JP2004351285A - Graphite vacuum vessel - Google Patents

Graphite vacuum vessel Download PDF

Info

Publication number
JP2004351285A
JP2004351285A JP2003150264A JP2003150264A JP2004351285A JP 2004351285 A JP2004351285 A JP 2004351285A JP 2003150264 A JP2003150264 A JP 2003150264A JP 2003150264 A JP2003150264 A JP 2003150264A JP 2004351285 A JP2004351285 A JP 2004351285A
Authority
JP
Japan
Prior art keywords
container
vacuum
graphite
vacuum vessel
pyrolytic carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003150264A
Other languages
Japanese (ja)
Other versions
JP4245983B2 (en
Inventor
Kuniaki Miura
邦明 三浦
Shigetaka Haga
重崇 芳賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sukegawa Electric Co Ltd
Original Assignee
Sukegawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sukegawa Electric Co Ltd filed Critical Sukegawa Electric Co Ltd
Priority to JP2003150264A priority Critical patent/JP4245983B2/en
Publication of JP2004351285A publication Critical patent/JP2004351285A/en
Application granted granted Critical
Publication of JP4245983B2 publication Critical patent/JP4245983B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To efficiently heat a material to be heated in a vacuum vessel by an external heating method and to make it possible to rapidly reach a desired degree of vacuum without occluding gas molecules in the atmosphere or discharging occlusion gas in vacuum. <P>SOLUTION: A graphite having high radiation heat is used as a material for preparing a vacuum vessel 6. In order to solve the problem peculiar to the graphite that the gas molecules are accumulated in pores caused by porosity, the surface of vessel 6 is coated with a pyrolytic carbon to prevent the gas molecules from occlusion by the porosity and to remove the discharge of the gas molecules in vacuum. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、輻射率の高い黒鉛を使用し、効率的に内部のものを加熱出来ると共に、黒鉛特有の細孔を容器の表面で塞ぎ、空気中でのガス分子の吸蔵や真空中でのガス分子放出を無くすることが出来る真空容器に関する。
【0002】
【発明の属する技術分野】
従来の真空容器としては、ステンレスやアルミニウム製のものが使用されていた。真空容器の外に設置したヒータで真空容器の内部の加熱物を加熱する、いわゆる外部加熱方式では、ステンレス製の真空容器では、最高800℃までの加熱が可能である。また、アルミニウム製の真空容器では、やはり外部加熱方式で150℃まで可能である。これは熱応力に対する強度の限界である。
【0003】
この熱応力に対する強度の問題に対処するため、前記のような金属製の真空容器では、容器の壁厚を薄くできるように水冷等を施し、容器の内部にヒータを設ける、いわゆる内部加熱方式とすることが考えられる。
しかしこの内部加熱方式はヒータのリード部や熱電対のリード等のケーブを取り出すフィードスルーが必要となり、構造が複雑になる。このため、コストアップを招き、さらにヒータの断線や内部構造物の破損等のメンテナンスに多くの時間とコストが掛かってしまう。
【0004】
さらに外部加熱方式では、ステンレスやアルミニウム製の真空容器は、前述した問題の他、加熱効率が悪いという問題がある。特にステンレスは熱伝導率がかなり低く、容器に生じる温度分布が大きくなり過ぎる。特にアルミニウム製の真空容器では加熱物の均熱加熱という点では問題は無いものの、輻射率は0.1以下で輻射伝熱が出来ない。従って、容器内部にガス等の伝熱媒体が無いと、熱伝導出来ない。このため、容器内容物を加熱するとき時間が掛かりすぎる。特に容器内が真空でなければならないときは、輻射率の小さい銅や、アルミニウムは断熱材となってさらに昇温、降温特性が悪くなる。
【0005】
伝熱性が良好であるという観点からは、輻射率が約1.0に近く輻射伝熱性が極めて高く、熱伝導も極めて良好な黒鉛で真空容器を作ることが温度分布が付かず好ましい。黒鉛製の真空容器にヒータを取り付けても、内部を均等に加熱して早く昇温することも出来、さらに冷却時の降温特性も良好である。
【0006】
【発明が解決しようとしている課題】
黒鉛の欠点は、ポーラスなために真空容器とした場合に、その壁部内部に空気等のガスを吸蔵してしまうという点である。このため、黒鉛製の真空容器内を減圧しても、その壁内部の細孔に溜まった空気等のガス分子が真空空間中に放出され続け、目標の真空度に到達することが出来ない。
【0007】
本発明は、前記従来の真空容器における前述のような諸問題に鑑み、外部加熱方式により効率的に真空容器の内部にある加熱物を加熱することができ、しかも、大気中でのガス分子の吸蔵や真空中での吸蔵ガスの放出が無く、所望の真空度に速やかに達することが出来る真空容器を提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明では、前記の目的を達成するため、真空容器を形成する材料として、輻射率の高い黒鉛を使用した。さらにポーラスであるために、細孔にガス分子が溜まるという黒鉛特有の欠点を解消するため、その表面に熱分解炭素(Pyrolytic Carbon或いはPyrolytic Graphite)をコーディングし、細孔によるガス分子の吸蔵を防止し、真空中でのガス分子の放出を無くしたものである。黒鉛製の真空容器に、CVDを利用した熱分解炭素による緻密膜やタール等の炭素質樹脂を含浸させて徴密膜を施せば、10−7torr1.33×10−5Paオーダーの高真空度が容易に実現出来る真空容器が出来ることが分かった。未処理の黒鉛製真空容器は、材質にもよるが数桁悪い(10−2〜10−3torrオーダー)。
【0009】
このような観点から本発明により提案された黒鉛真空容器は、黒鉛を用いて形成された真空中で高温に晒される真空容器であって、容器6の少なくとも内面に熱分解炭素のコーティングが施されたものである。この熱分解炭素は、化学的気相成長法(CVD法)等により容器6にコーティングされる。
【0010】
容器6の少なくとも外面にコーティングされた前記の熱分解炭素の上に、さらにニッケルまたはアルミニウムのコーティングが施される。
このような真空容器は、真空とした容器6の内部がその周囲に設けたヒータ16で加熱される、いわゆる外部加熱方式の真空容器として使用される。
【0011】
【発明の実施の形態】
次に、図面を参照しながら、本発明の実施の形態について、具体的且つ詳細に説明する。
図1は、本発明による黒鉛真空容器の一実施形態を示す分解半断面斜視図であり、図2はそれを組み立て、その周囲にヒータや断熱材を配置した状態の縦断側面図である。
【0012】
黒鉛製の容器6を取り付けるためのベース1は、耐熱性を有するセラミック等の円板状のものである。このベース1の底面には、図2に示したバルブ14を介して真空ポンプ13に接続するための排気用配管2が接続されている。上面の中心の周りには、Oリング等の真空シール用のパッキン5が嵌め込まれている。
【0013】
前記のパッキン5と同心円状にベース1の外周近くに冷却水等の冷却液を通す冷却管4が埋め込まれて配管されている。
また、ベース1の上面中央部には、熱の反射率の高いステンレスやアルミニウム等の金属からなる円板状の熱遮蔽板15のが枚上下に離して取り付けられている。この熱遮蔽板15の径は、次に述べる容器6の本体部分の内径よりやや小さい。なお、熱遮蔽板15の枚数は1枚或いは3枚以上であってもよい。
【0014】
黒鉛製の容器6は、底部の外に広がるフランジ7を有する。容器6の本体部分はこのフランジ7の内周部から一体に立ち上がった無底有蓋の円筒形の黒鉛容器である。フランジ7から立ち上がった部分の外周側には、容器6の本体部分の横断面積を減じてフランジ7側とその上側との間の熱の流通を阻害する伝熱抵抗用の溝8が形成されている。また、容器6の本体部分の内周中段部分には、そこに黒鉛製の載置板10を載せる突起9が90゜間隔で突出している。
【0015】
容器6の内面6aや外面6bは、CVD法(化学的気相成長法)等の手段で、熱分解炭素(Pyrolytic Carbon或いはPyrolytic Graphite)がコーディングされている。これにより、容器6の内面6aや外面6bにカーボンの緻密膜が形成され、内面6aや外面6bに開口している細孔が塞がれる。
さらに、この容器6の外面6bにコーディングされた熱分解炭素の膜の上にメッキ等の手段でニッケルまたはアルミニウムのコーティングが施されれている。
【0016】
前記の載置板10は、加熱物を置くための円板状の部材であり、その径は容器6の内径よりやや小さい。この載置板10もやはり黒鉛製のもので、やはりCVD法等の手段で、熱分解炭素がコーディングされている。
この載置板10の外周には、90゜間隔で凹部11が設けられている。この凹部11の幅は前記容器6の内周の突起9よりやや広く、その深さは突起9の突出寸法とほぼ同じである。この載置板10は、容器6の下端開口部からその容器6の中に挿入され、その凹部11を突起9と位置合わせした状態で突起9の上側に一旦挿入された後、90゜以下の角度回転させて、凹部11と突起9の位置をずらす。これにより、載置板10の外周部分を突起9の上に置いて、容器6の中で支持する。図示してないが、当然ながら実際の加熱物の熱処理工程においては、載置板10の上に加熱物が載せられる。
【0017】
前記ベース1に容器6のフランジ7を載せたときに、そのフランジ7をベース1に固定するための側面逆L字形の取付部材12を3個以上備えている。この取付部材12は、ステンレス等の金属により作られる。図2に示すように、取付部材12は、ベース1との間にフランジ7を挟むよう取り付けられる。このとき、取付部材12はセラミックファイバー等からなる耐熱性パッキン17を介してフランジ7を上から挟むようにベース1に取り付けられ、ネジ18によりベース1に固定される。
【0018】
図2に示すように、前記のようにして容器6のフランジ7をベース1の上に載せて固定した状態では、容器6のフランジ7の下面が真空シール用のパッキン5の上に載る。そして前記の取付部材12のネジにより適宜締め付け、パッキン5を高さ方向に適当な圧力で圧縮することにより、容器6の内部が外部に対して真空シールされる。
【0019】
さらに図2に示すように、容器6の円筒形の本体部分の周囲にコイル状のシーズヒータ等からなるヒータ16が配置されると共に、このヒータ16が配置された容器6の外周が耐熱性の断熱材3で覆われている。
また、ベース1の底面に配管された排気用配管2には、バルブ14を介して真空ポンプ13が接続される。
【0020】
このような加熱容器では、真空ポンプ13により黒鉛製の容器6の内部から排気し、所望の真空度に減圧する。この状態で容器6の外側からヒータ16でその容器6の内部の載置板10に載った加熱物を加熱する。同時に、冷却管4に冷却水等の冷却液を通し、ベース1を冷却し、容器6の下端部のフランジ7を冷却する。また、容器6の円筒部分とその内部の熱は、それぞれ伝熱抵抗用の溝8とリフレクタである熱遮蔽板15により下方への伝熱が防止される。
【0021】
黒鉛製の容器6の利点は、比重が1.8g/cmとアルミニウムの比重2.7g/cmより小さく、なお且つアルミニウム同様に熱伝導率が高い点である。このため、黒鉛製の容器6は、ヒータ16で加熱したときの均熱性に優れ、その内部の加熱物を均等に加熱するのに適している。
【0022】
しかし一方で、黒鉛の欠点は、多数の細孔を有するポーラスな構造を有しているという点である。容器6とした場合に、大気中でその壁面内部に空気等のガスを吸蔵し、内部を真空減圧するときにこれを放出してしまう。
そこで、前記のように、容器6の少なくとも真空中に面する部分、すなわち内面6aに、CVD法(化学的気相成長法)等の手段で、熱分解炭素(Pyrolytic Carbon或いはPyrolytic Graphite)をコーディングすれば、この欠点を解消することが出来る。
【0023】
CVDによる熱分解炭素は、異方性があり、緻密な膜を作る。熱分解炭素は高純度で密度も理論密度に近く平板状の層構造になっている。また、細孔がないためガス透過性もなく、真空容器を作るための条件が整っている。さらに熱分解炭素は機械的強度も強く硬いので、一般的な黒鉛容器の保護膜ともなり得る。この点で、熱分解炭素のコーディングを容器6の外面6bに施すことも有効である。この熱分解炭素の主な物性は表1の通りである。
【0024】
【表1】

Figure 2004351285
【0025】
熱分解炭素のコーティング膜の厚みは処理の時間をかければmmオーダーの厚みのものも形成出来る。しかしそうするにはコストが高くなり、母材の黒鉛の熱膨張係数(4.6〜5×10−6/10℃)との違いが大きく、剥離しやすく、約400℃以上で剥離が生じる。従ってコーティング膜は、母材である容器6の表面粗さ以上の膜厚があれば十分である。しかし表面を1μ以下の平滑な状態にしてもコーティング膜の物理的密着度が無く剥離してしまう。逆に容器6の表面が粗すぎると気孔が埋まらず厚い膜が必要である。このことから母材である容器6の表面粗さが数μ程度であれば、その10倍程度の熱分解炭素のコーティング膜を設ければ、容器6の表面の細孔が無くなり、ガスの発生もなく、ガス透過性もなくなる。
【0026】
また黒鉛のもう一つの欠点は、耐酸化性が低く、空気中で400℃当付近から酸化が始まる点である。しかし黒鉛は導電性のために電界メッキによりNiコーティングが出来る。もちろん、無電解メッキによりNi膜を形成することも可能である。黒鉛製の容器6の外表面にメッキによりNiをコーティングしておけば、耐酸化性が向上し、400℃以上の温度でも大気中でも使用可能である。
【0027】
このNiコーティングは、前述した熱分解炭素のコーティング膜の上に形成する。このNiコーティングは、容器6が高温下で空気と接触する表面部分、つまりその外面に施せばよいが、内面にも施してもよい。また、Niメッキに代えて、アルミニウムコーティングを施してもよい。
【0028】
このNiコートの耐熱性テストにおいては、表2のような結果が得られた。ここで、「必要膜厚」は、高温下で十分な耐酸化性を得るための温度であり、「許容温度」は、Niコーティングがアルゴンガス中で容器の表面から剥離しない温度である。
【0029】
【表2】
Figure 2004351285
【0030】
一般に無電解NiメッキにはP(リン)が数%入る。これによる低融合金(880℃)を作るため、電気メッキに比べて耐熱性が低いと考えられる。ただ、無電解Niメッキの方が電気メッキに比べて短時間で成膜できるので無電解Niメッキの方がコストを安くすることが出来る。また無電解NiメッキはPが入っているのでNガス中等の雰囲気において350〜400℃で熱処理をすると、NiとPの金属間化合物が出来るために硬くなり、硬いNiコーティング膜が形成出来る。そのため、容器6の外面にキズがつきにくくなるという保護機能を有する。
【0031】
【発明の効果】
以上説明した通り、本発明による黒鉛真空容器では、輻射率の高い黒鉛製の容器6を使用することから、外部加熱方式により効率的に容器6の内部にある加熱物を加熱することができる。また、その容器6の表面に設けた熱分解炭素のコーティング膜により、黒鉛容器特有の細孔が容器6の表面で塞がれるため、その細孔へのガス分子の吸蔵や吸蔵したガスの真空中での放出も無く、速やかに所望の圧力に減圧出来る。
【図面の簡単な説明】
【図1】本発明による黒鉛真空容器の位置実施形態を示す分解半断面斜視図である。
【図2】前記の黒鉛真空容器を組み立て、その周囲にヒータや断熱材を配置して加熱する状態の縦断側面図である。
【符号の説明】
1 ベース
6 容器
13 真空ポンプ
16 ヒータ[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention uses graphite having a high emissivity, can efficiently heat the inside, closes the pores specific to graphite with the surface of the container, occludes gas molecules in the air and gas in a vacuum. The present invention relates to a vacuum vessel capable of eliminating molecule release.
[0002]
TECHNICAL FIELD OF THE INVENTION
Conventional vacuum vessels made of stainless steel or aluminum have been used. In a so-called external heating method in which a heating object inside a vacuum vessel is heated by a heater installed outside the vacuum vessel, a stainless steel vacuum vessel can heat up to 800 ° C. at the maximum. In addition, in the case of an aluminum vacuum vessel, the temperature can be increased up to 150 ° C. by the external heating method. This is the strength limit for thermal stress.
[0003]
In order to cope with the problem of the strength against the thermal stress, in the metal vacuum container as described above, water cooling or the like is performed so that the wall thickness of the container can be reduced, and a heater is provided inside the container. It is possible to do.
However, this internal heating method requires a feedthrough for taking out a cable such as a lead portion of a heater or a lead of a thermocouple, which complicates the structure. For this reason, the cost is increased, and much time and cost are required for maintenance such as disconnection of the heater and breakage of the internal structure.
[0004]
Further, in the external heating method, the vacuum vessel made of stainless steel or aluminum has a problem that the heating efficiency is poor in addition to the above-mentioned problems. Particularly, stainless steel has a considerably low thermal conductivity, and the temperature distribution generated in the container becomes too large. In particular, in an aluminum vacuum vessel, although there is no problem in terms of uniform heating of a heated object, radiant heat transfer cannot be performed at an emissivity of 0.1 or less. Therefore, if there is no heat transfer medium such as gas inside the container, heat cannot be conducted. For this reason, it takes too much time to heat the contents of the container. In particular, when the inside of the container needs to be a vacuum, copper or aluminum having a low emissivity becomes a heat insulating material, and the temperature rise and fall characteristics are further deteriorated.
[0005]
From the viewpoint of good heat transfer, it is preferable to make a vacuum container with graphite having an emissivity close to about 1.0 and having a very high radiant heat transfer and an extremely good heat conductivity, because there is no temperature distribution. Even if a heater is attached to a vacuum vessel made of graphite, the inside can be heated evenly and the temperature can be raised quickly, and the temperature drop characteristics during cooling are also good.
[0006]
[Problems to be solved by the invention]
The disadvantage of graphite is that when it is made into a vacuum vessel because it is porous, it will occlude gas such as air inside its wall. For this reason, even if the pressure inside the vacuum container made of graphite is reduced, gas molecules such as air accumulated in the pores inside the wall continue to be released into the vacuum space, and the target vacuum degree cannot be reached.
[0007]
The present invention, in view of the above-described problems in the conventional vacuum vessel, can efficiently heat a heated object inside the vacuum vessel by an external heating method, and furthermore, can remove gas molecules in the atmosphere. It is an object of the present invention to provide a vacuum container that can quickly reach a desired degree of vacuum without occlusion or release of an occluded gas in a vacuum.
[0008]
[Means for Solving the Problems]
In the present invention, in order to achieve the above object, graphite having a high emissivity was used as a material for forming the vacuum container. Furthermore, in order to eliminate the drawback inherent to graphite, which is a porous material, gas molecules accumulate in the pores, pyrolytic carbon (Pyrolytic Carbon or Pyrolytic Graphite) is coded on the surface to prevent the absorption of gas molecules by the pores. In addition, the release of gas molecules in a vacuum is eliminated. If a vacuum vessel made of graphite is impregnated with a dense film made of pyrolytic carbon using CVD or a carbonaceous resin such as tar to form a dense film, a high vacuum of the order of 10 −7 torr 1.33 × 10 −5 Pa can be obtained. It has been found that a vacuum vessel that can be easily realized can be obtained. The untreated graphite vacuum vessel is several orders of magnitude worse (10 −2 to 10 −3 torr order) depending on the material.
[0009]
From such a viewpoint, the graphite vacuum container proposed by the present invention is a vacuum container exposed to a high temperature in a vacuum formed by using graphite, wherein at least the inner surface of the container 6 is coated with pyrolytic carbon. It is a thing. This pyrolytic carbon is coated on the container 6 by a chemical vapor deposition method (CVD method) or the like.
[0010]
A nickel or aluminum coating is further applied on the pyrolytic carbon coated on at least the outer surface of the container 6.
Such a vacuum vessel is used as a so-called external heating type vacuum vessel in which the inside of the vacuumed vessel 6 is heated by a heater 16 provided therearound.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, embodiments of the present invention will be described specifically and in detail with reference to the drawings.
FIG. 1 is an exploded half cross-sectional perspective view showing one embodiment of a graphite vacuum vessel according to the present invention, and FIG. 2 is a longitudinal side view in a state where the graphite vacuum vessel is assembled and a heater and a heat insulating material are arranged around the assembly.
[0012]
The base 1 for mounting the graphite container 6 is a disc-shaped material such as ceramics having heat resistance. An exhaust pipe 2 for connection to a vacuum pump 13 via a valve 14 shown in FIG. 2 is connected to the bottom surface of the base 1. A packing 5 for vacuum sealing such as an O-ring is fitted around the center of the upper surface.
[0013]
A cooling pipe 4 for passing a cooling liquid such as cooling water is embedded and piped near the outer periphery of the base 1 concentrically with the packing 5.
At the center of the upper surface of the base 1, a disc-shaped heat shield plate 15 made of a metal such as stainless steel or aluminum having a high heat reflectance is attached vertically separated from each other. The diameter of the heat shield plate 15 is slightly smaller than the inner diameter of the main body of the container 6 described below. The number of the heat shielding plates 15 may be one or three or more.
[0014]
The graphite container 6 has a flange 7 extending outside the bottom. The main body of the container 6 is a cylindrical graphite container with a bottomless lid, which rises integrally from the inner peripheral portion of the flange 7. On the outer peripheral side of the portion rising from the flange 7, a groove 8 for heat transfer resistance is formed, which reduces the cross-sectional area of the main body of the container 6 and inhibits the flow of heat between the flange 7 side and the upper side. I have. In the middle part of the inner periphery of the main body of the container 6, projections 9 on which a mounting plate 10 made of graphite is mounted project at intervals of 90 °.
[0015]
The inner surface 6a and the outer surface 6b of the container 6 are coded with pyrolytic carbon (Pyrolytic Carbon or Pyrolytic Graphite) by means such as CVD (Chemical Vapor Deposition). Thereby, a dense carbon film is formed on the inner surface 6a and the outer surface 6b of the container 6, and the pores opened on the inner surface 6a and the outer surface 6b are closed.
Further, a coating of nickel or aluminum is applied to the pyrolytic carbon film coded on the outer surface 6b of the container 6 by plating or the like.
[0016]
The mounting plate 10 is a disk-shaped member on which a heated object is placed, and its diameter is slightly smaller than the inner diameter of the container 6. The mounting plate 10 is also made of graphite, and is also coded with pyrolytic carbon by means such as a CVD method.
Recesses 11 are provided on the outer periphery of the mounting plate 10 at 90 ° intervals. The width of the recess 11 is slightly wider than the protrusion 9 on the inner periphery of the container 6, and the depth thereof is almost the same as the protrusion dimension of the protrusion 9. The mounting plate 10 is inserted into the container 6 through the opening at the lower end of the container 6, and once inserted above the projection 9 with the concave portion 11 aligned with the projection 9, the mounting plate 10 is 90 ° or less. By rotating the angle, the positions of the concave portion 11 and the protrusion 9 are shifted. Thus, the outer peripheral portion of the mounting plate 10 is placed on the protrusion 9 and is supported in the container 6. Although not shown, in the actual heat treatment step of the heated object, the heated object is placed on the mounting plate 10.
[0017]
When the flange 7 of the container 6 is mounted on the base 1, three or more inverted L-shaped mounting members 12 for fixing the flange 7 to the base 1 are provided. The mounting member 12 is made of a metal such as stainless steel. As shown in FIG. 2, the mounting member 12 is mounted so as to sandwich the flange 7 between the mounting member 12 and the base 1. At this time, the attachment member 12 is attached to the base 1 via a heat-resistant packing 17 made of ceramic fiber or the like so as to sandwich the flange 7 from above, and is fixed to the base 1 by screws 18.
[0018]
As shown in FIG. 2, when the flange 7 of the container 6 is placed on the base 1 and fixed as described above, the lower surface of the flange 7 of the container 6 is placed on the packing 5 for vacuum sealing. Then, the inside of the container 6 is vacuum-sealed with respect to the outside by appropriately tightening the packing member 5 with an appropriate pressure in the height direction with the screws of the mounting member 12.
[0019]
Further, as shown in FIG. 2, a heater 16 composed of a coiled sheath heater or the like is disposed around a cylindrical main body of the container 6, and the outer periphery of the container 6 in which the heater 16 is disposed has heat resistance. It is covered with a heat insulating material 3.
A vacuum pump 13 is connected via a valve 14 to the exhaust pipe 2 provided on the bottom surface of the base 1.
[0020]
In such a heating vessel, the interior of the graphite vessel 6 is evacuated by the vacuum pump 13 to reduce the pressure to a desired degree of vacuum. In this state, the heated object placed on the mounting plate 10 inside the container 6 is heated by the heater 16 from the outside of the container 6. At the same time, a cooling liquid such as cooling water is passed through the cooling pipe 4 to cool the base 1 and cool the flange 7 at the lower end of the container 6. Further, the cylindrical portion of the container 6 and the heat therein are prevented from being transferred downward by the heat transfer resistance groove 8 and the heat shield plate 15 which is a reflector, respectively.
[0021]
The advantage of the graphite-made container 6 has a specific gravity less than the specific gravity 2.7 g / cm 3 of 1.8 g / cm 3 and aluminum, still in and the viewpoint of high aluminum Similarly thermal conductivity. For this reason, the graphite container 6 has excellent heat uniformity when heated by the heater 16 and is suitable for uniformly heating a heated object inside the container.
[0022]
However, on the other hand, the disadvantage of graphite is that it has a porous structure with many pores. In the case where the container 6 is used, a gas such as air is occluded in the wall surface in the atmosphere and released when the inside is depressurized.
Therefore, as described above, pyrolytic carbon (Pyrolytic Carbon or Pyrolytic Graphite) is coded on at least the portion of the container 6 facing the vacuum, that is, the inner surface 6a by means such as CVD (Chemical Vapor Deposition). Then, this disadvantage can be eliminated.
[0023]
Pyrolytic carbon by CVD has anisotropy and forms a dense film. Pyrolytic carbon has a high purity and a plate-like layer structure whose density is close to the theoretical density. Also, since there are no pores, there is no gas permeability, and the conditions for making a vacuum vessel are in place. Furthermore, since pyrolytic carbon has high mechanical strength and is hard, it can also serve as a protective film for general graphite containers. In this regard, it is also effective to apply a coating of pyrolytic carbon to the outer surface 6b of the container 6. Table 1 shows the main physical properties of the pyrolytic carbon.
[0024]
[Table 1]
Figure 2004351285
[0025]
The thickness of the pyrolytic carbon coating film can be formed on the order of mm if the processing time is increased. However, in order to do so, the cost is high, and the difference from the coefficient of thermal expansion of the base material graphite (4.6 to 5 × 10 −6 / 10 ° C.) is large, and it is easy to peel off, and peeling occurs at about 400 ° C. or more. . Therefore, it is sufficient that the coating film has a film thickness equal to or greater than the surface roughness of the container 6 as the base material. However, even if the surface has a smoothness of 1 μm or less, the coating film is peeled off because of lack of physical adhesion. Conversely, if the surface of the container 6 is too rough, the pores are not filled and a thick film is required. From this fact, if the surface roughness of the container 6 which is the base material is about several μm, if the coating film of the pyrolytic carbon is provided about 10 times as large as the coating film, the pores on the surface of the container 6 will be eliminated and the generation of gas will occur. No gas permeability.
[0026]
Another disadvantage of graphite is that oxidation resistance is low, and oxidation starts at about 400 ° C. in air. However, graphite can be Ni-coated by electroplating due to its conductivity. Of course, it is also possible to form a Ni film by electroless plating. If the outer surface of the graphite container 6 is coated with Ni by plating, the oxidation resistance is improved, and the graphite container 6 can be used in the air at a temperature of 400 ° C. or more.
[0027]
This Ni coating is formed on the above-mentioned pyrolytic carbon coating film. This Ni coating may be applied to the surface portion of the container 6 that comes into contact with air at a high temperature, that is, the outer surface thereof, but may also be applied to the inner surface. Further, instead of Ni plating, aluminum coating may be applied.
[0028]
In the heat resistance test of this Ni coat, the results shown in Table 2 were obtained. Here, the "necessary film thickness" is a temperature for obtaining sufficient oxidation resistance at a high temperature, and the "permissible temperature" is a temperature at which the Ni coating does not peel off from the surface of the container in an argon gas.
[0029]
[Table 2]
Figure 2004351285
[0030]
In general, P (phosphorus) contains several% in electroless Ni plating. Because of this, a low fusion gold (880 ° C.) is produced, so that the heat resistance is considered to be lower than that of electroplating. However, since electroless Ni plating can form a film in a shorter time than electroplating, the cost of electroless Ni plating can be reduced. Further, since electroless Ni plating contains P, if heat treatment is performed at 350 to 400 ° C. in an atmosphere of N 2 gas or the like, an intermetallic compound of Ni and P is formed, whereby the Ni becomes hard and a hard Ni coating film can be formed. Therefore, it has a protection function that the outer surface of the container 6 is hardly scratched.
[0031]
【The invention's effect】
As described above, in the graphite vacuum vessel according to the present invention, since the graphite vessel 6 having a high emissivity is used, the heated object inside the vessel 6 can be efficiently heated by the external heating method. Further, the pores specific to the graphite container are closed by the surface of the container 6 by the coating film of the pyrolytic carbon provided on the surface of the container 6, so that the gas molecules are occluded in the holes and the vacuum of the occluded gas is reduced. It can be quickly reduced to a desired pressure without release in the interior.
[Brief description of the drawings]
FIG. 1 is an exploded half sectional perspective view showing a position embodiment of a graphite vacuum vessel according to the present invention.
FIG. 2 is a vertical sectional side view showing a state in which the graphite vacuum vessel is assembled, and a heater and a heat insulating material are arranged around the vacuum vessel and heated.
[Explanation of symbols]
1 Base 6 Container 13 Vacuum pump 16 Heater

Claims (4)

黒鉛を用いて形成された真空中で高温に晒される真空容器であって、容器(6)の少なくとも内面に熱分解炭素のコーティングが施されたことを特徴とする真空容器。A vacuum vessel formed by using graphite and exposed to a high temperature in a vacuum, wherein at least an inner surface of the vessel (6) is coated with pyrolytic carbon. 熱分解炭素が化学的気相成長法により容器(6)にコーティングされていることを特徴とする請求項1に記載の真空容器。2. The vacuum container according to claim 1, wherein the container is coated with pyrolytic carbon by chemical vapor deposition. 容器(6)の少なくとも外面にコーティングされた熱分解炭素の上に、さらにニッケルまたはアルミニウムのコーティングが施されたことを特徴とする請求項1または2に記載の真空容器。The vacuum container according to claim 1 or 2, wherein a coating of nickel or aluminum is further applied on the pyrolytic carbon coated on at least the outer surface of the container (6). 真空に減圧された容器(6)の内部がその周囲に設けたヒータ(16)で加熱されることを特徴とする請求項1〜3の何れかに記載の真空容器。The vacuum container according to any one of claims 1 to 3, wherein the inside of the container (6) that has been depressurized to a vacuum is heated by a heater (16) provided around the container.
JP2003150264A 2003-05-28 2003-05-28 Graphite vacuum vessel Expired - Fee Related JP4245983B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003150264A JP4245983B2 (en) 2003-05-28 2003-05-28 Graphite vacuum vessel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003150264A JP4245983B2 (en) 2003-05-28 2003-05-28 Graphite vacuum vessel

Publications (2)

Publication Number Publication Date
JP2004351285A true JP2004351285A (en) 2004-12-16
JP4245983B2 JP4245983B2 (en) 2009-04-02

Family

ID=34046120

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003150264A Expired - Fee Related JP4245983B2 (en) 2003-05-28 2003-05-28 Graphite vacuum vessel

Country Status (1)

Country Link
JP (1) JP4245983B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014017650A1 (en) * 2012-07-26 2016-07-11 Dowaエレクトロニクス株式会社 Susceptor, crystal growth apparatus and crystal growth method
CN109071231A (en) * 2016-04-27 2018-12-21 学校法人关西学院 The preparation method of SiC substrate with graphene presoma and the surface treatment method of SiC substrate

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014017650A1 (en) * 2012-07-26 2016-07-11 Dowaエレクトロニクス株式会社 Susceptor, crystal growth apparatus and crystal growth method
CN109071231A (en) * 2016-04-27 2018-12-21 学校法人关西学院 The preparation method of SiC substrate with graphene presoma and the surface treatment method of SiC substrate
US11365491B2 (en) * 2016-04-27 2022-06-21 Kwansei Gakuin Educational Foundation Method for producing SiC substrate provided with graphene precursor and method for surface treating SiC substrate
CN109071231B (en) * 2016-04-27 2022-07-26 学校法人关西学院 Preparation method of SiC substrate with graphene precursor and surface treatment method of SiC substrate

Also Published As

Publication number Publication date
JP4245983B2 (en) 2009-04-02

Similar Documents

Publication Publication Date Title
US7601225B2 (en) System for controlling the sublimation of reactants
TWI607532B (en) Thermal radiation barrier for substrate processing chamber components
KR20200037825A (en) Penetration barrier
KR100298964B1 (en) Thermal treatment equipment
JPS5987037A (en) Sensor element used in chemical vapor deposition process performed in radiant absorbing type heater system
US4432340A (en) Energy saving heating vessel
US20020059905A1 (en) Thermal flux regulator
US20100006560A1 (en) Substrate heating apparatus and substrate heating method
JP2001168104A (en) Ceramics heater jig
JP2013234369A (en) Method for coating graphite material with pyrolytic boron nitride and coated article obtained by that method
US3986822A (en) Boron nitride crucible
CN105779932B (en) Technique liner and Pvd equipment for processing chamber housing
JPH1068381A (en) Method and device for baking-out gate valve of semiconductor processing device
JP4245983B2 (en) Graphite vacuum vessel
KR101787065B1 (en) Chemical vapor infiltration device
JP2020100530A (en) Method for manufacturing tantalum carbide material
JP2009522766A (en) Temperature differentiated reaction chamber
CN218059190U (en) Chemical vapor deposition furnace
JPH09245957A (en) High frequency induction heating furnace
JP2008262959A (en) Radiant heat insulating body and heat treatment apparatus
KR20000028899A (en) Corrosion-resistant members against a chlorine-based gas
RU2365842C1 (en) Crucible aluminium evaporator for molecular-beam epitaxy
TW200404912A (en) Method of producing vapor from solid precursor and substrate processing system using the same
WO1998031197A1 (en) Improved coatings for electrical, metal sheathed heating elements
JPH0657433A (en) Pulse cvi device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Effective date: 20070831

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20071022

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Effective date: 20080219

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20081217

Free format text: JAPANESE INTERMEDIATE CODE: A01

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20090107

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120116

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20130116

LAPS Cancellation because of no payment of annual fees