JP2004350585A - Method for detecting cancer cell - Google Patents

Method for detecting cancer cell Download PDF

Info

Publication number
JP2004350585A
JP2004350585A JP2003151818A JP2003151818A JP2004350585A JP 2004350585 A JP2004350585 A JP 2004350585A JP 2003151818 A JP2003151818 A JP 2003151818A JP 2003151818 A JP2003151818 A JP 2003151818A JP 2004350585 A JP2004350585 A JP 2004350585A
Authority
JP
Japan
Prior art keywords
specimen
treatment
dna
cell
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003151818A
Other languages
Japanese (ja)
Inventor
Masaru Fukuda
優 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiyoda Manufacturing Corp
Original Assignee
Chiyoda Manufacturing Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiyoda Manufacturing Corp filed Critical Chiyoda Manufacturing Corp
Priority to JP2003151818A priority Critical patent/JP2004350585A/en
Priority to PCT/JP2004/007247 priority patent/WO2004106537A1/en
Publication of JP2004350585A publication Critical patent/JP2004350585A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • C12Q1/6886Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Hospice & Palliative Care (AREA)
  • Biophysics (AREA)
  • Oncology (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for detecting a cancer cell by which the cancer cell in a tissue specimen and a cell specimen can accurately be detected by reducing the occurrence of false negative and false positive as possible. <P>SOLUTION: The method comprises soaking the tissue specimen collected from a visceral organ or the like, or the cell specimen collected from a body fluid or the like in a solution containing formaldehyde, subjecting the soaked specimen to denaturation treatment for selectively denaturing an injured DNA having injure and present in a cell nucleus of the cancer cell in the specimen to a single-stranded DNA, subjecting the treated specimen to a bonding treatment for bonding the single-stranded DNA with a labeled DNA having a chain length bondable to the single-stranded DNA, and a label enabling the observation to be carried out by an elicitation treatment such as a color-developing treatment, and arranged therein, and subjecting the treated specimen to the elicitation treatment for enabling the cancer cell to be detected by observing the presence of the labeled DNA bonded to the single-stranded DNA. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は癌細胞の検出方法に関し、更に詳細には、癌細胞のスクリーニングや癌の病理診断等に用いることができる癌細胞の検出方法に関する。
【0002】
【従来の技術】
癌は、細胞内の遺伝子が正常な遺伝子から大きく変化していることは周知のことである。
つまり、癌細胞では、遺伝子である細胞核内のDNAが、正常細胞の細胞核内のDNAから大きく変化している。この変化は、例えば▲1▼DNA塩基への化学的修飾や発癌物質の付加や挿入による塩基の変化と、電磁波や活性酸素等の物理化学的な要因によるDNA鎖切断とに対する不完全な修復による塩基配列、すなわち遺伝暗号の変化、▲2▼対立遺伝子双方の欠落等のある遺伝子領域の欠失、▲3▼癌発生に関る遺伝子領域の重複、▲4▼染色体、或いは染色体の一部の重複、欠落、転座組み換え等に因るものである。
この様に、DNAが損傷を受けて変化した癌細胞では、細胞内のDNAが全域に渡り不安定化し、DNAとその情報によって産生される蛋白質の異常を含めた機能的、構造的な異常がみられる。このため、癌細胞では、染色体異常を伴い、細胞増殖能の亢進、細胞周期と細胞分裂の異常、アポトーシスの回避、及び細胞分化の異常などがみられる。
従って、癌細胞が存在することを早期に知るために、かかるDNAの異常や損傷を検出する簡便な方法が強く望まれている。
【0003】
一方、従来からも、日常的な臨床診断である病理組織学診断、細胞学的検査及び診断(細胞診)においても、癌の早期発見のために、癌細胞や癌組織の検出、更には境界病変の明確化の努力が払われている。
しかし、従来の癌細胞や癌組織の検出は、専ら正常細胞からの形態的偏奇を指標として行われているものであって、その検出精度は検出者の経験等によって著しく異なることがあった。
このため、検出者の経験等によらず確実に癌細胞を同定できる癌細胞や癌組織の検出方法が望まれている。
かかる要望に応えるべく、本発明者は、先に、下記の特許文献1及び特許文献2によって、癌細胞や癌組織を確実に検出できる癌細胞の検出方法を提案した。
【0004】
【特許文献1】
特開昭62−8053号公報(特許請求の範囲)
【特許文献2】
特開平7−306202号公報(特許請求の範囲)
【0005】
上記特許文献1で提案した癌細胞の検出方法は、癌細胞中の損傷を有する損傷DNAが正常なDNAよりも酸に加水分解されて単鎖化され易く不安定であることを利用し、体液等から採取した細胞標本を塩酸等の酸を用いて細胞標本中の癌細胞に存する損傷を有する損傷DNAを加水分解し、次いで、この加水分解物を所定の色素で染色して観測可能として、癌細胞を検出する方法である。
また、上記特許文献2で提案したDNAの損傷検出方法は、内臓等から採取した組織標本を塩酸等の酸を用いて組織標本中の癌細胞に存する損傷を有する損傷DNAを選択的に加水分解して単鎖DNAを生成し、次いで、生成した単鎖DNAを認識して結合するモノクローナル抗体で処理した後、この抗体結合の有無について、二次抗体に結合させた酵素とDAB等の色素原性物質を用いた発色処理によって観察可能として、癌細胞を検出する方法である。
【0006】
【発明が解決しようとする課題】
前述した特許文献1及び特許文献2で提案した検査方法によれば、標本中の癌細胞を検出できる。
しかし、その後の本発明者による検討によれは、特許文献1及び特許文献2の検査方法では、正常DNAでも損傷DNAとされる偽陽性や損傷DNAでも正常DNAとされる偽陰性が発生する場合があることが判明した。
また、特許文献1の検査方法は、体液等から採取した細胞標本に対して適用されるものであり、特許文献2の検査方法は、内臓等から採取した組織標本に適用されるものである。
従って、組織標本及び細胞標本の両方について、癌細胞に存する損傷DNAを検出可能として、偽陰性や偽陽性の発生を可及的に少なくして精度よく癌細胞を検出できる癌細胞の検出方法については未だ提案されていない。
そこで、本発明の課題は、組織標本及び細胞標本中の癌細胞を、偽陰性や偽陽性の発生を可及的に少なくして精度よく検出できる癌細胞の検出方法を提案することにある。
【0007】
【課題を解決するための手段】
本発明者は、先に提案した特許文献1の癌細胞の検出方法を、組織標本に適用すると、標本作製過程で生じるDNAの僅かな変化に、蛍光色素が過敏に反応するため、細胞組織の全体が色素に染まる偽陽性を生じるものと考えた。
また、特許文献2の癌細胞の検出方法では、標本の前処理での固定が不充分である場合、塩酸等の酸によって、損傷DNA自身が破壊されて消失することに因り偽陰性を生じさせ易く、同時に正常DNAも二次的に損傷を受けることに因り偽陽性を生じさせ易いものと考えた。
このため、前記課題を達成するには、酸加水分解よりもマイルドな条件下で癌細胞に存する損傷DNAを選択的に単鎖DNAとすることが有利であると考え検討した結果、ホルムアミド含有溶液に標本を浸漬し、通常よりもマイルドな条件で変性処理することによって、偽陰性や偽陽性の発生を少なくできることを見出し、本発明に到達した。
すなわち、本発明は、内臓等から採取した組織標本又は体液等から採取した細胞標本を、ホルムアミドを含有する溶液中に浸漬し、前記標本中の癌細胞の細胞核に存する損傷を有する損傷DNAを選択的に単鎖DNAに変性する変性処理を施した後、前記単鎖DNAに結合可能な鎖長であって、発色処理等の顕在化処理によって観察可能となる標識が配されている標識DNAを、前記単鎖DNAに結合する結合処理を施し、次いで、前記単鎖DNAに結合した標識DNAの存在を観察して癌細胞を検出できるように、前記顕在化処理を施すことを特徴とする癌細胞の検出方法にある。
【0008】
かかる本発明において、変性処理を、ホルムアミドを含有する溶液を加温しつつ施すことによって、癌細胞に存する損傷DNAを短時間で損失なく単鎖DNAとすることができる。
この様な変性処理を組織標本又は細胞標本に施した直後に、前記標本を急冷することにより、単鎖DNAの状態を保持できる。
更に、顕在化処理として、発色処理又は蛍光発生処理を採用し、且つ標識DNAとして、前記発色処理により発色し或いは蛍光発生処理により蛍光を発する複合体を形成し得る化合物が標識として配されている標識DNAを用いることができ、ヒト由来であって、鎖長が500〜2000bpのDNAを好適に用いることができる。
標本として細胞標本を用いる場合には、細胞標本にホルマリンによる固定処理を施し、細胞核DNAを充分に固定した後、ホルムアミド含有溶液中に浸漬して変性処理を施すことが好ましい。
かかる細胞標本中の単鎖DNAに標識DNAを結合する結合処理の際に、前記標本をマイクロ波による加熱処理を施すことによって、標識DNAの細胞内への浸透性を向上できる。
尚、単鎖DNAに結合した標識DNAに所定の発色処理或いは蛍光発生処理を施した後、前記標本に細胞質染色を施すことによって、組織標本又は細胞標本の形態学的な観察も、損傷DNAの検出と併せてできる。
【0009】
本発明に係る癌細胞の検出方法によれば、癌細胞に存する損傷DNAを単鎖DNAに変性する際に、従来の酸加水分解よりも正常DNAの損傷や損傷DNAの破壊が惹起され難いホルムアミド含有溶液に標本を浸漬し、損傷DNAを単鎖DNAに変性する変性処理を行う。
かかるホルムアミド含有溶液を用いたDNAの単鎖化処理は、従来の酸加水分解によるDNAの単鎖化処理に比較して、マイルドなDNAの単鎖化処理であるが、癌細胞の細胞核内に存する損傷DNAは、正常DNAよりも容易に単鎖化され易い。このため、従来の酸加水分解に比較してマイルドな単鎖化処理である、ホルムアミド含有溶液を用いたDNAの単鎖化処理によって、癌細胞の細胞核内に存する損傷DNAを選択的に単鎖化できるのである。
この変性処理で選択的に単鎖化された損傷DNAには、単鎖DNAに結合可能な鎖長であって、発色処理等の顕在化処理によって観察可能となる標識が配されている標識DNAを結合する。
一般的に、癌細胞の細胞核内に存する損傷DNAの単鎖化された長さは、正常DNA中の部分的に単鎖化された長さに比較して長く、癌細胞の細胞核内に侵入した標識DNAと強固に結合する。
この様に、本発明では、従来の酸加水分解によるDNAの単鎖化処理に比較してマイルドなホルムアミド含有溶液を用いたDNAの単鎖化処理を採用したことと、単鎖化された損傷DNAに標識DNAを結合させることとが相俟って、DNAの単鎖化処理において、例え正常DNAが二次的に微小な損傷を受けても、この損傷に起因する偽陽性や、癌細胞の細胞核内に存する損傷DNAの破壊に起因する偽陰性を減少できる。
更に、本発明では、損傷DNAに結合した標識DNAに所定の顕在化処理を施すことによって、DNAに結合している標識DNAを観察でき、損傷DNAが頻発している癌細胞や組織中の癌細胞集団を検出できる。
【0010】
【発明の実施の形態】
本発明において用いる標本としては、内臓等から採取した組織標本又は体液等から採取した細胞標本を用いることができる。
かかる標本のうち、組織標本は、通常、標本がスライドガラス上に伸展貼着されたスライドガラス組織標本として提供される。
このスライドガラス組織標本を作る際には、内臓等から採取した検体を、先ず、ホルマリン溶液中に浸漬して固定した後、含水率を段階的に順次低下させたエチルアルコール等の親水性溶液群に順次浸漬する。更に、エチルアルコール等の親水性溶液が100%の溶液に浸漬した検体を、キシレン等の疎水性溶液に浸漬して組織内部を疎水性溶液に置換し、次いで組織内部にパラフィンを浸透した検体をミクロトーム等の切断器によって切断して、得られた薄切片をスライドガラス上に伸展貼着する。
かかるスライドガラス組織標本は、その組織内部にパラフィンが含浸されて疎水状態となっているため、スライドガラス組織標本の作製の手順とは逆の手順によって、組織内部を親水性溶液に置換する。具体的には、スライドガラス組織標本を、キシレン等の疎水性溶液に浸漬した後、含水率を段階的に順次上昇させたエチルアルコール等の親水性溶液群に順次浸漬し、次いで、組織内部が親水性溶液に置換されたスライドガラス組織標本を、蒸留水中に置いて組織内部を水に置換する。
【0011】
組織内部を水に置換したスライドガラス組織標本には、各種生体内物質が含有されているため、癌細胞に存する損傷DNAの検出を妨げる生体内物質を除去する処理を施す。例えば、内在性ペルオキシダーゼ処理を行う際には、スライドガラス組織標本を、過酸化水素水の含有量が1%となるように調整されたメタノール中に浸漬し、内在性ビオチン処理を行う際には、スライドガラス組織標本を、プロティナーゼKを含有する溶液に浸漬する。
尚、かかる処理を行ったスライドガラス組織標本は、リン酸緩衝食塩水(PBS)中に浸漬しておく。
【0012】
この様に、標本組織内が水に置換され且つ残存酵素の処理が施されたスライドガラス組織標本には、ホルムアミドを含有する溶液中に浸漬し、スライドガラス組織標本中の癌細胞の細胞核内に存する損傷を有する損傷DNAを選択的に単鎖DNAに変性する変性処理を施す。
ここで、用いるホルムアミドを含有する溶液としては、ホルムアミドの他に、標準クエン酸溶液(塩化ナトリウム及びクエン酸ナトリウムを含有する溶液)を含有する溶液を好適に用いることができる。
この変性処理では、60℃程度に加温されたホルムアミド含有溶液に、スライドガラス組織標本を10分程度浸漬することで行うことができる。
ここで、この変性処理の温度を、ホルムアミド含有溶液を用いた通常の変性処理の温度である70℃以上とすると、正常DNAの損傷や損傷DNAの破壊が惹起され易い。
かかる変性処理を施したスライドガラス組織標本は、−20℃以下に冷却したエチルアルコール含有水溶液中に10分程度浸漬して急速冷却を施す。この冷却処理によって、ホルムアミド含有溶液に浸漬して単鎖化した単鎖DNAを、その状態で保持できる。
更に、この冷却処理を施したスライドガラス組織標本を、4℃程度に保持されたリン酸緩衝食塩水(PBS)中に10分程度浸漬する。
【0013】
次いで、スライドガラス組織標本中の癌細胞の細胞核内に存する損傷DNAを選択的に単鎖化した単鎖DNAに、この単鎖DNAに結合可能な鎖長であって、発色処理等の顕在化処理によって観察可能となる標識が配されている標識DNAを結合する結合処理(ハイブリダイゼーション)を施す。
かかる標識DNAとしては、顕在化処理として、発色処理又は蛍光発生処理を採用したとき、発色処理により発色し或いは蛍光発生処理により蛍光を発する複合体を形成し得る化合物が標識として配されている標識DNAを用いることができる。この標識DNAとしては、ヒト由来であって、鎖長が500〜2000bpのDNAを用いることによって、単鎖化処理の際に、例え正常DNAに微小な単鎖化部分が形成されていても、標識DNAとの結合は生じない。
かかる標識DNAとしては、例えばビオチン(Biotin)標識DNA、ジゴキシゲニン(Digoxigenin)標識DNA、フルオレセイン(Fluorescein)標識DNAを挙げることができる。
標識DNAは、標識DNAが含有されている溶液を73℃程度に加熱して10分間保持した後、直ちに氷によって急冷して単鎖化する。
単鎖化された標識DNA含有溶液とホルムアミド含有溶液とを混合して得たハイブリダイゼーション溶液を、スライドガラス上の標本に滴下する。この滴下量は、標本の大きさに応じて調整する。
かかるハイブリダイゼーション溶液としては、ホルムアミドの含有量が25%で且つデキストランの含有量が4%程度のものを好適に用いることができる。かかるホルムアミド及びデキストランの含有量は、市販のハイブリダイゼーション溶液(ホルムアミド;50%、デキストラン;10%)に比較して少量である。
ここで、市販のハイブリダイゼーション溶液を用いてハイブリダイゼーション反を行うと、正常DNAも単鎖化され易い。
【0014】
スライドガラス上の標本に滴下した所定量のハイブリダイゼーション溶液の液滴は、気泡を除去すると共に、溶液の蒸発を防止する蒸発防止処理を施す。この蒸発防止処理は、標本上に滴下したハイブリダイゼーション溶液の液滴をパラフィルムやカバーガラスで覆うことによって達成できる。ハイブリダイゼーション溶液の液滴をカバーガラスで覆う場合には、カバーガラスの周縁を接着することが好ましい。
ハイブリダイゼーション溶液の液滴に蒸発防止処理が施された標本は、所定温度に保持してDNAに標識DNAが付加するハイブリダイゼーション反応を促進する。このハイブリダイゼーション反応は、保湿された雰囲気内、例えは湿潤箱内で反応時間を1時間〜一晩程度とすることが好ましい。
【0015】
ハイブリダイゼーション反応が終了したスライドガラス組織標本は、未反応の標識DNAやDNAに不完全な状態で付加された標識DNAを除去すべく、洗浄溶液に浸漬して洗浄を施す。
かかる洗浄によって、単鎖DNAに変性する変性処理において、例え正常DNAに小さな変性部位が形成されたとしても、この変性部位に付加された標識DNAは強固に結合されておらず、容易に除去できる。
この洗浄には、ハイブリダイゼーション反応が終了した直後にスライドガラス組織標本を洗浄する第1次洗浄と、第1次洗浄溶液で洗浄したスライドガラス組織標本を更に洗浄する第2次洗浄とがあり、洗浄溶液としては、第1次洗浄には、ホルムアミド及び標準クエン酸溶液を含有する洗浄溶液を用い、第2次洗浄には、
標準クエン酸溶液を含有する洗浄溶液(ホルムアミド非含有)を用いる。
尚、洗浄が終了したスライドガラス組織標本は、リン酸緩衝食塩水(PBS)中に浸漬される。
【0016】
洗浄処理が終了したスライドガラス組織標本には、単鎖DNAに結合した標識DNAの存在を観察できるように、所定の顕在化処理を施す。
ここで、例えば、標識DNAとして、ビオチン標識DNAを用いた場合、顕在化処理としての発色処理を施す際には、一次抗体としての抗ビオチン抗体を含有する溶液をスライドガラス組織標本に滴下し、ビオチン標識DNAの標識としてのビオチンに、一次抗体としての抗ビオチン抗体を反応させる。この反応が終了した後、スライドガラス組織標本をリン酸緩衝食塩水(PBS)で溶液を洗浄する。
更に、スライドガラス組織標本のビオチン標識DNAのビオチンに一次抗体として結合した抗ビオチン抗体には、抗ビオチン抗体と反応する二次抗体とペルオキシダーセとが結合した複合体を反応させた後、スライドガラス組織標本をリン酸緩衝食塩水(PBS)で溶液を洗浄する。
その後、スライドガラス組織標本を、コバルト化合物、ジアノベンチジン及び過酸化水素を含有する溶液に浸漬することによって、ペルオキシダーセが結合したビオチン標識DNAの結合した部位は黒色に発色する。このため、単鎖DNAに結合した標識DNAの存在を観察できる。
【0017】
かかる一連の発色処理では、スライドガラス組織標本中の癌細胞の細胞核内に存する損傷DNAを有する細胞核のみが染色されるため、細胞の輪郭や細胞内を明確にして組織及び細胞を観察し易くすべく、スライドガラス組織標本に対比染色を施す。かかる対比染色は、公知の組織標本の染色を採用できる。
更に、対比染色を施したスライドガラス組織標本を脱水し、カバーガラス封入する。かかるスライドガラス組織標本の脱水は、含水率を段階的に順次低下させたエチルアルコール等の親水性溶液群に順次浸漬した後、エチルアルコール等の親水性溶液が100%の溶液に浸漬した組織標本を、キシレン等の疎水性溶液に浸漬することによって行うことができる。最終的には、脱水された標本は、スライドガラス上に載置されて封入剤が滴下された後、封入剤ごとカバーガラスによって封入される。
【0018】
以上の説明では、洗浄処理が終了したスライドガラス組織標本に、標識DNAに反応させた一次抗体に、一次抗体と反応する二次抗体とペルオキシダーセとを結合させた複合体を反応させる処理を行っているが、標識DNAに反応させた一次抗体に、別途形成しておいた、一次抗体に対するビチオンを結合した二次的なビチオン結合抗体を反応させた後、スライドガラス組織標本をリン酸緩衝食塩水(PBS)で溶液を洗浄し、次いで、ペルオキシダーセとアビジンとの複合体を反応させてもよい。その後、スライドガラス組織標本を、コバルト化合物、ジアノベンチジン及び過酸化水素を含有する溶液に浸漬することによって、ペルオキシダーセとアビジンとの複合体が結合したビオチン標識DNAの結合した部位は黒色に発色する。
また、二次抗体として蛍光体が付加された抗体を、標識DNAの抗原に結合させる蛍光発生処理を施してもよい。かかる蛍光体が付加された抗体が結合された標識DNAの存在を蛍光体の蛍光で観察できる。
尚、一次抗体として、蛍光体を具備する一次抗体を用いてもよく、この場合は、二次抗体を反応させることは要しない。
【0019】
これまでの説明は、内臓等から採取した組織標本について行ってきたが、本発明では体液等から採取した細胞標本も用いることができる。
かかる細胞標本は、体液等から採取された検体を、スライドガラス上に塗布してスライドガラス細胞標本とする。
得られたスライドガラス細胞標本を、ホルマリン溶液中に浸漬し、細胞標本中のDNA等を充分に固定すると共に、核酸検出を妨害する分解酵素を失活する。
ホルマリン溶液から取り出したスライドガラス細胞標本は、リン酸緩衝食塩水(PBS)に浸漬して洗浄した後、組織標本の場合と同様に、内在性ペルオキシダーゼ処理を施す。
次いで、スライドガラス細胞標本を、組織標本と同様に、ホルムアミドを含有する溶液中に浸漬し、スライドガラス細胞標本中の癌細胞の細胞核内に存する損傷を有する損傷DNAを選択的に単鎖DNAに変性する変性処理を施した後、急速冷却を施す。
更に、変性処理を施したスライドガラス細胞標本には、組織標本と同様に、ハイブリダイゼーション溶液を滴下し、ハイブリダイゼーション反応をさせる。
ここで、ハイブリダイゼーション溶液をスライドガラス細胞標本に滴下した際に、マイクロ波を照射して加熱処理を施すことが好ましい。かかるマイクロ波の照射による加熱処理によって、標識DNAの細胞内への浸透性を促進しているものと推察される。
このマイクロ波の照射は、出力200W程度の電子レンジで行うことができ、間欠的にマイクロ波を照射することが好ましい。
【0020】
ハイブリダイゼーション反応が終了したスライドガラス細胞標本は、スライドガラス組織標本と同様に、ハイブリダイゼーション溶液を洗浄した後、標識DNAに一次抗体を反応させた後、一次抗体と反応する二次抗体とペルオキシダーセとを結合させた複合体を反応し、次いで、発色処理を施すことによって黒色に発色する。このため、単鎖DNAに結合した標識DNAの存在を観察できる。
その後、スライドガラス細胞標本は、スライドガラス組織標本と同様に、対比染色を施した後、脱水して最終的にはキシレン等の疎水性溶液に浸漬して標本内部を疎水性とし、次いで、滴下した封入剤ごとカバーガラスによって封入される。
【0021】
以上の説明は、内臓等から採取した検体を用いて標本にしていたが、既にヘマトキシリンエオジン染色やパパニコロウ染色し、封入剤ごとカバーガラスによって封入されている標本に対しても、本発明を適用できる。
先ず、封入剤ごとカバーガラスによって封入されている標本を、加温キシレン中に、封入剤が溶出するまで浸漬し、カバーガラスを剥離する。
封入剤及びカバーガラスが剥離されて露出した標本は、その標本の表面及び内部に封入剤やキシレン等が含浸されて疎水状態となっていると共に、細胞核が色素で染色されている。このため、キシレン等の疎水性溶液に浸漬した標本を、含水率を段階的に順次上昇させたエチルアルコール等の親水性溶液群に順次浸漬した後、酸性のアルコール溶液中に浸漬して細胞核の色素を脱色する。
次いで、水洗した標本を、含水アルコールから純アルコールに、含水率の比率を順次変更しつつ浸漬した後、簡易的な固定処理を施す、
この様に、内部が親水性に戻り細胞核が脱色された標本は、前述したスライドガラス組織標本やスライドガラス細胞標本と同様に、ホルムアミドを含有する溶液中に浸漬し、標本中の癌細胞の細胞核内に存する損傷を有する損傷DNAを選択的に単鎖DNAに変性する変性処理を施した後、この単鎖DNAに、発色処理等の顕在化処理によって観察可能となる標識が配されている標識DNAを結合する結合処理を施し、次いで、単鎖DNAに結合した標識DNAの存在を観察できるように、発色処理等の顕在化処理を施す。
【0022】
【実施例】
以下、実施例によって本発明を更に詳細に説明する。
実施例1
(1)ビオチン標識DNAの調整
▲1▼DNAの抽出
手術或いは病理解剖で切除された組織を液体窒素で凍結して細片化し、プロティナーゼK溶液を加えて50℃で保持しつつ、Tris平衡化フェノールを加えて混合し、遠心分離して水層を分離する。分離した水層に、エチルアルコールを加えてDNAを析出する。析出したDNAの溶液中の濃度を、分光光度計等を用いて測定しておく。
▲2▼ニックトランスレーション法による標識の導入
析出したDNAの濃度を、50ng/μlに調整した溶液を、dATP、dGTP、dCTP、ビオチン化dUTPを含み、且つ50mM MgCl、0.5mg/ml BSAを含む0.5M Trisバッファー溶液に溶解する。
更に、DNAポリメラーゼIとDNAaseIとを加え、溶液を15℃に120分間保持することによって、二本鎖DNAの置換反応を行う。所定時間経過後に、溶液を70℃に10分間保持することによって、置換反応を停止する。
▲3▼精製
置換反応した反応液を、ポリアクリルアミド製のゲル濾過スピンカラムによって濾過し、酵素や残留物等を除去する。
得られた濾液中には、生成されたビオチン標識DNAが含まれており、その分子量について、アガロースゲルによる電気泳動によって測定したところ500〜2000bpであった。
尚、得られたビオチン標識DNAは、−80℃程度に凍結して保存可能である。
(2)スライドガラス組織標本の作製
癌患者から摘出して病理検査室に提出された子宮頚部の臨床的生体検査検体(以下、検体と称することがある)を、ホルマリン溶液中に数時間〜1昼夜浸漬した後、含水率を段階的に低下させたエチルアルコール水溶液群に順次浸漬して、組織内部がエチルアルコールに置換された検体をキシレンに浸漬する。
次いで、キシレンに置換された検体内にパラフィンを浸透した後、ミクロトームによって薄切した切片をスライドガラス上に伸展貼着する。
かかるスライドガラス組織標本(以下、組織標本と称する)は、その組織内部にパラフィンが含浸されているため、組織標本の作製の手順とは逆の手順によって、組織内部をエチルアルコールに置換する。具体的には、組織標本を、キシレンに浸漬した後、含水率を段階的に上昇させたエチルアルコール水溶液群に順次浸漬し、次いで、組織内部がエチルアルコールに置換されたスライドガラス組織標本を、蒸留水中に置いて組織内部を水に置換する。
【0023】
(3)ホルムアミド変性
▲1▼前処理
内部組織が水に置換されたスライドガラス組織標本を、過酸化水素水2mlを含むメチルアルコール溶液200mlに、室温で15分間浸漬し、内在的ペルオキシダーゼの阻止処理を施した後、プロティナーゼKが10μg/mlとなるように調整した、10mM Tris−HCl、10mM EDTA、1%SDSを含む37℃のバッファー溶液に20分間浸漬し、内在性ビオチンの除去処理を行った後、リン酸緩衝食塩水(PBS)に浸漬する。
▲2▼変性処理
前処理が施された組織標本を、ホルムアミド含有溶液中に浸漬し、組織標本中の損傷DNAを選択的に単鎖化させる変性処理を施す。
ここで、用いるホルムアミド含有溶液としては、ホルムアミドの含有量が70%となるように調整した標準クエン酸溶液(2×SSC;0.3M塩化ナトリウム、0.03Mクエン酸ナトリウム)を用いた。
この変性処理では、60℃に加温されたホルムアミド含有溶液に、組織標本を浸漬して10分間保持した。
かかる変性処理を施した組織標本を、−20℃に冷却したエチルアルコールを70%含有する水溶液中に10分間保持して急速冷却を施した後、4℃に保持されたリン酸緩衝食塩水(PBS)中に10分程度浸漬した。
【0024】
(4)ハイブリダイゼーション
▲1▼ハイブリダイゼーション溶液の調整
予め準備したビオチン標識DNAを含有する溶液を、73℃で10分間保持した後、直ちに氷によって急冷する。この加熱冷却処理によって、ビオチン標識DNAを単鎖化できる。
かかる単鎖化されたビオチン標識DNAを含有する溶液10μlと、ホルムアミドを約20%含有するハイブリダイゼーションバッファー90μlとを混合してハイブリダイゼーション溶液を調整する。
このハイブリダイゼーションバッファー90μlは、20×SSCP(3M塩化ナトリウム、0.3Mクエン酸ナトリウム、0.4Mリン酸二ナトリウムを含むpH6.0の緩衝液)40μl、キャリアDNA(サケ精子DNAを10μg/ml含有)2μl、50倍希釈denhart液(ウシ血清アルブミン5g、Ficoll400 5g、ポリビニルピロリドン5gを500mlの水溶液とし、この水溶液を1/50に希釈)4μl及び10%デキストラン硫酸を含む45%ホルムアミド溶液44μlから成る。
▲2▼ハイブリダイゼーション反応
調整したハイブリダイゼーション溶液の100μlを組織標本上に滴下した後、滴下した液滴にパラフィルムを被せて、液滴から気泡を除去すると共に、溶液の蒸発防止を図る。
更に、ハイブリダイゼーション溶液が液滴され且つハイブリダイゼーション溶液の液滴に蒸発防止のパラフィルムで覆った組織標本を、密閉容器内に載置して37℃に保持し、ビオチン標識DNAと組織標本のDNAとのハイブリダイゼーション反応を行った。かかるハイブリダイゼーション反応は、18時間行った。
このハイブリダイゼーション反応の際に、密着容器内に、ホルムアミドを70%含有する標準クエン酸溶液(2×SSC;0.3M塩化ナトリウム、0.03Mクエン酸ナトリウム)を、組織標本と共に載置し、密閉容器内を保湿した。
次いで、ハイブリダイゼーション反応が終了した後、パラフィルムを除去した組織標本を、37℃に保温したホルムアミドを50%含有する標準クエン酸溶液(2×SSC;0.3M塩化ナトリウム、0.03Mクエン酸ナトリウム)に15分間浸漬して洗浄した後、標準クエン酸溶液(2×SSC;0.3M塩化ナトリウム、0.03Mクエン酸ナトリウム)に15分間浸漬して洗浄した。
更に、組織標本を、標準クエン酸液(1×SSC;0.15M塩化ナトリウム、0.015Mクエン酸ナトリウム)に15分間浸漬して洗浄した後、リン酸緩衝食塩水(PBS)に浸漬した。
【0025】
(5)発色工程
一次抗体として、市販されている抗ビオチンモノクローナル抗体含有溶液を、100培に希釈して組織標本に滴下し、37℃で1時間保持して、組織標本中の癌細胞の細胞核内に存する単鎖化されたDNAとハイブリダイゼーションしているビオチン標識DNAのビチオンと抗原抗体反応させた。反応終了後に、組織標本をリン酸緩衝食塩水(PBS)に浸漬して洗浄した。
更に、抗ビオチン抗体と反応する二次抗体とペルオキシダーセとがデキストランポリマーに結合した複合体を含有するデキストランポリマー試薬(DAKO社製、「ENVISION+」)を、組織標本を覆うように滴下し、室温で30分間反応させた後、スライドガラス組織標本をリン酸緩衝食塩水(PBS)で溶液を洗浄した。
その後、組織標本を、コバルト−DAB溶液中に浸漬し、室温で10分間反応させて、組織標本のDNAに結合しているビオチン標識DNAと結合しているペルオキシダーゼによりコバルト−DABを黒色に発色させた後、水洗した。
このコバルト−DAB溶液は、1%塩化コバルト溶液1mlを加えた、10mM Tris−HClバッファー(pH7.4)100mlに、10mgのDAB(ジアノベンチジン)を溶解させた溶液であって、組織標本を浸漬してから数分後に30%過酸化水素水10μlを加えた。
(6)染色等
組織標本を、Kernechtrot染色液(Kerechtrot 0.1gと硫酸アルミニウム5gとを蒸留水100mlに溶解して得た染色液)に浸漬し、対比染色を施した。
次いで、対比染色を施した組織標本を、含水率を段階的に低下させたエチルアルコール水容液群に順次浸漬した後、キシレンに浸漬して脱水処理を施した。
脱水処理を施したスライドガラス上に載置された組織標本に封入剤を滴下し、封入剤ごとカバーガラスによって封入して顕微鏡観察用組織標本を得た。
【0026】
得られた顕微鏡観察用組織標本を顕微鏡観察したところ、図1に示す様に、癌細胞の細胞核のみに、黒色の顆粒状の陽性像10,10・・が観察できる。
しかも、黒色の陽性像10,10・・が観察された部位は、予め公知の方法で染色した組織標本を病理医が観察し、組織構造や細胞核の形態的変偏(異型性)等から癌と判断した部位と略一致していた。
【0027】
実施例2及び比較例1
実施例2として、実施例1において、早期の大腸腺種(腺管腺種)が発生した大腸部分を検体に用いた他は、実施例1と同様にして顕微鏡観察用組織標本を作製した。
この顕微鏡観察用組織標本を顕微鏡観察した結果、図2に示す様に、癌細胞の細胞核が濃い褐色に染色された陽性腺管20,20・・と、褐色に染色されていない正常細胞或いは良性腺種細胞から成る陰性腺管22,22・・とが明瞭に染め分けられている。
尚、この検体は、予め公知の方法で染色した組織標本を病理医が顕微鏡観察したものの、その組織構造や細胞核の形態的変偏(異型性)等からは、明らかな癌細胞として判断されなかったものである。
【0028】
一方、比較例1として、実施例2に用いた早期の大腸腺種(腺管腺種)が発生した大腸部分を検体に用い、特開平7−306202号公報に提案された方法に準拠して顕微鏡観察用組織標本を作製した。
すなわち、実施例1の(2)スライドガラス組織標本の作製と同一方法によって作製したスライドガラス組織標本を、過酸化水素が0.3%となるように調整したメチルアルコール溶液中に、室温で15分間浸漬し、内在性ペルオキシダーゼの除去処理を行った後、リン酸緩衝食塩水(PBS;pH7.4)で洗浄した。
更に、この組織標本上に、リン酸緩衝食塩水(PBS;pH7.4)に溶解した2%スキムミルク(雪印社製)溶液を滴下し、37℃で20分間保持して抗血清のバックグランド吸着をブロックした後、組織標本上にブロッキング溶液(ニチレイ社製、HisofinePOR)を滴下し、室温で5分間反応させた。
次いで、水洗した組織標本を、30℃に保持されている2NのHCl溶液中に20分間浸漬して水洗する。この処理によって、組織標本内のDNAに酸性加水分解処理を施して単鎖化する。
【0029】
この様に、癌細胞の細胞核内に存する損傷DNAが単鎖化されたはずの組織標本に、免疫抗原抗体反応を施すべく、抗シチジンポリクローナル抗体溶液[Biogeneis社製の抗シチジンポリクローナル抗体をリン酸緩衝食塩水(PBS;pH7.4)で1500倍に希釈した溶液]を滴下し、4℃で一昼夜反応させた後、リン酸緩衝食塩水(PBS;pH7.4)で洗浄した。
この組織標本に、ビチオン化されたヒツジ由来のウサギIgGに対する抗体(抗ウサギIgG;ニチレイ社製、HisofinePOR)溶液を滴下し、30℃で40分間反応させた後、リン酸緩衝食塩水(PBS;pH7.4)で洗浄した。
更に、組織標本に、アビジン−ビチオン−ペルオキシダーゼ複合体(ニチレイ社製、Hisofine POR)を滴下し、30℃で40分間反応させた後、リン酸緩衝食塩水(PBS;pH7.4)で洗浄した
その後、ペルオキシダーゼによりコバルト−DAB発色反応を行うべく、組織標本を、20℃のDAB−コバルト溶液に10分間浸漬し、細胞核を黒色に発色させてから水洗した。
このDAB−コバルト溶液は、1%塩化コバルト溶液1mlを加えた、10mM Tris−HClバッファー(pH7.4)100mlに、10mgのDAB(ジアノベンチジン)を溶解させた溶液であり、組織標本を浸漬してから数分後に30%過酸化水素水10μlを加えた。
【0030】
この組織標本に対比染色を施すべく、組織標本を、Kernechtrot染色液(Kerechtrot 0.1gと硫酸アルミニウム5gとを蒸留水100mlに溶解して得た染色液)に浸漬して細胞質染色を施した。
対比染色を施した組織標本は、含水率を段階的に低下させたエチルアルコール水容液群に順次浸漬した後、キシレンに浸漬して脱水処理を施した後、滴下した封入剤ごとカバーガラスによって封入して顕微鏡観察用組織標本を作製した。
得られた顕微鏡観察組織標本を顕微鏡観察したところ、図3に示す如く、癌細胞が存在する陽性腺管と、正常細胞及び良性腺種細胞から成る陰性腺管とが不明瞭(偽陰性)であった。
【0031】
実施例3及び比較例2
実施例3として、実施例1において、膀胱上皮を検体に用いた他は、実施例1と同様にして顕微鏡観察用組織標本を作製した。
この顕微鏡観察用組織標本を顕微鏡観察した結果、図4に示す様に、黒色の陽性癌細胞像10,10・・が観察された陽性部位A,Aの間に、陽性癌細胞像10,10・・が認められない正常細胞から成る陰性部分Bが明瞭に染め分けられている。
【0032】
一方、比較例2として、比較例1において、実施例3と同一の検体を用いた他は、比較例1と同様にして顕微鏡観察用組織標本を作製した。
この顕微鏡観察用組織標本を顕微鏡観察した結果、図5に示す如く、本来、強陽性を示すべき癌細胞に極めて弱い陽性像しか認められなかった(偽陰性)。
【0033】
実施例4及び比較例3
実施例4として、実施例1において、癌患者から採取して病理検査室に提出された尿中に剥離された膀胱上皮を検体に用い、スライドガラス標本の作製、ホルアミド溶液を用いた変性処理の前処理、及び細胞質染色を下記のようにした他は、実施例1と同様にして顕微鏡観察用細胞標本を作製した。
検体としての尿中の膀胱上皮を遠心分離機で分離したものを、スライドガラス上に塗布してスライドガラス細胞標本(以下、細胞標本と称することがある)とする。
得られた細胞標本を、ホルマリン溶液中に浸漬し、細胞標本中のDNA等を充分に固定すると共に、核酸検出を妨害する分解酵素を失活する。
ホルマリン溶液から取り出した標本は、リン酸緩衝食塩水(PBS)に浸漬して洗浄した後、過酸化水素が0.3%となるように調整したメチルアルコール溶液中に、室温で15分間浸漬して、内在性ペルオキシダーゼの除去処理を施し、リン酸緩衝食塩水(PBS)に浸漬して洗浄する。
次いで、細胞標本を、実施例1の組織標本と同様に、ホルムアミドを含有する溶液中に浸漬し、スライドガラス細胞標本中の癌細胞の細胞核内に存する損傷を有する損傷DNAを選択的に単鎖DNAに変性する変性処理を施した後、急速冷却を施す。
更に、変性処理を施した細胞標本には、組織標本と同様に、ハイブリダイゼーション溶液を滴下した後、マイクロ波で加熱処理を施す。
かかるマイクロ波による加熱処理では、細胞標本に滴下したハイブリダイゼーション溶液の液滴をパラフィルムで覆った後、細胞標本を電子レンジのターンテーブル上に載置し、マイクロ波を5分間ほど照射する。かかるマイクロ波は、出力200Wで3秒間隔で間欠的に照射した。マイクロ波を5分間ほど照射すると、電子レンジの細胞標本を載置した空間(照射庫)内の温度は約30℃に昇温されていた。
【0034】
滴下されたハイブリダイゼーション溶液の液滴をマイクロ波で加熱処理した細胞標本は、実施例1と同様にして、ハイブリダイゼーション反応及び発色処理を施した後、オレンジG染色液(武藤化学社製)に3分間浸漬してからEA50(武藤化学社製)の染色液に5分間浸漬し、対比染色を施した。
次いで、実施例1と同様に、細胞標本に脱水処理を施した後、滴下した封入剤ごとカバーガラスによって封入して顕微鏡観察用細胞標本を得た。
得られた顕微鏡観察用細胞標本を顕微鏡観察したところ、図6に示す様に、黒色の陽性癌細胞10,10・・が明瞭に認められた。
尚、同一細胞標本には、図7に示す様に、黒色の陽性像が認められない陰性正常細胞も認められた。
【0035】
比較例3
癌患者から採取して病理検査室に提出された胸水中に剥離された細胞を検体に用い、スライドガラス標本の作製、公知のパパニコロゥ染色、カバーガラスの剥離及び脱色を下記のように実施した他は、実施例4と同様にして顕微鏡観察用細胞標本を作製した。
検体としての胸水中に剥離された細胞を遠心分離器で分離したものを、スライドガラス上に塗布してスライドガラス細胞標本(以下、単に細胞標本と称することがある)にパパニコロゥ染色を施した。
▲1▼核染色
細胞標本を、95%、80%、50%のエチルアルコール水溶液中に順次浸漬した後、流水で洗浄する。
この細胞標本をギルヘマトキシリン染色液(武藤化学社製)に室温で3分間浸漬して核染色を施した後、流水で洗浄してから70%エチルアルコール水溶液中に浸漬し、更に0.35%塩酸を含む80%エチルアルコール溶液に浸漬する。
▲2▼細胞質染色I
細胞標本を水洗し塩酸を除き、80%エチルアルコール水溶液、1%のアンモニアを含む80%エチルアルコール水溶液、100%エチルアルコールに順次浸漬し、実施例4で用いたものと同様なオレンジGの染色液に3分間室温で浸漬する。続いて、100%エチルアルコールに浸漬する。
▲3▼細胞質染色II
続いて、実施例4で用いたものと同様なEA50の染色液に、細胞標本を5分間浸漬する。
▲4▼洗浄封入
EA50染色後、エチルアルコールにて洗浄し、更にエチルアルコールに浸漬して脱水し、キシレンに浸漬した後、滴下した封入剤ごとカバーガラスによって封入して顕微鏡用細胞標本を作製した。
得られた顕微鏡観察用細胞標本を顕微鏡観察したところ、図8に示す様に、活動性中皮細胞、リンパ球、単球様細胞等の正常細胞(矢印A)にまじって、小型、大小不同、N/C比(核/細胞質比)の大きいリンパ腫細胞(矢印B)が孤立、散在性に認められる。それらのリンパ腫細胞では、クロマチンの増量と不均等分布が見られる。
【0036】
実施例5
比較例3でパパニコォゥ染色した細胞標本について顕微鏡観察した後、次の処理を施す。
先ず、細胞標本を、50〜60℃に加温したキシレン中に2日間程度保持し、カバーガラスを剥離させて取り除いた後、露出した細胞標本を、キシレンで洗浄して封入剤を除去する。
次いで、封入剤を除去した細胞標本を、エチルアルコールに浸漬してから70%のエチルアルコール水溶液に浸漬して細胞質染色を退色し、0.35%塩酸を含むエチルアルコールに45〜60分浸漬し、細胞核の染色剤を除去する。細胞核の染色剤を除去した細胞標本を、直ちに水洗して塩酸を洗浄する。
更に、細胞標本を、70%のエチルアルコール水溶液に浸漬し、100%エチルアルコールに浸漬し脱水した後、エチルアルコールとポリエチレングリコールとの混合液を噴霧して簡易的な固定処理を施す。
簡易的な固定処理を施した細胞標本を、実施例4と同様に処理して、ホルムアミドを含有する溶液を用いて、細胞標本中の癌細胞の細胞核内に存する損傷を有する損傷DNAを選択的に単鎖DNAに変性する変性処理を施した後、ハイブリダイゼーション溶液が滴下された細胞標本にマイクロ波で加熱処理を施す。
更に、マイクロ波で加熱処理を施した細胞標本には、実施例4と同様にして、ハイブリダイゼーション反応及び発色処理を施した後、対比染色を施して顕微鏡観察用細胞標本を作製した。
得られた顕微鏡観察用細胞標本を顕微鏡観察したところ、図9に示す様に、黒色に染まった陽性の悪性リンパ腫細胞(矢印B)が認められる。一方、図9において、矢印Aの細胞は、中皮細胞、リンパ球、単球様細胞とその他の炎症細胞であって、いずれも正常細胞である。
【0037】
【発明の効果】
本発明に係る検出方法によれば、偽陰性や偽陽性の発生を可及的に少なくでき、且つ組織標本及び細胞標本中の癌細胞の細胞核内に存する損傷DNAを検査できる。このため、本発明に係る検出方法は、癌の早期発見や組織の癌化範囲の特定に有効に用いることができる。
【図面の簡単な説明】
【図1】実施例1で作製した顕微鏡観察用組織標本の顕微鏡写真である。
【図2】実施例2で作製した顕微鏡観察用組織標本の顕微鏡写真である。
【図3】比較例1で作製した顕微鏡観察用組織標本の顕微鏡写真である。
【図4】実施例3で作製した顕微鏡観察用組織標本の顕微鏡写真である。
【図5】比較例2で作製した顕微鏡観察用組織標本の顕微鏡写真である。
【図6】実施例4で作製した顕微鏡観察用細胞標本の顕微鏡写真である。
【図7】実施例4で作製した顕微鏡観察用細胞標本のうち、図6に示す顕微鏡写真と別視野における顕微鏡写真である。
【図8】比較例3で作製した顕微鏡観察用細胞標本の顕微鏡写真である。
【図9】実施例5で作製した顕微鏡観察用細胞標本の顕微鏡写真である。
【符号の説明】
10 陽性像
20 陽性腺管
22 陰性腺管
A 陽性部位
B 陰性部位
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for detecting cancer cells, and more particularly, to a method for detecting cancer cells that can be used for screening of cancer cells, pathological diagnosis of cancer, and the like.
[0002]
[Prior art]
It is well known that in cancer, genes in cells are greatly changed from normal genes.
That is, in cancer cells, DNA in the cell nucleus, which is a gene, is greatly changed from DNA in the cell nucleus of a normal cell. This change is caused, for example, by (1) incomplete repair of base changes due to chemical modification of DNA bases or addition or insertion of carcinogens, and DNA strand breaks caused by physicochemical factors such as electromagnetic waves or active oxygen. Changes in the nucleotide sequence, ie, the genetic code; (2) deletion of a gene region with deletion of both alleles; (3) duplication of gene regions involved in cancer development; (4) chromosome or partial chromosome. This is due to duplication, deletion, translocation recombination, etc.
As described above, in cancer cells in which DNA has been damaged and altered, intracellular DNA has become unstable throughout, and functional and structural abnormalities including abnormalities in DNA and proteins produced by the information have been lost. Be looked at. For this reason, cancer cells are accompanied by chromosomal abnormalities, such as enhanced cell proliferation ability, abnormal cell cycle and cell division, avoidance of apoptosis, and abnormal cell differentiation.
Therefore, a simple method for detecting such abnormalities or damages of DNA is strongly desired in order to know at an early stage that cancer cells exist.
[0003]
On the other hand, in the past, in the daily clinical diagnosis, such as histopathological diagnosis, cytological examination and diagnosis (cytodiagnosis), detection of cancer cells and cancer tissues and early detection of cancer have been carried out for early detection of cancer. Efforts are being made to clarify the lesion.
However, conventional detection of cancer cells and cancer tissues is performed solely by using morphological deviation from normal cells as an index, and the detection accuracy may differ significantly depending on the experience of the detector.
For this reason, there is a demand for a method for detecting cancer cells and cancer tissues that can reliably identify cancer cells regardless of the experience of the detector.
In order to respond to such a demand, the present inventor has previously proposed a cancer cell detection method capable of reliably detecting cancer cells and cancer tissues according to Patent Documents 1 and 2 described below.
[0004]
[Patent Document 1]
JP-A-62-8053 (Claims)
[Patent Document 2]
JP-A-7-306202 (Claims)
[0005]
The method for detecting cancer cells proposed in Patent Document 1 described above utilizes the fact that damaged DNA having damage in cancer cells is more easily hydrolyzed to an acid than single DNA and becomes unstable, and is unstable. Hydrolyzing the damaged DNA present in the cancer cells in the cell specimen in the cell specimen using an acid such as hydrochloric acid, and then staining the hydrolyzate with a predetermined dye so that the cell specimen collected from the cell specimen can be observed, This is a method for detecting cancer cells.
Further, the DNA damage detection method proposed in Patent Document 2 described above selectively hydrolyzes damaged DNA having damage in cancer cells in a tissue specimen using an acid such as hydrochloric acid in a tissue specimen collected from an internal organ or the like. And then treated with a monoclonal antibody that recognizes and binds to the generated single-stranded DNA. Then, the presence or absence of this antibody binding is determined by comparing the enzyme bound to the secondary antibody with a chromogen such as DAB. This is a method for detecting cancer cells by observing them by a color development process using a sex substance.
[0006]
[Problems to be solved by the invention]
According to the test methods proposed in Patent Document 1 and Patent Document 2, cancer cells in a specimen can be detected.
However, according to a subsequent study by the present inventors, the test methods of Patent Documents 1 and 2 show that false positives, which are normal DNA and damaged DNA, and false negatives, which are normal DNA even when damaged DNA occur, occur. It turned out that there is.
The test method of Patent Document 1 is applied to a cell sample collected from a body fluid or the like, and the test method of Patent Document 2 is applied to a tissue sample collected from an internal organ or the like.
Therefore, a cancer cell detection method capable of detecting damaged DNA in cancer cells in both a tissue specimen and a cell specimen, and detecting cancer cells with high accuracy by minimizing the occurrence of false negatives and false positives. Has not yet been proposed.
Therefore, an object of the present invention is to propose a method for detecting cancer cells that can accurately detect cancer cells in a tissue specimen and a cell specimen by minimizing the occurrence of false negatives and false positives.
[0007]
[Means for Solving the Problems]
When the present inventors apply the cancer cell detection method proposed in Patent Document 1 to a tissue specimen, the fluorescent dye sensitively reacts to slight changes in DNA that occur during the specimen preparation process. It was considered to give false positives that stained entirely with the dye.
Further, in the method for detecting cancer cells disclosed in Patent Document 2, when the pretreatment of a specimen is insufficiently fixed, an acid such as hydrochloric acid destroys and destroys the damaged DNA itself, thereby causing a false negative. It was considered that normal DNA was also easily damaged, and at the same time, false positive was likely to be caused due to secondary damage.
Therefore, in order to achieve the above object, it was considered that it is advantageous to selectively convert damaged DNA present in cancer cells into single-stranded DNA under milder conditions than acid hydrolysis. The present inventors have found that the occurrence of false negatives and false positives can be reduced by immersing a sample in a sample and denaturing the sample under milder conditions than usual, and arrived at the present invention.
That is, in the present invention, a tissue sample collected from an internal organ or the like or a cell sample collected from a body fluid or the like is immersed in a solution containing formamide, and damaged DNA having damage present in the cell nuclei of cancer cells in the sample is selected. After a denaturation treatment for denaturing the single-stranded DNA, a labeled DNA having a chain length capable of binding to the single-stranded DNA and having a label which can be observed by a visualization treatment such as a color development treatment is used. Performing a binding treatment for binding to the single-stranded DNA, and then performing the revealing treatment so that the presence of the labeled DNA bound to the single-stranded DNA can be observed to detect cancer cells. Cell detection method.
[0008]
In the present invention, by performing the denaturation treatment while heating a solution containing formamide, damaged DNA existing in cancer cells can be converted into single-stranded DNA in a short time without loss.
Immediately after such denaturation treatment is performed on a tissue sample or a cell sample, the sample can be rapidly cooled to maintain the state of single-stranded DNA.
Furthermore, a color development treatment or a fluorescence generation treatment is employed as the manifestation treatment, and a compound capable of forming a complex that forms a color by the color development treatment or emits a fluorescence by the fluorescence generation treatment is disposed as a label DNA. Labeled DNA can be used, and human-derived DNA having a chain length of 500 to 2000 bp can be suitably used.
When a cell specimen is used as a specimen, it is preferable that the cell specimen is subjected to a fixing treatment with formalin, the cell nuclear DNA is sufficiently fixed, and then immersed in a formamide-containing solution to perform a denaturation treatment.
At the time of the binding treatment for binding the labeled DNA to the single-stranded DNA in the cell specimen, the specimen is subjected to a heating treatment with microwaves, whereby the permeability of the labeled DNA into the cells can be improved.
After subjecting the labeled DNA bound to the single-stranded DNA to a predetermined coloration treatment or fluorescence generation treatment, and then performing cytoplasmic staining on the specimen, the morphological observation of the tissue specimen or the cell specimen can be performed. Can be used in conjunction with detection.
[0009]
ADVANTAGE OF THE INVENTION According to the detection method of the cancer cell which concerns on this invention, when denaturing the damaged DNA which exists in a cancer cell into single-stranded DNA, the formamide which damage of normal DNA and the destruction of damaged DNA are hard to be induced compared with the conventional acid hydrolysis is caused. The specimen is immersed in the containing solution, and a denaturation treatment for denaturing the damaged DNA into single-stranded DNA is performed.
The DNA single-strand treatment using such a formamide-containing solution is a mild DNA single-strand treatment compared to the conventional DNA single-strand treatment by acid hydrolysis. Existing damaged DNA is more likely to be single-stranded than normal DNA. For this reason, the single-stranded DNA treatment using a formamide-containing solution, which is a mild single-stranded treatment compared to conventional acid hydrolysis, selectively removes damaged DNA present in the cell nucleus of cancer cells into single-stranded DNA. It can be converted.
The damaged DNA selectively single-stranded by the denaturation treatment includes a labeled DNA having a chain length capable of binding to the single-stranded DNA and having a label which can be observed by a visualization treatment such as a color development treatment. To join.
In general, the length of a single strand of damaged DNA present in the cell nucleus of a cancer cell is longer than that of a partially single strand in normal DNA, and the damaged DNA invades the cell nucleus of a cancer cell. Strongly binds to the labeled DNA.
As described above, in the present invention, the DNA single-strand treatment using a formamide-containing solution that is milder than the conventional DNA single-strand treatment by acid hydrolysis is employed, and the single-strand damage is reduced. In combination with the binding of the labeled DNA to the DNA, even if normal DNA is secondarily damaged in a single-strand treatment of DNA, false positive or cancer cells caused by this damage can be caused. False negatives resulting from the destruction of damaged DNA in the cell nucleus can be reduced.
Furthermore, in the present invention, by subjecting the labeled DNA bound to the damaged DNA to a predetermined eliciting treatment, the labeled DNA bound to the DNA can be observed, and the cancer DNA or cancer in the tissue where the damaged DNA occurs frequently can be observed. Cell population can be detected.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
As a sample used in the present invention, a tissue sample collected from an internal organ or the like or a cell sample collected from a body fluid or the like can be used.
Among such specimens, the tissue specimen is usually provided as a slide glass tissue specimen in which the specimen is stretched and adhered on a slide glass.
When making this slide glass tissue specimen, a sample collected from the internal organs and the like is first immersed and fixed in a formalin solution, and then a hydrophilic solution group such as ethyl alcohol or the like whose water content is gradually reduced in a stepwise manner. Immersed sequentially. Furthermore, the specimen immersed in a 100% solution of a hydrophilic solution such as ethyl alcohol is immersed in a hydrophobic solution such as xylene to replace the inside of the tissue with a hydrophobic solution. It is cut by a cutting device such as a microtome, and the obtained thin section is stretched and adhered on a slide glass.
Since such a slide glass tissue sample is impregnated with paraffin inside the tissue and is in a hydrophobic state, the inside of the tissue is replaced with a hydrophilic solution by a procedure reverse to the procedure of preparing the slide glass tissue sample. Specifically, after the slide glass tissue specimen is immersed in a hydrophobic solution such as xylene, the slide glass is sequentially immersed in a hydrophilic solution group such as ethyl alcohol having a gradually increased water content, and then the inside of the tissue is exposed. The slide glass tissue specimen replaced with the hydrophilic solution is placed in distilled water to replace the inside of the tissue with water.
[0011]
Since the slide glass tissue specimen in which the inside of the tissue is replaced with water contains various in vivo substances, a treatment for removing in vivo substances that hinder detection of damaged DNA present in cancer cells is performed. For example, when performing an endogenous peroxidase treatment, a slide glass tissue specimen is immersed in methanol adjusted to have a hydrogen peroxide solution content of 1%, and an endogenous biotin treatment is performed. The slide glass tissue specimen is immersed in a solution containing proteinase K.
The slide glass tissue specimen that has been subjected to such a treatment is immersed in phosphate buffered saline (PBS).
[0012]
As described above, the slide glass tissue specimen in which the inside of the specimen tissue has been replaced with water and which has been treated with the remaining enzyme is immersed in a solution containing formamide, and placed in the cell nuclei of cancer cells in the slide glass tissue specimen. A denaturing treatment for selectively denaturing damaged DNA having existing damage into single-stranded DNA is performed.
Here, as the solution containing formamide to be used, a solution containing a standard citric acid solution (a solution containing sodium chloride and sodium citrate) in addition to formamide can be suitably used.
This denaturation treatment can be performed by immersing the slide glass tissue specimen in a formamide-containing solution heated to about 60 ° C. for about 10 minutes.
Here, when the temperature of the denaturation treatment is 70 ° C. or higher, which is the temperature of the ordinary denaturation treatment using a formamide-containing solution, damage to normal DNA and destruction of damaged DNA are likely to occur.
The slide glass tissue specimen subjected to the denaturation treatment is immersed for about 10 minutes in an aqueous solution containing ethyl alcohol cooled to -20 ° C or lower, and rapidly cooled. By this cooling treatment, the single-stranded DNA which has been immersed in the formamide-containing solution to be single-stranded can be maintained in that state.
Further, the slide glass tissue specimen subjected to the cooling treatment is immersed in phosphate buffered saline (PBS) maintained at about 4 ° C. for about 10 minutes.
[0013]
Next, a single-stranded DNA in which the damaged DNA present in the cell nucleus of the cancer cell in the slide glass tissue specimen is selectively converted into a single-stranded DNA has a chain length capable of binding to the single-stranded DNA, and a color-developing process is performed. A binding treatment (hybridization) for binding a labeled DNA on which a label that can be observed by the treatment is provided is performed.
As such a labeled DNA, when a color development treatment or a fluorescence generation treatment is employed as a visualization treatment, a label capable of forming a complex that forms a color by the color development treatment or forms a complex that emits fluorescence by the fluorescence generation treatment is disposed as a label. DNA can be used. As the labeled DNA, a human-derived DNA having a chain length of 500 to 2000 bp is used, so that even when a minute single-stranded portion is formed in normal DNA during the single-stranded treatment, No binding to the labeled DNA occurs.
Examples of such labeled DNA include biotin-labeled DNA, digoxigenin-labeled DNA, and fluorescein-labeled DNA.
The labeled DNA is heated to about 73 ° C. and kept for 10 minutes after heating the solution containing the labeled DNA, and then immediately cooled to a single strand with ice.
A hybridization solution obtained by mixing the single-stranded labeled DNA-containing solution and the formamide-containing solution is dropped onto a sample on a slide glass. This drop amount is adjusted according to the size of the sample.
As such a hybridization solution, a solution having a formamide content of 25% and a dextran content of about 4% can be suitably used. The content of such formamide and dextran is small compared to a commercially available hybridization solution (formamide; 50%, dextran; 10%).
Here, when hybridization is performed using a commercially available hybridization solution, normal DNA is also likely to be single-stranded.
[0014]
The predetermined amount of the hybridization solution droplets dropped on the sample on the slide glass is subjected to an evaporation preventing process for removing bubbles and preventing the solution from evaporating. This evaporation prevention treatment can be achieved by covering a droplet of the hybridization solution dropped on the specimen with a parafilm or a cover glass. When covering the droplet of the hybridization solution with a cover glass, it is preferable to adhere the periphery of the cover glass.
The sample in which the droplets of the hybridization solution have been subjected to the evaporation prevention treatment is maintained at a predetermined temperature to promote the hybridization reaction in which the labeled DNA is added to the DNA. This hybridization reaction is preferably performed in a humidified atmosphere, for example, in a wet box, for a reaction time of about 1 hour to overnight.
[0015]
The slide glass tissue specimen after the completion of the hybridization reaction is washed by immersion in a washing solution in order to remove unreacted labeled DNA and labeled DNA incompletely added to the DNA.
By such washing, even if a small denaturation site is formed in the normal DNA in the denaturation treatment for denaturation into single-stranded DNA, the labeled DNA added to this denaturation site is not firmly bound and can be easily removed. .
The washing includes a primary washing for washing the slide glass tissue sample immediately after the hybridization reaction is completed, and a secondary washing for further washing the slide glass tissue sample washed with the primary washing solution. As a washing solution, a washing solution containing formamide and a standard citric acid solution is used for the first washing, and a washing solution containing a standard citric acid solution is used for the second washing.
A washing solution (containing no formamide) containing a standard citric acid solution is used.
The washed slide glass tissue specimen is immersed in phosphate buffered saline (PBS).
[0016]
The slide glass tissue specimen that has been subjected to the washing treatment is subjected to a predetermined visualization treatment so that the presence of the labeled DNA bound to the single-stranded DNA can be observed.
Here, for example, when a biotin-labeled DNA is used as the labeled DNA, a solution containing an anti-biotin antibody as a primary antibody is dropped on a slide glass tissue sample when performing a color development process as a visualization process, Biotin as a label of biotin-labeled DNA is reacted with an anti-biotin antibody as a primary antibody. After the reaction is completed, the slide glass tissue specimen is washed with phosphate buffered saline (PBS).
Further, the anti-biotin antibody bound as a primary antibody to biotin of the biotin-labeled DNA of the slide glass tissue specimen was reacted with a complex in which a secondary antibody that reacts with the anti-biotin antibody and peroxidase were bound, and then the slide was reacted. Wash the glass tissue specimen with phosphate buffered saline (PBS).
Thereafter, the slide glass tissue specimen is immersed in a solution containing a cobalt compound, dianobenzidine and hydrogen peroxide, so that the site where the biotin-labeled DNA to which peroxidase has been bonded is colored black. Therefore, the presence of the labeled DNA bound to the single-stranded DNA can be observed.
[0017]
In such a series of color development treatments, only the cell nuclei having damaged DNA present in the cell nuclei of the cancer cells in the slide glass tissue specimen are stained, so that the outline and the inside of the cells are clarified and the tissues and cells are easily observed. For this purpose, counterstain is applied to the slide glass tissue specimen. As such counterstaining, known staining of a tissue specimen can be adopted.
Further, the slide glass tissue specimen that has been subjected to counterstaining is dehydrated and sealed with a cover glass. The dehydration of the slide glass tissue specimen is performed by sequentially immersing the slide glass tissue specimen in a hydrophilic solution group such as ethyl alcohol having a gradually reduced water content, and then immersing in a 100% hydrophilic solution such as ethyl alcohol. Can be performed by dipping in a hydrophobic solution such as xylene. Finally, the dehydrated specimen is placed on a slide glass, the mounting medium is dropped, and then the whole mounting medium is sealed with a cover glass.
[0018]
In the above description, the treatment in which the complex obtained by binding the secondary antibody reacting with the primary antibody and peroxidase to the primary antibody reacted with the labeled DNA is performed on the slide glass tissue specimen after the washing treatment is completed. The reaction was performed, but after the reaction of the primary antibody reacted with the labeled DNA with the secondary bithione-binding antibody formed by binding the bithione to the primary antibody, the slide glass tissue specimen was phosphate buffered. The solution may be washed with saline (PBS), and then the complex of peroxidase and avidin may be reacted. Thereafter, by immersing the slide glass tissue specimen in a solution containing a cobalt compound, dianobenzidine and hydrogen peroxide, the site where the biotin-labeled DNA bound to the complex of peroxidase and avidin is colored black. .
Further, a fluorescence generating treatment may be performed in which an antibody to which a fluorescent substance is added as a secondary antibody is bound to an antigen of the labeled DNA. The presence of the labeled DNA to which the antibody to which the fluorescent substance is added is bound can be observed by the fluorescence of the fluorescent substance.
In addition, you may use a primary antibody provided with a fluorescent substance as a primary antibody, In this case, it is not necessary to make a secondary antibody react.
[0019]
Although the description so far has been made with respect to a tissue sample collected from an internal organ or the like, the present invention can also use a cell sample collected from a body fluid or the like.
For such a cell specimen, a specimen collected from a body fluid or the like is applied on a slide glass to obtain a slide glass cell specimen.
The obtained slide glass cell specimen is immersed in a formalin solution to sufficiently fix DNA and the like in the cell specimen and to inactivate a degrading enzyme that interferes with nucleic acid detection.
The slide glass cell specimen taken out from the formalin solution is washed by immersing it in phosphate buffered saline (PBS), and then treated with endogenous peroxidase as in the case of the tissue specimen.
Next, the slide glass cell specimen is immersed in a solution containing formamide in the same manner as the tissue specimen, and the damaged DNA having damage in the cell nucleus of the cancer cells in the slide glass cell specimen is selectively converted into single-stranded DNA. After the denaturation treatment for denaturation, rapid cooling is applied.
Further, a hybridization solution is dropped on the slide glass cell specimen subjected to the denaturation treatment, similarly to the tissue specimen, to cause a hybridization reaction.
Here, when the hybridization solution is dropped on the slide glass cell specimen, it is preferable to perform heat treatment by irradiating microwaves. It is presumed that such heat treatment by microwave irradiation promotes the permeability of the labeled DNA into the cells.
This microwave irradiation can be performed in a microwave oven with an output of about 200 W, and it is preferable to irradiate the microwave intermittently.
[0020]
After the hybridization reaction is completed, the slide glass cell sample is washed with the hybridization solution, reacted with the primary antibody with the labeled DNA, and then reacted with the secondary antibody and the peroxidase, similarly to the slide glass tissue sample. The complex which has been bonded to the chromium is reacted and then subjected to a color development treatment to develop a black color. Therefore, the presence of the labeled DNA bound to the single-stranded DNA can be observed.
After that, the slide glass cell specimen is subjected to counterstaining as in the case of the slide glass tissue specimen, then dehydrated and finally immersed in a hydrophobic solution such as xylene to make the inside of the specimen hydrophobic, and then dropped. The enclosed mounting agent is enclosed by a cover glass.
[0021]
Although the above description has been made using a sample collected from an internal organ or the like, the present invention can also be applied to a sample that has already been stained with hematoxylin and eosin and stained with Papanicolaou, and the mounting medium has been sealed with a cover glass. .
First, the specimen sealed with the cover glass together with the mounting medium is immersed in heated xylene until the mounting medium elutes, and the cover glass is peeled off.
The specimen that has been exposed after the mounting medium and the cover glass have been peeled off is impregnated with a mounting medium, xylene, or the like on the surface and inside of the specimen to be in a hydrophobic state, and the cell nucleus is stained with a dye. For this reason, a specimen immersed in a hydrophobic solution such as xylene is immersed sequentially in a group of hydrophilic solutions such as ethyl alcohol whose water content is gradually increased, and then immersed in an acidic alcohol solution to obtain cell nuclei. Decolorize the pigment.
Next, the washed sample is immersed in pure alcohol from hydrous alcohol while changing the ratio of the water content sequentially, and then subjected to a simple fixing treatment.
In this way, the specimen whose inside has returned to hydrophilicity and the cell nucleus has been decolorized is immersed in a solution containing formamide similarly to the slide glass tissue specimen and the slide glass cell specimen described above, and the cell nuclei of cancer cells in the specimen are immersed in the specimen. A label which is subjected to a denaturing treatment for selectively denaturing damaged DNA having damage existing therein into a single-stranded DNA, and which is provided with a label which can be observed by a visualization treatment such as a coloring treatment. A binding treatment for binding the DNA is performed, and then a visualization treatment such as a color development treatment is performed so that the presence of the labeled DNA bound to the single-stranded DNA can be observed.
[0022]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples.
Example 1
(1) Preparation of biotin-labeled DNA
(1) DNA extraction
Tissues excised by surgery or pathological dissection are frozen in liquid nitrogen to be fragmented. Tris-equilibrated phenol is added and mixed at 50 ° C. while adding proteinase K solution, and centrifuged to separate the aqueous layer. To separate. Ethyl alcohol is added to the separated aqueous layer to precipitate DNA. The concentration of the precipitated DNA in the solution is measured using a spectrophotometer or the like.
(2) Introduction of label by nick translation method
A solution in which the concentration of the precipitated DNA was adjusted to 50 ng / μl was prepared by adding dATP, dGTP, dCTP, and biotinylated dUTP to 50 mM MgCl 2. 2 And 0.5 mg / ml BSA in a 0.5 M Tris buffer solution.
Further, double-stranded DNA displacement reaction is performed by adding DNA polymerase I and DNAase I, and keeping the solution at 15 ° C. for 120 minutes. After a predetermined time has elapsed, the substitution reaction is stopped by maintaining the solution at 70 ° C. for 10 minutes.
(3) Purification
The reaction solution that has undergone the substitution reaction is filtered through a gel filtration spin column made of polyacrylamide to remove enzymes, residues, and the like.
The resulting filtrate contained the produced biotin-labeled DNA, and its molecular weight was measured by agarose gel electrophoresis and found to be 500-2000 bp.
The obtained biotin-labeled DNA can be stored frozen at about -80 ° C.
(2) Preparation of slide glass tissue specimen
After immersing a clinical biopsy specimen of the cervix (hereinafter, sometimes referred to as a specimen) in a formalin solution for several hours to one day and night, the water content is measured. Then, the specimen in which the inside of the tissue is replaced with ethyl alcohol is immersed in xylene.
Next, after penetrating the paraffin into the specimen replaced with xylene, the sliced section is spread and attached on a slide glass by a microtome.
Since such a slide glass tissue specimen (hereinafter, referred to as a tissue specimen) is impregnated with paraffin inside the tissue, the inside of the tissue is replaced with ethyl alcohol by a procedure reverse to the procedure for preparing the tissue specimen. Specifically, after the tissue specimen is immersed in xylene, it is sequentially immersed in a group of ethyl alcohol aqueous solutions in which the water content is gradually increased, and then the slide glass tissue specimen in which the inside of the tissue is replaced with ethyl alcohol, Place in distilled water to replace the inside of the tissue with water.
[0023]
(3) Formamide denaturation
(1) Pretreatment
A slide glass tissue specimen whose internal tissue has been replaced with water is immersed in 200 ml of a methyl alcohol solution containing 2 ml of hydrogen peroxide solution at room temperature for 15 minutes to perform an endogenous peroxidase inhibition treatment. After being immersed in a buffer solution containing 10 mM Tris-HCl, 10 mM EDTA, and 1% SDS at 37 ° C. for 20 minutes to remove endogenous biotin, phosphate buffered saline (PBS) ).
(2) Denaturation treatment
The pretreated tissue specimen is immersed in a formamide-containing solution and subjected to a denaturation treatment for selectively converting the damaged DNA in the tissue specimen into a single strand.
Here, as the formamide-containing solution to be used, a standard citric acid solution (2 × SSC; 0.3 M sodium chloride, 0.03 M sodium citrate) adjusted to have a formamide content of 70% was used.
In this denaturation treatment, the tissue specimen was immersed in a formamide-containing solution heated to 60 ° C. and held for 10 minutes.
The denatured tissue specimen is kept in an aqueous solution containing 70% ethyl alcohol cooled to −20 ° C. for 10 minutes to perform rapid cooling, and then phosphate buffered saline (4 ° C.) (PBS) for about 10 minutes.
[0024]
(4) Hybridization
(1) Preparation of hybridization solution
The solution containing the biotin-labeled DNA prepared in advance is kept at 73 ° C. for 10 minutes and immediately cooled with ice. By this heating and cooling treatment, the biotin-labeled DNA can be made into a single strand.
A hybridization solution is prepared by mixing 10 μl of the solution containing the single-stranded biotin-labeled DNA and 90 μl of a hybridization buffer containing about 20% formamide.
90 μl of this hybridization buffer was 40 μl of 20 × SSCP (buffer of pH 6.0 containing 3 M sodium chloride, 0.3 M sodium citrate, and 0.4 M disodium phosphate), and carrier DNA (salmon sperm DNA was 10 μg / ml). 2 μl, 50-fold diluted denhardt solution (5 g of bovine serum albumin, 5 g of Ficoll 400, 5 g of polyvinylpyrrolidone as a 500 ml aqueous solution, and dilute this aqueous solution to 1/50) 4 μl and 44 μl of a 45% formamide solution containing 10% dextran sulfate Become.
(2) Hybridization reaction
After dropping 100 μl of the prepared hybridization solution onto the tissue specimen, the dropped droplet is covered with a parafilm to remove bubbles from the droplet and to prevent the solution from evaporating.
Further, the tissue sample in which the hybridization solution was dropped and the droplet of the hybridization solution was covered with parafilm for preventing evaporation was placed in a closed container and kept at 37 ° C., and the biotin-labeled DNA and the tissue sample were removed. A hybridization reaction with DNA was performed. Such a hybridization reaction was performed for 18 hours.
At the time of this hybridization reaction, a standard citric acid solution (2 × SSC; 0.3 M sodium chloride, 0.03 M sodium citrate) containing 70% formamide was placed in a close contact container together with the tissue sample, The inside of the closed container was kept moist.
Next, after the hybridization reaction was completed, the tissue sample from which parafilm had been removed was placed in a standard citric acid solution containing 50% formamide (2 × SSC; 0.3 M sodium chloride, 0.03 M citric acid) kept at 37 ° C. (Sodium) for 15 minutes for washing, and then immersed in a standard citric acid solution (2 × SSC; 0.3 M sodium chloride, 0.03 M sodium citrate) for 15 minutes for washing.
Further, the tissue specimen was immersed in a standard citrate solution (1 × SSC; 0.15 M sodium chloride, 0.015 M sodium citrate) for 15 minutes for washing, and then immersed in phosphate buffered saline (PBS).
[0025]
(5) Coloring process
As a primary antibody, a commercially available solution containing an anti-biotin monoclonal antibody is diluted to 100-fold and added dropwise to a tissue specimen, kept at 37 ° C. for 1 hour, and stored in a cell nucleus of a cancer cell in the tissue specimen. An antigen-antibody reaction was carried out with biotin-labeled DNA, which was hybridized with the converted DNA, with biotin. After the completion of the reaction, the tissue specimen was washed by immersing it in phosphate buffered saline (PBS).
Further, a dextran polymer reagent (DAKO, “ENVISION +”) containing a complex in which a secondary antibody that reacts with the anti-biotin antibody and peroxidase are bound to a dextran polymer is added dropwise so as to cover the tissue specimen. After reacting at room temperature for 30 minutes, the slide glass tissue specimen was washed with phosphate buffered saline (PBS).
Thereafter, the tissue specimen is immersed in a cobalt-DAB solution and reacted at room temperature for 10 minutes to cause the peroxidase bound to the biotin-labeled DNA bound to the DNA of the tissue specimen to cause the cobalt-DAB to develop a black color. After that, it was washed with water.
This cobalt-DAB solution is a solution obtained by dissolving 10 mg of DAB (dianobenzidine) in 100 ml of 10 mM Tris-HCl buffer (pH 7.4) to which 1 ml of a 1% cobalt chloride solution has been added. Several minutes after that, 10 μl of 30% hydrogen peroxide solution was added.
(6) Dyeing, etc.
The tissue specimen was immersed in Kernechtrot staining solution (staining solution obtained by dissolving 0.1 g of Kerechtrot and 5 g of aluminum sulfate in 100 ml of distilled water), and subjected to counterstaining.
Next, the tissue specimen subjected to counterstaining was sequentially immersed in a group of aqueous volumes of ethyl alcohol whose water content was gradually reduced, and then immersed in xylene to perform a dehydration treatment.
The mounting medium was dropped onto the tissue specimen mounted on the slide glass subjected to the dehydration treatment, and the mounting medium was enclosed with a cover glass to obtain a tissue specimen for microscopic observation.
[0026]
When the obtained tissue specimen for microscopic observation was microscopically observed, black granular positive images 10, 10,... Could be observed only in the cell nuclei of the cancer cells, as shown in FIG.
In addition, the site where the black positive images 10, 10... Were observed was examined by a pathologist on a tissue specimen stained in advance by a known method, and the tissue structure and morphological deviation of cell nuclei (atypical) caused cancer. It was almost the same as the site judged to be.
[0027]
Example 2 and Comparative Example 1
Example 2 As Example 2, a tissue specimen for microscopic observation was prepared in the same manner as in Example 1, except that a large intestine part in which an early colonic gland type (glandular gland type) occurred was used as a specimen.
As a result of microscopic observation of this tissue specimen for microscopic observation, as shown in FIG. 2, the positive gland ducts 20, 20... In which the cell nuclei of the cancer cells were stained dark brown, and normal cells not stained brown or benign cells The negative gland ducts 22, 22,... Composed of glandular cells are clearly stained.
Although this specimen was observed by a pathologist under a microscope on a tissue specimen stained in advance by a known method, it was not judged as a clear cancer cell based on its tissue structure, morphological deviation (abnormality) of cell nuclei, and the like. It is a thing.
[0028]
On the other hand, as Comparative Example 1, the large intestine part in which the early colonic gland type (gland duct gland type) used in Example 2 occurred was used as a specimen, and the method was proposed in accordance with the method proposed in JP-A-7-306202. A tissue specimen for microscopic observation was prepared.
That is, a slide glass tissue sample prepared by the same method as in (2) Preparation of a slide glass tissue sample of Example 1 was placed in a methyl alcohol solution adjusted to contain 0.3% hydrogen peroxide at room temperature for 15 minutes. After immersion for 10 minutes to remove endogenous peroxidase, the cells were washed with phosphate buffered saline (PBS; pH 7.4).
Further, a 2% skim milk (Snow Brand) solution dissolved in phosphate buffered saline (PBS; pH 7.4) was added dropwise onto the tissue specimen, and the solution was kept at 37 ° C. for 20 minutes and background adsorption of antiserum was performed. After blocking, a blocking solution (Hisfine POR, manufactured by Nichirei Co., Ltd.) was dropped on the tissue specimen, and reacted at room temperature for 5 minutes.
Next, the washed tissue specimen is immersed in a 2N HCl solution maintained at 30 ° C. for 20 minutes to be washed with water. By this treatment, the DNA in the tissue specimen is subjected to an acidic hydrolysis treatment to make it single-stranded.
[0029]
As described above, in order to perform an immune antigen-antibody reaction on a tissue specimen in which damaged DNA existing in the cell nucleus of a cancer cell is supposed to be single-chained, an anti-cytidine polyclonal antibody solution [Biogeneis anti-cytidine polyclonal antibody A solution diluted 1500-fold with a buffered saline (PBS; pH 7.4)] was added dropwise, and the mixture was allowed to react at 4 ° C. for 24 hours, followed by washing with phosphate buffered saline (PBS; pH 7.4).
To this tissue specimen, a solution of an antibody (anti-rabbit IgG; Nichirei, HisofinePOR) against rabbit IgG derived from sheep, which has been converted into a bition, was dropped, and allowed to react at 30 ° C. for 40 minutes, followed by phosphate buffered saline (PBS; (pH 7.4).
Further, an avidin-bition-peroxidase complex (Hisfine POR, manufactured by Nichirei Co., Ltd.) was added dropwise to the tissue specimen, reacted at 30 ° C. for 40 minutes, and then washed with phosphate buffered saline (PBS; pH 7.4).
Thereafter, in order to perform a cobalt-DAB color reaction with peroxidase, the tissue specimen was immersed in a DAB-cobalt solution at 20 ° C. for 10 minutes to cause the cell nuclei to develop a black color and then washed with water.
This DAB-cobalt solution is a solution obtained by dissolving 10 mg of DAB (dianbenzidine) in 100 ml of 10 mM Tris-HCl buffer (pH 7.4) to which 1 ml of a 1% cobalt chloride solution has been added. A few minutes after, 10 μl of 30% hydrogen peroxide solution was added.
[0030]
In order to perform counterstaining on the tissue specimen, the tissue specimen was immersed in Kernechtrot staining solution (staining solution obtained by dissolving 0.1 g of Kerechtrot and 5 g of aluminum sulfate in 100 ml of distilled water) to perform cytoplasmic staining.
Tissue specimens subjected to counterstaining were sequentially immersed in a group of aqueous volumes of ethyl alcohol whose water content was reduced step by step, immersed in xylene and subjected to dehydration treatment, and then covered with a cover glass together with the dropped encapsulant. It was sealed to prepare a tissue specimen for microscopic observation.
Microscopic observation of the obtained tissue specimen under a microscope revealed that the positive gland duct containing cancer cells and the negative gland duct composed of normal cells and benign gland cells were unclear (false negative) as shown in FIG. there were.
[0031]
Example 3 and Comparative Example 2
Example 3 As Example 3, a tissue specimen for microscopic observation was prepared in the same manner as in Example 1 except that the bladder epithelium was used as a specimen.
As a result of microscopic observation of this tissue specimen for microscopic observation, as shown in FIG. 4, the positive cancer cell images 10, 10. Negative part B consisting of normal cells where no .. is observed is clearly stained.
[0032]
On the other hand, as Comparative Example 2, a tissue specimen for microscopic observation was prepared in the same manner as in Comparative Example 1, except that the same specimen as in Example 3 was used.
As a result of microscopic observation of this tissue specimen for microscopic observation, as shown in FIG. 5, only extremely weak positive images were originally recognized in cancer cells that should originally show strong positives (false negatives).
[0033]
Example 4 and Comparative Example 3
As Example 4, in Example 1, a bladder epithelium exfoliated in urine collected from a cancer patient and submitted to a pathology laboratory was used as a specimen, a slide glass sample was prepared, and a denaturation treatment using a foramide solution was performed. A cell specimen for microscopic observation was prepared in the same manner as in Example 1, except that the pretreatment and the cytoplasmic staining were performed as described below.
The urinary bladder epithelium in a urine sample is separated by a centrifugal separator and applied on a slide glass to obtain a slide glass cell specimen (hereinafter sometimes referred to as a cell specimen).
The obtained cell specimen is immersed in a formalin solution to sufficiently fix DNA and the like in the cell specimen and to inactivate a degrading enzyme that interferes with nucleic acid detection.
The specimen taken out from the formalin solution was washed by immersing it in phosphate buffered saline (PBS), and then immersed in a methyl alcohol solution adjusted to 0.3% hydrogen peroxide at room temperature for 15 minutes. Then, endogenous peroxidase is removed, and the substrate is immersed in phosphate buffered saline (PBS) for washing.
Next, the cell specimen was immersed in a solution containing formamide in the same manner as in the tissue specimen of Example 1, and the damaged DNA having damage existing in the cell nucleus of the cancer cells in the slide glass cell specimen was selectively single-stranded. After a denaturation treatment for denaturing the DNA, rapid cooling is performed.
Further, similarly to the tissue specimen, the denaturation-treated cell specimen is dropped with a hybridization solution, and then subjected to heat treatment with microwaves.
In such a microwave heating treatment, a droplet of a hybridization solution dropped on a cell specimen is covered with parafilm, and then the cell specimen is placed on a turntable of a microwave oven and irradiated with microwaves for about 5 minutes. The microwave was applied intermittently at an output of 200 W at intervals of 3 seconds. When the microwave was irradiated for about 5 minutes, the temperature in the space (irradiation chamber) where the cell specimen of the microwave was placed was raised to about 30 ° C.
[0034]
The cell sample obtained by heat-treating the dropped hybridization solution droplets with microwaves was subjected to a hybridization reaction and color development treatment in the same manner as in Example 1, and then to an orange G stain (manufactured by Muto Chemical Co., Ltd.). After immersion for 3 minutes, the plate was immersed in a staining solution of EA50 (manufactured by Muto Chemical Co., Ltd.) for 5 minutes to perform counterstaining.
Next, in the same manner as in Example 1, the cell specimen was subjected to a dehydration treatment, and the dropped mounting medium was enclosed with a cover glass to obtain a cell specimen for microscopic observation.
When the obtained cell specimen for microscopic observation was observed under a microscope, black positive cancer cells 10, 10,... Were clearly recognized as shown in FIG.
As shown in FIG. 7, negative normal cells in which no black positive image was observed were also observed in the same cell specimen.
[0035]
Comparative Example 3
Using the cells exfoliated in pleural effusion collected from the cancer patient and submitted to the pathology laboratory for the specimen, preparation of a slide glass specimen, known Papanicolo ゥ staining, peeling and decolorization of the cover glass were performed as follows. Prepared a cell specimen for microscopic observation in the same manner as in Example 4.
Cells separated from the pleural effusion as a specimen by a centrifugal separator were applied on a slide glass, and a slide glass cell specimen (hereinafter sometimes simply referred to as a cell specimen) was subjected to Papanicolo ゥ staining.
(1) Nuclear staining
The cell specimen is sequentially immersed in a 95%, 80%, and 50% aqueous ethyl alcohol solution, and then washed with running water.
The cell specimen was immersed in Gilhematoxylin staining solution (manufactured by Mutoh Chemical Co., Ltd.) for 3 minutes at room temperature to perform nuclear staining, washed with running water, immersed in 70% ethyl alcohol aqueous solution, and further 0.35% Immerse in 80% ethyl alcohol solution containing hydrochloric acid.
(2) Cytoplasmic staining I
The cell specimen was washed with water to remove hydrochloric acid, immersed sequentially in an 80% ethyl alcohol aqueous solution, an 80% ethyl alcohol aqueous solution containing 1% ammonia, and 100% ethyl alcohol, and stained with orange G similar to that used in Example 4. Immerse in the solution for 3 minutes at room temperature. Then, it is immersed in 100% ethyl alcohol.
(3) Cytoplasmic staining II
Subsequently, the cell specimen is immersed in a staining solution of EA50 similar to that used in Example 4 for 5 minutes.
(4) Cleaning and sealing
After EA50 staining, the cells were washed with ethyl alcohol, further immersed in ethyl alcohol, dehydrated, immersed in xylene, and sealed with a cover glass together with the dropped mounting medium to prepare a cell specimen for microscope.
When the obtained cell specimen for microscopic observation was microscopically observed, as shown in FIG. 8, it was small and large and small in size in comparison with normal cells (arrow A) such as active mesothelial cells, lymphocytes and monocyte-like cells. , Lymphoma cells (arrow B) with a large N / C ratio (nuclear / cytoplasmic ratio) are isolated and scattered. These lymphoma cells show increased and uneven distribution of chromatin.
[0036]
Example 5
After the cell specimen stained with Papanicola in Comparative Example 3 is observed under a microscope, the following treatment is performed.
First, the cell specimen is held in xylene heated to 50 to 60 ° C. for about 2 days, and the cover glass is peeled off and removed. Then, the exposed cell specimen is washed with xylene to remove the mounting medium.
Next, the cell specimen from which the mounting medium was removed was immersed in ethyl alcohol and then immersed in a 70% aqueous ethyl alcohol solution to discolor the cytoplasmic stain, and immersed in ethyl alcohol containing 0.35% hydrochloric acid for 45 to 60 minutes. Remove the cell nucleus stain. The cell specimen from which the cell nucleus stain has been removed is immediately washed with water and hydrochloric acid.
Further, the cell specimen is immersed in a 70% ethyl alcohol aqueous solution, immersed in 100% ethyl alcohol and dehydrated, and then subjected to a simple fixing treatment by spraying a mixture of ethyl alcohol and polyethylene glycol.
The cell sample subjected to the simple fixation treatment was treated in the same manner as in Example 4, and a solution containing formamide was used to selectively remove damaged DNA having damage in the cell nuclei of cancer cells in the cell sample. After a denaturation treatment for denaturing the single-stranded DNA is performed, the cell sample to which the hybridization solution has been dropped is subjected to a heat treatment with microwaves.
Further, the cell sample subjected to the heat treatment with the microwave was subjected to a hybridization reaction and a color development treatment in the same manner as in Example 4, and then subjected to counterstaining to prepare a cell sample for microscopic observation.
Microscopic observation of the obtained cell specimen for microscopic observation shows positive malignant lymphoma cells (arrow B) stained black as shown in FIG. On the other hand, in FIG. 9, the cells indicated by arrow A are mesothelial cells, lymphocytes, monocyte-like cells, and other inflammatory cells, all of which are normal cells.
[0037]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to the detection method which concerns on this invention, generation | occurrence | production of false negative or false positive can be reduced as much as possible, and the damaged DNA which exists in the cell nucleus of the cancer cell in a tissue sample and a cell sample can be inspected. For this reason, the detection method according to the present invention can be effectively used for early detection of cancer and identification of a canceration range of a tissue.
[Brief description of the drawings]
FIG. 1 is a micrograph of a tissue specimen for microscopic observation prepared in Example 1.
FIG. 2 is a micrograph of a tissue specimen for microscopic observation prepared in Example 2.
FIG. 3 is a micrograph of a tissue specimen for microscopic observation prepared in Comparative Example 1.
FIG. 4 is a micrograph of a tissue specimen for microscopic observation prepared in Example 3.
FIG. 5 is a micrograph of a tissue specimen for microscopic observation prepared in Comparative Example 2.
FIG. 6 is a micrograph of a cell specimen for microscopic observation prepared in Example 4.
7 is a micrograph in a different field of view from the micrograph shown in FIG. 6 among the cell specimens for microscopic observation prepared in Example 4. FIG.
FIG. 8 is a micrograph of a cell specimen for microscopic observation prepared in Comparative Example 3.
FIG. 9 is a micrograph of a cell specimen for microscopic observation prepared in Example 5.
[Explanation of symbols]
10 Positive images
20 positive gland ducts
22 Negative duct
A Positive site
B Negative site

Claims (8)

内臓等から採取した組織標本又は体液等から採取した細胞標本を、ホルムアミドを含有する溶液中に浸漬し、前記標本中の癌細胞の細胞核内に存する損傷を有する損傷DNAを選択的に単鎖DNAに変性する変性処理を施した後、
前記単鎖DNAに結合可能な鎖長であって、発色処理等の顕在化処理によって観察可能となる標識が配されている標識DNAを、前記単鎖DNAに結合する結合処理を施し、
次いで、前記単鎖DNAに結合した標識DNAの存在を観察して癌細胞を検出できるように、前記顕在化処理を施すことを特徴とする癌細胞の検出方法。
A tissue specimen collected from an internal organ or the like or a cell specimen collected from a bodily fluid or the like is immersed in a solution containing formamide, and the damaged DNA having damage present in the cell nuclei of the cancer cells in the specimen is selectively single-stranded DNA. After undergoing a denaturation treatment to denature
A labeled DNA having a chain length capable of binding to the single-stranded DNA and having a label which can be observed by a visualization process such as a color developing process, subjected to a binding process of binding to the single-stranded DNA,
Next, a method for detecting cancer cells, which comprises performing the revealing treatment so that cancer cells can be detected by observing the presence of labeled DNA bound to the single-stranded DNA.
変性処理を、ホルムアミドを含有する溶液を加温しつつ施す請求項1記載の癌細胞の検出方法。The method for detecting cancer cells according to claim 1, wherein the denaturation treatment is performed while heating a solution containing formamide. 組織標本又は細胞標本に変性処理を施した直後に、前記標本を急冷する請求項1又は請求項2記載の癌細胞の検出方法。The method for detecting cancer cells according to claim 1 or 2, wherein the specimen is rapidly cooled immediately after the denaturation treatment is performed on the tissue specimen or the cell specimen. 顕在化処理として、発色処理又は蛍光発生処理を採用し、且つ標識DNAとして、前記発色処理により発色し或いは蛍光発生処理により蛍光を発する複合体を形成し得る化合物が標識として配されている標識DNAを用いる請求項1〜3のいずれか一項記載の癌細胞の検出方法。Labeling DNA which employs a color development treatment or a fluorescence generation treatment as the manifestation treatment, and in which a compound capable of forming a complex that develops a color by the color development treatment or emits a fluorescence by the fluorescence generation treatment is disposed as a label DNA. The method for detecting a cancer cell according to any one of claims 1 to 3, wherein the cancer cell is used. 標識DNAとして、ヒト由来であって、鎖長が500〜2000bpの標識DNAを用いる請求項1〜4のいずれか一項記載の癌細胞の検出方法。The method for detecting cancer cells according to any one of claims 1 to 4, wherein a labeled DNA derived from human and having a chain length of 500 to 2000 bp is used as the labeled DNA. 細胞標本を、ホルマリンによる固定処理を施した後、ホルムアミド含有溶液中に浸漬して変性処理を施す請求項1〜5のいずれか一項記載の癌細胞の検出方法。The method for detecting cancer cells according to any one of claims 1 to 5, wherein the cell specimen is subjected to a fixing treatment with formalin and then immersed in a formamide-containing solution for denaturation treatment. 細胞標本中の単鎖DNAに標識DNAを結合する結合処理の際に、前記標本をマイクロ波による加熱処理を施す請求項6記載の癌細胞の検出方法。7. The method for detecting cancer cells according to claim 6, wherein the sample is subjected to a microwave heating treatment during the binding treatment for binding the labeled DNA to the single-stranded DNA in the cell sample. 単鎖DNAに結合した標識DNAに発色処理等の顕在化処理を施して観察可能とした後、組織標本又は細胞標本の形態学的な観察を可能とするように、前記標本に対比染色を施す請求項1〜7のいずれか一項記載の癌細胞の検出方法。After subjecting the labeled DNA bound to the single-stranded DNA to a visualization treatment such as a color development treatment to make it observable, a counterstain is applied to the specimen so as to enable morphological observation of a tissue specimen or a cell specimen. A method for detecting a cancer cell according to any one of claims 1 to 7.
JP2003151818A 2003-05-29 2003-05-29 Method for detecting cancer cell Pending JP2004350585A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003151818A JP2004350585A (en) 2003-05-29 2003-05-29 Method for detecting cancer cell
PCT/JP2004/007247 WO2004106537A1 (en) 2003-05-29 2004-05-27 Method of detecting cancerous cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003151818A JP2004350585A (en) 2003-05-29 2003-05-29 Method for detecting cancer cell

Publications (1)

Publication Number Publication Date
JP2004350585A true JP2004350585A (en) 2004-12-16

Family

ID=33487240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003151818A Pending JP2004350585A (en) 2003-05-29 2003-05-29 Method for detecting cancer cell

Country Status (2)

Country Link
JP (1) JP2004350585A (en)
WO (1) WO2004106537A1 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07306202A (en) * 1992-04-01 1995-11-21 Maruzen Petrochem Co Ltd Method for detecting damage of cell nucleus dna

Also Published As

Publication number Publication date
WO2004106537A1 (en) 2004-12-09

Similar Documents

Publication Publication Date Title
Kasagi et al. Apoptotic cell death in human gastric carcinoma: analysis by terminal deoxynucleotidyl transferase‐mediated dUTP‐biotin nick end labeling
Jowett Analysis of protein and gene expression
JP3782663B2 (en) Removal of embedding media from biological samples and cell conditioning in automated staining equipment
EP0820525A1 (en) In situ hybridization solution and process
JP2002524091A (en) Assays using immobilized crosslinkable nucleic acids
CN110257483A (en) Hybridization solution, preparation method and detection kit in situ hybridization
US6733987B2 (en) Method for cutting a biological sample and a device used therefor
JPH10506280A (en) Morphological genotyping
Lim et al. Fluorescence in situ hybridization on tissue sections
JP2008249543A (en) Method for preparing cell from tissue sample
Martini et al. Andrology: Application of different in-situ hybridization detection methods for human sperm analysis
Renshaw Immunochemical staining techniques
JP2004350585A (en) Method for detecting cancer cell
CN114058682B (en) In-situ hybridization buffer solution for anti-counterfeiting and application thereof
McQuaid et al. Use of immunocytochemistry and biotinylated in situ hybridisation for detecting measles virus in central nervous system tissue.
Dancey et al. Section preparation of human marrow for light microscopy.
CN102576024B (en) The test kit of the differential staining of cervical cancer cell and/or tissue and method
Smith et al. General and special histopathology
Speel et al. Multicolour preparations for in situ hybridization using precipitating enzyme cytochemistry in combination with reflection contrast microscopy
Lawce et al. Fluorescence in situ hybridization (FISH)
CN109797202A (en) It is a kind of for detecting the kit and its method of Fusobacterium nucleatum
Vijayaraj Immunochemistry Analysis Using Chromogenic Substrates on Tissue Sections
US20040241734A1 (en) Methods for in situ hybridization without the need for competitior DNA
CN116659987A (en) Preparation method and application of paraffin section for cytopathology detection
Janckila et al. Epitope enhancement for immunohistochemical demonstration of tartrate-resistant acid phosphatase.