JP2004349886A - Antenna system - Google Patents

Antenna system Download PDF

Info

Publication number
JP2004349886A
JP2004349886A JP2003142631A JP2003142631A JP2004349886A JP 2004349886 A JP2004349886 A JP 2004349886A JP 2003142631 A JP2003142631 A JP 2003142631A JP 2003142631 A JP2003142631 A JP 2003142631A JP 2004349886 A JP2004349886 A JP 2004349886A
Authority
JP
Japan
Prior art keywords
beam scanning
primary
directivity
antenna device
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2003142631A
Other languages
Japanese (ja)
Inventor
Nobuyasu Takemura
暢康 竹村
Yoshihiko Konishi
善彦 小西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2003142631A priority Critical patent/JP2004349886A/en
Publication of JP2004349886A publication Critical patent/JP2004349886A/en
Abandoned legal-status Critical Current

Links

Images

Landscapes

  • Aerials With Secondary Devices (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain an antenna system that can make a transmission/reception level nearly constant by compensating a decrease in gain during beam scanning. <P>SOLUTION: This antenna system is equipped with a parabolic reflector 1 having a plurality of primary radiators (2a, 2b, 2c) arranged nearby a focus and a feeding circuit 3 which distributes electric power to the primary radiators (2a, 2b, 2c), and also equipped with an electric power compensator 5 which compensates a decrease in transmission/reception level during beam scanning, for example, when the beam scanning is carried out at an electric power distribution ratio calculated by the feeding circuit 3 from beam directivity 6a by the primary radiator 1a to beam directivity 6b by the primary radiator 1b. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、アンテナ形式として反射鏡形式とアレー形式の複合形を用いてマルチビームを放射するアンテナ装置に関するものであり、特に、給電回路の電力分配比によりビーム指向性を走査するアンテナ装置に関するものである。
【0002】
【従来の技術】
以下、従来のアンテナ装置について説明する。図4は、従来のアンテナ装置であるアレー給電反射鏡アンテナの構成を示す図であり、パラボラ反射鏡101と、一次放射器102a,102b,102cと、給電回路103と、送受信機104から構成される。なお、106a、106b、106cは、一次放射器102a,102b,102cにより放射されるビーム指向性を表す。
【0003】
ここで、上記アレー給電反射鏡アンテナの動作を簡単に説明する。一次放射器102a,102b,102cは、パラボラ反射鏡101の焦点を含み、かつ焦点からパラボラ反射鏡101の中心に向かう直線に直交する面内に配置され、パラボラ反射鏡101を介して、それぞれビーム指向性106a,106b,106cにビームを放射し、ビームを形成する。また、パラボラ反射鏡101は、一次放射器102a,102b,102cがビーム指向性106a,106b,106cのブロッキングとならないようにオフセット形式となっている。
【0004】
【非特許文献1】
アンテナ工学ハンドブック(電子情報通信学会編,オーム社,第1版第1刷発行,p.178〜180)
【0005】
【発明が解決しようとする課題】
しかしながら、上記、従来のアンテナ装置においては、たとえば、給電回路103における電力分配比によりビーム指向性106aからビーム指向性106bへビーム走査した場合、ビーム走査中に利得低下が生じ、通信および通話が途切れやすい、という問題があった。
【0006】
本発明は、上記に鑑みてなされたものであって、ビーム走査中の利得低下を補償し、送受信レベルをほぼ一定にすることが可能なアンテナ装置を得ることを目的とする。
【0007】
【課題を解決するための手段】
上述した課題を解決し、目的を達成するために、本発明にかかるアンテナ装置にあっては、焦点付近に複数の一次放射器が配置されたパラボラ反射鏡と、前記一次放射器に電力を分配する給電回路を備えたアンテナ装置であって、前記給電回路により計算される電力分配比により、特定の一次放射器によるビーム指向性から隣接する一次放射器によるビーム指向性へビーム走査を行う場合に、当該ビーム走査中の送受信レベルの低下を補償する電力補償手段(後述する実施の形態の電力補償器5に相当)、を備えることを特徴とする。
【0008】
この発明によれば、給電回路により計算される電力分配比により所定のビーム走査を行う場合、たとえば、上記電力補償手段にてビーム走査中の利得低下を補償することによって、アンテナ装置における送受信レベルをほぼ一定とする。
【0009】
【発明の実施の形態】
以下に、本発明にかかるアンテナ装置の実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。
【0010】
実施の形態1.
図1は、本発明にかかるアンテナ装置であるアレー給電反射鏡アンテナの構成を示す図である。このアレー給電反射鏡アンテナは、パラボラ反射鏡1と、一次放射器2a,2b,2cと、給電回路3と、送受信機4と、電力補償器5から構成される。なお、6a,6b,6cは一次放射器2a,2b,2cにより放射されるビーム指向性を表す。
【0011】
ここで、上記本発明にかかるアレー給電反射鏡アンテナの動作を、図面を用いて詳細に説明する。なお、一次放射器2a,2b,2cは、従来と同様に、パラボラ反射鏡1の焦点を含み、かつ焦点からパラボラ反射鏡1の中心に向かう直線に直交する面内に配置され、パラボラ反射鏡1を介して、それぞれビーム指向性6a,6b,6cにビームを放射し、ビームを形成する。
【0012】
本実施の形態では、給電回路3にて計算される電力分配比により、一次放射器2aによるビーム指向性6aから一次放射器2bによるビーム指向性6bへビーム走査を行う場合、電力補償器5にてビーム走査中の利得低下を下記のように補償することによって、ビーム走査中のアレー給電反射鏡アンテナにおける送受信レベルをほぼ一定とする。なお、ここでは、一例として、3つのビームを放射する場合について説明するが、これに限らず、2つまたは4つ以上のビームを放射する場合についても同様に適用可能である。
【0013】
図2は、パラボラ反射鏡1の座標系を示す図である。z方向はボアサイト方向である。たとえば、図2の座標系により、一次放射器2aによるビーム指向性6aから一次放射器2bによるビーム指向性6bへビーム走査を行う場合を想定する。ビーム指向性6aの方向をθ、ビーム指向性6bの方向をθとし、次式(1)〜(4)を定義する。なお、kは波数を表す。
=k×sinθ …(1)
=k×sinθ …(2)
=(k+k)/2 …(3)
=(k−k)/2 …(4)
【0014】
また、θ方向のビームにおけるパラボラ反射鏡1の開口分布f(θ,x)、およびθ方向のビームにおけるパラボラ反射鏡1の開口分布f(θ,x)は、開口面上の振幅分布をa(x)とすると、次式(5),(6),(7),(8)で与えられる。なお、a(x)は各ビーム方向に対して一定とする。
【0015】
【数1】

Figure 2004349886
【0016】
【数2】
Figure 2004349886
【0017】
【数3】
Figure 2004349886
【0018】
【数4】
Figure 2004349886
【0019】
そして、θ方向のビームとθ方向のビームを合成した合成ビームにおけるパラボラ反射鏡1の開口分布f(γ,θ,θ,x)は次式(9)で与えられる。
【0020】
【数5】
Figure 2004349886
【0021】
また、γ=0のとき、パラボラ反射鏡1の開口分布f(0,θ,θ,x)は、次式(10)で与えられ、ビーム指向性はθ方向となる。
【0022】
【数6】
Figure 2004349886
【0023】
また、γ=π/2のとき、パラボラ反射鏡1の開口分布f(π/2,θ,θ,x)は、次式(11)で与えられ、ビーム指向性はθ方向となる。
【0024】
【数7】
Figure 2004349886
【0025】
また、γ=π/4のとき、パラボラ反射鏡1の開口分布f(π/4,θ,θ,x)は次式(12)で与えられ、ビーム指向性はθとθの中間の方向となる。
【0026】
【数8】
Figure 2004349886
【0027】
図3は、ビーム走査時の利得の軌跡を示す図であり、8は従来のビーム走査時の利得の軌跡を表し、9は電力補償後のビーム走査時の利得の軌跡を表す。上記式からわかるように、ビーム走査中にはパラボラ反射鏡1の開口分布に振幅テーパがつくため、利得低下が生じる。そこで、本実施の形態では、上記振幅テーパによる利得低下分を電力補償器5で補償することにより、アレー給電反射鏡アンテナにおける送受信レベルをほぼ一定とする。
【0028】
以上のように、本実施の形態においては、給電回路3により計算される電力分配比により、一次放射器2aによるビーム指向性6aから一次放射器2bによるビーム指向性6bへアレー給電反射鏡アンテナのビーム走査を行う場合、電力補償器5にてビーム走査中の利得低下を補償する。これにより、アレー給電反射鏡アンテナにおける送受信レベルをほぼ一定とすることができる。
【0029】
【発明の効果】
以上、説明したとおり、本発明によれば、給電回路により計算される電力分配比により、特定の一次放射器によるビーム指向性から他の一次放射器によるビーム指向性へビーム走査を行う場合、電力補償手段にてビーム走査中の利得低下を補償することとした。これにより、アンテナ装置(アレー給電反射鏡アンテナ)における送受信レベルをほぼ一定とすることができる、という効果を奏する。
【図面の簡単な説明】
【図1】本発明にかかるアンテナ装置の構成を示す図である。
【図2】パラボラ反射鏡1の座標系を示す図である。
【図3】ビーム走査時の利得の軌跡を示す図である。
【図4】従来のアンテナ装置の構成を示す図である。
【符号の説明】
1 パラボラ反射鏡、2a,2b,2c 一次放射器、3 給電回路、4 送受信機、5 電力補償器。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an antenna device that emits a multi-beam by using a complex type of a reflector type and an array type as an antenna type, and particularly to an antenna device that scans a beam directivity by a power distribution ratio of a feed circuit. It is.
[0002]
[Prior art]
Hereinafter, a conventional antenna device will be described. FIG. 4 is a diagram showing a configuration of an array-fed reflector antenna, which is a conventional antenna device, and includes a parabolic reflector 101, primary radiators 102a, 102b, 102c, a feed circuit 103, and a transceiver 104. You. Note that 106a, 106b, and 106c represent beam directivities radiated by the primary radiators 102a, 102b, and 102c.
[0003]
Here, the operation of the array-fed reflector antenna will be briefly described. The primary radiators 102a, 102b, and 102c include a focal point of the parabolic reflector 101, and are arranged in a plane perpendicular to a straight line from the focal point to the center of the parabolic reflector 101, and each of the beams is transmitted through the parabolic reflector 101. Beams are emitted to the directivities 106a, 106b, and 106c to form beams. The parabolic reflector 101 is of an offset type so that the primary radiators 102a, 102b, 102c do not block the beam directivities 106a, 106b, 106c.
[0004]
[Non-patent document 1]
Antenna Engineering Handbook (edited by the Institute of Electronics, Information and Communication Engineers, Ohmsha, 1st edition, 1st printing, p. 178-180)
[0005]
[Problems to be solved by the invention]
However, in the above-described conventional antenna device, for example, when beam scanning is performed from the beam directivity 106a to the beam directivity 106b due to the power distribution ratio in the power supply circuit 103, the gain is reduced during beam scanning, and communication and communication are interrupted. There was a problem that it was easy.
[0006]
The present invention has been made in view of the above, and an object of the present invention is to provide an antenna device capable of compensating for a reduction in gain during beam scanning and making transmission and reception levels substantially constant.
[0007]
[Means for Solving the Problems]
In order to solve the above-described problems and achieve the object, in an antenna device according to the present invention, a parabolic reflector in which a plurality of primary radiators are arranged near a focal point, and power is distributed to the primary radiators An antenna device having a feed circuit that performs beam scanning from a beam directivity by a specific primary radiator to a beam directivity by an adjacent primary radiator by a power distribution ratio calculated by the feed circuit. Power compensating means (corresponding to a power compensator 5 in an embodiment described later) for compensating for a decrease in the transmission / reception level during the beam scanning.
[0008]
According to the present invention, when predetermined beam scanning is performed based on the power distribution ratio calculated by the power supply circuit, for example, the transmission / reception level of the antenna device can be reduced by compensating for a decrease in gain during beam scanning by the power compensating means. Almost constant.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of an antenna device according to the present invention will be described in detail with reference to the drawings. It should be noted that the present invention is not limited by the embodiment.
[0010]
Embodiment 1 FIG.
FIG. 1 is a diagram showing a configuration of an array-fed reflector antenna that is an antenna device according to the present invention. This array-fed reflector antenna includes a parabolic reflector 1, primary radiators 2a, 2b, 2c, a feed circuit 3, a transceiver 4, and a power compensator 5. 6a, 6b and 6c represent the beam directivities radiated by the primary radiators 2a, 2b and 2c.
[0011]
Here, the operation of the array-fed reflector antenna according to the present invention will be described in detail with reference to the drawings. The primary radiators 2a, 2b, and 2c are arranged in a plane including the focal point of the parabolic reflector 1 and perpendicular to a straight line from the focal point toward the center of the parabolic reflector 1, as in the prior art. 1, the beams are emitted to the beam directivities 6a, 6b, and 6c, respectively, to form beams.
[0012]
In the present embodiment, when beam scanning is performed from the beam directivity 6a by the primary radiator 2a to the beam directivity 6b by the primary radiator 2b by the power distribution ratio calculated by the power supply circuit 3, the power compensator 5 By compensating the gain reduction during beam scanning as described below, the transmission / reception level of the array-fed reflector antenna during beam scanning is made substantially constant. Here, a case where three beams are radiated will be described as an example, but the present invention is not limited to this case, and the same applies to a case where two or four or more beams are radiated.
[0013]
FIG. 2 is a diagram illustrating a coordinate system of the parabolic reflecting mirror 1. The z direction is the boresight direction. For example, it is assumed that beam scanning is performed from the beam directivity 6a of the primary radiator 2a to the beam directivity 6b of the primary radiator 2b using the coordinate system of FIG. Assuming that the direction of the beam directivity 6a is θ 1 and the direction of the beam directivity 6b is θ 2 , the following equations (1) to (4) are defined. Note that k represents a wave number.
k 1 = k × sin θ 1 (1)
k 2 = k × sin θ 2 (2)
k + = (k 1 + k 2 ) / 2 (3)
k = (k 1 −k 2 ) / 2 (4)
[0014]
The aperture distribution f (θ 1 , x) of the parabolic reflector 1 in the beam in the θ 1 direction and the aperture distribution f (θ 2 , x) of the parabolic reflector 1 in the beam in the θ 2 direction are on the aperture surface. If the amplitude distribution is a (x), it is given by the following equations (5), (6), (7), and (8). Note that a (x) is constant for each beam direction.
[0015]
(Equation 1)
Figure 2004349886
[0016]
(Equation 2)
Figure 2004349886
[0017]
[Equation 3]
Figure 2004349886
[0018]
(Equation 4)
Figure 2004349886
[0019]
The aperture distribution f (γ, θ 1 , θ 2 , x) of the parabolic reflector 1 in the combined beam obtained by combining the beam in the θ 1 direction and the beam in the θ 2 direction is given by the following equation (9).
[0020]
(Equation 5)
Figure 2004349886
[0021]
When γ = 0, the aperture distribution f (0, θ 1 , θ 2 , x) of the parabolic reflector 1 is given by the following equation (10), and the beam directivity is in the θ 1 direction.
[0022]
(Equation 6)
Figure 2004349886
[0023]
Further, when γ = π / 2, opening the distribution f of the parabolic reflector 1 (π / 2, θ 1 , θ 2, x) is given by the following equation (11), the beam directivity and theta 2 direction Become.
[0024]
(Equation 7)
Figure 2004349886
[0025]
When γ = π / 4, the aperture distribution f (π / 4, θ 1 , θ 2 , x) of the parabolic reflecting mirror 1 is given by the following equation (12), and the beam directivity is θ 1 and θ 2. In the middle direction.
[0026]
(Equation 8)
Figure 2004349886
[0027]
FIG. 3 is a diagram showing a locus of a gain at the time of beam scanning, where 8 shows a locus of a gain at the time of conventional beam scanning, and 9 shows a locus of a gain at the time of beam scanning after power compensation. As can be seen from the above equation, during beam scanning, the aperture distribution of the parabolic reflector 1 has an amplitude taper, so that the gain is reduced. Therefore, in the present embodiment, the transmission / reception level in the array-fed reflector antenna is made substantially constant by compensating the gain reduction due to the amplitude taper with the power compensator 5.
[0028]
As described above, in the present embodiment, the power distribution ratio calculated by the feed circuit 3 changes the beam directivity 6a of the primary radiator 2a from the beam directivity 6b of the primary radiator 2b to the array-fed reflector antenna. When performing beam scanning, the power compensator 5 compensates for a decrease in gain during beam scanning. As a result, the transmission / reception level of the array-fed reflector antenna can be made substantially constant.
[0029]
【The invention's effect】
As described above, according to the present invention, when the beam scanning is performed from the beam directivity by a specific primary radiator to the beam directivity by another primary radiator by the power distribution ratio calculated by the feeding circuit, Compensation means compensates for the gain reduction during beam scanning. As a result, the transmission and reception levels of the antenna device (array-fed reflector antenna) can be made substantially constant.
[Brief description of the drawings]
FIG. 1 is a diagram showing a configuration of an antenna device according to the present invention.
FIG. 2 is a diagram showing a coordinate system of the parabolic reflecting mirror 1;
FIG. 3 is a diagram illustrating a locus of gain during beam scanning.
FIG. 4 is a diagram showing a configuration of a conventional antenna device.
[Explanation of symbols]
1 parabolic reflector, 2a, 2b, 2c primary radiator, 3 feeding circuit, 4 transceiver, 5 power compensator.

Claims (1)

焦点付近に複数の一次放射器が配置されたパラボラ反射鏡と、前記一次放射器に電力を分配する給電回路を備えたアンテナ装置において、
前記給電回路により計算される電力分配比により、特定の一次放射器によるビーム指向性から隣接する一次放射器によるビーム指向性へビーム走査を行う場合に、当該ビーム走査中の送受信レベルの低下を補償する電力補償手段、
を備えることを特徴とするアンテナ装置。
In a parabolic reflector in which a plurality of primary radiators are arranged near a focal point, and an antenna device including a feed circuit that distributes power to the primary radiators,
The power distribution ratio calculated by the power supply circuit compensates for a decrease in the transmission / reception level during beam scanning when performing beam scanning from the beam directivity of a specific primary radiator to the beam directivity of an adjacent primary radiator. Power compensation means,
An antenna device comprising:
JP2003142631A 2003-05-20 2003-05-20 Antenna system Abandoned JP2004349886A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003142631A JP2004349886A (en) 2003-05-20 2003-05-20 Antenna system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003142631A JP2004349886A (en) 2003-05-20 2003-05-20 Antenna system

Publications (1)

Publication Number Publication Date
JP2004349886A true JP2004349886A (en) 2004-12-09

Family

ID=33530663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003142631A Abandoned JP2004349886A (en) 2003-05-20 2003-05-20 Antenna system

Country Status (1)

Country Link
JP (1) JP2004349886A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010034969A (en) * 2008-07-30 2010-02-12 Mitsubishi Electric Corp Multi-beam antenna device for loading satellite
EP3806239A1 (en) * 2019-10-09 2021-04-14 Airbus Defence and Space Limited Multibeam antenna and control method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010034969A (en) * 2008-07-30 2010-02-12 Mitsubishi Electric Corp Multi-beam antenna device for loading satellite
EP3806239A1 (en) * 2019-10-09 2021-04-14 Airbus Defence and Space Limited Multibeam antenna and control method thereof
WO2021069900A1 (en) * 2019-10-09 2021-04-15 Airbus Defence And Space Limited Multibeam antenna comprising direct radiating array and reflector
AU2020364109B2 (en) * 2019-10-09 2022-10-27 Airbus Defence And Space Limited Multibeam antenna comprising direct radiating array and reflector
US11658423B2 (en) 2019-10-09 2023-05-23 Airbus Defence And Space Limited Multibeam antenna comprising direct radiating array and reflector

Similar Documents

Publication Publication Date Title
WO2018110083A1 (en) Mobile station, mobile station rf front-end module, and front-end integrated circuit
KR20180006294A (en) System and method for operating conformal antenna
KR101563309B1 (en) Communication system and method using an active phased array antenna
CN107004946B (en) High coverage antenna array and grating lobe layer using method
Toso et al. Multibeam antennas based on phased arrays: An overview on recent ESA developments
JP2010093399A (en) Antenna apparatus
JP2005137009A (en) High frequency, multiple beam antenna system
JP2009200704A (en) Excitation method of array antenna
JP2004349886A (en) Antenna system
JP2010019611A (en) Antenna device and radar device
JP2006253977A (en) Multi-beam antenna system, and method of configuring radio communication service area
JP4005577B2 (en) Phased array antenna apparatus and beam scanning control method
US20170318590A1 (en) Signal transmission method and device
JP2008258772A (en) Antenna device
JPH09214241A (en) Plane antenna for mobile sng
Mörlein et al. Beamforming Comparison of a Multi-Mode Array with a Dipole Array of the Same Aperture Size
WO2022122043A1 (en) Phased array antenna apparatus
KR102149598B1 (en) Antenna apparatus for wide elevation
JP3634047B2 (en) Grating lobe cancel antenna for mobile SNG
JP6890558B2 (en) Beamforming method and antenna device
JPH07193420A (en) Planar antenna
JPH11308042A (en) Antenna device
Bucci et al. Some recent advances in the synthesis of isophoric sparse arrays for satellite communications
JP3131347B2 (en) Multi-beam antenna
US10601143B2 (en) Antenna apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060725

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20060830