mm) by a rough rolling mill 12 and a finishing rolling mill 18. (Thickness x 1000 mm width). The finish-rolling exit temperature was 835 to 883 ° C. Further, the width distribution of the finish-rolling exit temperature of the hot-rolled steel sheet 1 immediately after the finish rolling measured by the width-direction thermometer 7b disposed on the exit side of the finish exit-side thermometer 7a shown in FIG. It is confirmed that the temperature is almost uniform except for the uppermost edge and the temperature fluctuation is at most about 10 to 15 ° C.
[0053]
[Table 1]
Figure 2004351501
[0054]
The hot-rolled steel sheet 1 finish-rolled by the finish rolling mill 18 was then cooled in a cooling zone 22 to a winding temperature. The target strength of the hot-rolled steel sheet was set to a tensile strength of 400 to 1000 MPa (permissible: -50 MPa, +40 MPa).
As shown in FIG. 5, the cooling in the cooling zone 22 was performed by supplying cooling water from a plurality of headers 4 and 41 provided vertically while passing through a run-out table in which the table rollers 3 were arranged. The upper header 4 is a pipe laminar header in which cylindrical nozzles 5 are arranged in the width direction of the hot-rolled steel sheet 1, and supplies a large number of rod-shaped cooling waters at a pitch of 50 mm in the width direction of the steel sheet 1. The upper and lower headers are each provided with 40 tubular nozzles 5 at 50 mm pitch in the width direction of the steel plate 1, and a set of 6 headers connected in the conveying direction to a common base pipe is treated as one water cooling zone. Are provided in 20 zones. In addition, between the upper header 4 and the hot-rolled steel sheet 1, a shield 6 and a moving mechanism 7 having the structure and shape shown in FIGS. 1 and 2 are arranged to supply cooling water supplied to both width edges. In addition to shielding (edge masking of both width edges), shielding water was supplied to a specific area. The shield 6 was attached so as to be movable in the width direction of the hot-rolled steel sheet by the moving mechanism 7, and the position of the shield 6 was changed for each water cooling zone. As a conventional example, a conventional shield shown in FIG. 13 was also used. Hereinafter, the masking device including the shield and the moving mechanism is also referred to as an edge masking device.
[0055]
The following three cooling methods shown in Table 2 were used.
[0056]
[Table 2]
Figure 2004351501
[0057]
(A) Application example
Water cooling zone No. 2-No. 4, no. 6-No. 8, No. 10 -No. 12, no. 14 -No. 16, no. 18, an edge masking device having a shield 6 and a moving mechanism 7 having the structure shown in FIGS. 1 and 2 is installed to shield cooling water supplied near both width edges of the hot-rolled steel sheet 1 and to shield the cooling water. The cooled water dropped from the vicinity of both width edges of the hot-rolled steel sheet 1 toward the width center. In each water cooling zone, the position of the shield was changed, and the width of the shield protruding to both width edges of the hot-rolled steel sheet was changed between 40 and 180 mm. On the other hand, the water cooling zone No. 1, No. 5, no. 9, No. 13, no. 17, No. 19, no. 20 is provided with a shield (conventional example) having the structure shown in FIG. In the case of Sample No. 1, only the shield 6 was set so that the width of the hot-rolled steel sheet 1 at both width edges protruding toward the center of the width (extension width of the shield) was 70 mm, and edge masking was performed. In the other cooling zones, the shield was fixed to the outside of the hot-rolled steel sheet, and there was no protrusion of the shield. The pattern of the water-cooled zone was obtained based on the result of the edge masking effect shown in FIG. 6 and further experimented so that the distribution of the winding temperature in the width direction became uniform.
(B) Conventional example 1
In each of the water cooling zones, an example in which the edge masking device is not used is used.
(C) Conventional example 2
An edge masking device having the structure shown in FIG. 13 is installed in each of the water cooling zones, and the shields 6 are installed so that the overhang width of the shields is alternately 100 mm or 70 mm in a total of 10 odd-numbered water cooling zones. Masking was performed. On the other hand, in the even-numbered water-cooled zones, the protruding width of the shield was set to zero, and no edge masking was performed.
[0058]
FIG. 7 shows an example of the distribution in the width direction of the winding temperature of the obtained hot-rolled steel sheet after cooling by the cooling methods (A) to (C) described above. The winding temperature distribution in the width direction is line-symmetric with respect to the width center, and FIG. 7 shows a right half temperature distribution from the width center to one width edge.
The temperature distribution curve A (solid line) of the winding temperature in the width direction of the application example shows that the cooling water is not supplied immediately below the region where the cooling water is shielded by the shield 6, so that the supercooling which has conventionally occurred in this portion The temperature at the position 20 mm from the width edge of the hot-rolled steel sheet is only 23 ° C. lower than the center of the width, and the cooling water shielded by the shield 6 is concentrated 120 m from both width edges. , The temperature at that position was only 35 ° C. higher than at the center of the width. FIG. 7 shows that the cooling method (application example) of the present invention has a uniform temperature distribution in the width direction.
[0059]
On the other hand, the temperature distribution curve B in the width direction of the conventional example 1 (dashed-dotted line) indicates that the vicinity of both width edges of the hot-rolled steel sheet is locally supercooled as compared with the other portions, and the position 20 mm from the width edge of the hot-rolled steel sheet. Is 133 ° C. lower than the temperature at the center of the width. Further, the width direction temperature distribution curve C (broken line) of Conventional Example 2 indicates that the cooling water is not supplied to the area directly below the area where the cooling water is shielded by the shield 6, so that the supercooling which has conventionally occurred in this area is not performed. The temperature at the position 20 mm from the width edge of the hot-rolled steel sheet is only 33 ° C. lower than the center of the width, but the temperature at the position 100 mm from both width edges is 98 ° C. higher than the center of the width. Has become.
[0060]
Next, a strip-shaped test piece (width: 20 mm) was sampled from the hot-rolled steel sheet cooled by the cooling method described above, processed into a tensile test piece and subjected to a tensile test, and the yield strength YS and the tensile strength were measured. TS and elongation El were measured. The tensile test piece used was a parallel part: 18 mm width and parallel part length: 60 mm (GL: 50 mm) in accordance with JIS No. 5 test piece specified in JIS Z2201, and the tensile direction was the direction of the elongation of the hot-rolled steel sheet. And Moreover, the tensile test piece was sampled so that the center of the test piece width was at a predetermined position (20 mm, 40 mm, etc. from the width edge) at an interval of 20 mm from the width edge of the hot-rolled steel sheet. The obtained results are shown in FIGS.
[0061]
The steel No. shown in Table 1 cooled by the cooling method (A) of the present invention example. In the hot-rolled steel sheet having the composition of D, the cooling water is shielded by the shield 6, and as shown in FIG. 7, the temperature at the position 20 mm from the width edge was only 23 ° C. lower than the center of the width. As shown, TS: 554 MPa and YS: 471 MPa (the rightmost plot in FIG. 8). For this reason, the trimming margin was determined under conditions unrelated to the material such as edge drop, and both edges were 20 mm (total 40 mm), and the yield was 96%. Further, since the width of the shield 6 protruding toward the center of the width of the hot-rolled steel sheet was changed stepwise between 40 and 180 mm, as shown in FIG. Is only 35 ° C. higher than the width center, and as shown in FIG. 8, the TS variation (the difference between the maximum and minimum) in the entire region from the position 20 mm from the width edge to the width center is 35 MPa. , YS is 28 MPa, and the hot-rolled steel sheet has little strength fluctuation in the width direction.
[0062]
On the other hand, in the hot-rolled steel sheet cooled by the cooling method (B) of Conventional Example 1, since the masking was not performed at both width edges, as shown in FIG. 133 ° C. lower than that, and TS: 618 MPa and YS: 519 MPa. Both edges were too hard and the area required for the product El: 24% could not be secured: 60 mm had to be cut off as a margin, so the product yield was 88%. As shown in FIG. 7, the winding temperature at a position 120 mm from both edges is 83 ° C. higher than the center of the width, and is 490 MPa for TS and 411 MPa for YS. As shown in FIG. 9, even after a region where both width edges are too hard (total 120 mm 2) is discarded as a margin, a variation in TS (the difference between the maximum and minimum) is 40 MPa, and a variation in YS is 45 MPa in the width direction. There is a hot-rolled steel sheet having a large variation in strength in the width direction.
[0063]
Further, in the hot-rolled steel sheet cooled by the cooling method (C) of the conventional example 2, the cooling water is shielded by the shielding body 6, so that the supercooling which has conventionally occurred in this portion can be suppressed. As described above, the temperature at the position 20 mm from the width edge was only 33 ° C. lower than the center of the width, so that TS: 560 MPa and YS: 470 MPa. . Since the material on the center side of the width was better than this, the edge trimming margin was determined under conditions unrelated to the material such as edge drop, and both width edges were 20 mm (40 mm in total), and the yield was 96%. Was.
[0064]
The winding temperature at a position 120 mm from both edges was 96 ° C higher than the center of the width, and was 482 MPa for TS and 404 MPa for YS. As shown in FIG. 10, in the entire region from the position 20 mm from the width edge to the center of the width, the variation in TS (difference between maximum and minimum) is 78 MPa, the variation in YS is 66 MPa, and the intensity variation in the width direction is large. It is a hot rolled steel sheet.
Next, after the finish rolling, the hot-rolled steel sheet cooled by the cooling method described in (A) to (C) above was further subjected to a 200 m-long position from the tip of the hot-rolled steel sheet after finish rolling. Strip-shaped (width: 18 mm) test pieces were sampled at a pitch of 20 mm over the entire width direction, processed into tensile test pieces and subjected to a tensile test, and the yield strength YS, tensile strength TS, and elongation El were measured. . The tensile test piece used had a parallel portion: 18 mm width and a parallel portion length: 60 mm (GL: 50 mm), and the tensile direction was the direction in which the hot-rolled steel sheet was elongated. Moreover, the tensile test piece was sampled so that the center of the test piece width was at a predetermined position (20 mm, 40 mm, etc. from the width edge) at an interval of 20 mm from the width edge of the hot-rolled steel sheet. Table 3 shows the obtained results. Table 3 shows the maximum value, the minimum value, and the difference among the yield strength, tensile strength, and elongation obtained at each position.
[0065]
[Table 3]
Figure 2004351501
[0066]
[Table 4]
Figure 2004351501
[0067]
In the hot-rolled steel sheet (application example) to which the cooling method of the present invention is applied, the fluctuation in strength in the width direction of the steel sheet can be reliably reduced. On the other hand, in the conventional example out of the range of the present invention, it can be seen that there is a large possibility that the strength varies greatly in the width direction and the amount of springback generated during the press working differs depending on the steel plate portion. In addition, it can be seen that by providing at least one or more water-cooling zones capable of intensively supplying the shielded cooling water to the width center side of the hot-rolled steel sheet, fluctuations in the strength of the hot-rolled steel sheet in the width direction can be reliably reduced. .
[0068]
In the example of the present invention shown here, an edge masking device of a type in which the cooling water is dropped to the outside in the width direction of the steel plate (for example, FIG. 13) is installed in some water cooling zones. Does not necessarily need to be installed. Just by installing an edge masking device that can supply shielded cooling water intensively to the center of the steel sheet width, an effect similar to that obtained by performing edge masking directly under the area where the shield plate protrudes toward the center of the steel sheet width is achieved. It is because it is obtained. Further, in the cooling method of the present invention example shown here, a specific region in which the cooling water shielded by the shielding plate installed by adjusting the amount of protrusion at both width edges is intensively supplied is provided for each water cooling zone. Although an example is shown in which the steel sheet is sequentially changed from the edge side to the center side, it goes without saying that the present invention is not limited to this.
[0069]
Further, in the embodiment of the present invention, the hot rolling line 100 shown in FIG. 11 was used. However, the present invention is not limited to this, and as shown in FIG. It is needless to say that the present invention can be applied to other types of hot rolling lines, such as a hot rolling line 200, which performs finish rolling directly without going through rough rolling.
[0070]
【The invention's effect】
As described above, according to the present invention, the winding temperature becomes uniform in the width direction of the hot-rolled metal sheet, the fluctuation of the yield strength in the width direction is small, and the high-tension hot-rolling material having uniform quality in the width direction is obtained. Steel plates can be manufactured easily and inexpensively, and this has a remarkable industrial effect. Further, according to the present invention, there is also an effect that the yield in a post-process such as press working is improved.
[Brief description of the drawings]
FIG. 1 is a front view schematically showing one example of a cooling device of the present invention.
FIG. 2 is a plan view schematically showing an example of the cooling device of the present invention.
FIG. 3 is a plan view schematically showing an example of the cooling device of the present invention.
FIG. 4 is a front view schematically showing an example of the cooling device of the present invention.
FIG. 5 is a side view schematically showing one example of the cooling device of the present invention.
FIG. 6 is a graph showing an example of the influence of edge masking, edge masking + specific area cooling on a temperature change at each position in the width direction per cooling zone.
FIG. 7 is a graph showing a comparison of the distribution of the winding temperature in the width direction.
FIG. 8 is a graph showing the distribution of tensile properties in the width direction when cooled by the cooling method (A).
FIG. 9 is a graph showing a width direction distribution of tensile properties when cooled by a cooling method (B).
FIG. 10 is a graph showing a width direction distribution of tensile properties when cooled by a cooling method (C).
FIG. 11 is an explanatory view schematically showing an example of a hot rolling line.
FIG. 12 is an explanatory view schematically showing an example of a hot rolling line.
FIG. 13 is an explanatory diagram schematically showing a conventional edge masking device.
FIG. 14 is an explanatory view showing an example of a conventional distribution of a hot-rolled steel sheet winding temperature in a width direction.
FIG. 15 is an explanatory view schematically showing a flow of cooling water in the conventional hot-rolled metal plate cooling.
FIG. 16 is an explanatory view schematically showing a heat removal state of a hot-rolled metal plate.
[Explanation of symbols]
1 Hot rolled metal sheet (hot rolled steel sheet, steel sheet)
3 Table roller
4 header (top header)
41 Lower header
5 nozzles
51 Lower nozzle
6 Shield
6a Slotted hole
6b hinge
6c winch (fishing mechanism)
7 Thermometer
7a Finishing thermometer
7b, 7c Width thermometer
7d winding thermometer
8 Rolled material
10 heating furnace
12 Rough rolling mill
13 Work Roll
14 Kropsha
16 Descaling device
18 Finishing mill
19 Work Roll
20 Slab continuous casting equipment
22 Cooling zone
24 coiler
50 Control device
70 Process computer
80 Business Computer
100, 200 hot rolling line

Claims (5)

熱間仕上圧延終了後の金属板の上表面を、冷却ゾーンで冷却水により冷却する熱延金属板の冷却方法において、該熱延金属板の両幅エッジ付近に供給される冷却水を遮蔽し、該遮蔽した冷却水を前記熱延金属板の両幅エッジ付近よりも幅中央側に供給することを特徴とする熱延金属板の冷却方法。In the method for cooling a hot-rolled metal sheet, in which the upper surface of the metal sheet after hot finish rolling is cooled by cooling water in a cooling zone, the cooling water supplied near both width edges of the hot-rolled metal sheet is shielded. Supplying the shielded cooling water to the width center side of the hot rolled metal plate from the vicinity of both width edges. 熱間仕上圧延機の金属板搬送方向下流側の冷却ゾーンに設置され、仕上圧延後の搬送される熱延金属板の上表面を冷却する熱延金属板の冷却装置であって、前記熱延金属板の上方に配設され冷却水を供給する複数のヘッダと、該複数のヘッダの各々に該熱延金属板の幅方向に間隔を隔てて配設され該熱延金属板の上表面に冷却水を供給する複数のノズルと、該複数のノズルから供給される冷却水のうちの一部を該熱延金属板の両幅エッジ側から遮蔽し、該遮蔽した冷却水を前記熱延金属板の両幅エッジ付近よりも幅中央側に供給する遮蔽体と、該遮蔽体を前記熱延金属板の幅方向に移動可能とする移動機構と、を備えたことを特徴とする熱延金属板の冷却装置。A hot-rolled metal sheet cooling device that is installed in a cooling zone on the downstream side of the hot-finish rolling mill in the metal sheet transport direction and cools an upper surface of the hot-rolled metal sheet to be transported after the finish rolling, A plurality of headers arranged above the metal plate to supply cooling water, and each of the plurality of headers is arranged at an interval in the width direction of the hot-rolled metal plate and provided on an upper surface of the hot-rolled metal plate. A plurality of nozzles for supplying cooling water, a part of the cooling water supplied from the plurality of nozzles is shielded from both width edge sides of the hot-rolled metal plate, and the shielded cooling water is supplied to the hot-rolled metal. A hot-rolled metal, comprising: a shield that supplies the shield to the width center side from the vicinity of both width edges of the plate; and a moving mechanism that enables the shield to move in the width direction of the hot-rolled metal plate. Board cooling device. mass%で、C:0.01〜0.2 %、Si:0.01〜1.5 %、Mn:0.1 〜3 %、P:0.04%以下、S:0.02%以下、Al:0.1 %以下、N:0.005 %以下を含有し、残部Fe及び不可避的不純物からなる組成を有し、両幅エッジ20mmから幅中央にかけての降伏強さの最大値と最小値の差が30MPa 以下であることを特徴とする高張力熱延鋼板。mass%, C: 0.01 to 0.2%, Si: 0.01 to 1.5%, Mn: 0.1 to 3%, P: 0.04% or less, S: 0.02% or less , Al: 0.1% or less, N: 0.005% or less, has a composition consisting of the balance Fe and unavoidable impurities, and has a maximum value and a minimum value of the yield strength from both width edges 20 mm to the center of the width. A high-strength hot-rolled steel sheet having a difference in value of 30 MPa or less. 前記組成に加えてさらに、mass%で、Cu:0.01〜1.0 %、Cr:0.01〜1.0 %、Ni:0.01〜1.0 %、Mo:0.01〜1.0 %、Ti:0.01〜0.2 %、Nb:0.01〜0.2 %、V:0.01〜0.1 %のうちから選ばれた1種または2種以上を含有することを特徴とする請求項3に記載の高張力熱延鋼板。In addition to the above composition, in mass%, Cu: 0.01 to 1.0%, Cr: 0.01 to 1.0%, Ni: 0.01 to 1.0%, Mo: 0.01 to 1.0% 1.0%, Ti: 0.01-0.2%, Nb: 0.01-0.2%, V: 0.01-0.1% The high-strength hot-rolled steel sheet according to claim 3, which is contained. 鋼素材に粗圧延および仕上圧延からなる熱間圧延を施し熱延鋼板とする熱延鋼板の製造方法において、前記鋼素材を、mass%で、C:0.01〜0.2 %、Si:0.01〜1.5 %、Mn:0.1 〜3 %、P:0.04%以下、S:0.02%以下、Al:0.1 %以下、N:0.005 %以下を含有する組成の鋼素材とし、前記仕上圧延終了後に前記熱延鋼板の上表面を冷却水で冷却するにあたり、該熱延鋼板の両幅エッジ付近に供給する冷却水を遮蔽し、該遮蔽した冷却水を前記熱延鋼板の両幅エッジ付近よりも幅中央側に供給することを特徴とする、両幅エッジ20mmから幅中央にかけての降伏強さの最大値と最小値の差が30MPa 以下である高張力熱延鋼板の製造方法。In a method for producing a hot-rolled steel sheet by subjecting a steel material to hot rolling including rough rolling and finish rolling to obtain a hot-rolled steel sheet, the steel material is mass%, C: 0.01 to 0.2%, Si: 0.01 to 1.5%, Mn: 0.1 to 3%, P: 0.04% or less, S: 0.02% or less, Al: 0.1% or less, N: 0.005% or less. When cooling the upper surface of the hot-rolled steel sheet with cooling water after the finish rolling, the cooling water supplied near both width edges of the hot-rolled steel sheet is shielded, and the shielded cooling is performed. The difference between the maximum value and the minimum value of the yield strength from the both width edges 20 mm to the width center is 30 MPa or less, wherein water is supplied to the width center side of the hot rolled steel sheet from the vicinity of both width edges. Manufacturing method for high-strength hot-rolled steel sheet.
JP2003154653A 2003-05-30 2003-05-30 Method and equipment for cooling of hot rolled metal sheet, and high tension hot rolled steel sheet and its manufacturing method Pending JP2004351501A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003154653A JP2004351501A (en) 2003-05-30 2003-05-30 Method and equipment for cooling of hot rolled metal sheet, and high tension hot rolled steel sheet and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003154653A JP2004351501A (en) 2003-05-30 2003-05-30 Method and equipment for cooling of hot rolled metal sheet, and high tension hot rolled steel sheet and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2004351501A true JP2004351501A (en) 2004-12-16

Family

ID=34049258

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003154653A Pending JP2004351501A (en) 2003-05-30 2003-05-30 Method and equipment for cooling of hot rolled metal sheet, and high tension hot rolled steel sheet and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2004351501A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100643362B1 (en) 2005-07-04 2006-11-10 주식회사 포스코 Method for manufacturing hot plate to minimize the deviation of width-directional tempreature
JP2013103235A (en) * 2011-11-11 2013-05-30 Jfe Steel Corp Method of cooling hot-rolled steel sheet
JP2013103236A (en) * 2011-11-11 2013-05-30 Jfe Steel Corp Method of cooling hot-rolled steel sheet and cooling facility for the hot-rolled steel sheet
CN103331313A (en) * 2013-07-23 2013-10-02 中冶赛迪工程技术股份有限公司 Hot-rolled steel plate cooling device and cooling method thereof
KR101428324B1 (en) * 2012-12-27 2014-08-07 주식회사 포스코 Hot plate cooling apparatus
KR101490622B1 (en) * 2013-10-01 2015-02-05 주식회사 포스코 Hot plate cooling adjustable apparatus
WO2016152148A1 (en) * 2015-03-25 2016-09-29 Jfeスチール株式会社 High-strength steel sheet and method for manufacturing same
CN108723104A (en) * 2017-04-17 2018-11-02 上海梅山钢铁股份有限公司 A kind of laminar flow collector cooling water inflow control device
KR20190077829A (en) * 2017-12-26 2019-07-04 주식회사 포스코 Hot-rolled steel sheet having high-strength and high-toughness and method for producing the same
WO2022131802A1 (en) * 2020-12-16 2022-06-23 주식회사 포스코 High strength cold rolled, plated steel sheet for home applicances having excellent homogeneous material properties, and method for manufacturing same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS612443U (en) * 1984-06-12 1986-01-09 川崎製鉄株式会社 Masking of steel plate cooling equipment
JPH0464411U (en) * 1990-10-04 1992-06-02
JPH09241739A (en) * 1996-03-12 1997-09-16 Nippon Steel Corp Production of hot rolled steel plate minimal in material dispersion by continuous hot rolling process
JPH11267755A (en) * 1998-03-18 1999-10-05 Nkk Corp Manufacture of thick steel plate and straightening device used in it
JP2000063955A (en) * 1998-08-12 2000-02-29 Nkk Corp Production of thin dual-phase hot rolled steel strip
JP2000109951A (en) * 1998-08-05 2000-04-18 Kawasaki Steel Corp High strength hot rolled steel sheet excellent in stretch-flanging property and its production
JP2002331307A (en) * 2001-05-07 2002-11-19 Kobe Steel Ltd Method for manufacturing thick plate and rolling mill

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS612443U (en) * 1984-06-12 1986-01-09 川崎製鉄株式会社 Masking of steel plate cooling equipment
JPH0464411U (en) * 1990-10-04 1992-06-02
JPH09241739A (en) * 1996-03-12 1997-09-16 Nippon Steel Corp Production of hot rolled steel plate minimal in material dispersion by continuous hot rolling process
JPH11267755A (en) * 1998-03-18 1999-10-05 Nkk Corp Manufacture of thick steel plate and straightening device used in it
JP2000109951A (en) * 1998-08-05 2000-04-18 Kawasaki Steel Corp High strength hot rolled steel sheet excellent in stretch-flanging property and its production
JP2000063955A (en) * 1998-08-12 2000-02-29 Nkk Corp Production of thin dual-phase hot rolled steel strip
JP2002331307A (en) * 2001-05-07 2002-11-19 Kobe Steel Ltd Method for manufacturing thick plate and rolling mill

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100643362B1 (en) 2005-07-04 2006-11-10 주식회사 포스코 Method for manufacturing hot plate to minimize the deviation of width-directional tempreature
JP2013103235A (en) * 2011-11-11 2013-05-30 Jfe Steel Corp Method of cooling hot-rolled steel sheet
JP2013103236A (en) * 2011-11-11 2013-05-30 Jfe Steel Corp Method of cooling hot-rolled steel sheet and cooling facility for the hot-rolled steel sheet
KR101428324B1 (en) * 2012-12-27 2014-08-07 주식회사 포스코 Hot plate cooling apparatus
CN103331313A (en) * 2013-07-23 2013-10-02 中冶赛迪工程技术股份有限公司 Hot-rolled steel plate cooling device and cooling method thereof
CN103331313B (en) * 2013-07-23 2015-07-01 中冶赛迪工程技术股份有限公司 Hot-rolled steel plate cooling device and cooling method thereof
KR101490622B1 (en) * 2013-10-01 2015-02-05 주식회사 포스코 Hot plate cooling adjustable apparatus
JP6052476B1 (en) * 2015-03-25 2016-12-27 Jfeスチール株式会社 High strength steel plate and manufacturing method thereof
WO2016152148A1 (en) * 2015-03-25 2016-09-29 Jfeスチール株式会社 High-strength steel sheet and method for manufacturing same
EP3255168B1 (en) 2015-03-25 2020-08-19 JFE Steel Corporation High-strength steel sheet and method for manufacturing same
CN108723104A (en) * 2017-04-17 2018-11-02 上海梅山钢铁股份有限公司 A kind of laminar flow collector cooling water inflow control device
KR20190077829A (en) * 2017-12-26 2019-07-04 주식회사 포스코 Hot-rolled steel sheet having high-strength and high-toughness and method for producing the same
WO2019132179A1 (en) * 2017-12-26 2019-07-04 주식회사 포스코 High-strength high-toughness hot-rolled steel sheet and manufacturing method therefor
KR102010081B1 (en) 2017-12-26 2019-08-12 주식회사 포스코 Hot-rolled steel sheet having high-strength and high-toughness and method for producing the same
US11578392B2 (en) 2017-12-26 2023-02-14 Posco Co., Ltd High-strength high-toughness hot-rolled steel sheet and manufacturing method therefor
WO2022131802A1 (en) * 2020-12-16 2022-06-23 주식회사 포스코 High strength cold rolled, plated steel sheet for home applicances having excellent homogeneous material properties, and method for manufacturing same

Similar Documents

Publication Publication Date Title
EP2546004B1 (en) Hot-rolled steel sheet manufacturing method and manufacturing device
JP5200653B2 (en) Hot rolled steel sheet and method for producing the same
EP2450117B9 (en) Use of a cooling device, manufacturing device, and manufacturing method for hot-rolled steel sheet
US20150004050A1 (en) Steel strip for coiled tubing and method of manufacturing the same
KR101759915B1 (en) Method for producing a metal strip
JP2007327098A (en) High strength hot rolled steel sheet and its production method
EP3590614B1 (en) Cold rolling mill and cold rolling method
JP2004351501A (en) Method and equipment for cooling of hot rolled metal sheet, and high tension hot rolled steel sheet and its manufacturing method
JP5673530B2 (en) Hot rolled steel sheet cooling apparatus, cooling method, manufacturing apparatus, and manufacturing method
EP3498389B1 (en) Device and method for cooling hot-rolled steel sheet
WO2008108483A1 (en) Thin steel sheet excelling in strength and toughness uniformity, process for producing the same, and apparatus therefor
JP2001137907A (en) Hot-rolling method and steckel hot-rolling mill
JP2009209444A (en) Thin steel sheet excellent in uniformity, and process for producing the same
JP2008019480A (en) Method for manufacturing steel pipe, and facility line for manufacturing steel pipe
WO2017130765A1 (en) Production equipment line for hot-rolled steel strips and production method for hot-rolled steel strip
JP5663848B2 (en) Hot-rolled steel sheet cooling device and operation control method thereof
JP7307339B2 (en) Rolling method for rectangular cross-section billet, continuous casting and rolling equipment, and rolling equipment
JP3806173B2 (en) Manufacturing method of hot-rolled steel sheet with small material variations by continuous hot-rolling process
JP2012035310A (en) Method and equipment for manufacturing hot rolled steel plates
JP3528688B2 (en) Tapered steel plate manufacturing method
JP6233614B2 (en) Production line for hot-rolled steel strip and method for producing hot-rolled steel strip
JP2006341274A (en) Method for producing steel sheet
JPH0583605B2 (en)
JP7226458B2 (en) Manufacturing method for high-strength hot-rolled steel sheet
JP2005074480A (en) Facility for producing hot-rolled steel plate, and its production method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070724

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071120